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Abstract

Let Gx be the gauge group of the princip8lJ(5)-bundle overS* with second
Chern clask. We show that there is @-local homotopy equivalencéy =~ G for
any primep if and only if (120,k) = (120,k’).

1. Introduction

Let G be a simply-connected, simple compact Lie group. Princpddundles over
S* are classified by the value of the second Chern class, whiohtadee any integer
value. LetP, — S* represent the equivalence class of princi@abundle whose second
Chern class ik. Let G be thegauge groupof this principal G-bundle, which is the
group of G-equivariant automorphisms d% which fix S*.

While there are countably many inequivalent princigatbundles, Crabb and
Sutherland [5] showed that the gauge groy@g}y>, have only finitely many distinct
homotopy types. There has been a great deal of interestthgdandetermining the
precise number of possible homotopy types. The followirgssifications are known.
For two integersa, b, let (a,b) be their greatest common divisor. @ = SU(2) then
Gk ~ Gy iIf and only if (12,k) = (12,K’) [11]; if G = SU(3) then Gy ~ Gy if and
only if (24,k) = (24,k') [7]; if G = SH2) thenGx ~ G when localized at any prime
p or rationally if and only if (40k) = (40,k’) [17]; and in a non-simply-connected
case, ifG = SQ3) then gy ~ Gy if and only if (24,k) = (24,k") [10].

In this paper we will classify thg-local homotopy types of gauge groups of prin-
cipal SU(5)-bundles. It should be emphasized that in all the previcases, the classi-
fication proofs relied heavily on the fact that asC&V-complex G has very few cells
(at most 3). This is not the case f@U(5), which has 15 cells. To deal with this
previously inaccessible case, we make use of some new gdaul®]. We prove the
following.

Theorem 1.1. For G = SU(5), there is a homotopy equivalen¢g ~ Gy when
localized at any prime p or rationally if and only {f.20,k) = (120,k’).
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One motivating reason for studyirfgU(5)-gauge groups is that they are of interest
to physics. The standard model, which accurately desctimedbehavior of elementary
particles subject to the strong and weak nuclear forces &udremagnetism, is based
on SU(3) x SU(2) x U(1)-gauge groups. Since the early 1970s, physicists hawghso
for a grand unified model which merges the gauge theory froentiinee Lie groups
in the standard model into that from a single Lie group. Onadidate for such a Lie
group isSU(5), others includeésQ10) andEg. The corresponding models in each case
have been heavily studied.

2. Determining homotopy types of gauge groups

We begin by collecting some preliminary information. Firgte establish a con-
text in which homotopy theory can be applied to study gaugmigs. This works for
any simply-connected, simple compact Lie gro@p Let BG and BGx be the classi-
fying spaces ofG and Gy respectively. Let Ma@*, BG) and Mag(S*, BG) respect-
ively be the spaces of freely continuous and pointed coatisumaps betwee8* and
BG. The components of each space are in one-to-one correspmndéth the inte-
gers, where the integer is determined by the degree of a ®lap BG. By [6] or
[1], there is a homotopy equivalen®G, ~ Map(S*, BG) betweenBG, and the com-
ponent of Map&*, BG) consisting of maps of degrde Evaluating a map at the base-
point of S*, we obtain a mapev: BGx — BG whose fibre is homotopy equivalent to
Map;(S*, BG). It is well known that each component of M48*, BG) is homotopy
equivalent toQ3G, the component of23G containing the basepoint. Putting all this
together, for eaclk € Z, there is a homotopy fibration sequence

1) G % 3G — BG < BG

where i is the fibration connecting map.

Since gy is the homotopy fibre oby, its topology is governed to a great extent by
properties ofd,. We mention two for now. First, by [12], the triple adjoisé A G —
G of 9 is homotopic to the Samelson produgt- i, 1), wherei is the inclusion of
S® into G and 1 is the identity map o. The linearity of the Samelson product
therefore implies thab, ~ k o 3;, wherek is the k"-power map oanG. Second,
the order ofdy is finite. For, rationally,G is homotopy equivalent to a product of
Eilenberg—MacLane spaces, and the homotopy equivalencbeahosen to be one of
H-maps. Since Eilenberg—MacLane spaces are homotopy coniveutany Samelson
product into such a space is null homotopic. Thus, ratignéifle adjoint ofdy is null
homotopic, implying thatdy is rationally null homotopic. Therefore, the order &f
is finite.

In determining the homotopy types 6k, the order ofd; plays a prominent role.
We have just seen that the order @f is finite, and sincedx ~ k o 9;, once the order
of 9; is known so is that ofbx. When G = SU(n), Hamanaka and Kono [7] gave a
lower bound on the order af; and the number of homotopy types 6f.
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Lemma 2.1. Let G = SU(n). Then the following hold
(a) the order ofd; is divided by itn® — 1);
(b) if Gk =~ G then (n(n? — 1), k) = (n(n? — 1), k).

In particular, if G = SU(5) then 120 divides the order dfy and a homotopy
equivalenceGy ~ G implies that (120k) = (120,k’). In Section 6 we will prove an
upper bound on the order @f that matches the lower bound.

Theorem 2.2. The map S(b) Y Q3SU(5) has order120

Granting Theorem 2.2 for now, we can prove Theorem 1.1 bygusie following
general result, proved in [17]. L&t be anH-space with a homotopy inverse, and let
k: Y — Y be thek™power map.

Lemma 2.3. Let X be a space and Y be an H-space with a homotopy inverse.

Suppose there is a map éfé Y of order m where m is finite. Let fFbe the homo-
topy fibre of ko f. If (m, k) = (m, k') then K and R are homotopy equivalent when
localized rationally or at any prime.

Proof of Theorem 1.1. By Theorem 2.2, the m3p(5) > Q3SU(5) has order
120. So Lemma 2.3 implies that if (12K) = (120,k"), then Gx ~ G when localized
at any primep or rationally. On the other hand, by Lemma 2.1,df ~ G then
(120,Kk) = (120,k’). Thus there is a homotopy equivalengg ~ G at each primep
and rationally if and only if (120k) = (120,k’). ]

It remains to prove Theorem 2.2. In general, it is difficultd@termine the order of
d1 precisely. The following Lemma proved in [9] helps gives soorude information

on the order wherG = SU(n).

Lemma 2.4. For G = SU(n), there is a homotopy commutative square

sun) — 2 Q3syn)

| ll

SUn)/SUn — 2) —— Q3su(n)
for some map fwherer is the standard quotient map.
Another useful fact from [9] is the following. LeSU(n) — SUn + 1) be the

standard group inclusion, and I8U(n)/SUY(n — 2) — SU(n)/SU(n — 1) = "1 be the
usual quotient map.
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Lemma 2.5. There is a homotopy commutative square

SUN)/SUn — 2) —— 93sU(n)

! !

-t T, Q3sun + ).

3. An initial upper bound on the order of 9;

By Lemma 2.4, there is a homotopy commutative square

SUGBE) —2 > Q3sU(5)

I H

SU5)/SUB) —— Q3sU(5)
for some mapf. We begin by discussing some properties fof Let
T: ZSU((5)/SUB) — Q2SU(5)

be the adjoint off. By [8], there is a homotopy equivaleng&SU(5)/SU(3) ~ x8C P2v
SY. So we regardf as a map=fCP?v St — Q2SU(5). Let f; and f, be the restric-
tions of f to XCP? and S'7 respectively. By [7], there is an isomorphisBdC P2,
SU(5)] = 2/36Z & Z/120Z. So we immediately have the following.

Lemma 3.1. The mapsf, and f, represent homotopy classes [£&CP?,
SU(B)] = Z/36Z & Z/120Z and m19(SU(5)) respectively.

It is not clear what the group19(SU(5)) is, although in Section 5 we will see that
its 3-component is 0. For the moment, however, we are coedemith the
p-component for every prime.

Lemma 3.2. The order of f, divides2.

Proof. By taking adjoints in Lemma 2.5, there is a homotopyasg

2(SUB)/SUR)) —— Q2SU(5)

! !

s o2s5ye)

where T’ is the adjoint of f. Thus if we restrictf to S'” — X (SU(5)/SU(3)) and
compose intoQ?SU(6), the result is null homotopic. Therefore, since the htupy
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fibore of the inclusionSU(5) — SU(6) is QS'!, we obtain a lift

93811

]

S = 2(SUB)/SUR)) —— Q2SU(5)

for some mapa. In particular, A represents a homotopy class ing(S), which by
[18], is isomorphic to the direct sum of three copiesZf2Z. Thus the order ofr
divides 2, implying that the order of, also divides 2. ]

The information onf gives an upper bound on the order of the ntig(5) Y
Q3SU(5).
0

Lemma 3.3. The order of the map S8) Y Q3SU(5) divides 360,

Proof. By Lemma 2.4,0, factors as the composit8U(5) 5 SU(5)/SU3) i>
Q3SU(5). By Lemmas 3.1 and 3.2, the order 6f divides 360. Hence the order of
91 also divides 360. O

By Lemma 2.1, the order oSU(5) & Q%SU(S) is a multiple of 120, while by
Lemma 3.3 the order divides 360. We wish to show that the oade#; is exactly
120, so we need to improve the upper bound by a factor of 3. Teadit suffices to
localize at 3 and show the 3-local order &f is 3 rather than 9.

It will help to first investigate a 3-local property df. Localized at 3, by [8] there

is a homotopy equivalencBU(5)/SU3) ~ S x <. Let h be the compositd: $° >

f
xS - QgSU(5), wherei, is the inclusion of the second factor. In the following
lemma we show thah has order 9, implying that the 3-component of the orderf of
is at least 9. In particular, in trying to improve the uppemubd on the 3-component

of the order ofd; from 9 to 3, we need to study the m&iJ(5) 5 SU(5)/SU(3) as
well as the mapSU(5)/SU3) - 23SU(5).

Lemma 3.4. Localized at3, the map Sg SZ%SU(S) has order9.

Proof. Letc: > — SU(5) be the characteristic map. It is well known that this

has the property that the composi 5 SU(5) %4 @ has degree 4!. In particular,
localized at 3, we may regamlo c as having degree 3, up to multiplication by a unit

in the 3-local integers. Also, by [12], the triple adjoint thfe mapSU(5) & QSSU(S)
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is homotopic to the Samelson produst A SU(5) ﬂ SU(5) wherei is the inclusion
of the bottom cell and 1 is the identity map. By [4], the conif@$® A S LN
SU(5) H SU(5) has order dividing 6Y1! - 4!) = 30. In particular, adjointing back
and localizing at 3, the order df; o ¢ divides 3.

Now consider the diagram

L, SUB) —2 > QIsSUs)

I iy U

-, Ixg s Qisys).

The left square homotopy commutes sinegS’) = 0 at 3 and since| o ¢ has degree 3.
The right square homotopy commutes by Lemma 2.4. From thepirsgraph, the up-
per row has order dividing 3. Hence the lower direction atbtire diagram is nontrivial.
That is, ash = f oi,, we have 3 h nontrivial, implying that the order ofi divides 9.
On the other hand, by [2] and [3], the three—componenthQgSU(S)) isZ/9Z. Hence
h has order at most 9. Thereforie,represents a generator 8§(23SU(5)) and has or-
der 9. 0

4. Some decompositions

For the remainder of the paper, assume that all spaces ansl Imagp been local-
ized at 3, and homology is taken with mod-3 coefficients. B3][there are homotopy
equivalencesSU(4) ~ B(3, 7)x S® and SU(5) ~ B(3, 7)x B(5, 9), whereH*(B(3, 7)) =
A(x3, PY(x3)), H*(B(5, 9)) = A(xs, P1(xs)), and there are homotopy fibratior® —
B(3,7)—> S and S — B(5, 9)> .

In what follows, it is helpful to define some maps. Let SU(5) — SU(5)/SU(3)
andq: SU(5) — S be the standard quotient maps. leetB(3, 7)x B(5, 9) — SU(5) be
the homotopy equivalence from [13], and kgt e, be the restrictions oé to B(3, 7)
and B(5, 9) respectively. Observe thet can be chosen to be the compodBés, 7) —
SU4) — SU(5), implying thatqg o e; is null homotopic. Also observe that can be
chosen to be the composit(5, 9)3 SU(S)i S.

As mentioned in Section 3, there is a homotopy equivale®ides)/SU3) ~ S x
S°. However, the decompositions &J(5) and SU(5)/SU(3) may not be compatible,
in the sense that themaay notbe a homotopy commutative diagram

B(3, 7)x B(5, 9) —°— SU(5)

[rs |

xS =——— xS
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However, we will show that an appropriate diagram does dkigte weaken to con-
sider only the mapBU(5) > <.

Lemma 4.1. There is a homotopy commutative diagram

B(3, 7)x B(5, 9) —*> SU(5)

[ I

Sg e ——— Sg
wherem, is the projection onto the second factor.

Proof. In general, for a homotopy fibratiohR — E — B the connecting map
§: QB — F induces a homotopy actiof: F x 2B — F with the property that there
is a homotopy commutative square

QB x QB X5 0B

fpa s

FxQB —% 5 F

where u is the loop multiplication.

In our case, there is a homotopy fibration sequeSti5) L9 BSU4) —
BSU5). Now consider the diagram

B(3, 7)x B(5, 9) =% SU(5) x SU(5) —=—> SU(5)

| [ I

B(5,9) — 2 » P xSUY5) —L > .

The right square homotopy commutes sirtce e; is null homotopic. The left square
homotopy commutes by the homotopy action induced by thetfilraconnecting map
g. The top row is homotopic t@. As the restriction ofy to SU(5) is g, the bottom
row is homotopic togoe, ~ s. Thus the diagram as a whole shows thate ~ so 75,
which proves the lemma. ]

Define the spac€ and the maps by the homotopy cofibration
0 ~9 ¢
SuU()— S’ — C.

In the next two propositions we examine properties of thifibcation. First we de-
compose the spadg and then factor the magp.
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Proposition 4.2. There is a homotopy equivalence
C~Svshv(TBEB, 7))V (ZB(E3, 7)A B(5, 9)).

Proof. The homotopy commutative diagram in the statemeriteshma 4.1 im-
plies that there is a homotopy cofibration diagram

B(3,7)x B(5,9) -2 & — > D

|e

H
SU(5) d S C

Y

where D is the homotopy cofibre 0§ o 7, and y is some induced map of cofibres.
The cofibrations in the top and bottom rows induce long exaqusnces of homology
groups, and the cofibration diagram induces a map of thegedract sequences. Since
e is a homotopy equivalence and the map betw8&s is the identity, the five-lemma
implies thaty, is an isomorphism in every degree. Hencés a homotopy equivalence.
So to prove the lemma it is equivalent to decomp@se

In general, there is a homotopy decompositbA x B) ~ XAv XBV (ZAA B).

So the homotopy cofibre of the projectidxix B & Bis homotopy equivalent t& Av
(XA A B). If we compose the projection with a mdp B — X, then we obtain a
homotopy cofibration diagram

AxB 25 B—— TAV(ZAAB) —> Z(Ax B)

| I | H

Ax B 7, x Y (A x B)
Z _— Z

which defines the spac&and Z and the mapg andk. The homotopy commutativity

of the upper right square implies that the compoMté 2(AxB)—= XAV(ZAAB)
is a left homotopy inverse of. Sincek induces a homotopy coactiofi: Y — Y v

2 (A x B), the compositey L YVEAxB—ZVv(ZAV(ZAAB))is a homotopy
equivalence. Therefore, in our case of the homotopy cofdiraB(3, 7)x B(5, 9)%
S’ - D, we haveD ~ Z v £B(3, 7)V (£B(3, 7)A B(5, 9)), whereZ is the homotopy
cofibre ofs.

To complete the proof of the decomposition Gf it remains to show thaZ ~
S v Si5. By definition, Z is the homotopy cofibre of the maB(5, 9) > <°. Since
H.(B(5, 9)) = A(Xs, Xg) and s, is a projection, there is a vector space isomorphism
H.(Z) = {Xs, X15}. Thus Z is a two-cell complex, so there is a homotopy cofibration
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st L, s, 7 wherel attaches the top cell t@. By [18], the 3-component af4(S°)
is 0. Thusl is null homotopic, implying thaZ ~ S° v S'. O

Let C' = S Vv (2B(3, 7))V (£B(3, 7)A B(5, 9)), soC ~ v C'. As is usual,
for n > 3, leta;: S — S" be a map representing the generator of the stable 3-stem
(localized at 3).

Proposition 4.3. The map 82 C factors as the composite? S5 S5 5 v
c S C, where i is the inclusion of the first wedge summand.

Proof. By connectivity, the ma®’ LN C factors through the 9-skeleton @.
From the decomposition of in Proposition 4.2, we see that its 9-skeleton is homo-
topy equivalent toS® v A v S, where A is the 7-skeleton oB(3, 7) andS’ is the
bottom cell of 2B(3, 7)A B(5,9). Soé factors through a map’: S - SSv AV S,

Consider the homotopy fibratioR — Sfv ZAvV S — S x XA x S, where the
right map is the inclusion of the wedge into the product arel fibration defines the
spaceF. The Hilton-Milnor Theorem implies thaF is 8-connected and has a single
cell in dimension 9. Further, the ma®’ — F — S°v XA v S is homotopic to the
compositew: & > Fv F s FVIA SVvIAV S, wherew is the Whitehead
product of the identity maps o8® and S*. Thusé§’ is homotopic top; o 8’ + py o
8 + psod +t-w, wherep; is the pinch map fromS® v TA v S to the respective
wedge summands®, £A and S® andt is some element aZ). We aim to show that
prod ~ay, ppod >~ x, p3od >~ x andt = 0. If so, thend’ factors throughoy,
implying that the same is true &f, completing the proof.

Now consider the homotopy cofibration sequer®g(5) 4 LN C — XSU(5).

First, sinceH*(SU(5); Z) is torsion free, the composits’ L svsAve B @ must

be of degree zero, for otherwigé and hences is degreed # 0 in H®, implying that
there isd-torsion in H*(SU(5); Z), a contradiction. Thuggz o4’ ~ *. Second, observe
that the degree 5, 9 generators hti(SU(5)) are connected by the Steenrod operation
P, an operation which detectg. Sinceq* is an inclusion of the degree 9 generator,
we must haved detectinga;. That is, py o 8 ~ «3. Third, consider the homotopy
cofibration S* — £ A — S which includes the bottom cell int& A and pinches out
to the top cell. The Serre exact sequence implies that thisobhapy cofibration is also

a homotopy fibration in dimensions 10. In particular, there is an exact sequence
79(SY) — mo(Z A) — mo(SP). By [18], the three-components afy(S*) and mo(S°) are
both 0, so the three-component 8§(X A) is 0. Hencep, o 8’ ~ *. Finally, suppose
thatt - w # x. Then asw factors through the Whitehead produstand » detects a
nontrivial cup-product, the map >~ «; + t - w would detect a nontrivial cup-product
in the integral cohomology its cofibrESU(5). But all cup-products irH*(XSU(5); Z)
vanish. Hencd - w must be trivial, implying that = 0. O
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5. Some properties ofB(3, 7) and B(5, 9)

We will need to know some information about certain homotgpyups ofSU(5).
This makes use of the homotopy equivaler®g(5) ~ B(3, 7) x B(5, 9) and calcula-
tions of the low dimensional homotopy groups Bf3, 7) by Toda [19] andB(5, 9) by
Oka [15].

| B(3,7) B(5,9) SU®5)
(2) 710 Z/3Z 0 Z/3Z
12 0 Z/QZ Z/9Z

19 0 0 0

As well, let Z) be the 3-local integers. Them(B(3, 7)) =~ Z) and ifc: S’ —
B(3, 7) represents the generator, then the comp(SZité B(3, 7)L> S’ is of degree 3.

We now prove a lemma which gives two ways of describing theeggor ofrr10(B(3,7)).
Forn > 3, letay: S™7 — S represent the generator of the stable 7-stem (again, at 3).

Lemma 5.1. There is a homotopy commutative square

SlO *1 N S7

o= lc

$ — - B3, 7)

Proof. By (2),m10(B(3, 7)) =~ Z/3Z and, as stated in [19], a generator is repre-
sented by the composi®® -5 S — B(3, 7). On the other hand, consider the homotopy

fibration F — 7 - B(3, 7). In [19], it is shown thaF is 10-connected. Thereforein-
duces an isomorphism ono. But m1o(S’) = Z/3Z is generated by, so the composite
sl g7 & B(3, 7) also represents the generatorref(B(3, 7)) = Z/3Z. These two
ways of describing the generator 0fo(B(3, 7)) gives the asserted homotopy commuta-

tive diagram. ]

Next, by [15], m9(B(5, 9)) = Z3) and if d: S — B(5, 9) represents the gener-

ator, then the composit&® LY B(5, 9)—s> S’ is of degree 3. We give an analogue of
Lemma 5.1 forB(5, 9), after a preliminary lemma.

In general, letE?: S"~! — Q2S”+1 pe the double suspension, which is the double
adjoint of the identity map oi$?"~1. Oka [15] showed that there is a mapB(3,7)—
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Q?B(5, 9) and a homotopy fibration diagram

$— 5 BGB7)——

3) lEz |¢ lEz

QS — Q?B(5, 9) L5 29,
We will show thate is also compatible with the mapsand Q2d.

Lemma 5.2. There is a homotopy commutative square

S —— B(3,7)

el

Q2 4, o2p(s5, 9),
Proof. Consider the diagram

s — 5 BQB7) —— ¢

4) = I =

0?29 24, o2p(5, 9) ¥, Q2.

The right square homotopy commutes by (3). An odd dimensisplzere is arH-space
when localized at 3, and the degreemap is thep!"-power map. So asoc ~ 3 and
Q%s 0 Q%d ~ Q2?3 ~ 3, the outer rectangle of the diagram above homotopy consnute
Consider the difference= Q?d o E? — ¢ o ¢. The homotopy commutativity of the right
square and outer rectangle implies tkol is null homotopic. Thus lifts through the
homotopy fibre ofQ?s to a mapl: " — Q2S°. By [18], the 3-component ofy(S°) is

0. Thusl is null homotopic, implying that is null homotopic. Henc&?d o E%2 ~ e oc.
That is, the left square in (4) homotopy commutes, provireglémma. O

Lemma 5.3. There is a homotopy commutative square

g2 __ @ <0

I s

$ 5 B(59)
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Proof. Consider the diagram

slo @ g B Qg

Bl e

£ — 5 B@3,7) —— Q2B(5,9)

Je H

Q2P Q2B(5, 9).

The upper left square homotopy commutes by Lemma 5.1, therupght square homo-
topy commutes by Lemma 5.2, and the lower rectangle homotmpymutes by (3).
Thus the entire diagram homotopy commutes. In particules, duter perimeter of the
diagram homotopy commutes. But this outer perimeter is thebkk adjoint of the dia-
gram asserted by the lemma. ]

6. The order of 91

In this section we show thasU(5) o QSSU(S) has order 120. At issue is the
order of 9; when localized at 3, which in Proposition 6.3 we will show is 3

Recall from Lemma 2.4 that, localized at &, factors as the compositsU(5) 5
f i f
S'x S — Q3SU(5). As well, recall thath is the composites® 2 gxe Q3SU(5).

Lemma 6.1. There is a homotopy commutative diagram

S x & — 5 Q3sys)

A

3, Q3sy().

Proof. Recall that, in genera;(AxB) ~ XAvXBV(ZAAB). So it is equiva-
lent to adjoint and show that there is a homotopy commutatiagram

$vsioy si7 T, grsys)

(5) k E
sto 3, Q2S1(5)
where f’, h' are the adjoints off, h respectively, andy is the pinch map.

To show that (5) homotopy commutes, it suffices to show thatois so when
restricted to each of the wedge summargis S'° and S*”. By (2), the 3-component
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of mg(22SU(5)) = m19(SU(5)) is Z/3Z. Therefore 3 f’ restricted toS? is null homo-
topic, and clearly the lower direction around (5) is null haiopic when restricted to
S8, Therefore (5) homotopy commutes when restricte®toBy (2), the 3-component
of m10(Q2SU(5)) = m12(SU(5)) is Z/9Z. By definition, ' is the restriction off’ to
S0, So the restriction of 3 f’ to S is 3.k, implying that (5) homotopy commutes
when restricted tc5'. Finally, by (2) the 3-component of17(2?SU(5)) = m19(SU(5))
is 0. Thus both directions around (5) are null homotopic whesiricted toS'°. Hence
(5) homotopy commutes. ]

Lemma 6.2. There is a homotopy commutative diagram

S 2N, Q3sys)

[

c — Q3sus)
for some map j.

Proof. By Proposition 4.2, there is a homotopy equivale@Gce S°v C’ for some
spaceC’, and by Proposition 4.3 the mapfactors as the composite® =5 ¢ 5 v

cSc wherei; is the inclusion of the first wedge summand. We claim thatethisr
a homotopy commutative square

P 2N, Q¥sys)

J H

s 1, a3sys)

for some mapj. If so then we can defing: C ~ v C’ — Q3SU(5) by takingj = |
on S andj = * on C/, and from the factorization of we obtainj o8 ~ jo(ijoa;) =~
joas ~3-h. That is, we obtain the homotopy asserted by the lemma.

It remains to prove the claim. By (2) the 3-componentmef(SU(5)) is Z/9Z, and
this comes from theB(5, 9) factor of SU(5). Further, by [15], the generatar: S'? —
B(5,9) has the property that the composg® > B(5,9)> S° is homotopic tox;. On
the other hand, leb’: S'? — SU(5) be the adjoint oh. By Lemma 3.4,h has order
9, implying thath’ has order 9, and therefol® represents a generator 8f,(SU(5)),
which is equivalent to saying thdt' represents a generator af,(B(5, 9)). Thus, up
to multiplication by a unit inZ), " is homotopic toa and has the property that the

composite S'? L B(5, 9)—S> S’ is homotopic toa;. Observe that 3h’ is nontrivial
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sinceh’ has order 9, whileso (3-h’) is null homotopic sincex; has order 3. Thus
there is a lift

812

e

S —— B(5,9)

for some mapi. Since 3h is nontrivial, . must be nontrivial. Thug. must represent
a generator ofr5(S°) = Z/3Z; that is, up to multiplication by a unit iZ), A >~ ay.
By Lemma 5.3, the composit&!2 <5 ¢ — B(5, 9) is homotopic to the composite

oy

sz o 4 B(5,9). Hence 3h ~ doai. Now letd: S — Q3B(5, 9) be the
triple adjoint ofd. Then 3-h ~ d o a;. Therefore, if we defing as the composite

j: S S Q3B(5, 9)— Q3SU(5), thenjoay =~ 3-h, giving the homotopy commutative
square in the claim. ]

Finally, we can improve on the 3-primary upper bound of thdeorof SU(5) Y
Q3SU(5) in Lemma 3.3, and so obtain the precise ordepof

Proposition 6.3. Localized at3, the map S(b) N Qf;SU(S) has order3.

Proof. Consider the diagram

SUGB) —2 > QIsU(5)

: ll

g x s —1s aisys)

T2 ls

P 3", 93sy(s)

o

c —— Q3suyp).

The top square homotopy commutes by Lemma 2.4, the middiaredwomotopy com-
mutes by Lemma 6.1, and the bottom square homotopy commutésrma 6.2. The

compositeSUB) 5> &7 x § 7% & is the same as the quotient m&W(5) — <. As
the cofibre ofq is given by the maps, the composite along the left column of the
diagram above is null homotopic. Thus the homotopy comnwitiatof the diagram
implies that 30 9, is null homotopic. Therefore 3 is an upper bound on the order o
d1. On the other hand, by Lemma 2.1 (a), 3 is also a lower bouncherotder ofd;.
Hence the order 0b; is precisely 3. ]
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Proof of Theorem 2.2. By Lemma 2.1, the orderdgfis a multiple of 120. Com-

bining Lemma 3.3 and Proposition 6.3 shows that the ordei; alivides 120. Hence
the order ofd; is exactly 120. 0

(1]
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(3]
(4]
(5]

(6]
(7]
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