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Abstract
We prove new results about exponential decay rates assdcigith the two
dimensional Schrédinger equation with critical nonlingaand localized damping.
Our article improve incomplete previous results establisin [4].

1. Introduction

Along the years, several researchers have been interesteving important re-
sults of controllability/stabilization related to dispare models posed on bounded and
unbounded domains. The results have been improved andieniffamnditions were ob-
tained to insure control/stability related to these evolutequations. One of the most
important equation in this development concerns to theineat Schrédinger equation

(1.1) iug + Au + AJul*tu + g(x, uu = 0,

wheredA = +1, « > 1 andu = u(x, t), (x,t) € O x (0, +00), is a complex-valued
function andO is a convenient subset ®&", n > 1. Here, functiong is a dissipation
term which satisfies the following condition

Im(g(x, u(x, t))) >0, V(x,t) e O x (0, +00),

which is responsible for the dissipative mechanisnifalevel whether we assume con-
venient boundary conditions. For instance, by supposthg= R", we can multiply
equation (1.1) byd in order to get, after integration ové",

(1.2) % Rn|u(x, t)2dx = —2 /R Im(g(x, u(x, t)))|u(x, t)|>dx < 0.

So, from inequality in (1.2) it makes sense to find decay rateshe energy inlL>?-
level for the nonlinear equation (1.1). A particular exaenpf the equation (1.1) which
possesses interesting results of controllability/stzdiion in current literature is the

2010 Mathematics Subject Classification. Primary 35Q55p&aary 93D15, 93B05, 93B07.
Research of F. Natali partially supported by the CNPg/Brazi



718 F. NATALI

following nonlinear equation
(1.3) iug + Au+ AjulPu +ia()u =0, (x,t) € R? x (0, +00),

that is, g(x,u) = a(x), « = 3 andn = 2 in equation (1.1). The energy identity obtained
from (1.2), after integrating the result over [9, is given by

Eo(t)::/ lu(x, t)]2 dx
(1.4) R

t
— 2 2
= 2/0 /Rz a(x)|u(x, s)|> dx ds+ /Rz|uo(x)| dx.

In what follows, in whole this paper, we assume the follows® of assumptions:
(H1) a € L>*(R?) anda(x) > 0 a.e. inR?,
(H2) a(x) > ap > 0 a.e. inR?\ Bg(0).

If one considers equation (1.1) wih = 0 and O being a bounded domain with
smooth boundary, the authors in [19] established exactakattility results inHS-level
with solutionu satisfying either Dirichlet or Neumann boundary condigiorOn peri-
odic domains, we have the work [10]. In this case, the autkstabdished controllabil-
ity/stabilization for the equation (1.3) when the sp®&Zeis replaced by the toru®. The
main ingredient is to use of some multilinear estimate in s@mpropriate Bourgain peri-
odic space.

Next, in unbounded domains we have the work [4] where it wasgmted expo-
nential decay rates of the energy, lis-level related to the equation (1.3) with= —1
(defocusing nonlinearity) and functiom satisfying similar assumptions as in (H1) and
(H2). Sincea produces a localized dissipative effectlif-level, a result of unique con-
tinuation was proved in order to obtain the desired expadakstability result. How-
ever, we mention here that some points in that work are nair.cleherefore, the goal
is to give a positive and definitive answer for this questiomtly with the proof of
the exponential decay of the energy for the case- 1 (focusing nonlinearity). A
correct proof was determined in [3] for the case= 1, where we have used results
of unique continuation in [24] combined with thd/? smoothing effect for the lin-
ear Schrodinger equation. This last point was not mentidnef#t]. In [23], it was
studied the asymptotic behavior in time of small solutioos the problem (1.1) with
g(x,u) = u|u|?™, u € R\ {0}, andn = 1, 2, 3. He showed that i > 0, there exists a
unique global solution which decays likelggt)™2 ast — +oo in L>®(R") for small
initial data.

Other dispersive equation with a huge quantity of contolaitin this subject con-
cerns the generalized Korteweg—de Vries,

(1.5) Up + Uy + UPUy + Uyxxx + a(x)u = 0,

where p > 1 is an integeru = u(x,t) is a real valued function defined i x (0, +00)
and a is a nonnegative real function which depends»or 7. Eventually, functiona
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can satisfy localized properties of dissipation or it canzbeo to guarantee results of
control/stability of the energy. Some contributors desetiv be mentioned for the case
p =1 as [16] and [17]. Regarding equations of KdV-type havingegal nonlinearities,
we can mention [13] and [21]. Periodic problems were studief®], [11] and [22]. A
good review in these problems is [20]. In unbounded domaiasan cite [2] and [12].

Next, we shall give a brief outline of our work. To do so, we émypthe unique
continuation principle determined in [7] (see also [1] ad8][for additional references)
combined with the local smoothing effect for the Schrédmeguation inH2, These
facts allow us to establish the exponential decay rate ferLthcritical equation (1.3)
given by

(1.6) Eo(t) <ce™, t>1,

where ¢ and o are positive constants, provided that the initial dataLi is small
enough. This last fact makes necessary in order to guaramtesiform bound of the
solutionu related to the equation (2.1) in a convenidrit space,p > 1.

Our paper is organized as follows. In Section 2 we presentespraliminary and
useful results used in paper. Exponential decay rates iagstavith the equation (1.3)
is presented in Section 3.

2. Preliminaries results

In what follows, we consider the initial value problem (IVRrteforth) related to
the equation (1.3) as

2.1) {iut+Au+A|u|2u+ia(x)u=0, in R2x (0, 4+00),

u(x, 0) = uo(x), X € R?,

Our first result concerns to enunciate the local solvabitifythe IVP (2.1) for initial
data in L2(R?).

Theorem 2.1. Consider @ € L?(R?) and ae L>*(R?). There is a unique local
solution u for the Cauchy probleif2.1) which belongs to

C([0, T'; LA®R?) N L*([0, T']; L*(®R?)),

for all 0 < T’ < Tmax- In addition the local solution satisfies identitfl.4), for all
t € [0, Tmaxl, @and the map

Uo € L3(R?) > u € C([0, T']; L3(R?)),

is continuous for all0 < T’ < Tmax. In addition if |Jug|| 2 is small enough the solution
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u extends to any intervdD, T], that is

C([0, T]; LAR?) N LU0, T]; L*R?)),
foral T > 0.

Proof. The proof of the theorem is a slight adaptation of Teern4.7.1 in [5]
and because of this, we shall omit its proof. The second partbe found in [8] (see
Corollary 5.2). ]

REMARK 2.1. 1) In Theorem 2.1, the local time’ is assumed to satisfy @
T’ < Tmax because we could have a blowup alternative, thafjugt)||x — oo ast 1
Tmax If Tmax < 0o. If Tmax = 400 solutionu is global in class above. The spage
indicatesX = L2(R?).
2) Global solutions inL?(R?) to the equation (2.1) (for arbitrary initial data) can be
obtained by using the energy identity in (1.4) jointly withetfact that functiora in
assumption (H1) is non-negative. See arguments in Remarkn2order to justify the
validity of the computations to deduce the refereed idgntit

The assumption thafug| .2 is small enough is useful to establish the following
local smoothing effect result.

Lemma 2.2. Suppose that there isgl> 0 such that||up|| .2 < Lo. Let u be the
corresponding solution obtained ifheorem 2.1 Then we have the following estimate

.
(2.2) //|D§/2u(x,t)|2dxdt§ c(r, R T, |lall.~), forall T >0.
0 Br

Proof. The arguments in order to establish this result cafotyed in [6]. In fact,
solution u(-) must satisfies the integral equation

t
(2.3) u(t) = S(t)(u(0)+i /0 S(—7)(A|ul2u +ia(-)u)(‘r)d‘r),

where §(t), t > 0, denotes the semigroup related to Schrodinger equatietnud.define,

T 1/2
| = (/ IDY2u(x, t)[2 dx dt) .
0 Br

The next step is to use the well known Strichartz estimatesciated with the Schrédinger
equation and the smoothing effecthfi/2-norm associated to linear Schrédinger equation
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(see [6] and [8] for more details) in order to deduce from Hdloshequality that

J)

‘/t S(t)(A[ul?u +ia(- )u)(t) dt
0

| < cR(nu(O)an T sup
[0,T]

T 3/4
< cR(cnu(O)an " cx( IO dt) )

The right-hand side of the estimate (2.4) is bounded forTal O provided that the
initial data is small enough (see Corollary 5.2 in [8]). Ttesult is now proved. []

(2.4)

REMARK 2.2. Equality in (1.4) can be rigourously deduced by supppsi regu-
lar solution for equation in (2.1). For instance, if we takeimitial dataug in H2(R?) —
HY(R?) — L?(R?), the local solutionu given by Theorem 2.1, for som& > 0, co-
incides with the classical solution which can be determibgdising classical semigroup
theory orH? local theory on p. 152 in [5]. Global solutions H?(R?) is determined for
arbitrary large initial data whether = —1 or small initial data inL? if » = 1. By den-
sity arguments, we deduce the validity of computations tochale equality (1.4). In
that case,

u e C([0, T]; H?(R?)) n CX([0, T]; L3(R?)).

In order to guarantee the existence of smooth solutiongeckléo the nonlinear
Schrédinger equation (1.3) with = 0, we need to present some basic spaces and use-
ful notations. We follow the arguments in [14]. Indeed, foy&-indexa = (a1, o) €
N2, we defined*(t) = M(t)(2it V)*M(—t), where M(t) = X/t = 0. Let us intro-
duce the following basic space

Xo = L4([0, T]; LA4(R?)) N L*=([0, T]; L(R?)).
We treat equation (1.3) with = 0 in the following function space with > 0:
b pll
GE(J) = YU € Xo, flullgyay =Y —I19“ullx, (.
a=0
where|a| = a1 + a2, a! = a3! ap! and, « > 0 provided thatw; > 0,1 =1, 2.
Next, for p > 0, we define
b b b\a\ a
B3(p) = {Uo € GE(X). llUollege = Y —IIX“Uolluz (-
a>0

We enunciate one of the main results in [14].
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Theorem 2.3. There exists a constant > 0 such that for any b> 0 and y €
Bg(p) equation(1.3) with a = 0 has a unique solution & Gg(J).

REMARK 2.3. In our case, Theorem 2.3 works satisfactorily becabserésult
states that we have analytic smoothing properties of swlatsince functions iIGB(J)
are analytic inR?x (0,4+0c). Moreover, if one considers an initial datg with compact
support, it easy to see thag € Bg(,o). Thus, we can deduce that solutiare C*®(R? x
(0, 4+00)).

Next, we have the following unique continuation theorem fiegular solutions of
the nonlinear equation in (2.1) wita = 0. This result is more general in the sense
that it deserves for nonlinear Schrédinger equation in thealn &, t) € R" x [0, T],

n > 1, with a general nonlinearity(v, ). In such case, we must considerc Z™*
satisfyingk > n/2 + 1.
Let us define the weighted Sobolev spddé(e’*’dx), as

HYE"X dx) = {f; /|f(x)|2eﬂ|X‘” dx+/|f’(x)|2eﬂ|X‘” dx < oo}.
R R

Theorem 2.4. Let w € C([0, T]; HX(R)), k € Z*, k > 2 be a strong solution of
the equation in(2.1) with a = 0 in the domain(x, t) € R? x [0, T]. If there exist
t1,t2 € [0, T], t1 #t5, p > 2 and B > 0 such that

(2.5) w(+, t), w(-, t) € H(E dx),
thenw = 0.
Proof. See Theorem 2.1 in [7]. ]

3. Exponential decay

In this section, we are interested in obtaining exponenlgslay rate for the energy
in L2-level related to the equation (1.3). First, we assume teatiraptions (H1) and
(H2) are verified. Multiplying the first equation in (1.3) iy and integrate the result
over R? and then, over [Q) to get

t
(3.1) Eolt) = —2 / / a()|u(x, )2 dx ds+ uoll?. < fuol.
0 JR?

From equation (1.3) we have thatd/dt)Eo(t) := (d/dt) [p.]u(x, t)?dx =
-2 fRZ a(x)|u(x, t)|2dx and, consequently, we have the following estimate:

T B —1|: 5 :|T T 5
(3.2) /O Eo(t) dt < —2073 /Rz|u(x,t)| dxo—l—/o /BRlu(x,t)| dx dt,

T
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where Bg := {x € R?; |X| < R}

Theorem 3.1. Consider the potential & L>°(R?) satisfying assumption#1) and
(H2). We suppose that there existg £ 0 such that|ug||.2 < Lo. Thus there are posi-
tive constantsx = a(Lg) and w = w(Lg) such that

Eo(t) < O(eiwt,
for all t > 0 large enough and for any solution dfL.3) given in Theorem 2.1

A preliminary result makes necessary to determine good d®dar the integral
equationZ in (3.2). Considera € L>*(R?) and suppose that the initial data belongs to
a (small enough) bounded set bf, according with Theorem 3.1. We are enable to
prove the following lemma:

Lemma 3.2. Let u be a solution associated to the equat{@rB) with initial data
Uo satisfying the smallness condition on the initial data id &s required inThe-
orem 3.1 Then for all T > 1 there exists a positive constant>c0 which depends
on T and lyg such that the following inequality holds

T T
2 2
3.3) /0 /BR|u(x,t)| dxdt< c/o /Rz a(x)|u(x, t)|“dx dt.

Proof. We denoteBg := Bg(0) to simplify the notation. We argue by contradic-
tion. Let us suppose that (3.3) is not true and {let(0)}xen be a sequence of initial
data where the corresponding solutiofug}xen Of (1.3) with E‘g(O), defined in (3.1)
for all k e N, is assumed to be small enoughlif. Thus,

T 2
U (t dt
im - fO || k( )”LZ(BR) — oo
k=too [ [re(@0) luk(x, 1)]1?) dx dt

(3.4)

In other words,

i Jo Jee(@00lux, DID dx dt

k—+ T 2 0.
e fo ”uk(t)”LZ(BR) dt

(3.5)

Since,
E&(t) < ES(0) < Lo,

we obtain a subsequence @fix}ken, Still denoted by{uk}ken from now on, which
verifies the convergence:

(3.6) ue — u  weakly in L2([0, T]; L2(R?)).
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So, we deduce

T
(3.7) lim / / a(x)|uk(x, t)|>dx dt =0,
k—>+o00 Jo JRr2
consequently, from hypothesis (H2) one has
T
(3.8) lim / / luk(x, t)]> dx dt = 0.
k—+00 0 JR2\Bg

On the other hand, from Lemma 2.2 we guarantee fhai,.ny is bounded in
L2([0, T]; HY3(BR)). Further, sinceHY2(Bg) is compactly embedded ih?(Bg), we
guarantee from Aubin—-Lions’ lemma that there is a subserpiestill denoted by
{uk}ken, Such that

(3.9) ux — u strong in L%(Bg x [0, T]).
Therefore,
(3.10) U —u ae.in Bgx]0,T]

Statements (3.8) and (3.10) enable us to deduce the follpaamvergence:
(3.11) ug— 0 ae.in R>x[0, T],

where

b= u, a.e.in Brx][O0,T],
~ 10, ae.in R?\ Bgx|[0, T].

At this point we will divide the proof into two cases.
Case (I): u #0.
By using convergence in (3.11), the fact thaiy|°ux}ken IS bounded inL%3(Bg x
[0, T], and Lions’ lemma, we can pass to the limit to deduce thas a solution of
the problem
(3.12) {iut + Au+AluPu=0, in RZ X [g, Tl,
u=0, a.e. in R°\ Bgr x [0, T].

Moreover, sinceu € L2([0, T]; L2(R?)) there existsy € [0, T] such thatu(-, to) €
L2(R?) and consequently from Theorem 2.1 one has (a unigue)lC([to, T]; L2(R?)).
From the continuous dependence of the initial data and tlhguaness of the solution
u, we see thau is a mild solution with initial dataug := u(-, 0) (see arguments in
[10]) having compact support. Thus, we can use Theorem 28 éso Remark 2.3)
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to conclude thau is smooth withu(x,t) = 0 a.e. &, t) € R?\ Bg x [0, T]. Therefore,
from Theorem 2.4 we get = 0 in R? x [0, T]. This last fact is a contradiction with

u#0.
Case (II): u=0.
We denote

(3.13) vk = Ukl L2(0, T1:L2(BR))-
By defining vx = ux/vx we obtain,
(3.14) llvkllLzqoTiiLzery = 1, VK € N.

Next, we derive an uniform bound for the initial data(0) in L2(R?). Indeed, by
using (H2) we deduce

T 1 T T
(3.15) / / lug|2dx dt < —/ [ a(x)|ug|? dx dt+/ |u|2 dx dt.
0 JRr? oo Jo JRr? 0 JBg

So, from equality (1.4) and (3.15) one has

T T
/ |uk(0)|2dx§1/ / |uk|2dxdt+2/ / a(x)|ug/? dx dt
R2 T Jo Jre o Jr?

1 T 17
<(247) [ [ aoudaxdrs T [ [ judaxar
(XOT o Jr2 T 0 JBr

Finally, by using last inequality we get

1 T 1
2 2
(316) ||vk(0)||L2(]R2) =< (2 + _O(()T) /; Az a(X)lUk| dx dt+ ?,

which establishes a bound for the initial datg0) in L-level. In addition, sincd > 1
we obtain from (3.5) and (3.16) that there atg > 0 andky € N such that

lok(O)llLz = o, k= ko.
Therefore, from Theorem 2.1 we get that satisfies the equation,
(3.17) vk + Avk 4+ A2 vk +ia(X)vk =0, in D'(R? x [0, T)).

On the other hand, by using (3.5), (3.14) and the fact #f&}) > oo > 0 for |x| >
R, we deduce

k—+00

.
(3.18) Iim// |lue(x, 1)]2 dx dt = 0.
0 JR2\Bg
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Thus,
(3.19) v — 0 in L%([0, T]; L3(R?\ BR)).
So, we get a function which verifiesv, — v in L?([0, T]; L2(R?)), where

5= v a.e. in Bgrx [0, T],
10, a.e.in R?\ Bgx]|0, T].

Next, sincevk = [|uklL>qo,7):L2Br)) — 0, ask — +oc, and |vk|?vk is bounded in
L%3(R? x [0, T]), we can use similar arguments as in first case. These faeisle us
to pass to the limit in equation (3.17) to obtain thatolves the linear equation

ivy +Av =0, in D(R?x][0,T]),
(3.20) {v =0, a.e. in R?\ Bg x [0, T].
Therefore, from Holmgreen’s theorem we conclude that 0 in Bgx[0,T]. Our proof
is not complete in the sense that we still not have a contiiadi@argument as in first
case. In fact, it is not clear thag — O strongly inL?([0, T]; L?(BRr)) ask — +oo to
get a contradiction with (3.14). For this purpose a compacbexiding as determined
in Theorem 2.2 makes necessary in this case. In [4] the angisme this point are
not clear since we conclude directly the required strongremyence above. Therefore,

from Lemma 2.2 applied tay, Aubin—Lions’ lemma and having in mind that= 0
one has

.
(3.21) lim / lu(x, )2 dx dt= 0
0 BR

k—+o0

In addition, note that from (3.14) we have

i
P 2 P 2
©2) im [ [ e 0P dx dt= fim Il = 1

which establishes a contradiction. The proof is now conaglet ]

Proof of Theorem 3.1. Indeed, from (1.4) and (3.3) we dedbe¢ t
T
(3.23) / Eo(t) dt < ° Eo(0) + c/ / a()|u(x, t)2dx dt, forall T > 1.
R2
Next, by using identity of the energy ibh?-level, namely:

(3.24) Eo(t) — Eg(0) = -2 /(;t/Rz a(x)|u(x, t)[?dx dt, forall t >0,
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we infer thatE(t) is non-increasing, and, furthermore that
t
(3.25) 2/ / a(x)|u(x, s)|> dx ds= Eq(0) — Eq(t) for all t >0.
0 Jr?
Thus, combining (3.23) and (3.25) we have,

-1 T
Eo(T) < ‘ZLT[EO(T) + 2/0 /R a0 |u(x, |2 dx dt]

c [T 5
+?/o /Rz a(x)|u(x, t)|“ dx dt

which implies that forT > 1,

(3.26)

-1 T
(3.27) ( - a%) Eo(T) < (gt + c)/ a(x)|u(x, t)]? dx dt.
0
For T > 1, the last inequality yields
T
(3.28) Eo(T) < c/ a(x)|u(x, t)]? dx dt.
0

Finally, combining (3.25) and (3.28) we obtain

- cun = B0 )
that is,
(3.30) Eo(T) < yEo(0), where y — li/ 5/2.

Next, since we have global solutions irf(R?), let us definev(x,t) = u(x,t + T).
We see that is a solution related to the Schrédinger equation in (1.3iclvibelongs
to C([T, 2T], L?(R?)). In addition, the new initial data is now(x, 0) = u(x, T) €
L?(R?). So we have from Lemma 3.2 applied tothat

Eo(2T) = Eo,(T)

T T
< 2 _ ,
_C_/(; LR a(X)lv(X. t)| dx dt C/O /BR a(X)|U(X,t+T)| dx dt

T Eo(T) — Eo(2T)
— 2 _ 0
_C/T /BR a(xX)|u(x, s)|dx ds= c[—z }
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where Eg, is the energy inL?(R?) associated withy. So, from the above we get
Eo(2T) < y Eo(T) = y*Eo(0).
Repeating this argument, one hBg(nT) < y"Eq(0), for all n € N. This last fact

allow us to deduce the exponential decay. In fact, lettisgnT +r, where O<r < T,
we get

Eo(t) < Eo(nT) < y"Eo(0) = y /T /D Ey(0).

Since 0< y < 1, we can choose = —In(y)/T > 0 anda = y /T Ey(0) to obtain
Eo(t) <ae ™, t > 1.
The proof is now completed. O
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