Nagasato, F. and Tran, A.T.
Osaka J. Math.
53 (2016), 1029-1045

SOME FAMILIES OF MINIMAL ELEMENTS FOR A PARTIAL
ORDERING ON PRIME KNOTS

Fumikazu NAGASATO and AvH T. TRAN

(Received September 30, 2014, revised October 20, 2015)

Abstract
We show that all twist knots and certain double twist knots arinimal elem-
ents for a partial ordering on the set of prime knots. The Keythese results are
presentations of their character varieties using Chelwygloé/nomials and a criter-
ion for irreducibility of a polynomial of two variables. The give us an elementary
method to discuss the number of irreducible components efctiaracter varieties,
which concludes the result essentially.

1. Outline of this research

We research a partial ordering on the set of prime knots bggualgebraic sets
associated to knot groups, now known as the character iearief knot groups. The
framework of character varieties introduced by Culler am@l&n [4] for a finitely pre-
sented group has been giving powerful tools and is now piayimportant roles in
geometry and topology. On the other hand, it is not easy toutate character vari-
eties and thus to investigate their geometric structuregeimeral, though an underlying
idea of character varieties is simple as follows. I&tbe a finitely presented group
generated byn elementsg, ..., g,. For a representatiop: G — SL,(C), let x, be
the character op, which is the function orG defined byy,(g) := tr(o(g)) (Vg € G).
Throughout this paper, we simply denote bygjrt¢he trace trp(g)) for an unspeci-
fied representatiop: G — SL,(C). We sometimes omit the brackets in the trace like
tr(a) = tr a for simplicity. By [4] (see also [6])the SL,(C)-trace identity

tr(AB) = tr(A) tr(B) — tr((AB™1) (YA, B € SLy(C))
shows that for any elememnt € G, tr(g) is described by a polynomial iftr(gi)}1<i<n,
{tr(9i9j)}1<i<j<n and {tr(gi9jOk)}1<i<j<k<n. Then the character variety @, denoted

by X(G), is constructed basically by the image of the géB) of characters of S}(C)-
representations d& under the map

t: x(G) = c™O+0), t(x,) := (tr(g); tr(9i 9 ); tr(Gi 9; G)).
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The resulting set turns out to be a closed algebraic set. Byitien, this algebraic set
depends on a choice of generators®{the coordinates oK(G) vary if we change the
choice of generating set @), however, the geometric structures do not depend on that
choice up tobipolynomial map Here two algebraic set¥ and W in some complex
spaces are said to be isomorphic (bipolynomial equivaléntiere exist polynomial
mapsf: V — W andg: W — V such thatgo f =idy, f og = idyw. We call each
of f andg an isomorphism or a bipolynomial map. SG) is an invariant ofG up
to isomorphism (bipolynomial equivalence) of algebraitsse

In this research, we mainly applhe Chebyshev polynomials,(® (Vn € Z) of
the second kind defined by

S)(Z) = l! S.I.(Z) = Z, S‘I(Z) = ZS—l(Z) - S‘I—Z(Z)y

to describe the character varieties. Note t8a1(z) = —S,_2(2) holds for any integen.
Si(2) naturally appears in the calculations X{G) since they have the similar property
as the Sk(C)-trace identity. For example, the third relation above oiyacoincides
with the rule trg") = tr(z) tr(z"1) — tr(z"2) coming from the trace identity. The other
Chebyshev polynomiald,,(z) used in Section 2 also have the same property. Hence
the process of calculations of(G) using the trace identity can be encoded into the
Chebyshev polynomials naturally.

Now we demonstrate a calculation ¥{G) using the Chebyshev polynomia®(z)
in the case wher& is a knot group For a knotK in S3, we denote byG(K) the knot
group of K, i.e., the fundamental group of the knot complem&ht- K. For example,
there exist knots, called-Bridge knots each of which is parametrized by a sequence
of integers &, ay, ..., &] associated to the number tlists (See Fig. 1. For more
details, refer to [8].) The knoK,, = [—2,—m] depicted in Fig. 2 is a type of 2-bridge
knots, called them-twist knot Sometimes the sequenca[ay, ..., &] is encoded in
a rational numbemp/q (p > 0, —p < g < p) by the following continued fraction:

1

p
T_a+
q 1

a +

. 1
i
a
It is shown thatp and q may be taken to be coprime amgis always odd. Then we
denote byb(p, ) the 2-bridge knot with a rational number expressipfy.
Note that for a 2-bridge knota|, .. ., a] the sign of twist>< in the white box
g is positive fori odd, negative foi even.
By Wirtingers algorithmand Tietze transformationgreductions of generators and
relations), we have the following presentation of the 2igei knot groupG(b(p, q)):

G(b(p, q)) = (a’ b | wa = bw):
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Fig. 1. The 2-bridge knotsaf, ay, ...,ax_1] and [a, az, ..., ax]
and generators. and b of their knot groups. The orientation of
a is chosen so that andb are conjugatea; denotes the number
of twists with sign in the white box.

wherea, b are meridiansshown in Fig. 1,w = a®b®2- . -a®»-2bf»+ andej = (—1)Ua/P,
Here |s| denotes the maximal integen satisfyingm < s.

By [10], the character varietX(b(p,q)) := X(G(b(p,q))) is given as the algebraic
set defined by

(1.2) trbwa ! —trw = 0.

This equation gives us a very powerful tool to calculate tharacter varieties for 2-
bridge knots, on which we heavily rely throughout this pager example, in the case
wherem = 2n (n > 0), Equation (1.1) induces the following presentationXK,) :=
X(G(Kzp)). For the twist knotKy, = b(4n + 1, —2n), we havew = u" whereu :=
a~lblab. Letx:=tra=trb, y:=trab ! = try, andt :=t(x,y) = tru = tra b~ lab=
y? — yx? + 2x? — 2, where the presentation ofin x andy is obtained as follows:
tra ‘b lab=trba b la

=trbattrbta—trba?b

= (trab™})? —trba?trb+tra=?

=y?—(trbaltra—trb)trb+ (rat)>—2

=y>— (yX— X)X + x> -2

=y?—yx2+2x2 - 2.

We now focus on the Chebyshev polynomi&gt). The following lemma is standard,
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Fig. 2. Them-twist knot K, = [-2, —m] = b(2m + 1, —m) and
loopsa, &, b, y. andy,. The orientation ofa is given by the
right arrow form odd, by the left arrow fom even.

see e.g. [20, Lemma 2.2].

Lemma 1.1. Suppose the polynomials, fh € Z) in C[x,y] satisfy the recurrence
relation f,., =tfy,— fr_1. Then f = oS (t) — f_1S_1(t) holds.

Set f, ;= trbu"a~l —tru". Then f, satisfies
fryr = trbu"ta=t —tru"tt
=tratbu™! —tru"tru 4 tru"?
=tra tbu"tru—tra tbu"™ - (truMt +tru"?t
=t(trbu"at —tru") — (trbu"tat —tru"?)

= tfn - fnfl.
So, applying Lemma 1.1 to the defining polynomiabtra— — tr w, we have

trbwa™* —trw = trbu"a! —tru"
= (trba ! —tr1)S,(t) — (trbutat —tru ) S,_1(t)
=(y=2)S(@1) - (y - )S-a(t)
= (Y= 2)(Si1) + (y + 1 —xA)S (1)),

sincet —y = (y —2)(y + 1 — x?). Let Ln(x, y) be the resulting polynomial, that is,

La(X, ¥) = (y = 2)(Su(t) + (Y + 1 = x3) S (1))
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Then the character varietf{(Kz,) is given by
(1.2) X(Kzn) = {(x,y) € C | La(x, y) = 0}.

Similarly, for the twist knotKy,_; = b(4n — 1, —2n + 1), wheren > 0, letu :=
a“'b~tab. Then we havew = u"'a—'b~1. In this case, we puk:=tra=trb, y:=
trab=try, andt:=t(x,y) = tru = tra lb~lab = y? — yx® +2x>— 2. As in the case
of Kop, it follows from Lemma 1.1 that

trbwal—trw =trbu"la b lal—tru"talb?
= (trbatbtal—tra b 1)S 4(t)
—(@rbuta b lal —truta b 1) S, (1)
= ((tra )2 —trbab la ! —trab)S_1(t)
—(tra?—trbla 1), (1)
= (X —t = Y)Sat) - (¥ =2 - y)S2(t)
= (X* =y = 2)((y - DS-1(t) — Si-2(t))-

Let L;(x, y) be the above resulting polynomial, that is,

La(x, y) = (% =y = 2)((y = D)S-a(t) — S-2(t))-
Then we obtain a presentation of the character varkti€,, 1):
(1.3) X(Kan-1) = {(x, ¥) € C* | L (x, y) = O}.

In this way, we can calculatX(K,) easily by using Equation (1.1).

On the other hand, we can also calculate the characteriearigsingthe Kauffman
bracket skein moduléKBSM), though we need a lot of calculations f&(K,). (Refer
to [1, 16, 17, 18].) For any non-negative intefen, let Ry(X, y) be the polynomial in
C[x, y] defined by

i=0

m-1
Rm(x, y) = (y + 2)<Sm(y) —Sna(y) + X2 S(y)>,

and let Ry (x, y) be the second factor dRy(X, Y). It follows from [5] using the KBSM
that X(Kn) has the following form:

(1.4) X(Km) = {(X, y) € C? | Rn(X, y) = 0},

1For a negative integerm (m > 1), taking the mirror image oK_,, and arranging it, we obtain
X(K_m) = X(Kmp-1). In this case,R (X, y) will shift to Ry_1(X, ).
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wherex := —tra’ = —trb andy := —tra’b™! = —try.. By definition, the algebraic
sets in (1.2) and (1.4) an = 2n, and also the algebraic sets in (1.3) and (1.4) at
m = 2n — 1 are isomorphic as algebraic sets, howewy(X, y) has a nice form to
research the number of irreducible components<X¢K,,) as follows.

Proposition 1.2 (cf. [2, 12]). For any positive integer mRn(X, y) is irreducible
over C. Therefore X(K,) consists of two irreducible components.

Proof. By the same argument in [14], the fac®g(X, Y)

m-1
Rn(X, ¥) = Sn(y) = Sn-a(y) + X D S(Y)

i=0
2 Sn(Y) — Sna(y) -1
y—2

= Sn(y) — Sna(y) +x

cannot be factorized ai{x + hy)(hsx + hs) where h; € C[y]. Moreover, fi;x? +
hz)hs whereh; € C[y] cannot occur either as a factorization Rf,(z,y), since Sn(y)—

Sn_1(y) and Gn(y) — Sn_1(y)—1)/(y—2) are relatively prime irC[y]. Hence Rn(X, )
is irreducible inC[x, y], concluding Proposition 1.2. ]

The above method naturally leads us to Proposition 1.3.

Proposition 1.3. Supposed(x,z) = f(2)+ x?g(2) is a polynomial inC[x,z] such
that deg f — degg is an odd numberand f(z) and z) are relatively prime inC[Z].
Then ®(x, 2) is irreducible in C[x, z].

Proof. A basic argument shows Proposition 1.3 likewise.ufss thatd(x, z) is
reducible inC[x, z]. Since gcdf (2), g(2)) = 1, we must have

(1.5) d(x, 2) = (h1(2) + xha(2))(hs(2) + xha(2)),
whereh;’s are polynomials inC[z]. Equation (1.5) is equivalent to

f(2) = hi(9hs(2), 0= hi(9)ha(2) + h2(2)h3(2),  9(2) = h2(2ha(2).
So it follows that

degf = degh; + deghs, degh; + degh, = degh; + deghs,
degg = degh; + deghy.
Hence

degf — degg = (degh; — deghy) + (deghs — degh,) = 2(degh; — degh,)
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p=3m+1 p=3m+2

Fig. 3. The 2-bridge knob(p,3) with p > 3, gcd(p,3) = 1. Since
b(p, 3) is a knot,m is even forp = 3m+ 1 andm is odd for
p=3m-+ 2.

is an even number, a contradiction. This proves PropositiGn ]

In fact, the above processes using Equation (1.1) and Fitmpod4.3 lead us to
a nice way to study the number of irreducible components ef ¢haracter varieties
for 2-bridge knots other than twist knots. For example, weufoon the 2-bridge knot
b(p, 3), wherep > 3 and gcdp, 3) = 1. Sinceb(p, 3) is a knot,p is odd.

As shown in Fig. 3,6(3m + 1, 3) is a twist knot(m = 2) or a double twist knqt
and b(3m + 2, 3) is a twist knot h = 1) or a double twist knot. For the word in
the relation ofG(b(p, 3)), let @, (X, z) be the polynomial

qu(X, Z) = Si(z) - Si—l(z)
+X°(2 = 2S11-1(DS-1-1/2/ (D (S22 — Si2-1(2),

whered = (p—1)/2 andl = | p/3]. (The original definition ofd, (X, z) will appear
in Section 2.)

Theorem 1.4(Theorem 2.2 in Section 2, cf. [2], [12]) X(b(p, 3)) with p > 3
and gcd(p, 3) = 1 is presented as the algebraic set defined(by-2—x?)®d,,(x,2z) = 0.
Then ®,,(x, 2) is irreducible overC and thus Xb(p, 3)) consists of exactly two irre-
ducible components.

It is studied in [12] that most double twist knots have exatito irreducible com-
ponents in their character varieties. In the proof, somehou in algebraic geometry
seem to be applied. On the other hand, our proofs of Theordn.g., Proposition 2.1
and Theorem 2.2) use only basic calculations on the ChebysignomialsS,(z). This
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would indicate more or less an efficiency of the Chebysheyrmwhials in the calcu-
lations of the character varieties, though the proofs caamoid laborious calculations
(see Section 2).

The number of irreducible components B{K) is quite interesting in the sense
that these results determine minimal elements for a paotidér on the set of prime
knots in S® defined as follows. LeK and K’ be prime knots inS® which arenon-
trivial, i.e., they cannot bound embedded disksSth Then we writeK > K’ if there
exists an epimorphism (a surjective group homomorphisminfiG(K) onto G(K’).
This defines a partial order on the set of prime knots (refef9ip We can apply
the following theorem to the partial order.

Theorem 1.5(Theorem 4.4 in [3], cf. Appendix in [14], Corollary 7.1 in §]).
Suppose Kc S® is a hyperbolic knot such that (K) of K has only two irredu-
cible components. Then (&) does not surject onto the knot group of any other non-
trivial knot.

Combining Proposition 1.2 and Theorem 1.5, we obtain thkodhg corollary.

Corollary 1.6. For any positive integérm > 1, at which the m-twist knot ¥ is
hyperbolic Kp, is a minimal element for the partial order.

Note that Corollary 1.6 also holds fan = 1 ([9]), where K; is the trefoil knot
(i.e., a non-hyperbolic knot). The first author has showrs thorollary in the case
where 2Zn + 1 is prime ([14]). Similarly, we can apply Theorems 1.4 anfl th get
the following.

Corollary 1.7. The 2-bridge knotb(p, 3) satisfying p> 3 and gcd(p, 3) = 1,
where it is hyperbolicis a minimal element for the partial order.

Corollaries 1.6 and 1.7 also show the minimality of twist t&,, and the 2-bridge
knotsb(p, 3) with respect to the partial order introduced by Silved a\hitten [19] (see
also [7]).

To avoid a complicated organization for readers, we do patyelaborious calcu-
lation in the rest of the paper. So, in the following sectiarg concentrate our focus
on the calculations for
e a special presentatiorz (- 2 — x?)®,,(x, z) = 0 of X(b(p, 3)) with p > 3 and
gcd(p, 3) = 1 using Equation (1.1) (in Subsection 2.1) and,

e a proof of irreducibility of®,,(x,z) = 0 using Proposition 1.3 (in Subsection 2.2).

2According to the property oRy(X, y) under the mirror image mentioned before, this naturally
extends to any negative integer < —2.
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2. Character variety of b(p, 3) using $,(2): a proof of Theorem 1.4

The proof of Theorem 1.4 consists of two parts; giving a dpton (z + 2 —
x2)®,,(x,2) = 0 of X(b(p,3)) using Equation (1.1) (Proposition 2.1) and the irréboiilic
ity of ®,(X,2) using Proposition 1.3 (Theorem 2.2), which describes thénrbody of
X(b(p, 3)). We state these results first.

For the knot groupG(b(p, m)) = (a, b | wa = bw) of the 2-bridge knotb(p, m),
wherew = a®ib®z ... a®-2pb%-1 ande; = (—1)U9/P!, let z = tr(ab) andd = (p — 1)/2.
Note thats; = ¢,_j. In general, it follows from [10] that the polynomial trpa') —
tr(w) (the left hand side of Equation (1.1)), whose zero set ¢dascwith the character
variety X(b(p, m)), is described by

tr(bwa™t) — tr(w) = (z + 2 — x3) D, (X, 2),
where ®,,(X, 2) is the polynomial inC[x, z] defined by
O,(x,2) =trw—trw +--- + (=1 T rw@D 4 (1)

Here if u is a word, thenu’ denotes the word obtained from by deleting the letter
at the beginning and the letter at the enduwof In general,ul)) denotes the element
obtained fromu by applying the deleting operatiop times.

In the case ofb(p, 3) satisfyingp > 3 and gcdp, 3) = 1, we can describe more
precisely the polynomiatd,, (X, z) using the Chebyshev polynomia%(z) as follows.

Proposition 2.1. For the 2-bridge knotb(p, 3) with p > 3 and gcd(p, 3) = 1,
one has

(X, 2) = Si(2) — Su-1(2
+x*2 - 2)S14-1(2)S-1-1/2/(@D(S/2) (@) — Su/2)-1(2)),

where |= | p/3].
This presentation ofb,(x, z) leads us to one of the main results in this paper.

Theorem 2.2. For the 2-bridge knotb(p, 3) with p > 3 and gcd(p, 3) = 1,
d,,(X, 2) is irreducible inC[x, Z].

In the rest of this section, we first show Proposition 2.1.tve prove Theorem 2.2
by Propositions 1.3 and 2.1 and Lemmas 2.5 to 2.7 shown below.
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2.1. Proof of Proposition 2.1. At first, we consider the general casép, m).
Forj=1,...,d, let

a‘ibfi+t ... @@-ipf@e-i o if j is odd,
wj 1=
! bfiafi+t ... pfa-igfe+-i if j is even.

Note thatw; = w and wj41 = (wj) = w() are satisfied. Similarly, foj =1, ...,
d, let

{wj+1b€i, if j is odd, {afiwm, if j is odd,
Uj = Vi

w187, if j is even, b lwjiq, if j is even,

where we setwg,; := 1.

Lemma 2.3. (1) If &j = ¢j41, then

trw; =ztrwj 1 —trwj,o,
Xtruj = x2trwjyq — X trujyg,

Xtrvj = xzterl—xtrle.
2) If &) = —€j41, then
trwj =@Z—x?)trwjsq —trwjio + Xtrujig + Xtrojg.

Proof. For a wordu in two lettersa andb, let T be the word obtained from
by writing the letters inu in the reversed order. Then, by [10, Lemma 3.2.2] we have
trU =tru.

For M € SL,(C), by the Cayley—Hamilton theorem we haté = (tr M)l — M2,
Here | denotes the X 2 identity matrix. Sincesj = ep_; holds, we note thaw; is
also expressed by

a’ibfitt ... @fivp®i o if | is odd,
wj =
J bfiafi+t ... pfi+afl, if j is even.
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(1) Supposesj = €j41. If | is even, then we have

X tr uj =X tr(wj+1a€i) =X tr(wj+1agi+1) =X tr((a€j+1b€j+2 Ce a€j+2bfj+1)a€j+1)
= x tr((@+1b%+2 . . - @%+2p%iHt) (x| — @ ~ei+1))
= x2 tr(a8j+1bsj+2 ces a€j+2bsj+1) —X tr(b5j+2 . a51+2b81'+1)
= X2 tr wjyq — X Uj41,
Xtroj = xtr(bwjy1) = X tr(b+1wj4q) = X tr(bfi+1(@%1+1pbf1+2 . . . @fi+2pfi+1))
= xtr((x| — b~firt)(@i+thfi+2 . . . @fi+2pfi+1))
= x?2 tr(a51+1b€i+2 Ce a81+2b€j+1) — X tr(a51+1b’31+2 . ast)
= X2 trwj 1 — X trvj4,
tr wj = tr(bsi afi+ipfi+2 ... a£i+2b81+1a81) — tr((b8j+1aaj+l)bgj+2 .. aaHz(bs,-Hae,-H))
= tr((bfitafi*1)bfiv2 . . . @fi+2(z] — (b81+1a€j+1)—1))

ztr(b®i+tai+ipfi+2 . . . gfi+2) — tr(bfi+2, ., @®i+?)

= ztr wj+1_tr Wj42.

The case of odd is similar.
(2) Supposes; = —¢j41. If | is even, then we have
X tr uj =X tr((a‘91+1b31+2 . a51+2b31+1)a*31+1) =X tr(b€j+2 e a51+2b€j+1)
=X tl‘ u] +1
Xtroj = xtr(b™ it (@%i+1p%i+2 . .. @®i+2p"it)) = x tr(a®i+1hfi+2 . . . @%i+2)
=X1r UJ‘+]_,
trw; = tr(@ i+tbfi+ati=2 . . . pfi2gfitip eI+
tr((x| — ai+1)b®i+i@®i+2 . . . pfi+2gfi+i (x| — bfi+t))

= X2 tr(b81+1a€j+2 e b81+2a€j+1) + tr(a€j+1b5j+1a€j+2 . b€j+2a€j+1b5j+1)

(2.1)
— X tr(@i+tpfi=tgfi+z . .. pfi+2gfi+l) — x tr(bfi+1afi+2 . . . pfi+2gfisipfi+t),

We first obtain

(2.2) X2 tr(pfi+1a@fi+2 - .. pFIr2afi+t) = X2 tr )1 = X2 tr w4 g

By the argument for tw; in (1), we get

(2.3) tr@“i-ibittativ2 . .. pFir2gfinipfitl) = Ztr wj 1 — tr wjo.
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We also have
X tr(asj+1b8j+1asj+2 . b81+2a81+1)
= X tr((x| —a fi+t)pfi+igfi+2 . . . pfi+2g®i+t)
(2.4)
= X2 tr(birtalie? - . - bfiealinn) — xtr(bfistatiee. . bfi+?)
= X2tr )31 — X trdj51 = X2 trwj g — Xtrujq.
Similarly, the following holds:
(2.5) X tr(bi+2@i+2 . . . b¥i+2@fi+1hf i) = X2 tr wj g — X I vj 1.
From Equations (2.1), (2.2), (2.3), (2.4) and (2.5), we get
trwj = (Z—X?)trwj 1 —trwj 2+ Xtrujp + X trvj1.

The case of odd is similar. This completes the proof of the lemma. ]

We apply Lemma 2.3 to describeur in ®,(x, z) by §(2)'s. For the 2-bridge
knot b(p, 3), we can check that; =1 if j <l andej =-1ifl+1=<j=<d+1,
wherel = | p/3].

Case 1: | +1<j <d. Sinceej = ¢j41, by Lemma 2.3,

trwj =ztrwj1 —trwjo,
Xtruj = x2trwjyq — X trujyg,
Xtrvj = X2 tr Wjy1 — Xrvjys.
Note that trwyg = tra®b®+t = tra‘db®® = z and trwg; = tr1 = 2. Applying the above
equations recursively, we obtain
trwj = Tyy1-j(2),
Xtruj = x2(tr wj1 — trwjpz + -+ (1 trwg) + (1) x trug
= x¥(Ta-j(D = Ta-1-§ (@ + - + DT 1@ + (1)),
Xtroj = x2(trwjer —trwjp+---+ (1)1 trwg) + (1) Ix trog
=x*(Ta i@ —Ta1 @+ + DT + (1)),
where T,(2) (Vn € Z) are the Chebyshev polynomials defined Tifz) = 2, Ti(2) = z
and Th11(2) = 2T (2) — Th_1(2). In particular,
trw 41 = Tg1(2),
Xtru41 = Xtrugs

= XZ(Td—1—| @D -Tg—20(@ + -+ (—1)d7|72'|'1(z) + (_1)dfl—1).
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CAsSE 2: 1< j =<| —1. Sincegj = ¢j4+1, by Lemma 2.3,
trw; = ztrwj ;1 —trwj,o.

By Lemma 1.1, it follows that tw; = S_j(2) tr w — §-1-j(2) tr wy41.
Case 3: j =1. Sinceg = —g 41, by Lemma 2.3,

tl‘ w = (Z_ X2) tr u)|+1 — U‘ U)|+2 + X tr UI+1 + X tr Ul+1
= (2— X*)T4=1(2) — Ta-1-1(2)
+ 2X%(Tge11(2) = Tgoat (@) + - - - + (1) 2T (2) + (—1)4D).

Hence®,(x, 2) is equal to

trwg —trwo+ -+ (1) Ttrwy + (1) trwpg + - + (1) rwg + (—-1)°
=(S1)-S 2+ + (-1 7?82 + (1) 'S(2) tr wy

—(S=2(d - S-3(2) + -+ + (-1) (D) + (-1) 'Su@) tr w2

+ (D trwypg 4+ (1) rwg + (1)
= P2+ x*Q(9R(2),

where

P@) = Tau:1(D)(S-1(D) — S2(2) + -+ + (-1) ?Si(2) + (-1) ' S(2))
— (S22 — §-3(2) + -+ + (1) 7?22 + (1) 'S.1(D) Tani (2)
+ (DT @ + DM Taaa@ + - + (1)@ + (-1,
Q2 =S 1D -S20++ (1) 29@ + (-1 '@,
R@) = —To1(D) + 2(Ta-14(2) — Taon (D + -+ + (-1)*'2Ty(2) + (1)),

The following lemma gives us nice descriptions f8(z), Q(z) and R(2).

Lemma 2.4. The followings hold.
(1) P(9) = Su(2 — S-1(2),

(2) Q@) = S-11/2(D(S1/21(2) — Si/2)-1(2),
(3 R@)=02-2S.12.

Proof. (1) follows from [10] (see also [11, Proposition A.2k P(z) = ¢,(0,2) =
Si(2) — Si-1(2). This can be checked directly by (z) = Sj(2) — Sj_2(z) and Lemma 4.3

in [13] saying that for any non-negative integerands,

SWS +s(U) = Sr4s(U) + Srys2(U) + - + S(U).



1042 F. N\GASATO AND A.T. TRAN
To show (2), let
an=S(2) - S22+ + ()" 'S + (-1)"S(2).
Then Q(2) = ay_1. If n = 2k then
th = (Su(@ + - + (D) = (Sua@ + - + S(2)
= S(2° - S@S 12 = SA(S(D) — S 1(D).
If n=2k+ 1 then

an = (Sxt1(2) + -+ + S1(2) = (Su(D) + - - + S(2))
= S ~ @) = S@)(S+1(2) — ().

In both casesrn = Si—|(n+1)2)(2)(S(n+1)/2/(2) — S(n-1)2/(2))- Hence
Q@ =a-1 =S 1 1/2/(2(S1/2(2) — Si/2-1(2)).
To show (3), let
Brn = —Tns1(@) + 2(Ta(2) — Ta1(@) + - - + (1) Tu(@) + (-1)").
Then R(z) = By—i—1. Note thatT;(2) = Sj(2) — S—2(2). If n = 2k then
Bn = —Tx+1(2) + 2+ 2((Txk(2) + - - + T2(2)) — (Tk-1(2) + - - - + T1(2)))
= —(Sk+1(2) — Sk-1(2)) + 2 + 2((Sxk(2) — S(2) — (Sk-1(2) — S1(2))
= —(Sk+1(2) + Sx-1(2)) + 2Sx(2)
=(2-2%(2 = (2-2S(2.
If n=2k+ 1 then

Bn = —Ta2(2) = 2+ 2((Tat2(2) + -+ - + Ta(2)) — (Ta(2) + - - - + T2(2)))
= —(Sx+2(2) — Sk(2)) — 2 + 2((Sk+1(2) — S1(2)) — (Sk(2) — S(2)))
= —(Sx+2(2) + Sx(2) + 25k+1(2)
= (2-2)S+1(2 = (2-29)S().

In both case®, = (2— 2)S(2). HenceR(2) = By1-1 = (2— 2)S1-1(2).
From Lemma 2.4, we get

®,(x,2) = P(2) + X¥*Q(9R(@)
= Su(2) - S-1(2) + X*(2 — 2S40-1(D) S-1-11/2/(D(Si /21 (2) — Si/2)-1(2)).
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This completes the proof of Proposition 2.1.

2.2. Proof of Theorem 2.2. By Proposition 2.1, we hav®,(x, z) = P(2) +
x°Q(2)R(2), where

P2 = &2 - S-1(2),
Q@) = S-1-1/21D(Su/2/(2) — Si/2-1(2)),
R(2) = (2-2)&-1-1(2).
Since ded@® —degQR=d—(( —1)+(d—I)) = 1 is an odd number, by Proposition 1.3,

®, (X, 2) € C[x, 7] is irreducible if gcdP(2), Q(2)R(2)) = 1.
The following lemma is standard, see e.g. [14].

Lemma 2.5. For n > 1, the followings hold
(1) S\(2) is a monic polynomial of degree n whose n roots are exactgs(z/(n +
D),1<j=n.
(2) S(2) — S-1(2) is a monic polynomial of degree n whose n roots are exactly
2cos((3 +1)x/(2n+ 1)), 0<j<n-1

Note that Lemma 2.5 (2) shows g&lg), 2— z) = 1.
Lemma 2.6. gcd(&i(2) — Si-1(2), Si/2)(2) — Sij2-1(2) = 1.
Proof. By Lemma 2.5 (2), it suffices to show that

2j+1 2j"+1
J ) J

(2.6) 2d+1 " 2[1/2]+1

where 0< j <d—-1and 0< j’' < |I/2] —1. It is easy to see that Equation (2.6) holds
true if ged(d + 1, 2|1/2] + 1) = 1. Recall thatd = (p—1)/2 andl = | p/3]. Since
3(2[1/2] +1)—(2d +1) is equal to eitherl3-p or 31 +1)—p, and 3—p=3|p/3]—p

is equal to either-1 or —2 (note that gcdg, 3) = 1), 3(21/2] +1)—(2d + 1) is equal

to either+1 or +£2. It follows that gcd(® + 1, 2[1/2] + 1) is a divisor of 2. Since
2d + 1 is odd, we must have gcd{2+- 1, 2|1/2] + 1) = 1. 0

Lemma 2.7. ged(Si(2)~Su-1(2), S-1-1/21(2)) = 9ed(& (D)~ Si-1(2), S1-1(D) = 1.
Proof. By Lemma 2.5 (1), it suffices to show that

2041, I K+l K
2d+17 1—[1/2]" 2d+17 d—1I
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where 0< j <d-1,0<j <I-|lI/2]-1,0<k<d-1land O<k <d-1-1.
These hold true if ged@+ 1,1 — |I/2]) =1 and gcd(@ + 1,d —1) = 1. Since the
proof is similar to that of Lemma 2.6, we omit the details. 0

We now finish the proof of Theorem 2.2. From Lemmas 2.5, 2.6 aidwe have
gcd(P(2), Q(2)R(2)) = 1. Hence Proposition 1.3 implies thdt, (x, 2) is irreducible in
C[x, Z] for the 2-bridge knotb(p, 3) and this completes the proof of Theorem 2.2.

ACKNOWLEDGMENTS. The authors would like to thank an anonymous referee
for many technical suggestions on an earlier version of plaiper. They would also
like to thank T.T.Q. Le for helpful discussions. The firsttaaut had been partially sup-
ported by MEXT KAKENHI for Young Scientists (B) Grant Numbe2240048 and has
been partially supported by JSPS KAKENHI for Young Scidsti@B) Grant Number
26800046.

References

[1] D. Bullock: Rings ofSLy(C)-characters and the Kauffman bracket skein mod@emment.
Math. Helv. 72 (1997), 521-542.

[2] G. Burde: SU(2yrepresentation spaces for two-bridge knot groupgath. Ann. 288 (1990),
103-1109.

[3] M. Boileau, S. Boyer AW. Reid and S. Wan8imors conjecture for two-bridge kngt€omm.
Anal. Geom.18 (2010), 121-143.

[4] M. Culler and P.B. ShalenVarieties of group representations and splittings 3manifolds
Ann. of Math. (2)117 (1983), 109-146.

[5] R. Gelca and F. Nagasat®@ome results about the Kauffman bracket skein module ofatisé t
knot exterior J. Knot Theory Ramification&5 (2006), 1095-1106.

[6] F. Gonzalez-Acufia and J.M. Montesinos-Amilibi@an the character variety of group represen-
tations in SL(2,C) and PSL(2,C), Math. Z.214 (1993), 627-652.

[7] J. Hoste and P.D. Shanahakpimorphisms and boundary slopes @bridge knots Algebr.
Geom. Topol.10 (2010), 1221-1244.

[8] A. Kawauchi: A Survey of Knot Theory, Birkhauser, Bas&b96.

[9] T. Kitano and M. Suzuki:A partial order in the knot tablell, Acta Math. Sin. (Engl. Ser.24
(2008), 1801-1816.

[10] T.T.Q. Le: Varieties of representations and their subvarieties ofaroblogy jumps for knot
groupsMat. Sb.184 (1993), 57-82, (Russian).

[11] T.T.Q. Le and A.T. Tran:On the AJ conjecture for knat$ndiana Univ. Math. J64 (2015),
1103-1151.

[12] M.L. Macasieb, K.L. Petersen and R.M. van Luijon character varieties of two-bridge knot
groups Proc. Lond. Math. Soc. (3)03 (2011), 473-507.

[13] F. NagasatoComputing the A-polynomial using noncommutative methadsnot Theory Ram-
ifications 14 (2005), 735—749.

[14] F. Nagasato:On minimal elements for a partial order of prime knoffopology Appl. 159
(2012), 1059-1063.

[15] T. Ohtsuki, R. Riley and M. SakumaEpimorphisms betwee8-bridge link groups Geom.
Topol. Monogr.14 (2008), 417-450.



[16]

[17]
(18]

[19]

(20]

A PARTIAL ORDERING ON PRIME KNOTS 1045

J.H. Przytycki: Fundamentals of Kauffman bracket skein modukésbe J. Math.16 (1999),
45-66.

J.H. Przytycki: Skein modules @-manifolds Bull. Polish Acad. Sci. Math39 (1991), 91-100.
J.H. Przytycki and A.S. SikoraSkein algebra of a groypin Knot Theory (Warsaw, 1995),
Banach Center Pub#2, Polish Acad. Sci., Warsaw, 297—-306, 1998.

D.S. Silver and W. WhittenKnot group epimorphismsl. Knot Theory Ramification5 (2006),
153-166.

A.T. Tran: The universal character ring of the-2, 2m + 1, 2n)-pretzel link Internat. J. Math.
24 (2013), DOI10. 1142/ S0129167X13500638.

Fumikazu Nagasato
Department of Mathematics
Meijo University

Tempaku, Nagoya 468-8502
Japan

e-mail: fukky@meijo-u.ac.jp

Anh T. Tran

Department of Mathematical Sciences
The University of Texas at Dallas
Richardson TX 75080

U.S.A.

e-mail: att140830@utdallas.edu



