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Abstract

In general, for a Markov process which does not have an invarizeasure, it
is possible to realize a stationary Markov process with thmestransition probabil-
ity by extending the probability space and by adding new pathich are born at
random times. The distribution (which may not be a probgbiheasure) is called
a Kuznetsov measureBy using this measure we can construct a stationary Markov
particle system, which is called aquilibrium process with immigrationThis par-
ticle system can be decomposed as a sum of the original pdrthenimmigration
part (see [2]). In the present paper, we considerabsorbing stable motiomn a
half spaceH, i.e., a time-changed absorbing Brownian motion krby an increas-
ing strictly stable process. We first give the martingalerabi@rization of the parti-
cle system. Secondly, we discuss the finiteness of the nuofbparticles near the
boundary of the immigration part. (cf. [2], [3], [4].)

1. Introduction

LetO<a < 2,d > 1 andH = R% x (0, c0) be the half space. Let( (t), Py) =
(w™«(t), P_) be an absorbing-stable motion orH; w=(0) = x € H, i.e.,w™*(t) =
BO(y*/2(t)), whereB°(t) is an absorbing Brownian motion df; B°(0) = x and y*/2(t)
is an increasing strictly /2-stable process on [8) such thaty*/2(0) = 0 and {*/?(t)) is
independent ofB°(t)). The Laplace transform of*/?(t) is given byE[exp(—uy*/(t))] =
exp[-ctu*/?] (c > 0) and the life time;(w~) = ¢(w—*) of w(t) is given as¢(w~) =
inf{t > 0; y*/2(t) > ¢(B°)}, where¢(B°) is the life time of BO(t).

Let H, = H U A with a fixed extra pointA ¢ H, Define a path spac® as

weW g» w: R — Hj; there exists g(w),y(w)) # @ such thatw is H-valued cadlag
path on B(w),y(w)), w(t) = A for t ¢ (8(w), y(w)). Moreover sety = WN {8 = 0}
be a family of all cadlag excursions dd.

In order to define a Kuznetsov measure associated with(t§, P,"), we need an
entrance law i), that is, a family ofo-finite measures such thatP—, = v for
s < t, where @) is the transition semi-group ofu((t), P). (v) is defined as for
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X = (% %g) € H (x€dH =R, x4 > 0),

Vt(dy) = /';d—l dx g Pti(xi dy)|Xd=0+’

wheredy = 9/9%q. Then we also have
w(@y) = (o) dy with ) = -2 [ ap(, yo) o,
Ro-1

where p(x) is a density of the rotation invariant-stable processu(*(t), P§) on RY.
In fact, the transition density oP~(x, dy) = p;(x, y) dy is given by the following.

pr (X, y) = pm (X, y) = pr(y —x) — pE((Y, —Ya) — X)
= py(y —X) — p{(y — (X, —=Xq))

:—/ 84 p( — %, Ya + v)) du.

Xd

Hence the density of an entrance law at a boundary poatdH is defined as
V(Y) = Py (X, V=0 = —20a Y ((V — X, Ya))-
We define the density of an entrance law by
w@)i= [ EO) =2 [ aap((% yal) %
Rdfl Rd—l

Since the last term is independent @f we can writevi(y) = vi(Yq)-
By p¥(x) = t~9/«pg(t~Yox), we havedq p¢(x) = t~@+D/@y, p%(t~1/*x) and

ve(ya) =t vt ya).
The density of the invariant measure is given as
M) = () = [ dtuye) = e,y 7
with a positive constant
Cy = ozf ul v (u) du = —Za/ du ul’“‘/ da PS (D, u) di.
0 0 R-1

Note that this integral is finite because it holds that witieaconstanC > 0 (see [3]),

180 pY(X)] < C(L A Xg A Xg|x|72797%) for x e H.
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Let

m(dx) = m*(dx) := / dt v (dx) = m*(xg) dX = C,X{ "2 dx.
0

The excursion law @ on W, and theKuznetsov measure Qon W are defined by
the following:

QY:= Iim/ v (dX)P,, Qm:=/ 6_s(Q% ds,
rl0 JHy —00

where 6_g is a time-shift operator such tha& sw(t) := w(t — s) for w € Wy and
0_s(Q%)(A) = Q°({w € Wp; O_sw € A}) for AC WN {8 = —s}. Note that these mea-
sures are infinite. Thenu(t), Qm) is a stationary Markov process with the invariant
measurem = m* and the same transition probability as the absorkirgtable motion
(w=(t), B) = (w™*(t), P,).

Furthermore by using this process we can introduce an iefstitionary Markov
particle system; thequilibrium procesq X, P) as follows.

def
weQ — wzszwn, wp € W,
Xi(@) = o)y for we Q,

P=Tlg, is Qm-Poisson measure,

i.e., the distribution of the Poisson random measure witknisity Q. Then X, P)
is a stationary Markov particle system such that

E exp[—(X, )] = expl~(m, 1—e )],

for nonnegative measurable functidn

Note that the equilibrium proces{, P) is a stationary independent Markov par-
ticle system such that the initial distribution is a Poissneasure. More precisely, let
m be ao-finite measure on a state spaBe We consider many independent identi-
cally distributed Markov processedau,(t)} which have an invariant measure. For
the particle systenX; = ) 8., if the initial state X, is a Poisson random measure
with intensity m, then {X;} is a stationary Markov process. This particle systexa}
is called theequilibrium process(cf. [6]). This definition is equivalent to the above
one (see below). The typical example is the independent Beowparticle system in
RY with the Lebesgue measura(dx) = dx on RY. In this caseQp, is identified as
Pn:= fRd P,dx, wherePy is a distribution of a Brownian motion starting frore RY.
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If we restrict tot > 0, then this process can be decomposedXas= X2 + X|

such that
X0 = [ [ bucaluntids dn),
(—00,0) W

X = [ ] ucalunos do),
[0,t] /Wo

where N°(ds dw) is the Poisson random measure with intensity @P(dw) on R x
Wo. XP is the original part ofX;, X! is the immigration part ofX; and they are
independent. This process is called thénite Markov particle system with singular
immigration associated with absorbing stable motions on H

X X
XP ~ Xi = XP + X{
=
/\/
0 t 0 t

Moreover for a fixed suitable measuge= ) 3y, (€ M,y o, see the next section), it
is possible to construct a Markov proces§,P,) starting fromu such thatX; = X° +
X{, where X! is the same as abov&? is the independent Markov particle system
starting frompu, i.e., Xo = Xg’ = u and {XP}, {X!} are independent. Furthermore
P, = PO ® P' whereP} = @ P, and P' is the distribution of{X/}, that is, the
Jo~ 6-s(QP) ds-Poisson measure. LéfF;} be the filtration generated byX;}. Then it
satisfies that ifs < t, then

E.lexp(—(X;, ) | Fs] = exp[—(xs, Visf)— fot_s(vr, 1-— e’f) dr]

for some nonnegative suitable functiofison H (f € Dy, see also the next section),
where

Vi f(x) = —log E, [exp(— f (w™(1))] = —log{1 - P (1 — e ")(x)}.

Note that if we letl1,, be them-Poisson measure, then the distribution of the equi-
librium process can be also defined Rs= [ IIm(dw)P, and we also have

E exp[—(X, f)] = exp|:—(m, 1—e My — [tm, 1—ef) dr}
0

= expl-(m, 1—e )]
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by 1—e“' =P (1-efandmB = ["wP dr = [ v dr = [ v dr.

In 82 we consider the martingale problem fof;(P,). In order to give the martin-
gale characterization we have to investigate the propediehe transition probabilities
of absorbing stable motions iH (which are given in [4]) and the entrance laws.

In 83 we discuss the finiteness of the number of particles trearboundary of
immigration. The obtained results and the proofs are simdathe case of absorbing
the Brownian motion in [2]. However we have to extend the dageising the scaling
property of the absorbing stable motion.

2. Martingale Problem for (X, P,)

The martingale problem can be shown by the same way as in €dlke absorbing
Brownian motion onH in [2] and the independent Markov particle system with no
immigration in [4].

Let ho(v) be aCg°-function on (0,00) such that O< hg < 1 on (0,00), ho(v) = v
for v € (0, 1/2], ho(v) = 1 for v > 1 and ||hylle = 1.

Letd < p <d+a. Setgp(x) := (1 + [x[?)7P/2, gpo(X) := gp(X)ho(Xq) for x €
H and

def
feCpo=Cp(H) <= feCRYu; [/l < 0,
def
f € Cpo=Cpo(H) < f e CRYu: [f/gpol < oo.
Moreover set

def
feClo=ClyH) < feCiRYu:

for i,j#d, f,05f 6 05fcCpo and duf,05f € Cp.

We define a space of counting measure, o by
def
nweMpo=Mpo(H) < n= Z 8y, on H such that (u, gpo) < oo.

Mo is furnished with the vague topology, i.e.,

def
fn = pin Mg,, <= SUPn, Opo) < 00, (tn, f) — (u, f) forall feCq

whereC. = C.(H) denotes the space of all continuous functions with compapports
in H. Then it holds that(u, gp,0) < liminf{uwns, gp,0) < oo, and thus,u € Mgy, ,. Note
that for each 1< K < oo, we define

def
ne MQDVOvK = Mgp,ovK(H) — KE Mgp,ol (,LL, gp,O) =K,
def
o= in Mok <= (un, f) — (u, f) forall fecCe.
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Then Mg,k is a Polish space anl, — n in My, is equivalent tou, — w in
Mg,k for someK > 1. HenceMgy , is a metrizable and separable space (for the
metric p in M, see [4] in whichgy = gp,0).

For u e Mp, let (X¢,P,) be the independent Markov particle system with singu-
lar immigration associated withu("(t), Py) = (w™*(t), P,>*) and m = m* on H.
We denote the generator ofv(*(t), P,"“) as A = A~ (more concrete formula is
given latter).

The generatoll of this particle system is given a8 = £° + £', where £°, !
are given by the following: forf € C,

LD (u) = —(u, e" AL —e ")) D
—(u, Af =T fle

wherel' f := Af —ef A(l—e™f), and

L'le ) =—lim(y, 1-e e wh
rio
—co(M, 3 f (-, 04))e~ "

whereco = [;° yvi(y) dy and 1 is the Lebesgue measure &1L, Note thatc, de-
pends orx and it is finite. In fact, by|dqpj(x)| < C(1 A Xq A Xg|X|7279-) for x € H,

co=/ yvl(y)dy=—2/ (y/ Bl (%, y)dz)dy<oo.
0 0 Rd-1

Le 00 () = —{(u, Af =Tf) + co(m, ag (-, 04)))e (",

Hence

SetDy := ngo (this is a core forA, see (B1) in 83 of [4]). Moreover for a func-
tion f € Dy, let f be an extension of to on R defined as

f(x) (xa > 0),
f)={f(X 0+)=0 (xg=0),
—f(X, —xa)  (xq <O).

Note that ifx € H, then f(x) = f(x). The generatoiA = A~ = A~“ is given as A
is the same as&~ in 84 of [3], however in which we have some miss—prints)

AT (X) = C/Rd\{o}[f_(x +y) = f() =V -yl(yl < 1)]| |d+a

—c [, a5 [ Ty~ 0= VGO yily] < ]
-

—Xd |y|d+o{

- - d
+c/R“dy/ [F0 )= £+ % Yo = ) =200
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with a positive constant. We can also write that if & « < 1, then

A (%)

=c [, o= Tl e

_ . _ _ * dyy
‘C/RH oly{/O [F(y) — FOOTK (x, y) dye 2f(x>/O |(y—x,yd+xd)|d+a}'

= C/RH dyfo [f(y) = FOTK (X, y) dya — f(k(X),

and that if 1<« < 2, then
A7 f(x)

¢/, 1= T00=Y F(-=01 (ly-x] < 1] v
RA{x}

|y_X|d+Ot

=CfRdld9{f0 [f ()= )=V £ (X)-(y=x)1 (ly—x| < D)IK (X, y)dya

+/ [=2f )=V £ ()-(y=)1(ly—x| <1)
0

o o dyg
=V (X)-(V—X,—Ya—Xa) | (|(V—X, Ya+Xq)| < 1)] [(J—X, Ya+Xq)] 9+ }

ZC[MOW/ [F(Y)= T 0=V 0)-(y=)1 (ly=x] < D)IK(X, y)dya
R 0

— F()k(X)+V f(x)-c(x),
where

Iy#x) 1
ly —x[d+¢ |(§ — X, yg + Xq)|9+e’

_ _ o [T dya
k() = k(xa) = 2¢ /RM @y |

K(x,y) =

Xd

and

o0 =c [ 4y [ 1-0-% —ya =1 (7% yo + X0l < 1)

dyq
(Y — X, Ya + Xa)|9+

= C/RM dV/OOO[(V. Ya + X)L (I(Y, Ya + Xa)| < 1)

—(y =31y =x| < 1)]

dyq

— (¥, Ya = xa) L (I(Y, Ya — Xa)| < 1)]W-
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Forne Mpo, let F(n) = ®({(n, f1),..., (n, fn)) € Do <g> ®(x) e C*(R") is a
polynomial growth function with polynomial growth derivas of all orders andf; €
Dp, i =1,...,n. For this functionalF (»), the generatol = £° + £' can be expressed
by the following form:

LOF()

= a0, f), ..., (n, fa))(n, AF)
i=1

4 / / b, dy)| D0, 1)+ Fo¥) = 100, -, (1 Fa) + Fol¥) — Fa(0))
H H\{x}

wherev(x, dy) is the Lévy kernel ofA (i.e., v(x, dy) = cK(x, y)dy) andk(x) = k(Xq)
is the killing rate given in the above. Moreover

L'F) =co )y  ai®((n, fu), ... (n, )M, daf (-, O+)).

i=1

Note that" can be expressed as
Ff(x) = / (e TTO=TT — 14 [ (y) — FEOD(x, dy) + k()" — 1 — f(x)).
H\{x}

Theorem 1 (Martingale problem for £, Do, )). Let u € Mpo.
(i) P.(Xo=u)=1and for Kn) = ®((n, f1),..., (n. fn)) € Do,

t
MF = F(X() — F(Xo) _/ LF(Xs)ds is aP,-martingale
0

(ii) If there is a probability measur®, on D = D([0, oo) — M) such that the

canonical processX;(w) = w(t) (w € D) satisfies the same conditions &%, P,) in
() and

t
/(; (Xs, gp)ds < oo Q,-as. for all t>0,
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thenQ, = P,oX~1 on D, that is martingale problem fo £, Do, ) on D is well-posed.
Proof of (i) in Theorem 1. In order to show it we need severaires.
Lemma 1. sup., <7 (v, gpo0) < oo for each T> 0.
Proof. We first note thatdggp,o(X)| < (p + 1)gp(X) < (p + 1)gp(X) for any x =
(X,x4) € H. Moreover note thag)p o(X) = X4 da9p,0((X,6%q)) with some 0< 6 < 1. Now

by using scaling propertyy (y) = t=%“v,(t~*y) and changing of variable™>*xy =y
we can get

(v Gpo) = / dx / E200y () o(X) ¥y
Re-1 0
- / dx / Yo (y)gpo(X, tHy) dy
R9-1 0
=[d di/ v1(Y)Y dagp.o(%, Ot *y) dy
RY-1 0
<C /R‘H 9p(X) d)?/o yvi(y) dy < oc. ]

By this lemma the following holds: for every € Dy, noting that f (X, 04+) =0,
l 1—efy=li f) = co(m, f(-
rlgg(vr, e) rlgg(vr, ) = co(m, (-, 0+))

and if n > 2, then lim o(v, f)" =0.
The following is given in [4] as Lemma 4.1.

Lemma 2. For each fe C® and T > 0, SUR.o T ||g5’% Vi T loo < 00.

Proof. Letgo = gp,o. In [4] we haveA‘Cf,,O C Cpo and supg||galPt‘go||C>o <
oo. Hence by||V; flleo < |l fllee and |[A~(1—e )] < Cgy we have
1V f| = [ TP A~ (1—e )| < Céelfl~pg,.

Thus the claim follows. O

From the above results we can show the martingale propérigf (Theorem 1. In
fact, it is reduced to the following first result.

Theorem 2. For f € C°,

t
o (X f) _ g (%o f) _ / £e N (Xg) ds
0
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is a P,-martingale. Moreover
t
Hi(f) = exp[—(xt, f) +/ (Xs, Af =T f) ds+ tco(m, dg f (-, 0+))}
0

is also aP,-martingale.

Proof. By the above lemma, 8 < t, then

t—s
HE [e™*e D | Bl = & exp[—(xs, Vis f) —/ (v, 1—e") dr}
0

t—s+u

= Ou=0+ EXP [_(XS! Vi—squ f) _/ (v, 1= e_f>dr:|
0

= aU_O+El‘|:eXp{_(xtv Vuf) _/U(Vry 1—e_f) dr} ]:s:|
0

— &, tu-on oxp 06, 1) = [ 1 yar| | 7]
0

=E,[Ce " T(X) | F,

where d,—o; denotes the right differential operator at= 0. Hence the first claim
follows. The second claim follows from Corollary 3.3 of Chep2 in [1]. O

In order to show (ii) of Theorem 1, we need the semi-martiagabresentation of
(Xt! P,U)

Theorem 3 (Semi-martingale representation ofi( P,)). Letu € Mpo. (Xi,Py)
has the following semi-martingale representatidor f € Dy,

t
(Xi, fy = (Xo, f) —{—/0 (Xs, Af)ds+tco(m, (-, 04)) + Mtd(f),

where

t
MI(f) = /0 /Mi (, £YN(ds, du) is a purely discontinuous 4-martingale
p.0

with N = N — N is the martingale measure such that fax, = X, — Xy,

N(ds du) = > Suax)(ds du): the jump measure ofX},
u;AXy#0

N(ds du) = ds [ Xs(dx) ( / v(X, dy)3, s + k(x)SSX)(du):

the compensator of N
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where/\/lﬁO is the family of signed-measures pf —p™; u™, u= € Mpp.

Proof. Forf € C, let

t
Gi(f) = exp[—/ (Xs, Af =T f)ds—tcg(m, ag f (-, 0+))}
0
be a continuous process of bounded variation. Skigd) in Theorem 2 is a martingale,
Zi(f) := expl—=(X;, f)] = H(f)Gi(f)

is a semi-martingale, more exactly, a special semi-maating.e., a bounded variation
part is (locally) integrable. In fact, by Proposition 3.2 ©hapter 2 in [1] we have

2.1) dZ(f) = Hi(f) dG(f) + Ge(f) dH(f)
' = (X, Af =T ) + co(m, 8q f (-, 04))Z(f) dt + d(martingale).

On the other hand{X;, f) is also a special semi-martingale. Hence by (1.10) of Chap-
ter 4 in [5], (X, f) has the following expression:

(Xe, ) = (Xo, T) + Ce(F) + ME(F) + Ne(f) + Ne(F),

where Ci(f) is a continuous process of locally bounded variatibif,(f) is a contin-
uous L2-martingale with quadratic variatio{M°( f))),, and

t

RO = [ 010l < s )
t

N = [ e 10l = DN 8

with the jump measuréN of X, its compensatoN andN = N — N. By using Ito’s
formula we have

dzt(f)=zt_(f){—dc[(f)+%d«M%f)»t
[T L G £l < DR, )
Mt
(2.2) + /Mi[g(,t,f) — 1] (||| = 1)N(dt, du)} + d(martingale)
~ 1
=z (Hl=(dc(f . f)N(t, d = d(Me(f
zeOf-(den+ [ o) + Zdmo),

+ / [e ) — 1 4 (u, £)IN(dL, du)} + d(martingale).
Mi
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If we set

t
Bt(f)=ct(f)+f0 /{l Nz £)Ki(ds dp).

then by the expressions (2.1), (2.2) and by the uniquenespedial semi-martingale
with predictable locally bounded part (see Theorem 2.1.15]) we have

—dB(f) + % d((M(f)) + /[e_(“‘f) — 1+ (u, £)IN(dt, dp)
= [~({Xe, Af) + co(m, 8a f (-, 04))) + (X, T )] dt.

Hence it is easy to see thgtM°(f))), =0, i.e., MZ(f) =0,

t
Bi(f) = /0 (Xs, Af)ds+tco(m, dq F(-, O+))

and
t A
f /[e*w “ 14 IN(s dpr)
0
t
=/ (X, T f) ds
0
t
=/O ds/ xs(dx){/(e-“m-“xﬂ—1+[f(y)— F D v(x, dy)
+ k(x)(ef® —1— f(x))}.
That is,

N(ds du) = ds / Xs(dx) ( / v(X, dy)3, s + k(x)aax)(du).

Therefore we have the desired representatiof)qf f) for f € C°. Finally it is pos-
sible to extendf € C° to f € Dy. O

Moreover we can get the following (which is shown in the probfGorollary 5.1
in [4]).

Lemma 3. For each fe (C¥)*, t >0, A f = —log(1- P (1—e ")) is well-
defined and AM is continuous in t under the norm- /gp| ., i.€.

[(AVLf — AV, £)/Gpllc = 0 (t = o).
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Proof of (ii) in Theorem 1. In order to show the uniqueness afrtingale prob-
lem it is enough to show that

_ t
exp[—<xt, Veuit) + [ Gre, 1—ef>dr}

is Q,-martingale. In fact, this implies

Qe | F] = exp[—(is, Viosf) — /0 H(vu, 1-e") du]
Hence this implies the uniqueness in the sense of finite difmaeal distributions, and
separability of (M0, p) implies the uniqueness in the sense of distributionsDyn

Now for a fixed f € (C)*, by Lemma 2 we have

%W f is continuous int under the norm| - [lg,, = Il - /9p.0llco-

Moreover by the above lemma we see that
'V f € C, is continuous int under the norm| - /gplleo
andv = v = Vrf (0<t <T) is the unique solution to the equation:
O +A-TDhueyy=0 and vy = f.

Let ®(v) =€ and
t
o= = exp[/ (vrr, 1—e ") dr]
0

By Theorem 3 f(t,QM) has the same semi-martingale representatiorXa$(,). Hence
by using the above results and Ito’'s formula the followingri® ,-martingale:

({5, 1) — (o, oo — [ (Ko, ve))s(vr g1 o) d

- (e, ve))gs((Re, Do + Ave) + ol (-, 04))) ds

- t /Mi[d>(<>~<s 1, 08)) = (K, 1)) — D' (Ks, v, v5)]sN (s )

— expl-(Xi, 1ot ~ expl-(Xo, )] + [ (R, s+ Av) €D (Ko, 1)1 ds

- /t<>~(51 FUS) eXIO[—(;(s. US>]¢S ds
0
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t
= eXD[—(>~<t, ve)l e — eXp[_<>~(Oa vo)] + /0 ()251 (9s + A—T)vs) exp[_()z& vs)]ps ds
= expl-( X1, Vr_t f)]¢r — exp[=(Xo, Vr )].
In the first equality we use

(s, 1—e ") = lim (ve, Vr—s ) = Co(MM, davs(-, 0+)-

Therefore we have the desired result. O

3. Immigration particles near the boundary
For S=RY or H, we denote

def
wEMNS) < pw=) 8, onSsuchthat (u,gp) < oo.

In particular, if S= H, then we simply denoté\, = M ,(H).

Let 0<a <2 andd < p<d+a«. In [4] it is shown that if X, P,) is an infin-
ite independent Markov particle system associated witable motions, i.e., rotation
invariant «-stable processes dRY, starting fromX¢ = u € /\/lp(Rd), then

P.(X{ € M, for all t > 0) = 1.

This implies that for the original parXC,P,) (which is an infinite independent Markov
particle system associated with absorbing stable motionsl )y by X° < X&|y, if u €
M, then

P.(XC € M, for all t > 0) = 1.
Moreover if u € Mpo (and even ifu ¢ Mp), then
P.(XP € M, for all t > 0) = 1.
On the other hand for the immigration pax{,
E[(X{, gp)] = (M", Gp)

and the right hand side is finite at least if<la < 2. This implies that at least if
1 <« < 2, then for each fixed > 0, P(X{ € M) =1 and

P(X{ € M, for dt-a.a.t > 0) = 1.

Here we have the following question.
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QUESTION 1. For the immigration parX{, which does it hold thak| € M, or
X{ € Mpo\ M, for all t >0, P-a.s.?

We can obtain the following answer.

Theorem 4. For everyO < o < 2 and for all T > 0, it holds that
P(X{ € Mpo\ M, for infinitely many ts in (0, T]) = 1.

This result depends on the number of particles near the laoyricH.

From now on, we only consider the immigration pagt. and for simplicity, we
consider the one-dimensional case, ik~ 1, H = (0, co) (the case ofd > 2 is es-
sentially the same).

For anye > 0, by n(x) = t-#*vy(t*x), vi(y) = (p)'(y) and |(pf) (Y)| = C(1A
YA Y 2% (y > 0), we have

/ w(x) dx < t~1e / vi(y) dy
& t

~Lag
< C/(A+ a)t Ve (Yeg)=1=
=C/(l+a)e Tt -0 (t]O0).

Moreover
t
EX/(© ) = [ [ Lo -s)ds Pdu)
0 Jw
t
= / wi((0, €)) du
0
=m(©e) = [ ytdy.
0
This is finite at least for k o < 2. Hence Question 1 is reduced to the following.
QUESTION 2. Lete > 0. At least if 1< o < 2, then for each fixed timé > 0,
the number of particles near the boundary is finite with pbdlig one: P(X! ((0,¢)) <
o0) = 1. Moreover it also holds that
P(X{ ((0, €)) < oo for dt-a.at) = 1.
Now does it hold that for each @ @ < 2 and for any 0< a < b,
P(X{ ((0, €)) < oo, for all t € (a, b)) = 1?

For this question we have the following answer, which inglieheorem 4.
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Theorem 5. Lete > 0. For eachO < @ < 2 and for any0 <a < b,
P(X{ (0, &)) = oo for some te (a, b)) = 1.
REMARK 1. It also holds thaP(SuR.gn@ap X{ (0, €)) = co) = 1.

Proof of Theorem 5. For the absorbing Brownian motion on th# bpace, we
already gave the same result in [2]. So the proof is essbntled same as it. However
the key is the Claim 1 of the following proposition.

Let e > 0. X! ((0, ¢)) can be expressed a¢°(D;) with

D; = {(s.w) € [0, 00) x Wp: w(t —s) € (0,¢), 0<s < t}.

We define a smaller procesk: < X{ ((0, ¢)) as follows k is determined by):

2by
ac=1/2, bc=a",
£k := NO(V¥): the number of excursions W,
by vk = {(s, w) € [0, a2) x Wp:
w(af —s), w(2a —s) € [by, 2by),
w(3a£ —8) = A,
. . y(w) < T, o (W),

0S & 2 3
where T[E’m)(w) is the hitting time after the timéy to [a, co) of w, i.e.,
T () :=inf{t > to; w(t) € [a, 00)}.
For eachj > 1, lettf = j/4% If tf <t <t¥ ,, then set

j+1

g = g5 = NOV/) with vjk=9,tjk %
J :

(note that&f is undefined for 0< t < t&). It holds that&f D ¢k, In particular, if we
denotegj(k) = stkk, then{sj(k): j=1,2,..., k=1,2,...} are independent. Because
]

b = &% > 2af)% = 2bcy1 by 2/a > 1 (this is important).

REMARK 2. &K denotes the number of particles which are born during the tim
interval [0,a2), stay in bk, 2b) at each time poing?Z, 2a? and die during the time
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interval (22,3a3], and also which never hit® after the timea2. Also £¥ is the shifted
g€ by the timetf_; if tX <t <t ;. Hence we may regard that the botf,[t, ;) x
[by, 2b) has the random numbés.

Now for eachk > 1, set

o0
S(t:Z%-tn-
n=k
X
A
b L o
2
by
201 [T T T I r r I r rrrrrrrrrrirr
Etk-i-l
0 t t tX - tX

Clearly for everyk; 2o <e, if t > t& (= a2 = 1/4Y), then Sy < X! ((0,¢)). Hence
in order to prove Theorem 5 it is enough to show the followimgppsition:

Proposition 1. For each ki > 1, P(S.; = oo for some f <t <tf ) =1

Proof. We define a random variakildf‘iO for eachk, ip > 1 as follows:

1 2 ... io
3 2 0 Uc' =3
got 1[2] 0|2 Uz — 342
1 p .
[l
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We first start fromf;‘j(k)’s which take the maximum ogj(k), j=1,2,...,ip, and look at
(s under the above’s. Next we start froms**"s which take the maximum

of the above{f;‘j(k“)}. We continue these operations and deftﬂléi" by adding each
maximum number. That is, we set

Ut = max ¥

1<j<io

and

Iy = {i =1,2,...,i0: §% = max g.(k)},

1< <ip

J=44+[@1,—3)U @l —2)U (4, — 1)U 4l4].

Also we define

U2,i0 — Ul,io max _(k+1)‘
k k + jed é]

If we have I, J,, U™, then set

Iny1 = {i € Jn: éi(k+n) = maxéj(k-i_n)},
j€dn
Jni1 = 4 4 [(Alnh1 — 3) U (@nit — 2) U (Alngs — 1) U 4lnq]
and
n+2,o __ n+1,io (k+n+1)
U, = U, + ,—Tfj‘ﬁ £ .

So we define

U™ = lim URe.
We can show the following two claims:
Claim 1. Ay = E&X = rg/2K@2/@) = 22/2=2), , for all k > 1 (Ao = E£0 > 0).
Claim 2. For each kip> 1, P(U}"° = o0) = 1.
Obviously Claim 2 implies Proposition 1.

Proof of Claim 1. Let @*(t), P) be the rotation invariant-stable process oR.
Then fora > 0, w*(a2t) 2 a¥*w(t) and recallv, (a%*x) = a= ¥y, 2(X) (r, x > 0).
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Let VX denote thes-section of VK.
&
M= ENO(VK)=/ ds QP(Vs)
0

_ / " ds Plu(a—s) e [b, 2b0),
0

w(2a2—9) € [be, 20), w(3RZ—9) = A, y(w) < T, oy (w))

2

= /ak du Q(w(u) € [by, 2by),
0

w(aZ+u) € [by, 20), w(2af +u) = A, y(w) < THy (W)
2by

a
- /0 au [ wOOR; (@) € [b1, 200, £(7) = (288)A i s0(0)

a2 2by

= / du A dx vu(x)P)‘j‘(w“(af) € [bx, 2by), a2 < ¢(w®) < (2a§)/\T[2bk,oo)(w“)),
0 K

where Tia o) = T[g’w) is a hitting time to &, co) of w(t) or w*(t), and ¢(w®) is es-

sentially the same as(w™). That is, byw®(t) = B(y*/2(t))

¢(w®) := inf{t > 0; y*/2(t) > To(B)},

where{B(t)} is the Brownian motion oR which is independent ofy*/2(t)} such that
B(0) = x, and To(B) is the hitting time to 0 ofB(t). By changing variables/alf =,

x/by =y and by using scaling properties#(a2t) L a¥*w (t) = baw?(t), vaz, (by) =

b 2v,(y), we have

1 2
M= fo a2 dv /1 Ddy vaz, (bey) P, (1% (82) € by, 201, 82 < (1) <(282) A Tio, ey ()
1 2
:/0 afdv/; bcdy lq:zvv(y)P)‘,"(bkw“(l)e[bk,2bk),1<§(w°‘)§2/\T[2,oo)(w°‘))

1 2

=a§b§l/ dv/ dy vy (Y)Py (w(1)€[1, 2), 1< (w*) =2AT2,00) (w))
0 1

2-2/a

=a, " Ao,

where we use the following result. Far> 0, by y*/?(at) = a¥*y*/2(t), ¢(w*(@?-))
under P:z/uy has the same distribution a@ga®“w*( -)) = ¢(w%) under Py. In fact,
under Py, [¢(w®) > @°t <= To(B) > y*/*(a’t) <= To(B) > a*“y*/(t) <= 3Jto >
y“/3(t); B(@¥*to) = 0] <= underPy, [3to > y*/4(t); a”/*B(to) = 0, i.e., B(t)) = 0 <=
To(B) > y*/2(t) &= ¢(w”) > t].
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The positivity of 1o = E£% would be intuitively obvious. However for the com-
pleteness of the proof we shall show it. Recall

1 2
,\0=/ dt/ dx v (X)P2(w?(1) € [1, 2), 1< (™) < 2 A Tipo0)(W™)).
0 1

By w*(t) @ B(y*/2(t)) and independence dB(t)}, {y*/?}, we have
Pi(w*(1) e[1, 2), 1< ¢(w*) < 2A Tp,00)(w™))
> Po(y*/2(1) € [1, 1+ &), y*/4(2) = 2)
x P(B(t) € (1,2) forall 0<t <1+4¢ To <2 To < To).
Moreover for O< ¢ < 1/2,
Po(y*/2(1) € [1, 1+ ¢), y*/*(2) = 2)
> Po(y*/?(1) € [1, 1+ €))Po(y*/*(1) = 1) =: C. > 0.
If 1 <x <2, then
P(B(t) € (1,2) forall 0<t<1+e To<2,To < To)

2
> [Cay B2 BT £2.T0 < To),
1

where pt3(x, y) = p>*(x — 1,y — 1) and for O<u,v < b

pPP(u, v) = PuB(t) = vit < ToATp) = Y pl(u, v+ 2nb)
N=-—00

with

1 2
O(u, v) = pe(u, v) — p(u, —v) and u,v) = ——e @U@
Py (U, v) = pr(u, v) — pe( ) p(u, v) Nz

and for O<y <b

0 2
Py(Toedt; To < Tp) = Z (y 4+ 2nb) exp [—w}

dt
Vortd 2t

Hence
1 2 2
Ao > csf dt/ dx vt(x)/ dy pr2(x, Y)Py(To <2, To < To).
0 1 1

By the continuities and the positivities qi;Z (X, ¥), Py(To < 2, To < T»), we have

Ao > 0. (Note that the positivities follows directly from the pisties of each sum of
terms forn =k, -k — 1 (k > 0) in the above summations ime Z.)
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w(t) B(t) y/2(t)

0 1 2 0 1 1+e 2 0 1 2
Proof of Claim 2. We shall show that for eag&hio > 1 andm > 0, P(U,f’io <
m) = 0 by the mathematical induction.

(1) For eachk,io > 1, P(U;"° = 0) = 0.
In fact, if U*'0 =0, theng(k“‘) Oforaln=>0,4<j <4+ 1). However

the sum of these expectations is givenigl.x + 4ixi1 + 4°Aky2 + ---) and this is
infinite by Claim 1 (the rate is 4(,1/a)% % = 22.2%/«-2 = 22/ -~ 1), Hence the
probability of this event is O.

P(US™ = 0) < lim P(E* = 0)°P(E*+" = 0)% ... PE**" = 0)"

= n'Lmoo expl-io(Ak + 4rks1 + - - + 4"Ak4n)] = 0.
(2) If we assume thaP(Ulj"i0 <m-1)=0 for all k, ig > 1, then

m
PU™ =m) = > PE* = m)P(U < m—my)

mg=0
io—1 m
+ Z (IO) 37 Pk = m)IPE" < my— 1o IP(ULYS < m—my)

mg=1
= P(é = 0)°P(UT < m)
= P(E" = 0)°P(E" = 0)P(U; 5" < m)
< P(E" = 0)°PE"** = 0y .- P(s”" = 0)*e
= exp[-io(ik + 4hks1 4+ - +4"A0)] = 0 (N = o0)

by Claim 1. This impliesP(Ulj"i0 <m) =0 for all k, ip > 1.
(3) From the above results (1) and (2) we have Claim 2. ]
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Proof of Remark 1. For eack> 1, we set

k+n

S = lm max > g/l
j=k

N—>00 t<t<tk

It holds that for allm > 0,

P(S <m) = ) P(E" = m)P(S;,, < m—my)*.

mg=0

Hence by the same way as in the caseUin, we can showP(S§; < m) = 0 for all
m > 0. This implies for alle > 0 andk; 2bx < &, P(SURcqnpik.i) X{ (0, 8)) = 00) = 1.
Furthermore if we changtf, t§ to anyt¥,t€,, (j > 1), then the same result holds.]
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