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Abstract
When two Radon measures on the half line are given, the harmonic mean of their

Stieltjes transforms is again the Stieltjes transform of a Radon measure. We study the
relationship between the asymptotic behavior of the resulting measure and those of
the original ones. The problem comes from the spectral theory of second–order dif-
ferential operators and the results are applied to linear diffusions neither boundaries
of which is regular.

1. Introduction

Let H be the totality of the functions on (0,1) having the following representation:

h(s) D aC
Z

[0,1)

d� (� )

sC �
, s> 0 (9a � 0)

where�W R! [0,1) is a nondecreasing, right-continuous function vanishingon (�1,0)
such that

0<
Z

[0,1)

d� (� )

1C �
<1.

Let us call � the spectral functionof h (the reason will be clear in Section 5). For
h1, h2 2 H defineh by

(1.1)
1

h(s)
D

1

h1(s)
C

1

h2(s)
.

Then as is well known we again haveh 2 H (a property of Herglotz functions).
The aim of the present article is to study the relationship between the asymptotic

behavior of� (�) as � ! C0 and those of�i (�) (i D 1, 2), where� and �i are the
spectral functions ofh and hi , respectively. Notice that the equation (1.1) is familiar
in the spectral theory of Sturm–Liouville operators and is fundamental in the theory
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of linear diffusions. Indeed, our problem is motivated by a study of the asymptotic be-
havior of the transition probability in the long term and this problem will be discussed
in Section 6. Especially, Example 6.1 will illustrate the motivation of our problem.

To describe our results let us prepare some notation. We define l i D hi (C0)
(i D 1, 2) andl D h(C0) (� 1). By (1.1) it holds

(1.2)
1

l
D

1

l1
C

1

l2

with the convention that 1=1 D 0 (namely, if l1 <1 and l2 D 1 then l D l1, while
if l1 D l2 D1 then l D1).

We also define

(1.3) p D
l2

l1C l2

�

D

l

l1

�

, q D
l1

l1C l2

�

D

l

l2

�

,

when they make sense.
Very roughly speaking our result is as follows: Under a certain regularity condi-

tion, it holds

(1.4) � (�) �

8

�

�

�

�

�

<

�

�

�

�

�

:

�1(�)�2(�)

�1(�)C �2(�)
(l1 D l2 D1),

p2
�1(�)C q2

�2(�) (l1 <1, l2 <1),

l 2
2

Z

�

0
� d� �1 (� )C �2(�) (l1 D 1, l2 <1),

where,� �1 is the ‘dual’ of �1.
The precise statement will be given in Section 2 and will be proved in Section 4.

In Section 3 we prepare some intermediate results we need in the proofs of the main
results. Sections 5 and 6 are devoted to applications of the mains results to linear diffu-
sions. Since we shall repeatedly make use of Tauberian theorems for Lebesgue–Stieltjes
transforms, we listed necessary facts in Appendix for the convenience of the reader.

REMARK 1.1. We shall discuss only the case of (1.1), but the results can easily
be extended to the case where

1

h(s)
D

1

h1(s)
C

1

h2(s)
C � � � C

1

hn(s)
.

So our results may have applications to diffusions on some sort of graphs as well as
linear diffusions.
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2. Main results

We denote byR
�

(0) the totality of ultimately positive functions (defined on some
interval (0,A)) varying regularlyat C0 with index � (2 R): i.e.,

lim
s!C0

f (cs)

f (s)
D c� (8c > 0).

A regularly varying function with index� D 0 is said to beslowly varying. Clearly
f 2 R

�

(0) if and only if f (s) D s�L(s) with slowly varying L.

Theorem 2.1 (Case I). Suppose that l1 <1, l2 <1 and let p, q be as in(1.3).
If ' 2 R

�

(0) (� � 1), then
(i)

� (�) � '(�) (�!C0)

if and only if

�pq(�) WD p2
�1(�)C q2

�2(�) � '(�) (�!C0).

(ii) As a special case, if

�i (�) � ci'(�) (�!C0), i D 1, 2,

for c1, c2 � 0 (c1C c2 > 0), then

(2.1) � (�) � (c1 p2
C c2q

2)'(�) (�!C0).

Here and throughout,f � cg means f =g! c including the casecD 0.

Theorem 2.2 (Case II). Suppose that l1D l2D1 and let' 2 R
�

(0) (0� � � 1).
If �i (�) � ci'(�) for ci 2 (0,1), (i D 1, 2), then

(2.2) � (�) �
c1c2

c1C c2
'(�) (�!C0).

The assertion remains valid in the extreme case0 < c1 < 1, c2 D 1, with the con-
vention c1c2=(c1C c2) D c1.

(The restriction� � 1 is necessary forl1 D l2 D1.)
Apparently (2.2) may look quite different from (2.1), but (2.2) is in fact the ex-

treme case of (2.1) asl1, l2!1 with l1=l2 D c1=c2.
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Corollary 2.1 (Lopsided case I). Suppose that�1 2 R
�

(0) and �2 2 R
�

(0).
(i) If 0� � < � < 1, then

� (�) � �1(�) (�!C0).

(ii) If 1< � < �, then

� (�) � p2
�1(�) (�!C0).

Proof. (i) Apply Theorem 2.2 with'(�) D �1(�) and c1 D 1, c2 D1.
(ii) Apply Theorem 2.1 (ii) withc1 D 1, c2 D 0.

It remains to discuss the case wherel1 D 1, l2 < 1. To this end we need to
consider thedual of h: For a givenh 2 H its dual h� is defined by

h�(s) D
1

sh(s)
.

As is well known it holdsh� 2 H. So let a� and � � correspond toh�: i.e.,

(2.3) h�(s) D a� C
Z

[0,1)

d� �(� )

sC �
.

We also define� #
W R! [0,1) by

�

#(�) D

8

<

:

Z

[0,�]
� d� �(� ) (� � 0),

0 (� < 0).

Another characterization of� # will be given in (3.1).

Theorem 2.3 (Case III). Suppose that l1D1, l2 <1 and let' 2 R
�

(0) (� � 1).
Then,

(2.4) � (�) � '(�) (�!C0)

if and only if

(2.5) l 2
2�

#
1 (�)C �2(�) � '(�) (�!C0).

(The restriction� � 1 is necessary for the assumptionl2 <1.)

Corollary 2.2. Let  2 R
�

(0) (0� � < 1) and c1, c2 > 0. If

�1(�) � c1 (�) (2 R
�

(0)), �2(�) � c2�
2
= (�) (2 R2��(0)) (�!C0),
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then

� (�) �

�

�

2� �

l 2
2

c1{0(1C �)0(1� �)}2
C c2

�

�

2

 (�)
2 R2��(0) (�!C0).

The assertion remains valid even if(c1 D 1; 0 < c2 < 1) or (0 < c1 < 1; c2 D 0;
� ¤ 0) with the convention that1=1 D 0.

Proof. As we shall see in Proposition 3.2, the assumption�1(�) � c1 (�) im-
plies that

�

#
1 (�) �

�

2� �

l 2
2

c1{0(1C �)0(1� �)}2

�

2

 (�)
(�!C0).

Therefore, the assertion follows immediately from Theorem2.3. Note that when� D 0
we may use the last part of Proposition 3.2.

By the last part of Corollary 2.2 we have

Corollary 2.3 (Lopsided case II). Let �1 2 R
�

(0) and �2 2 R
�

(0).
(i) If 0� � < 1< � and � C � < 2, then,

� (�) � �2(�) (�!C0).

(ii) If 0< � < 1< � and � C � > 2, then

(2.6) � (�) �
�

2� �

l 2
2

{0(1C �)0(1� �)}2
�

�

2

�1(�)
(�!C0).

(In (ii) we excluded the case� D 0 because the the right-hand side of (2.6)
vanishes.)

Proof of Corollary 2.3. (i) Let (�)D �2
=�2(�) (2 R2��(0)). Then�1(�)= (�) 2

R
�C��2(0) and, hence,� C � < 2 implies �1(�)= (�) ! 1. Therefore, we can apply

Corollary 2.2 withc1 D 1, c2 D 1.
For the proof of (ii) put (�) D �1(�), then appeal to Corollary 2.2 withc1 D 1,

c2 D 0.

Let us next consider the case� D 1 which we excluded in Corollary 2.3.

Corollary 2.4 (Lopsided case III:�D1). Suppose that�12 R1(0) and�22 R
�

(0).
(i) If 0� � < 1, then

� (�) � �1(�) (�!C0).
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(ii) If � > 1, then

(2.7) � (�) � l 2 �1(�)
OL(�)2

(�!C0),

where

OL(s) WD
Z

1

s

�1(u)

u2
du 2 R0(0).

Note that OL(s) ! l1 (cf. (3.12)). So in (ii), if l1 < 1, then (2.7) may also be
written as

� (�) � p2
�1(�) (�!C0),

becausep D l=l1. This means that (ii) of Corollary 2.1 remains valid in the extreme
case� D 1 when l1 <1.

Proof of Corollary 2.4. (i) Ifl1 D1, we can apply Theorem 2.2 withc2 D1

because�1 D o(�2). Next consider the casel1 <1. By Theorem 2.3,

� (�) � l 2
1�

#
2 (�)C �1(�).

By Proposition 3.2, we have� #
2 2 R2��(0) so that� #

2 D o(�1). Thus we have the
assertion.

(ii) When l1 <1, just apply Theorem 2.1 with' D �1, c1 D 1, c2 D 0. When
l1 D1, as we shall prove in Proposition 3.3, it holds

�

#
1 (�) �

�1(�)
OL(�)2

2 R1(0).

On the other hand�2 2 R
�

(0) with � > 1 implies �2 D o(� #
1 ). Therefore, we deduce

the assertion from Theorem 2.3.

In Corollary 2.2 we discussed the case wherel1 D1, l2 <1 and� 2 R



(0) with
0 < 
 < 2. For the case
 > 2, we have the following result. Here, notice that the
condition �1(C0)> 0 trivially implies �1 2 R0(0) and l1 (D h1(C0)) D 1.

Corollary 2.5. Suppose�1(C0)> 0 and ' 2 R



(0) with 
 > 2. If

�2(�) � c2'(�) (�!C0)

and

(2.8) �1(�) � �1(C0)� c1'(�)=�2 (�!C0),
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for c1, c2 � 0 (c1C c2 > 0), then

� (�) �

�

c1l 2
2

�1(C0)2

 � 2




C c2

�

'(�) 2 R



(0).

Proof. As we shall see in Proposition 3.4 the condition (2.8)is equivalent to

�

#
1 (�) �


 � 1




c1

�1(C0)2

 � 2


 � 1
'(�) D

c1

�1(C0)2

 � 2




'(�).

Therefore, the assertion follows from Theorem 2.3.

Theorem 2.4 (Case IV). Suppose that�1(C0)> 0 and �2(C0)> 0. Then,

(2.9) � (C0)D
�1(C0)�2(C0)

�1(C0)C �2(C0)
(> 0).

Furthermore, if

(2.10) �i (�) � �i (C0)� ci'(�) (�!C0), i D 1, 2

for ' 2 R
�

(0) (� > 0) and c1, c2 � 0 (c1C c2 > 0), then

(2.11) � (�) � � (C0)� (p2
�

c1C q2
�

c2)'(�) (�!C0),

where

p
�

D

�2(C0)

�1(C0)C �2(C0)
, q

�

D

�1(C0)

�1(C0)C �2(C0)
.

3. Intermediate results

In this section we prepare a few propositions we need for the proofs of
Theorems 2.1–2.4 in Section 2.

Throughout the paper, we put

Oh(s) D
1

h(s)
, Ohi (s) D

1

hi (s)
(i D 1, 2).

Since Oh(s) D sh�(s), we have

Oh0(s) D h�(s)C sh�0(s) D a� C
Z

1

0

d� �(� )

sC �
�

Z

1

0

s d��(� )

(sC � )2

D a� C
Z

1

0

� d� �(� )

(sC � )2
.
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Therefore,

(3.1) Oh(n)(s) D

8

�

�

<

�

�

:

a� C
Z

1

0

d� #(� )

(sC � )2
(n D 1),

(�1)nC1n!
Z

1

0

d� #(� )

(sC � )nC1
(n � 2).

Of course we have similar formulas forh1, h2 2 H and we may define� #
i (i D 1, 2)

in the obvious manner.
Since (1.1) can be written as

(3.2) Oh(s) D Oh1(s)C Oh2(s),

it holds

Oh0(s) D Oh01(s)C Oh02(s)

and hence, by (3.1), we have

(3.3) �

#(�) D � #
1 (�)C � #

2 (�).

Thus the proofs of the results in the previous section are reduced to the study of the
relationship between the asymptotic behavior of� , �1, �2 and that of� #, � #

1 , � #
2 .

Next we define

#(h) D inf{k � 0I jh(k)(C0)j D 1}
�

D inf

�

k D 0, 1, 2,: : : I
Z

[0,1)
d� (� )=� kC1

D1

��

and

#(Oh) D inf{k � 0I j Oh(k)(C0)j D 1}.

Proposition 3.1. If n0 WD #(h) � 1 (i.e., l < 1), then it holds that#(h) D
#(Oh) and

(3.4) lim
s!C0

Oh(n)(s)

h(n)(s)
D �

1

l 2
, 8n � n0.

For the proof of Proposition 3.1 we prepare

Lemma 3.1. Suppose#(h) D n0 � 1 (i.e., l <1). Then;
(i)

lim
s!C0
j

Oh(k)(s)j

�

<1 (1� 8k < n0),
D 1 (8k � n0).
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(ii)

(3.5) h(n0)(s) � �l 2
Oh(n0)(s) (s!C0).

Proof. (i) By the Leibniz formula we have, form� 1,

m
X

kD0

mCkh(k)(s) Oh(m�k)(s) D (h(s) Oh(s))(m)
D 0.

Therefore,

(3.6) Oh(m)(s) D �
1

h(s)

m
X

kD1

mCkh(k)(s) Oh(m�k)(s).

Now we have the assertion by induction onmD 1, 2, : : : , n0.
(ii) As we have seen in (3.6), it holds that

(3.7) Oh(n0)(s) D �
1

h(s)

(

h(n0)(s) Oh(s)C
n0�1
X

kD1

nCkh(k)(s) Oh(n0�k)(s)

)

and hence by (i) we have

Oh(n0)(s) D �h(n0)(s)
Oh(s)

h(s)
C O(1)D �h(n0)(s)

1

h(s)2
C O(1).

Sincejh(n0)(s)j !1 by the definition ofn0, we can neglect theO(1) in the right-hand
side and deduce the assertion.

Lemma 3.2. Let n� 1. If l <1 and jh(n)(C0)j D 1, then for kD 1, 2,: : : ,n�1
it holds

(3.8) h(k)(s) D o(jh(n)(s)jk=n) (s!C0)

and

(3.9) h(k)(s)h(n�k)(s) D o(jh(n)(s)j) (s!C0).

Proof. Since (3.9) follows immediately from (3.8), we shallprove (3.8) only.
If jh(k)(C0)j <1, then the assertion is obvious. So we assume thatjh(k)(C0)j D1.
For every" > 0, applying Hölder’s inequality to

Z

"

0

d� (� )

(sC � )kC1
D

Z

"

0

d� (� )

(sC � )1�(k=n)
� (sC � )(nC1)k=n
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with 1=p D 1� (k=n) and 1=q D k=n, we have

Z

"

0

d� (� )

(sC � )kC1
�

�

Z

"

0

d� (� )

sC �

�1�(k=n)�Z
"

0

d� (� )

(sC � )nC1

�k=n

�

�

Z

"

0

d� (� )

�

�1�(k=n)�Z
1

0

d� (� )

(sC � )nC1

�k=n

.

Therefore, using the conditionjh(n)(C0)j D 1, we deduce

lim sup
s!C0

Z

1

0

d� (� )

(sC � )kC1

.

�

Z

1

0

d� (� )

(sC � )nC1

�k=n

�

�

Z

"

0

d� (� )

�

�1�(k=n)

.

Since the right-hand side converges to 0 as"!C0 because
R

1

0 (1=� ) d� (� ) D l <1
by assumption, we obtain (3.8).

Proof of Proposition 3.1. Let us prove the assertion by induction on n (� n0).
The casen D n0 is proved in Lemma 3.1 (ii). Next suppose that (3.4) holds forn D
n0,n0C1,: : : ,m, and let us see that (3.4) remains valid fornD mC1. By Lemma 3.1
we have

Oh(k)(s) �

�

O(1) (1� k < n0),
�l�2h(k)(s) (n0 � k � m).

So in any case,

Oh(k)(s) D O(h(k)(s)), k D 1, 2, : : : , m.

Therefore, for anyk D 1, 2, : : : , m,

h(mC1�k)
Oh(k)
D O(h(mC1�k)h(k)),

and, hence by Lemma 3.2, we see

h(mC1�k)
Oh(k)
D o(h(mC1)), k D 1, : : : , m,

or, changing the variablek, we have

(3.10) h(k)
Oh(mC1�k)

D o(h(mC1)), k D 1, : : : , m.

Now as in (3.7), we have

Oh(mC1)(s) D �
1

h(s)

(

h(mC1)(s) Oh(s)C
m
X

kD1

nCkh(k)(s) Oh(mC1�k)(s)

)

.
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So, applying (3.10) to the right-hand side we deduce

Oh(mC1)(s) D �
1

h(s)
h(mC1)(s) Oh(s)C o(h(mC1)(s)).

Thus we have

Oh(mC1)(s) � �l�2h(mC1)(s),

completing the induction.

Proposition 3.2. Let ' 2 R
�

(0) (0< � < 1). Then� (�) � '(�) if and only if

�

#(�) �
�

2� �

1

{0(1C �)0(1� �)}2
�

�

2

'(�)
(�!C0).

As an extreme case, if � 2 R0(0), then

�

#(�) D o

�

�

2

'(�)

�

(�!C0).

Proof. The assertion follows from Tauberian theorem (Theorem 7.1) as follows.
For the definition ofC0,� see (7.1).

� (�) � '(�)
iff
� h(s) � C0,�

'(s)

s

iff
� h�(s) D

1

sh(s)
�

1

C0,�'(s)
iff
� �

�(�) �
1

C0,�C0,1��

�

'(�)
(2 R1��(0)),

and the last one is also equivalent to

�

#(�) �
1

C0,�C0,1��

1� �

2� �

�

2

'(�)

by Lemma 7.1 (apply with� D 1� �).
When � D 0, the above argument does not hold becauseC0,1�� does not make

sense. So let us prove directly. If� � ' 2 R0(0), then

h(s) �
� (s)

s
, �h0(s) �

� (s)

s2
, h00(s) � 2

� (s)

s3
.

Therefore,

h00(s)

h(s)2
�

2

s� (s)
,

h0(s)2

h(s)3
�

1

s� (s)
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and so

Oh00(s) D �
h00(s)

h(s)2
C 2

h0(s)2

h(s)3
D o

�

1

s� (s)

�

D o

�

1

s'(s)

�

.

Thus, recalling (3.1), we have

Z

1

0

d� #(� )

(sC � )3
D o

�

1

s'(s)

�

and hence� #(� ) D o(�2
='(� )) (see Theorem 7.1).

Proposition 3.2 does not include the extreme case� D 1 (the right-hand side di-
verges). So, in this case we need a slight modification as follows in order to know the
exact order of� #(�):

Proposition 3.3. Let � 2 R1(0). Then

OL(s) WD
Z

1

s

� (u)

u2
du, s> 0

varies slowly as s!C0 and

(3.11) h(s) � OL(s) (s!C0).

Furthermore, it holds

�

#(�) �
� (�)
OL(�)2

(�!C0).

Proof. Since

(3.12)
Z

1

C0

� (u)

u2
duD

Z

1

C0

d� (u)

u
(D l ),

we see OL(C0) D l . Therefore, if l < 1 then the slowly varying property ofOL and
(3.11) are clear. So let us consider the case whereOL(C0) (D l ) D1. Note first that

(3.13) lim
s!C0

c OL 0(cs)
OL 0(s)

D lim
s!C0

c� (cs)

(cs)2

�

� (s)

s2
D lim

s!C0

� (cs)

c� (s)
D 1.

The last equality holds by the assumption� 2 R1(0). Combining (3.13) with the con-
dition OL(C0)D 1, we deduce

lim
s!C0

OL(cs)
OL(s)

D lim
s!C0

( OL(cs))0

( OL(s))0
D 1.
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Thus OL varies slowly. Next note that, by Tauberian theorem (Corollary 7.1),� 2 R1(0)
implies

(3.14) �h0(s) �
� (s)

s2
(D � OL 0(s)).

Since l D 1, (3.14) implies (3.11).
Next, combining (3.14) and (3.11) we deduce

Oh0(s) D (1=h(s))0 D �h0(s)=h(s)2
�

� (s)

s2

�

OL(s)2

namely, by (3.1),

(3.15)
Z

1

0

d� #(�)

(sC �)2
�

� (s)

s2
OL(s)2

2 R
�1(0),

which proves, by Tauberian theorem (Theorem 7.1),

�

#(�) �
1

C1,1

� (�)
OL(�)2

D

� (�)
OL(�)2

(�!C0).

EXAMPLE 3.1. If � (�) � �, then by Proposition 3.3 we have

�

#(�) �
� (�)
OL(�)2

�

�

(log(1=�))2
(�!C0).

For,

OL(s) D
Z

1

s

� (u)

u2
du� log

1

s
(s!C0).

In Propositions 3.2 and 3.3 we studied the case where�

#
2 R

�

(0) with 1< � < 2 and
� D 1, respectively. The following proposition is concerned with the case� > 2.

Proposition 3.4. Let ' 2 R
�

(0) (� > 0) and A� 0. If � (C0)D �0 > 0 then, as
�!C0,

� (�) � � (C0)� A'(�)
iff
�

Z

�

0
� d� (� ) � A

�

� C 1
�'(�)

iff
� �

�(�) �
A

�

2
0

�

� C 1
�'(�)

iff
� �

#(�) �
A

�

2
0

�

� C 2
�

2
'(�).
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For the proof of Proposition 3.4, we prepare

Lemma 3.3. Suppose� (C0)D �0 > 0 and n� 1. Then,

(3.16) (h�(s))(n)
� �

1

�

2
0

(sh(s))(n) (s!C0)

provided that at least one of the two sides diverges to infinity as s!C0.

Proof. Since (h�)� D h, the assertion can be reduced to Proposition 3.1 as fol-
lows. Clearly it holdssh(s)! �0. Therefore,h�(s) (D 1=(sh(s))) ! l � D 1=�0 <1

and we can apply Proposition 3.1 toh� in place ofh and (3.4) can be written as

(h�)(n)(s) � �l �2
Oh�(n)(s) D �

1

�

2
0

(sh(s))(n) (s!C0),

which proves (3.16). Here we usedOh�(s) D 1=h�(s) D sh(s).

Proof of Proposition 3.4. For the proofs of the first and the last relationship see
Lemma 7.1. So we shall prove the second one. Since

(sh(s))0 D h(s)C sh0(s) D aC
Z

[0,1)

d� (�)

sC �
�

Z

[0,1)

s d� (�)

(sC �)2

D aC
Z

[0,1)

� d� (�)

(sC �)2
,

it holds

(sh(s))(n)
D (�1)nC1n!

Z

1

0

�d� (�)

(sC �)nC1
, n � 2.

On the other hand we have

(h�(s))(n)
D (�1)nn!

Z

1

0

d� �(�)

(sC �)nC1
, n � 0.

These two combined with (3.16) imply

Z

1

0

d� �(�)

(sC �)nC1
�

1

�

2
0

Z

1

0

�d� (�)

(sC �)nC1

for n � 2. Now appeal to the Tauberian theorem to deduce the assertion.
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4. Proofs of Theorems 2.1–2.4

Proof of Theorem 2.1. Let

(4.1) hpq(s) D p2h1(s)C q2h2(s),

so that

hpq(s) D
Z

[0,1)

d�pq(� )

sC �
.

By the Tauberian theorem (Corollary 7.2), it suffices to showthat

(4.2) h(n)(s) � h(n)
pq(s) (s!C0)

for somen > � � 1. To begin with let us see that #(hpq) D #(h) and (4.2) holds for
n � n0 WD #(h).

Since

(4.3) Oh(k)(s) D Oh(k)
1 (s)C Oh(k)

2 (s),

we see thatOh(k)(C0) D 1 holds if and only if Oh(k)
1 (C0) D 1 or Oh(k)

2 (s) D 1. So by
Lemma 3.1, #(h)D n0 if and only if min{#(h1),#(h2)} D n0. Similarly, by the definition
of #(h), we see that #(hpq) D min{#(h1), #(h2)} D n0.

For the proof of (4.2) first consider the case where #(Oh1) D #(Oh2) D n0. By Prop-
osition 3.1, forn � n0, it holds

h(n)(s) � l 2
Oh(n)(s) D l 2( Oh(n)

1 (s)C Oh(n)
2 (s)) � l 2

�

1

l 2
1

h(n)
1 (s)C

1

l 2
2

h(n)
2 (s)

�

D h(n)
pq(s)

and hence (4.2) is proved for alln � n0.
When #(Oh1) ¤ #(Oh2), we need a slight modification. Consider the case where

#(Oh1) D n0 and #(Oh2) > n0. In this case, forn such thatn0 � n < #(Oh2), the argu-
ment above does not hold, buth(n)

2 (s) and Oh(n)
2 (s) are bounded and hence negligible

when compared toh(n)
1 (s) and Oh(n)

1 (s). Therefore we have the same conclusion.

Proof of Theorem 2.2. There are two cases.
CASE 1 (0 � � < 1) By Tauberian theorem (Theorem 7.1) we havehi (s) �

C0,�ci'(s)=s. Therefore,

h(s) D
h1(s)h2(s)

h1(s)C h2(s)
�

c1c2

c1C c2
C0,�

'(s)

s
,

which proves the assertion by Theorem 7.1. Whenc2 D 1, it means�1 D o(�2) so
that h1 D o(h2) and henceh=h1 D h2=(1C (h1=h2))! 1. Thus we haveh � h1, which
proves� � �1 � c1'.
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Case 2 (� D 1) In this case the above argument is insufficient becauseh � h1

does not necessarily imply� � �1. However,h0 � h01 implies � � �1. So let us prove
h0 � h01. Observe that�1(�) � (c1=c2)�2(�) implies h01(s) � (c1=c2)h02(s), which also
implies h1(s) � (c1=c2)h2(s) (by de l’Hospital) and henceh(s) � {c1=(c1 C c2)}h2(s)
and h(s) � {c2=(c1C c2)}h1(s). Since (1.1) implies

h0(s)

h(s)2
D

h01(s)

h1(s)2
C

h02(s)

h2(s)2
,

we see

h0

h02
D

h2

h2
1

�

h01
h02
C

h2

h2
2

!

�

c2

c1C c2

�2 c1

c2
C

�

c1

c1C c2

�2

D

c1

c1C c2
.

Thus we haveh0=h02! c1=(c1Cc2) and by Tauberian theorem as before we can deduce
� (�) � {c1=(c1C c2)}�2(�). In the extreme casec1 D 1, it holds thath2 D o(h1) and
h02 D o(h01). The rest of the proof is the same.

Proof of Theorem 2.3. Sincel1 D1 and l2 <1, it holds l D l2 <1 and hence
#(h),#(h2) � 1. Therefore, we have from Lemma 3.1 thath(n)(s)� l 2

Oh(n)(s) andh(n)
2 (s)�

l 2
Oh(n)

2 (s) for all sufficiently largen. So

h(n)(s) � l 2
Oh(n)(s) D l 2

Oh(n)
1 (s)C l 2

Oh(n)
2 (s) � l 2

Oh(n)
1 (s)C h(n)

2 (s).

This implies, by (3.1),

Z

1

0

d� (�)

(sC �)nC1
� l 2

Z

1

0

d� #
1 (�)

(sC �)nC1
C

Z

1

0

d�2(�)

(sC �)nC1
,

which proves� (�) � l 2
�

#
1 (�)C �2(�).

Proof of Theorem 2.4. Since

� (C0)D lim
s!C0

sh(s), �i (C0)D lim
s!C0

shi (s),

we have from (1.1) that

1

� (C0)
D

1

�1(C0)
C

1

�2(C0)
,

which implies (2.9).
By Proposition 3.4 we see that (2.10) is equivalent to

�

�

i (�) �
1

�i (C0)2
�

� C 1
ci�'(�).
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Since (1.1) impliesh�(s)D h�1(s)Ch�2(s), it holds� �(�)D � �1 (�)C� �2 (�), and therefore

�

�(�) D � �1 (�)C � �2 (�) �

�

c1

�1(C0)2
C

c2

�2(C0)2

�

�

� C 1
�'(�).

Appealing to Proposition 3.4 again, this is equivalent to

� (�) � � (C0)� � (C0)2
�

c1

�1(C0)2
C

c2

�2(C0)2

�

'(�) (�!C0).

5. An application to positive recurrent linear diffusions

In this section we generalize a result of [5], where the transition density of positive
recurrent diffusions is discussed.

Let X D (Xt )t�0 be a diffusion onI D [0,1) with local generator

(5.1) L D
1

2

�

d2

dx2
C b(x)

d

dx

�

, x > 0,

b(x) being assumed to be an element ofL1
loc([0,1), dx). We put reflecting boundary

condition at the left boundary.
Define

W(x) D exp

�

Z x

0
b(u) du

�

, x � 0.

Then Feller’s canonical form of (5.1) is

L D
d

dm(x)

d

ds(x)
,

where

m(x) D 2
Z x

0
W(u) du, s(x) D

Z x

0

du

W(u)
.

Note that the scale-changed processYt WD s(Xt ) corresponds to

L D
d

d Qm(s)

d

ds
, where Qm( � ) WD m(s�1( � )).

It is well known that the transition densityp(t, x, y) with respect todm(x) exists and
p(t, 0, 0) has the following spectral representation:

(5.2) p(t, 0, 0)D
Z

[0,1)
e��t d� (�), t > 0.
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The spectral function� can be characterized by the following formula: If we define

Gs(x, y) WD
Z

1

0
e�st p(t, x, y) dt, s> 0,

then (5.2) implies

h(s) WD Gs(0, 0)D
Z

[0,1)

d� (� )

sC �
, s> 0.

How to calculateGs(x, y) (and henceh(s)) from L will be explained in Section 6. We
remark that it is known thatl (WD h(C0)) D s(C1). (This fact will easily be seen
from (6.2).) Therefore, it holds that

(5.3) l D
Z

1

0

du

W(u)
.

The authors recently obtained the following result: We denote by R
�

(1) the to-
tality of functions varying regularly at1 with index �.

Theorem 1 ([6, Theorem 4.2]). Let � > 0. If

(5.4) W( � ) 2 R
��1(1)

then, as t!1,

(5.5) p(t, 0, 0)�
1

2�=20(�=2)

1
p

tW(
p

t)
2 R

��=2(1).

If we recall the canonical representation of slowly varyingfunctions (see e.g., [1,
p. 12]), we easily see that a sufficient condition for (5.4) is

(5.6) xb(x)! � � 1 (x!1),

or, equivalently,

b(x) D
� � 1

x
C o

�

1

x

�

(x!1).

We remark that, by (5.2) and Tauberian theorem for Laplace transforms (see e.g. [1,
p. 37]), (5.5) is equivalent to

(5.7) � (�) �
1

2(�=2)�1
�0(�=2)2

p

�

W(1=
p

�)
(�!C0).
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Now the aim of the present section is to study the case where (5.4) holds for� <
0. In this case we see

Om WD
Z

1

0
dm(x) D 2

Z

1

0
W(x) dx <1,

which is, probabilistically, equivalent to that the process is positively recurrent.
Since, as is well known,

(5.8) � (C0)D
1

Om
,

we see thatOm<1 implies � (C0)> 0 and therefore,

p(t, 0, 0)!
1

Om
(t !1)

(cf. [2, pp. 35–37]). So let us evaluatep(t, 0, 0)� 1= Om as t !1. Since (5.8) implies

p(t, 0, 0)�
1

Om
D

Z

(0,1)
e��t d� (�),

our problem will be reduced to the study of

� (�) � � (C0) (�!C0).

To this end let us consider thedual processof (5.1):

L�

WD

1

2

�

d2

dx2
� b(x)

d

dx

�

, x > 0.

Note the following argument remains valid under the condition � < 2 rather than� < 0.
The functionsW, s, m, Qm, h, � corresponding toL� will be denoted byW�, s�, m�,
Qm�, h� and � �, respectively. Since they correspond to�b in place ofb, we have

W�(x) D exp

�

�

Z x

0
b(u) du

�

so thatW�

D 1=W, and hence,W�

2 R
�(��1)(1) D R

�

�

�1(1) where�� WD 2� �. If
� < 2, it holds�� > 0. So we can apply Theorem 1 to�b(x) to deduce

(5.9) �

�(�) � C�

�

p

�W(1=
p

�) 2 R
�

�

=2(0) (�!C0),

where

C�

�

D

1

2��=2�1
�

�

0(��=2)2
D

2�=2

(2� �)0((2� �)=2)2
.
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We next consider the relationship between� � and� � defined in (2.3). To this end
we recall Krein’s correspondence(see e.g. [8]): The correspondence betweenh and
Qm is one-to-one andQm�(x) WD Qm�1(x) corresponds toh�(s) D 1=(sh(s)). Furthermore,
c Qm(cx) corresponds to (1=c)h(s) (and, hence,c Qm�(cx) to (1=c)h�(s)). Since s�(x) D
(1=2)m(x) and m�(x) D 2s(x), we have Qm�(x) D 2 Qm�1(2x) D 2 Qm�(2x). This proves
that h�(s) D (1=2)h�(s), which implies

�

�(�) D
1

2
�

�(�).

So by (5.9) we have

Proposition 5.1. Suppose that(5.6) holds with� < 2. Then,

(5.10) �

�(�) � C�

�

p

�W(1=
p

�) 2 R
�

�

=2(0) (�!C0),

where

C�

�

D 2C�

�

D

2(�=2)C1

(2� �)0((2� �)=2)2
.

REMARK 5.1. When 0< � < 2 we can confirm (5.10) directly as follows: Since
� 2 R

�=2(0), we haveh 2 R(�=2)�1(0), h�(s) D 1=(sh(s)) 2 R(�=2)�1(0) and � � 2
R1�(�=2)(0). Therefore,

�

�(�) �
�

C0,1�(�=2)
h�(�) �

1

C0,1�(�=2)

1

h(�)
�

1

C0,1�(�=2)C0,�=2

�

� (�)
.

Combining this with (5.7) we obtain

� (�) �
2�=20(�=2)0((�=2)C 1)

C0,1�(�=2)C0,�=2

p

�W(1=
p

�) D C�

�

p

�W(1=
p

�).

Now let us return to the case� < 0 instead of� < 2. In this case� WD (��=2)�
1D ��=2> 0 and we can apply Proposition 3.4 to (5.10) to obtain

� (�) � � (C0)� � (C0)2
� C 1

�

�

�(�)

�

2 R
�

(0)D R
��=2(0).

Thus we have the following result, which extends Example 3.8of [5], where only
the case�2< � < 0 is discussed.

Theorem 5.1. Suppose that(5.6) holds with� < 0. Then,

(5.11) � (�) �
1

Om
�

1

Om2
D
�

1
p

�

W

�

1
p

�

�

2 R
��=2(0) (�!C0),
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where

D
�

D

2(�=2)C1

j�j0((2� �)=2)2
.

Notice that, by the reason we explained before, (5.11) is equivalent to

p(t, 0, 0)�
1

Om
�

1

Om2
D
�

0

�

1�
�

2

�

p

tW(
p

t) 2 R
�=2(1) (t !1).

6. An application to bilateral diffusions

The aim of this section is study how our results in Section 2 work when we wish
to apply Theorem A in the previous section to ‘bilateral’ diffusions. Here, ‘bilateral’
means that neither boundary of the state space is regular.

To begin with let us quickly review necessary facts on lineardiffusions. Let X D
(Xt )t�0 be a regular, conservative diffusion on an interval inR. For simplicity, we
change the scale if necessary so that the local generator is of the form

L D
d

d Qm(x)

d

dx
, �l

�

< x < l
C

where 0< l
�

, l
C

� 1 and Qm(x) is a nondecreasing right-continuous function defined
on I D (�l

�

, l
C

). (We need not to assume thatQm is strictly increasing so that gener-
alized diffusions such as birth–death processes are included.)

It is well known that the transition densityp(t, x, y) with respect tod Qm(x) can be
computed as follows (see e.g. [4]): For each� 2 C, we can define'

�

(x) and 
�

(x) as
the unique solutions of

�Lu D �u, x 2 I

with the initial conditions that (u(0), u0(�0)) D (1, 0) and (u(0), u0(�0)) D (0, 1), re-
spectively; or, precisely, the solutions of the following integral equations:

(6.1)

8

�

�

�

<

�

�

�

:

'

�

(x) D 1� �
Z x

�0
(x � y)'

�

(y) d Qm(y),

 

�

(x) D x � �
Z x

�0
(x � y) 

�

(y) d Qm(y)

with the convention that
R x
�0 D �

R

�0
x if x < 0. Then,

(6.2) h
C

(s) WD lim
x"l

C

 

�s(x)

'

�s(x)

�

D

Z l
C

�0

0

dx

'

�s(x)2

�

, s> 0

and

h
�

(s) WD � lim
x#�l

�

 

�s(x)

'

�s(x)

�

D

Z l
�

�0

0

dx

'

�s(�x)2

�

, s> 0
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are called thecharacteristic functionsof Qm. It holds thath
C

, h
�

2 H, and hence we
have the following representation:

(6.3) h
�

(s) D a
�

C

Z

[0,1)

d�
�

(� )

� C s
, s> 0.

For everys> 0, we put

u1(sI x) D '
�s(x) �

1

h
C

(s)
 

�s(x)I

u2(sI x) D '
�s(x)C

1

h
�

(s)
 

�s(x).

These two are nonnegative solutions of

�

Lu(x) D su(x), x 2 I ,
u(0)D 1

such thatu1 is nonincreasing andu2 nondecreasing. The Wronskian is

(6.4) W[u1(sI � ), u2(sI � )] (WD u1u02 � u01u2) D

1

h
�

(s)
C

1

h
C

(s)
.

So the Green function is given by

(6.5) Gs(x, y) D

�

h(s)u2(sI x)u1(sI y) (x � y),
h(s)u1(sI x)u2(sI y) (x > y),

whereh(s) D 1=W[u1(sI � ), u2(sI � )]; namely, by (6.4),

(6.6)
1

h(s)
D

1

h
C

(s)
C

1

h
�

(s)
.

Note that it holds

(6.7) Gs(0, 0)D h(s),

which follows immediately from (6.5) becauseui (sI 0)D 1.
The transition densityp(t, x, y) (with respect tod Qm(x)) can be obtained from

Gs(x, y) via the following formula:

Z

1

0
e�st p(t, x, y) dt D Gs(x, y) (s> 0) d Qm(x) d Qm(y)-a.e.

Especially, by (6.7) we have

(6.8)
Z

1

0
e�st p(t, 0, 0)dt D h(s) (s> 0)
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provided that 02 Supp{d Qm(x)}. Notice that, if � is the spectral function ofh(s),
then (6.8) implies

(6.9) p(t, 0, 0)D
Z

1

�0
e�s� d� (�), s> 0.

In this way the asymptotic behavior of the transition density p(t, 0, 0) will be reduced
to those of two diffusions; one is on (�l

�

, 0] and the other on [0,l
C

).
Let X D (Xt )t�0 be a diffusion with generator (5.1) on the whole lineR with

b( � ) 2 L1
loc(R). Notice that the results in the above are applicable first tothe suitably

scaled processYt D s(Xt ) and hence toX. So, for example, there exists the transition
density p(t, x, y) with respect todm(x) WD 2exp

�R x
0 b(u)du

�

dx and (6.9) remains valid
if we choose the scale functions(x) so thats(0)D 0.

Define
8

�

�

�

<

�

�

�

:

W
C

(x) D exp
Z x

0
b(u) du, x � 0,

W
�

(x) D exp�
Z x

0
b(�u) du, x � 0

as in Section 5. The reason why�b(�x) appears in the definition ofW
�

(x) is simply
because the diffusion (�Xt )t�0 corresponds to

L D
1

2

�

d2

dx2
� b(�x)

d

dx

�

in place of (5.1).
By (6.2) we easily see thatl

�

(WD h
�

(C0)) D s
�

(C1), wheres
�

(x) is defined in
a similar way as in the previous section, and hence it holds that

l
�

D

Z

1

0

dx

W
�

(x)
(� 1).

So l WD h(C0) is obtained by

l D
l
C

l
�

l
C

C l
�

,

(see (1.2)). Also as in the previous section we have

�

�

(C0)D
1

Om
�

, Om
�

D 2
Z

1

0
W
�

(u) du

and therefore,

� (C0)D
�

C

(C0)�
�

(C0)

�

C

(C0)C �
�

(C0)
D

1

Om
,
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(see (2.9)), where

OmD Om
C

C Om
�

�

D 2
Z

1

0
(W

C

(u)CW
�

(u)) du

�

.

Theorem 6.1 (Balanced case). Suppose that

lim
x!1

xb(x) D �
C

� 1 (�
C

¤ 0)

and

(6.10) lim
A!1

Z A

�A
b(u) duD log

r

1� r
(0< r < 1).

(i) If (0< �
C

< 2) or (�
C

D 2I l
C

D1), then

� (�) � r�
C

(�) (�!C0).

(ii) If (�
C

> 2) or (�
C

D 2I l
C

<1), then

� (�) �

�

p2
C q2 r

1� r

�

�

C

(�) (�!C0),

where pD l=l
C

and qD l=l
�

.
(iii) If �

C

< 0, then

� (�) �
1

Om
�

��

Om
C

Om

�2

C

�

Om
�

Om

�2 r

1� r

��

�

C

(�) �
1

Om
C

�

.

Proof. (i) It holds W
C

2 R
�

C

�1(1) and �
C

2 R
�

C

=2(0) as before (see (5.6)
and (5.7)). By the balancing condition (6.10), it holds

W
�

(x)

W
C

(x)
!

1� r

r
,

which implies, by (5.7),
�

�

(�)

�

C

(�)
! c WD

r

1� r
.

Therefore, by Theorem 2.2 we deduce

� (�) �
c

cC 1
�

C

(�) D r�
C

(�) (�!C0).

(ii) Similarly, by Theorem 2.1, we see

� (�) � p2
�

C

(�)C q2
�

�

(�) �

�

p2
C q2 r

1� r

�

�

C

(�).
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(iii) The assertion can be shown in a similar way by using Theorems 2.4 and 5.1.

Theorem 6.2 (Lopsided case). Suppose that

�

limx!C1

xb(x) D �
C

� 1,
limx!�1

xb(x) D �
�

� 1,

where�
C

> 0 and �
�

2 R. Then;
(i) In the following three cases it holds

(6.11) � (�) � �
C

(�) 2 R
�

C

=2(0) (�!C0).

(1) �
�

< �

C

< 2,
(2) �

�

< 2< �

C

, �
�

C �

C

< 4,
(3) �

�

< �

C

D 2.
(ii) If 2< �

C

< �

�

or (2D �
C

< �

�

, l
C

<1), then

� (�) � p2
�

C

(�).

(iii) If (�
�

< 2< �

C

, �
�

C �

C

> 4) or (2D �
�

< �

C

, l
�

D1), then

(6.12) � (�) � l 2
C

�

#
�

(�) 2 R2�(�
�

=2)(0) (�!C0).

Proof. First we remark that�
�

2 R(�
�

_0)=2(0).
(i) In each of the cases (1)–(3) we can apply Corollary 2.1 (i), Corollary 2.3 (i),

and Corollary 2.4 (i), respectively.
(ii) Apply Corollary 2.1 (ii) and Corollary 2.4 (ii), respectively.
(iii) Since �

�

2 R2�(�
�

=2)(0) and�
C

2 R
�

C

=2(0), the assertion follows from The-
orem 2.3.

As we mentioned before the transition densityp(t, x, y) with respect todm(x) D
2 exp

�R x
0 b(u) du

�

dx exists and especiallyp(t, 0, 0) satisfies (6.9). So by Karamata–
Tauberian theorem for Laplace transforms the results for the spectral function� can be
translated into those forp(t, 0, 0). Thus we have

EXAMPLE 6.1. Let b(x) D b0(x)C �(x) where

(6.13) b0(x) D

8

�

�

�

<

�

�

�

:

�

C

� 1

x
(x > 1),

0 (jxj � 1),
�

�

� 1

x
(x < �1)
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and �( � ) 2 L1(R, dx).
SinceW

�

(x) � const� x���1 (x!1), we see thatl
�

<1 if and only if �
�

> 2,
and also Om<1 if and only if �

�

< 0.
(1) If (�

�

� �

C

� 2; �
C

> 0) or 2< �

C

� �

�

, then,

p(t, 0, 0)� const� t��C=2 (t !1).

(2) If �
�

< 2< �

C

, then

p(t, 0, 0)� const�max{t�2C(�
�

=2), t��C=2} (t !1).

(3) If 2 D �
�

� �

C

, then

p(t, 0, 0)� const� t�1(log t)�2 (t !1).

(4) If �
�

� �

C

< 0, then

p(t, 0, 0)�
1

Om
� const� t�C=2 (t !1).

Since (1) and (2) are immediate from Theorem 6.2 (and Tauberian theorem for Laplace
transforms), let us see (3) and (4) only. (3) follows from Theorem 6.2 (iii): Since
�

�

(�) � const� � and �
C

(�) � const� ��C=2 (see (5.7)), we see from (6.12) and Ex-
ample 3.1 that

� (�) � const� � #
�

(�) � const�
�

(log(1=�))2
(�!C0).

Thus we have (3). Similarly, we can deduce (4) by Theorems 6.1(iii) and Theorem 5.1.

7. Appendix

In this section we briefly sum up some results on Tauberian theorems for Stieltjes
transforms.

For a nondecreasing, right-continuous function� W (�1,1) ! [0,1) such that
� (x) D 0 on (�1, 0), we define thegeneralized Lebesgue–Stieltjes transformby

Hn(� I s) D
Z

[0,1)

d� (�)

(sC �)nC1
D

1

nC 1

Z

[0,1)

� (�) d�

(sC �)nC2
(n � 0)

provided that the integral converges. The generalized Lebesgue–Stieltjes transform de-
termines the measured� (�) uniquely. For an inversion formula see [9, Appendix].

The most important case is the following: Let 0� � < nC 1. Then

� (�) D ��, � > 0
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if and only if

Hn(� I s) D Cn,�s��n�1,

where

(7.1) Cn,� D

Z

1

0

d��

(1C �)nC1
D

0(nC 1� �)0(1C �)

0(nC 1)
.

The well-known Karamata’s extension of Hardy–Littlewood Tauberian theorem is

Theorem 7.1. Let 0� � < nC 1, A � 0, and ' 2 R
�

(0). Then,

� (�) � A'(�) (�!C0)

if and only

Hn(� I s) � ACn,� '(s) s�n�1 (s!C0).

For the proofs we refer to [1, p. 40] and [7, Appendix].
The assertion holds even ifAD 0 with the convention thatf � Ag means f =g!

A. Also, ‘�, s!C0’ may be replaced by ‘�, s!1’.
Let h 2 H. Sinceh(n)(s) D (�1)nn! Hn(� I s) we have,

Corollary 7.1. Let 0� � < nC1. Then� 2 R
�

(0) if and only if h(n)
2 R

��n�1(0),
and then,

(�1)nh(n)(s) � 0(nC 1� �)0(1C �)s�n�1
� (s), s!C0.

Corollary 7.2. Let 0 � � < nC 1 and A� 0. If �1 2 R
�

(0) (or, equivalently, if

h(n)
1 2 R

��n�1(0)), then

h(n)
2 (s) � A h(n)

1 (s) (s!C0)
iff
� �2(�) � A �1(�) (�!C0).

Lemma 7.1. Let ' 2 R
�

(0) (� � 0) and B� 0.
(i) If � > 0, then

(7.2) � (�) � � (C0)� B'(�) (�!C0)

if and only if
Z

�

0
� d� (� ) � B

�

� C 1
�'(�) (�!C0).

(ii) If � D 0, then (7.2) implies

Z

�

0
� d� (� ) D o(�'(�)) (�!C0).
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Proof. (i) By Tauberian theorem for Laplace transforms (7.2) holds if and only if

Z

(0,1)
e��sd� (�) � B0(� C 1)'

�

1

s

�

(s!1).

Then, by the monotone density theorem (see e.g. [1, p. 39]) this is equivalent to

Z

1

0
e��s

� d� (�) � B0(� C 1)�
1

s
'

�

1

s

�

,

which is also equivalent to

Z

�

0
� d� (� ) �

B0(� C 1)�

0(� C 2)
�'(�) D B

�

� C 1
�'(�).

(ii) Without loss of generality, we may assume that� (C0)D 0. Since

Z

�

0
� d� (� ) D �� (�) �

Z

�

0
� (� ) d�

and the second term of the right-hand side is asymptoticallyequal to�� (�), we deduce
the assertion.
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