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Abstract
We prove new results about exponential decay rates associated with the two

dimensional Schrödinger equation with critical nonlinearity and localized damping.
Our article improve incomplete previous results established in [4].

1. Introduction

Along the years, several researchers have been interested in proving important re-
sults of controllability/stabilization related to dispersive models posed on bounded and
unbounded domains. The results have been improved and sufficient conditions were ob-
tained to insure control/stability related to these evolution equations. One of the most
important equation in this development concerns to the nonlinear Schrödinger equation

(1.1) iut C1uC �juj��1uC g(x, u)u D 0,

where � D �1, � � 1 and u D u(x, t), (x, t) 2 O � (0,C1), is a complex-valued
function andO is a convenient subset ofRn, n � 1. Here, functiong is a dissipation
term which satisfies the following condition

Im(g(x, u(x, t))) � 0, 8(x, t) 2 O � (0,C1),

which is responsible for the dissipative mechanism inL2-level whether we assume con-
venient boundary conditions. For instance, by supposingO D R

n, we can multiply
equation (1.1) byNu in order to get, after integration overRn,

(1.2)
d

dt

Z

R

n

ju(x, t)j2 dx D �2
Z

R

n

Im(g(x, u(x, t)))ju(x, t)j2 dx � 0.

So, from inequality in (1.2) it makes sense to find decay rateson the energy inL2-
level for the nonlinear equation (1.1). A particular example of the equation (1.1) which
possesses interesting results of controllability/stabilization in current literature is the

2010 Mathematics Subject Classification. Primary 35Q55; Secondary 93D15, 93B05, 93B07.
Research of F. Natali partially supported by the CNPq/Brazil.



718 F. NATALI

following nonlinear equation

(1.3) iut C1uC �juj2uC ia(x)u D 0, (x, t) 2 R2
� (0,C1),

that is,g(x,u)D a(x), � D 3 andnD 2 in equation (1.1). The energy identity obtained
from (1.2), after integrating the result over [0,t), is given by

(1.4)

E0(t) WD
Z

R

2
ju(x, t)j2 dx

D �2
Z t

0

Z

R

2
a(x)ju(x, s)j2 dx dsC

Z

R

2
ju0(x)j2 dx.

In what follows, in whole this paper, we assume the followingset of assumptions:
(H1) a 2 L1(R2) and a(x) � 0 a.e. inR2.
(H2) a(x) � �0 > 0 a.e. inR2

n BR(0).
If one considers equation (1.1) withg � 0 andO being a bounded domain with

smooth boundary, the authors in [19] established exact controllability results inH s-level
with solution u satisfying either Dirichlet or Neumann boundary conditions. On peri-
odic domains, we have the work [10]. In this case, the author established controllabil-
ity/stabilization for the equation (1.3) when the spaceR

2 is replaced by the torusT . The
main ingredient is to use of some multilinear estimate in some appropriate Bourgain peri-
odic space.

Next, in unbounded domains we have the work [4] where it was presented expo-
nential decay rates of the energy, inL2-level related to the equation (1.3) with� D �1
(defocusing nonlinearity) and functiona satisfying similar assumptions as in (H1) and
(H2). Sincea produces a localized dissipative effect inL2-level, a result of unique con-
tinuation was proved in order to obtain the desired exponential stability result. How-
ever, we mention here that some points in that work are not clear. Therefore, the goal
is to give a positive and definitive answer for this question jointly with the proof of
the exponential decay of the energy for the case� D 1 (focusing nonlinearity). A
correct proof was determined in [3] for the casen D 1, where we have used results
of unique continuation in [24] combined with theH1=2 smoothing effect for the lin-
ear Schrödinger equation. This last point was not mentionedin [4]. In [23], it was
studied the asymptotic behavior in time of small solutions for the problem (1.1) with
g(x, u) D �juj2=n, � 2 R n {0}, andnD 1, 2, 3. He showed that if� > 0, there exists a
unique global solution which decays like (t log t)�n=2 as t !C1 in L1(Rn) for small
initial data.

Other dispersive equation with a huge quantity of contributors in this subject con-
cerns the generalized Korteweg–de Vries,

(1.5) ut C ux C upux C uxxxC a(x)u D 0,

where p� 1 is an integer,uD u(x, t) is a real valued function defined inJ � (0,C1)
and a is a nonnegative real function which depends onx 2 J . Eventually, functiona
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can satisfy localized properties of dissipation or it can bezero to guarantee results of
control/stability of the energy. Some contributors deserve to be mentioned for the case
pD 1 as [16] and [17]. Regarding equations of KdV-type having general nonlinearities,
we can mention [13] and [21]. Periodic problems were studiedin [9], [11] and [22]. A
good review in these problems is [20]. In unbounded domains we can cite [2] and [12].

Next, we shall give a brief outline of our work. To do so, we employ the unique
continuation principle determined in [7] (see also [1] and [15] for additional references)
combined with the local smoothing effect for the Schrödinger equation inH1=2. These
facts allow us to establish the exponential decay rate for the L2-critical equation (1.3)
given by

(1.6) E0(t) � ce�!t , t � 1,

where c and ! are positive constants, provided that the initial data inL2 is small
enough. This last fact makes necessary in order to guaranteean uniform bound of the
solution u related to the equation (2.1) in a convenientL p space,p > 1.

Our paper is organized as follows. In Section 2 we present some preliminary and
useful results used in paper. Exponential decay rates associated with the equation (1.3)
is presented in Section 3.

2. Preliminaries results

In what follows, we consider the initial value problem (IVP henceforth) related to
the equation (1.3) as

(2.1)

�

iut C1uC �juj2uC ia(x)u D 0, in R

2
� (0,C1),

u(x, 0)D u0(x), x 2 R2.

Our first result concerns to enunciate the local solvabilityof the IVP (2.1) for initial
data in L2(R2).

Theorem 2.1. Consider u0 2 L2(R2) and a2 L1(R2). There is a unique local
solution u for the Cauchy problem(2.1) which belongs to

C([0, T 0]I L2(R2)) \ L4([0, T 0]I L4(R2)),

for all 0 < T 0

< Tmax. In addition, the local solution satisfies identity(1.4), for all
t 2 [0, Tmax], and the map

u0 2 L2(R2) 7! u 2 C([0, T 0]I L2(R2)),

is continuous for all0< T 0

< Tmax. In addition, if ku0kL2 is small enough the solution
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u extends to any interval[0, T ], that is,

C([0, T ]I L2(R2)) \ L4([0, T ]I L4(R2)),

for all T > 0.

Proof. The proof of the theorem is a slight adaptation of Theorem 4.7.1 in [5]
and because of this, we shall omit its proof. The second part can be found in [8] (see
Corollary 5.2).

REMARK 2.1. 1) In Theorem 2.1, the local timeT 0 is assumed to satisfy 0<
T 0

< Tmax because we could have a blowup alternative, that is,ku(t)kX ! 1 as t "
Tmax, if Tmax < 1. If TmaxD C1 solution u is global in class above. The spaceX
indicatesX D L2(R2).
2) Global solutions inL2(R2) to the equation (2.1) (for arbitrary initial data) can be
obtained by using the energy identity in (1.4) jointly with the fact that functiona in
assumption (H1) is non-negative. See arguments in Remark 2.2 in order to justify the
validity of the computations to deduce the refereed identity.

The assumption thatku0kL2 is small enough is useful to establish the following
local smoothing effect result.

Lemma 2.2. Suppose that there is L0 > 0 such thatku0kL2
� L0. Let u be the

corresponding solution obtained inTheorem 2.1. Then we have the following estimate

(2.2)
Z T

0

Z

BR

jD1=2
x u(x, t)j2 dx dt� c(�, R, T, kakL1), for all T > 0.

Proof. The arguments in order to establish this result can befound in [6]. In fact,
solution u( � ) must satisfies the integral equation

(2.3) u(t) D S(t)

�

u(0)C i
Z t

0
S(�� )(�juj2uC ia( � )u)(� ) d�

�

,

whereS(t), t � 0, denotes the semigroup related to Schrödinger equation. Let us define,

I D

�

Z T

0

Z

BR

jD1=2
x u(x, t)j2 dx dt

�1=2

.

The next step is to use the well known Strichartz estimates associated with the Schrödinger
equation and the smoothing effect inH1=2-norm associated to linear Schrödinger equation
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(see [6] and [8] for more details) in order to deduce from Hölder inequality that

(2.4)

I � cR

�

ku(0)kL2
C sup

[0,T ]













Z t

0
S(t)(�juj2uC ia( � )u)(t) dt













L2

�

� cR

 

cku(0)kL2
C c�

�

Z T

0
ku(t)k4L4 dt

�3=4
!

.

The right-hand side of the estimate (2.4) is bounded for allT > 0 provided that the
initial data is small enough (see Corollary 5.2 in [8]). The result is now proved.

REMARK 2.2. Equality in (1.4) can be rigourously deduced by supposing a regu-
lar solution for equation in (2.1). For instance, if we take an initial datau0 in H2(R2) ,!
H1(R2) ,! L2(R2), the local solutionu given by Theorem 2.1, for someT 0

> 0, co-
incides with the classical solution which can be determinedby using classical semigroup
theory orH2 local theory on p. 152 in [5]. Global solutions inH2(R2) is determined for
arbitrary large initial data whether� D �1 or small initial data inL2 if � D 1. By den-
sity arguments, we deduce the validity of computations to conclude equality (1.4). In
that case,

u 2 C([0, T ]I H2(R2)) \ C1([0, T ]I L2(R2)).

In order to guarantee the existence of smooth solutions related to the nonlinear
Schrödinger equation (1.3) witha� 0, we need to present some basic spaces and use-
ful notations. We follow the arguments in [14]. Indeed, for any 2-index� D (�1,�2) 2
N

2, we defineJ�(t)D M(t)(2i tr)�M(�t), whereM(t)D ei jxj2=(4t), t > 0. Let us intro-
duce the following basic space

X0 D L4([0, T ]I L4(R2)) \ L1([0, T ]I L2(R2)).

We treat equation (1.3) witha � 0 in the following function space withb > 0:

Gb
0(J) D

(

u 2 X0, kukGb
0(J) WD

X

��0

bj�j

�!
kJ�ukX0

)

,

where j�j D �1C �2, �! D �1! �2! and, � � 0 provided that�i � 0, i D 1, 2.
Next, for � > 0, we define

Bb
0(�) D

(

u0 2 Gb
0(x), ku0kGb

0(x) WD
X

��0

bj�j

�!
kx�u0kL2

)

.

We enunciate one of the main results in [14].
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Theorem 2.3. There exists a constant� > 0 such that for any b> 0 and u0 2

Bb
0(�) equation(1.3) with a� 0 has a unique solution u2 Gb

0(J).

REMARK 2.3. In our case, Theorem 2.3 works satisfactorily because the result
states that we have analytic smoothing properties of solutions since functions inGb

0(J)
are analytic inR2

�(0,C1). Moreover, if one considers an initial datau0 with compact
support, it easy to see thatu0 2 Bb

0(�). Thus, we can deduce that solutionu 2 C1(R2
�

(0,C1)).

Next, we have the following unique continuation theorem forregular solutions of
the nonlinear equation in (2.1) witha � 0. This result is more general in the sense
that it deserves for nonlinear Schrödinger equation in the domain (x, t) 2 Rn

� [0, T ],
n � 1, with a general nonlinearityF(v, Nv). In such case, we must considerk 2 ZC

satisfyingk > n=2C 1.
Let us define the weighted Sobolev spaceH1(e�jxj

�

dx), as

H1(e�jxj
�

dx) D

�

f I
Z

R

j f (x)j2e�jxj
�

dxC
Z

R

j f 0(x)j2e�jxj
�

dx <1

�

.

Theorem 2.4. Let w 2 C([0, T ]I H k(R)), k 2 ZC, k > 2 be a strong solution of
the equation in(2.1) with a � 0 in the domain(x, t) 2 R2

� [0, T ]. If there exist
t1, t2 2 [0, T ], t1 ¤ t2, � > 2 and � > 0 such that

(2.5) w( � , t1), w( � , t2) 2 H1(e�jxj
�

dx),

thenw � 0.

Proof. See Theorem 2.1 in [7].

3. Exponential decay

In this section, we are interested in obtaining exponentialdecay rate for the energy
in L2-level related to the equation (1.3). First, we assume that assumptions (H1) and
(H2) are verified. Multiplying the first equation in (1.3) byNu and integrate the result
over R2 and then, over [0,t) to get

(3.1) E0(t) D �2
Z t

0

Z

R

2
a(x)ju(x, t)j2 dx dsC ku0k

2
L2 � ku0k

2
L2.

From equation (1.3) we have that (d=dt)E0(t) WD (d=dt)
R

R

2ju(x, t)j2 dx D

�2
R

R

2 a(x)ju(x, t)j2 dx and, consequently, we have the following estimate:

(3.2)
Z T

0
E0(t) dt � �2��1

0

�

Z

R

2
ju(x, t)j2 dx

�T

0

C

Z T

0

Z

BR

ju(x, t)j2 dx dt

� �� �

I

,
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where BR WD {x 2 R2
I jxj � R}

Theorem 3.1. Consider the potential a2 L1(R2) satisfying assumptions(H1) and
(H2). We suppose that there exists L0 > 0 such thatku0kL2

� L0. Thus, there are posi-
tive constants� D �(L0) and! D !(L0) such that,

E0(t) � �e�!t ,

for all t � 0 large enough and for any solution of(1.3) given in Theorem 2.1.

A preliminary result makes necessary to determine good bounds for the integral
equationI in (3.2). Considera 2 L1(R2) and suppose that the initial data belongs to
a (small enough) bounded set ofL2, according with Theorem 3.1. We are enable to
prove the following lemma:

Lemma 3.2. Let u be a solution associated to the equation(1.3) with initial data
u0 satisfying the smallness condition on the initial data in L2 as required inThe-
orem 3.1. Then, for all T � 1 there exists a positive constant c> 0 which depends
on T and L0 such that the following inequality holds,

(3.3)
Z T

0

Z

BR

ju(x, t)j2 dx dt� c
Z T

0

Z

R

2
a(x)ju(x, t)j2 dx dt.

Proof. We denoteBR WD BR(0) to simplify the notation. We argue by contradic-
tion. Let us suppose that (3.3) is not true and let{uk(0)}k2N be a sequence of initial
data where the corresponding solutions{uk}k2N of (1.3) with Ek

0(0), defined in (3.1)
for all k 2 N, is assumed to be small enough inL2. Thus,

(3.4) lim
k!C1

R T
0 kuk(t)k2L2(BR) dt

R T
0

R

R

2(a(x)kuk(x, t)k2) dx dt
D C1.

In other words,

(3.5) lim
k!C1

R T
0

R

R

2(a(x)kuk(x, t)k2) dx dt
R T

0 kuk(t)k2L2(BR) dt
D 0.

Since,

Ek
0(t) � Ek

0(0)� L0,

we obtain a subsequence of{uk}k2N , still denoted by{uk}k2N from now on, which
verifies the convergence:

(3.6) uk * u weakly in L2([0, T ]I L2(R2)).
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So, we deduce

(3.7) lim
k!C1

Z T

0

Z

R

2
a(x)juk(x, t)j2 dx dtD 0,

consequently, from hypothesis (H2) one has

(3.8) lim
k!C1

Z T

0

Z

R

2
nBR

juk(x, t)j2 dx dtD 0.

On the other hand, from Lemma 2.2 we guarantee that{uk}n2N is bounded in
L2([0, T ]I H1=2(BR)). Further, sinceH1=2(BR) is compactly embedded inL2(BR), we
guarantee from Aubin–Lions’ lemma that there is a subsequence, still denoted by
{uk}k2N , such that

(3.9) uk ! u strong in L2(BR � [0, T ]).

Therefore,

(3.10) uk ! u a.e. in BR � [0, T ].

Statements (3.8) and (3.10) enable us to deduce the following convergence:

(3.11) uk ! Qu a.e. in R

2
� [0, T ],

where

Qu D

�

u, a.e. in BR � [0, T ],
0, a.e. in R

2
n BR � [0, T ].

At this point we will divide the proof into two cases.
CASE (I): u ¤ 0.
By using convergence in (3.11), the fact that{jukj

2uk}k2N is bounded inL4=3(BR�

[0, T ]), and Lions’ lemma, we can pass to the limit to deduce thatu is a solution of
the problem

(3.12)

�

iut C1uC �juj2u D 0, in R

2
� [0, T ],

u D 0, a.e. in R

2
n BR � [0, T ].

Moreover, sinceu 2 L2([0, T ]I L2(R2)) there existst0 2 [0, T ] such thatu( � , t0) 2
L2(R2) and consequently from Theorem 2.1 one has (a unique)u 2 C([t0, T ]I L2(R2)).
From the continuous dependence of the initial data and the uniqueness of the solution
u, we see thatu is a mild solution with initial datau0 WD u( � , 0) (see arguments in
[10]) having compact support. Thus, we can use Theorem 2.3 (see also Remark 2.3)
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to conclude thatu is smooth withu(x, t) D 0 a.e. (x, t) 2 R2
n BR� [0, T ]. Therefore,

from Theorem 2.4 we getu � 0 in R2
� [0, T ]. This last fact is a contradiction with

u ¤ 0.
CASE (II): u D 0.
We denote

(3.13) �k D kukkL2([0,T ]IL2(BR)).

By defining vk D uk=�k we obtain,

(3.14) kvkkL2([0,T ]IL2(BR)) D 1, 8k 2 N.

Next, we derive an uniform bound for the initial datavk(0) in L2(R2). Indeed, by
using (H2) we deduce

(3.15)
Z T

0

Z

R

2
jukj

2 dx dt�
1

�0

Z T

0

Z

R

2
a(x)jukj

2 dx dtC
Z T

0

Z

BR

jukj
2 dx dt.

So, from equality (1.4) and (3.15) one has

Z

R

2
juk(0)j2 dx �

1

T

Z T

0

Z

R

2
jukj

2 dx dtC 2
Z T

0

Z

R

2
a(x)jukj

2 dx dt

�

�

2C
1

�0T

�

Z T

0

Z

R

2
a(x)jukj

2 dx dtC
1

T

Z T

0

Z

BR

jukj
2 dx dt.

Finally, by using last inequality we get

(3.16) kvk(0)k2L2(R2) �

�

2C
1

�0T

�

Z T

0

Z

R

2
a(x)jvkj

2 dx dtC
1

T
,

which establishes a bound for the initial datavk(0) in L2-level. In addition, sinceT � 1
we obtain from (3.5) and (3.16) that there are�0 > 0 andk0 2 N such that

kvk(0)kL2
� �0, k � k0.

Therefore, from Theorem 2.1 we get thatvk satisfies the equation,

(3.17) i vt,k C1vk C ��
2
k jvkj

2
vk C ia(x)vk D 0, in D0(R2

� [0, T ]).

On the other hand, by using (3.5), (3.14) and the fact thata(x) � �0 > 0 for jxj �
R, we deduce

(3.18) lim
k!C1

Z T

0

Z

R

2
nBR

jvk(x, t)j2 dx dtD 0.
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Thus,

(3.19) vk ! 0 in L2([0, T ]I L2(R2
n BR)).

So, we get a functionv which verifiesvk * Qv in L2([0, T ]I L2(R2)), where

Qv D

�

v, a.e. in BR � [0, T ],
0, a.e. in R

2
n BR � [0, T ].

Next, since�k D kukkL2([0,T ]IL2(BR)) ! 0, ask ! C1, and jvkj
2
vk is bounded in

L4=3(R2
� [0, T ]), we can use similar arguments as in first case. These facts enable us

to pass to the limit in equation (3.17) to obtain thatv solves the linear equation

(3.20)

�

i vt C1v D 0, in D0(R2
� [0, T ]),

v D 0, a.e. in R

2
n BR � [0, T ].

Therefore, from Holmgreen’s theorem we conclude thatv � 0 in BR� [0,T ]. Our proof
is not complete in the sense that we still not have a contradiction argument as in first
case. In fact, it is not clear thatvk ! 0 strongly in L2([0, T ]I L2(BR)) as k!C1 to
get a contradiction with (3.14). For this purpose a compact embedding as determined
in Theorem 2.2 makes necessary in this case. In [4] the arguments in this point are
not clear since we conclude directly the required strong convergence above. Therefore,
from Lemma 2.2 applied tovk, Aubin–Lions’ lemma and having in mind thatv � 0
one has

(3.21) lim
k!C1

Z T

0

Z

BR

jvk(x, t)j2 dx dtD 0.

In addition, note that from (3.14) we have

(3.22) lim
k!1

Z T

0

Z

BR

jvk(x, t)j2 dx dtD lim
k!1

kvkk
2
L2([0,T ]IL2(BR)) D 1,

which establishes a contradiction. The proof is now completed.

Proof of Theorem 3.1. Indeed, from (1.4) and (3.3) we deduce that

(3.23)
Z T

0
E0(t) dt �

�

�1
0

2
E0(0)C c

Z T

0

Z

R

2
a(x)ju(x, t)j2 dx dt, for all T � 1.

Next, by using identity of the energy inL2-level, namely:

(3.24) E0(t) � E0(0)D �2
Z t

0

Z

R

2
a(x)ju(x, t)j2 dx dt, for all t � 0,
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we infer thatE(t) is non-increasing, and, furthermore that

(3.25) 2
Z t

0

Z

R

2
a(x)ju(x, s)j2 dx dsD E0(0)� E0(t) for all t � 0.

Thus, combining (3.23) and (3.25) we have,

(3.26)

E0(T) �
�

�1
0

2T

�

E0(T)C 2
Z T

0

Z

R

2
a(x)ju(x, t)j2 dx dt

�

C

c

T

Z T

0

Z

R

2
a(x)ju(x, t)j2 dx dt

which implies that forT � 1,

(3.27)

�

T �
�

�1
0

2

�

E0(T) � (��1
0 C c)

Z T

0
a(x)ju(x, t)j2 dx dt.

For T � 1, the last inequality yields

(3.28) E0(T) � c
Z T

0
a(x)ju(x, t)j2 dx dt.

Finally, combining (3.25) and (3.28) we obtain

(3.29) E0(T) � c

�

E0(0)� E0(T)

2

�

,

that is,

(3.30) E0(T) � 
 E0(0), where 
 D

c=2

1C c=2
.

Next, since we have global solutions inL2(R2), let us definev(x, t) D u(x, tC T).
We see thatv is a solution related to the Schrödinger equation in (1.3) which belongs
to C([T, 2T ], L2(R2)). In addition, the new initial data is nowv(x, 0) D u(x, T) 2
L2(R2). So we have from Lemma 3.2 applied tov that

E0(2T) D E0,v(T)

� c
Z T

0

Z

BR

a(x)jv(x, t)j2 dx dtD c
Z T

0

Z

BR

a(x)ju(x, t C T)j2 dx dt

D c
Z 2T

T

Z

BR

a(x)ju(x, s)j2 dx dsD c

�

E0(T) � E0(2T)

2

�

,
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where E0,v is the energy inL2(R2) associated withv. So, from the above we get

E0(2T) � 
 E0(T) � 
 2E0(0).

Repeating this argument, one hasE0(nT) � 
 nE0(0), for all n 2 N. This last fact
allow us to deduce the exponential decay. In fact, lettingt D nTCr , where 0� r < T ,
we get

E0(t) � E0(nT) � 
 nE0(0)D 
 (t=T�r =T)E0(0).

Since 0< 
 < 1, we can choose! D � ln(
 )=T > 0 and� D 
 �r =T E0(0) to obtain
E0(t) � �e�!t , t � 1.

The proof is now completed.
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