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Abstract

We prove the existence of invariant almost complex strectom any positively
omnioriented quasitoric orbifold. We construct blowdow®e define Chen—Ruan
cohomology ring for any omnioriented quasitoric orbifoM/e prove that the Euler
characteristic of this cohomology is preserved by a crefdotwdown. We prove
that the Betti numbers are also preserved if dimension is tesequal to six. In
particular, our work reveals a new form of McKay corresporugefor orbifold toric
varieties that are not Gorenstein. We illustrate with anngxa.

1. Introduction

McKay correspondence [16] has been studied widely for coxplgebraic vari-
eties with only Gorenstein d8L orbifold singularities. A cohomological version of this
correspondence says that the Hodge numbers (and Betti mg)mfeChen—Ruan co-
homology (with compact support) [5] are preserved undepame blowup. This was
proved in [12] and [17] for complete algebraic varietieshM8L quotient singularities
following fundamental work of [3] and [8] in the local casd.hakes sense to ask if
such a correspondence holds for Betti numbers when theotdbifas almost complex
structure only. However the main ingredients in the algebpaoof, namely motivic
integration and Hodge structure, may no longer be available

From a different perspective, the topological propertiégjgasitoric spaces intro-
duced by Davis and Januskiewicz [6], have been studied sxtdn However not
much attention has been given to the study of equivariantsntsgiween them. In
this article, which is a sequel to [9], we construct equiati blowdown maps be-
tween primitive omnioriented quasitoric orbifolds and y@ocertain McKay type cor-
respondence for them. These spaces do not have complex ostatemplex structure
in general.

Quasitoric orbifolds [15] are topological generalizasasf projective simplicial toric
varieties or symplectic toric orbifolds [11]. They are ew#imensional spaces with ac-
tion of the compact torus of half dimension such that thetaspace has the structure
of a simple polytope. We only work with primitive quasitorazbifolds. The orbifold
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singularities of these spaces correspond to analytic kirigas. An omniorientation is a
choice of orientation for the quasitoric orbifold as wellfas each invariant suborbifold

of codimension two. When these orientations are compatfigequasitoric orbifold is

called positively omnioriented, see Section 2.9 for dstalVe prove the existence of
invariant almost complex structure on positively omniotédl quasitoric orbifolds (The-
orem 3.1) by adapting the technique of Kustarev [10] for gueis manifolds. We also

build a stronger version of Kustarev’s result: Theorem 31&@ @orollary 3.3. These may
be of use to even those who are mainly interested in quasitoainifolds.

Chen—Ruan cohomology was originally defined for almost demprbifolds in
[5]. There the almost complex structure on normal bundlesimgular strata is used to
determine the grading of the cohomology. An omniorientatimgether with the torus
action, determines a complex structure on the normal buaotllevery invariant sub-
orbifold of a quasitoric orbifold. Moreover the singular iscis a subset of the union
of invariant suborbifolds. Thus we can define Chen—Ruan mwihagy groups for any
omnioriented quasitoric orbifold, see Section 7. We alsfindea ring structure for this
cohomology in Section 9 following the approach of [4]. TheeBkRRuan cohomology
of the same quasitoric orbifold is in general different faffeadent omniorientations.
For a positively omnioriented quasitoric orbifold with tladmost complex structure of
Theorem 3.1, our definition of Chen—Ruan cohomology ringeagrwith that of [5].

The blowdown maps are continuous, and they are diffeomsmplaif orbifolds away
from the exceptional set. They are not morphisms of orb#dke [1] for definition).
In some cases they are analytic near the exceptional setesema 5.1. (In these cases
they are pseudoholomorphic in a natural sense, see Defirbtib.) For these we can
compute the pull-back of the canonical sheaf and test if tbevdiown is crepant in the
sense of complex geometry: The pull back of the canonicafsbiethe blowdown is the
canonical sheaf of the blowup. However the combinatorialdition this corresponds to,
makes sense in general and may be applied to an arbitrargblown We work with this
generalized notion of crepant blowdown, see Section 6.

We prove the conservation of Betti numbers of Chen—Ruan roolagy under
crepant blowdowns when the quasitoric orbifold has din@ndess than or equal to
six (Theorem 8.4). We also prove the conservation of Eularadteristic of this co-
homology under crepant blowdowns in arbitrary dimensiohe@rem 8.3). This im-
plies that the rational orbifolK -groups [2] are also preserved, see Section 8.2. These
statements hold under the condition that the omniorientadsitpric orbifolds are
quasiSL, a generalization ofL; see Definition 8.1.

The validity of McKay correspondence for Betti numbers ramain interesting open
problem in higher dimensions. One might try to make use ofldbal results from mo-
tivic integration, namely correspondence of Betti numb&fr<Chen—Ruan cohomology
with compact support for crepant blowup of a Gorentsteintignd singularity C"/G
[3, 8]. However such efforts are impeded by the fact that tieespondence obtained
from motivic integration is not natural. However, we proveeay basic inequality about
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the behavior of the second Betti number under crepant blawlgmma 8.5. We also
give an example of McKay correspondence for Betti numbersnwdimension is eight
in Section 8.4. This example is particularly interestingtaorresponds to the weighted
projective spac®(1, 1, 3, 3, 3) which is not a Gorenstein 8t orbifold. Hence McKay
correspondence as studied in complex algebraic geomeéy wiat apply to it. However
under suitable choice of omniorientation it is qu&&iand McKay correspondence holds.
Note that the blowup is not a toric blowup in the sense of algiebgeometry.

In [9], we constructed examples of four dimensional quaisitorbifolds that are
not toric varieties. We also constructed pseudoholomorplowdowns between them.
Our brief study of pseudo-holomorphicity of blowdowns incBen 5 shows that every
primitive positively omnioriented quasitoric orbifold afimension four has a pseudo-
holomorphic resolution of singularities, see Theorem 5CHhe result may hold in di-
mension six as well, but developing pseudoholomorphic ttmmns in dimension six
and higher would need further work.

2. Quasitoric orbifolds

In this section we review the combinatorial constructiorgoésitoric orbifolds. We
also construct an explicit orbifold atlas for them and lisfesv important properties.
The notations established here will be important for the oéghe article.

2.1. Construction. Fix a copy N of Z" and letTy := (N ®z R)/N =~ R"/N
be the corresponding-dimensional torus. A primitive vector ilN, modulo sign, cor-
responds to a circle subgroup. ®f,. More generally, suppos® is a submodule of
N of rank m. Then

(2.1) v = (M ®z R)/M

is a torus of dimensiom. Moreover there is a natural homomorphism of Lie groups
&w: Ty — Ty induced by the inclusiorM < N.

DerINITION 2.1. Define T(M) to be the image dfy under&y. If M is gener-
ated by a vectoi € N, denoteTy and T(M) by T, and T(A) respectively.

Usually a polytope is defined to be the convex hull of a finité afepoints in
R". To keep our notation manageable, we will take a more libieterpretation of the
term polytope.

DEFINITION 2.2. A polytopeP will denote a subset dk" which is diffeomorphic,
as manifold with corners, to the convex h@l of a finite number of points iiR". Faces
of P are the images of the faces @f under the diffeomorphism.
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Let P be a simple polytope iR", i.e. every vertex ofP is the intersection of
exactlyn codimension one faces (facets). Consequently eketimensional faceF of
P is the intersection of a unique collection of-k facets. LetF := {Fy, ..., Fn} be
the set of facets oP.

DEFINITION 2.3. A functionA: 7 — N is called a characteristic function fd?
if A(F,), ..., A(F,) are linearly independent whenevEr,, ..., F, intersect at a face
in P. We write A; for A(F) and call it a characteristic vector.

REMARK 2.1. In this article we assume that all characteristic vasctoe primi-
tive. Corresponding quasitoric orbifolds have been termeuchitive quasitoric orbifold
in [15]. They are characterized by the codimension of siagldcus being greater than
or equal to four.

DEFINITION 2.4. For any faceF of P, let Z(F) = {i: F C F}. Let A be a
characteristic function folP. Let N(F) be the submodule oN generated by{;: i €
Z(F)}. Note thatZ(P) is empty andN(P) = {0}.

For any pointp € P, denote byF(p) the face ofP whose relative interior contains
p. Define an equivalence relation on the spaceP x Ty by

(2.2) (p,t) ~(q,s) ifandonlyif p=q and s e T(N(F(p)).

Then the quotient spac¥ := P x Ty /~ can be given the structure of a-2limensional
quasitoric orbifold. Moreover anyr2dimensional primitive quasitoric orbifold may be
obtained in this way, see [15]. We refer to the pd, ) as a model for the quasitoric
orbifold. The spaceX inherits an action ofTy with orbit spaceP from the natural
action onP x Ty. Let 7: X — P be the associated quotient map.

The spaceX is a manifold if the characteristic vectoks, . .., Aj, generate a uni-
modular subspace dfl whenever the facet§;,, ..., F, intersect. The pointg ~1(v) €
X, wherev is any vertex ofP, are fixed by the action ofy. For simplicity we will
denote the pointr—*(v) by v when there is no confusion.

2.2. Orbifold charts. Consider open neighborhoodls, C P of the verticesv
such thatU, is the complement irP of all edges that do not contain Let

(2.3) X, =7 }U,) = U, x Ty/~.

For a faceF of P containingv there is a natural inclusion dfi(F) in N(v). It induces
an injective homomorphisnTyr) — Tne) Since a basis oN(F) extends to a basis
of N(v). We will regard Tn¢ry as a subgroup offy(,) without confusion. Define an
equivalence relation, on U, x Tnw) by (p,t) ~, (0, 5) if p=q andst € Ty
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where F is the face whose relative interior contaips Then the space
(24) )ZU = Uv X TN(v)/'\’v

is -equivariantly diffeomorphic to an open set @', whered: Ty — U(1)" is an
isomorphism, see [6]. This means that there exists a diféephism f: X, — B c C"
such thatf(t - x) = 6(t) - f(x) for all x € X,. This will be evident from the sub-
sequent discussion.

The mapénw): Tnw) — Tn induces a mag,: X, — X, defined bys,([(p,t)]™) =
[(p, Eng)(t))]™ on equivalence classes. The kernelé@f,y, G, = N/N(v), is a finite
subgroup ofTy(,) and therefore has a natural smooth, free actionlT g, induced by
the group operation. This induces smooth actiorGefon X,. This action is not free
in general. Sincely = Tnw)/Gy, X, is homeomorphic to the quotient spa&g/G,}.
An orbifold chart (or uniformizing system) oX, is given by ,, G, &,).

Let (py,..., pn) denote the standard coordinates®h> P. Let (qy,...,0n) be the
coordinates orN ® R that correspond to the standard basisNof Let {uy, ..., us} be
the standard basis df. Suppose the characteristic vectoysare assigned to the facets
pi = 0 of the coneR”. In this case there is a homeomorphigm(R" x Ty /~) — R?"
given by - -

(2.5) Xi = /pi cos(2rq), Yi = ./pisin(2tq) where i =1,...,n.

REMARK 2.2. The square root oves is necessary to ensure that the orbit map
7:R* — R? is smooth.

We define a homeomorphis@,: X, — R? as follows. Assume without loss of
generality thatF, ..., F, are the facets ofJ,. Let the equation offy be p;, = 0.
Assume thatp; , > 0 in the interior ofU, for everyi. Let A, be the corresponding
matrix of characteristic vectors

(2.6) Ay =[A1. .. Anl
If 9, = (dru, .- ., 0ny)t are angular coordinates of an elementTgf with respect
to the basis{Ay, ..., An} of N ® R, then the standard coordinatgs= (q, . .., )

may be expressed as
(27) q= Aqu'
Then define the homeomorphisf : X, — R?" by

(2.8) Xi = Xi.p:= /PioCOS(ZGv), Vi =VYiv:=/Pio,SIN2rq,) for i=1,..,n
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We write
(2.9) z=x+v-1y and z, =X, +vV-1y..
Now consider the action o6, = N/N(v) on X,. An elementg of G, is repre-

sented by a vecto[j{‘zlaixi in N where eachs; € Q. The action ofg transforms the
coordinatesg; , to ¢, + &. Therefore

(2.10) 9 21y, ... Zny) = (Y 2z eV gy,

We may identifyG, with the cokernel of the linear map,: N — N. Then stand-
ard arguments using the Smith normal form of the matxiximply that

(2.11) o(G,) = |[detA,].

2.3. Compatibility of charts. We show the compatibility of the charts
(X,,G,,&,). Let v; and v, be two vertices so that the minimal faGof P containing

both has dimensios > 1. Then X,, N X,, is nonempty. Assume facet& ..., Fs,
Fsi1, ..., Fn) meet at vertex; and facets Kn1, ..., Fnis, Fsi1, ..., Fn) meet atos.
We take
(2.12) Ay =[h, - . ks hsit, .o An]  @nd

Ay, = [)»n+1| ey Angsy Astly - - -y )Ln]-
Then
(2.13) 0y, = ALAL,.
Suppose

n+s

219 =) Cikhj, l=k<=s

j=s+1

Then by (2.13),

S
Qs = ) Cop ikl if 1 <] <s,

(2.15) !
Qe = D CikCiuy + Gjy I S+1<j<n.
k=1
Let the facetsFj, j = 1,...,n+s, be defined byp; = 0 such thatp; > 0 in

the interior of the polytopeP. Then the coordinates (2.8) oX,, and X,, are related
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as follows.

. _ Cn+j.k
ZJ,UZ - 1_[ Zk vy
k=

P l_[f)kc”“" if 1<j<s,
k=1
(2.16)

C —C . .
Zjuz—zjvll_[zk’vi H “oif s+lsjsn

Take any pointx € X,, N X,,. Let X be a preimage ok with respect to§,,.
Supposer (x) belongs to the relative interior of the fade C S. SupposeF is the
intersection of facetsy,, ..., F, wheres+1<i; <--- <i;y <n. Then the coordinate
Zj,(X) is zero if and only ifj € Z(F) = {iy, . . ., it}. Consider the isotropy subgroup
Gx of X in G,,. It consists of all elements that do not affect the nonzerordinates
of X,

(2.17) Gx ={0€ Gy : 92, =2z, if | ¢I(F)}.

It is clear thatGy is independent of the choice & and

JeZ(F)

(2.18) Gx = {[n] e N/N():n= > aj/\J}-

Note thatj € Z(F) if and only if A; € N(F). It follows from the linear independence
of A1, ..., Ay that

(2.19) Gy = Gf := (N(F) ®z Q) N N)/N(F).

Note thatGp is the trivial group.

Choose a small balB(X, r) aroundX such that §- B(X,r)) N B(X,r) is empty for
all g e G,, — Gx. ThenB(X,r) is stable under the action @&y and B(X, r), Gx, &,)
is an orbifold chart arouna induced by &,,, G,,, £,). We show that for sufficiently
small value ofr, this chart embeds intoX(,, G,,, £,,) as well.

Note that the rational numbexs i in (2.14) are integer multiples of/N\ where
A = det(A,,). Choose a branch af/. for each 1< k <'s, so that the branch cut
does not intersecB(X,r). Assumer to be small enough so that the functlozkéu are
one-to-one orB(X,r) for eachs+ 1< j <n+sand 1<k <s. Then equation (2.16)
defines a smooth embedding of B(X,r) into X,,. Note thatfy, 1 <k <, and Pt
1 < j <s are smooth non-vanishing functions Qﬂl(xvl NX,,). Leti,,: Gy — G,, be
the natural inclusion obtained using equation (2.19). Then,,): (B(X,r), Gk, &,) —
(>~(v2, G,,, &,) is an embedding of orbifold charts.
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We denote the spack¥ with the above orbifold structure bX. In general we will
use a boldface letter to denote an orbifold and the same ietteormal font to denote
the underlying topological space.

2.4. Independence of shape of polytope.

Lemma 2.3. SupposeX and Y are quasitoric orbifolds whose orbit spaces P
and Q are diffeomorphic and the characteristic vector of auge of P matches with
the characteristic vector of the corresponding edge of QerfK and Y are equi-
variantly diffeomorphic.

Proof. Pick any vertexw of P. For simplicity we will write p; for p;,, andq
for g;,,. Suppose the diffeomorphisr: P, — P, is given nean by f(ps, p2,...,Pn) =
(f1, f, ..., f). It induces a map of local chart€, — \?f(u) by
(2.20)

(VP cos(2rq), /i sin(2rq)) — (v/ i cos(2rqy), v/ fisin(2rg)) for i =1,...,n.
This is a smooth map if the functiong/f;/p; are smooth functions opy, ..., pn.

Without loss of generality let us consider the case,6f;/p;. We may write

af
(2.21) f1(p1, P2y - - - Pn) = 1(0, Pay ... Pn) + pla—pi(o, P2, .. Pn) + P29(PL, Pas - - - Pn)

whereg is smooth, see Section 8.14 of [7]. Note thHa{0, pz,..., pn) = 0 as f maps
the facetp; = 0 to the facetf; = 0. Then it follows from equation (2.21) th&t/p;
is smooth. We have

i
(2.22) f1/pr = a—pi(O, P2, - -, Pn) + Pr9(P1s P2s - - - s Pn).

Note that f;/p; is nonvanishing away fronp; = 0. Moreover we have

f,  of,
2.23 — =—=(0, po, ..., when =0.
(2.23) o apl( P2 Pn) P1

Since f1(0,po,..., pn) is identically zero, § f1/0p;)(0,p2,...,pn) =0 for each 2< j <n.
As the Jacobian off is nonsingular we must have

3 f
(2.24) —20,p2 ..., pn) £0.
op1

Thus f1/ p; is nonvanishing even whepy, = 0. Consequently/f,/p; is smooth. There-
fore the map (2.20) is smooth and induces an isomorphismlufotat charts. [l
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2.5. Torus action. An action of a groupH on an orbifoldY is an action of
H on the underlying spac¥ with some extra conditions. In particular for every suffi-
ciently small H-stable neighborhootl in Y with uniformizing system\{, G, r), the
action should lift to an action oH on W that commutes with the action @&. The
Tn-action on the underlying topological space of a quasitoritifold does not lift to
an action on the orbifold in general.

2.6. Metric. By a torus invariant metric oX we will mean a metric orX which
is Tn(r)-invariant in some uniformizing neighborhood wffor any pointx € =~ (F°).

Any cover of X by Ty-stable open sets induces an open covePof Choose a
smooth partition of unity on the polytopE subordinate to this induced cover. Com-
posing with the projection map: X — P we obtain a partition of unity orX sub-
ordinate to the given cover, which By-invariant. Such a partition of unity is smooth
as the mapr is smooth, being locally given by maps; = sz + yjz. For instance,
choose aTy)-invariant metric on eacX,. Then using a partition of unity as above
we can define an invariant metric ot

2.7. Invariant suborbifolds. The Ty-invariant subseiX(F) = = 1(F), whereF
is a face of P, has a natural structure of a quasitoric orbifold [15]. Thisucture is
obtained by takingF as the polytope foiX(F) and projecting the characteristic vec-
tors to N/N*(F) where N*(F) = (N(F) ®z Q) N N. With this structureX(F) is a
suborbifold of X. It is called a characteristic suborbifold F is a facet. Suppose
is the characteristic vector attached to the faEetThenz—1(F) is fixed by the cir-
cle subgroupT (1) of Ty. We denote the relative interior of a fade by F° and the
corresponding invariant spage *(F°) by X(F°). Note thatv® = v if v is a vertex.

2.8. Orientation. Note that for any vertex, dp , Adg , = dX , AdY,,. There-
forew, :=dpiy A---Adphy AdGy A -AdG, equalsdXy y A- - AdXq , AdYLy A+ A
dyh. The standard coordinategy(. .., pn) are related tof§; ,, ..., pny) by a diffeo-
morphism. The same holds forandq,. Thereforew :=dpA---AdpyAdgLA---A
dg, is a nonzero multiple of eacty,. The action ofG, on X,, see equation (2.10),
preservesy, for each vertex asdx ,Ady , = (v/—1/2)dz ,AdZz ,. The action ofG,
affects only the angular coordinates. Sirtbgy A---Adg, = det(A,)dthy A---AdGh,
and the right hand side i§,-invariant, we conclude thad is G,-invariant. There-
fore w defines a nonvanishingnZorm on X. Consequently a choice of orientations
for P ¢ R" and Ty induces an orientation foX.

2.9. Omniorientation. An omniorientation is a choice of orientation for the orbi-
fold as well as an orientation for each characteristic sbifmld. For any vertex, there
is a representation d&, on the tangent spac&X,. This representation splits into the
direct sum ofn representations corresponding to the normal spaces,cf 0. Thus we
have a decomposition of the orbifold tangent spdg¥ as a direct sum of the normal
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spaces of the characteristic suborbifolds that meat. abiven an omniorientation, we
say that the sign of a vertexis positive if the orientations of,(X) determined by the
orientation ofX and orientations of characteristic suborbifolds coinci@¢herwise we
say that sign ofv is negative. An omniorientation is then said to be positivedch

vertex has positive sign.

It is easy to verify that reversing the sign of any number cdrelsteristic vectors
does not affect the topology or differentiable structurdhef quasitoric orbifold. There
is a circle action ofT,, on the normal bundle oK(F;) producing a complex structure
and orientation on it. This action and orientation variethwhe sign ofi;. Therefore,
given an orientation orX, omniorientations correspond bijectively to choices afnsi
for the characteristic vectors. We will assume the standaiehtations onP and T"
so that omniorientations will be solely determined by sigfisharacteristic vectors.

At any vertexv, we may order the incident facets in such a way that their idwa
normal vectors form a positively oriented basisRf O P. Facets at a vertex ordered
in this way will be called positively ordered. We denote thatrx of characteristic
vectors ordered accordingly biy. Then the sign ofv equals the sign of def(.)).

3. Almost complex structure

Let X be a positively omnioriented primitive quasitoric orbdol

DEFINITION 3.1. We say that an almost complex structure)ortorus invariant
if it is Tn¢ry-invariant in some uniformizing neighborhood of each point X(F°).

Theorem 3.1. Let X be a positively omnioriented quasitoric orbifold and an
invariant metric on it. Then there exists an orthogonal nemat almost complex struc-
ture on X that respects the omniorientation.

Proof. Consider the subs&®, c X, consisting of points whose coordinates (2.9)
are real and nonnegative,

(3.1) R, = {x € X,:z,(X) €Rs, V1< j <n}.
In other words,

(3.2) R, ={xeX,:z,(X) = /pj.(X), j =1,...,n}.

We glue the spaceR, according to the transition maps (2.16), choosing the brasc
uniformly as—n < gk, < 7. We obtain a manifold with boundarR.

Let x be any point inR,, such that§, (x) € X,, N X,,. Then the transition maps
(2.16), with above choice of cuts, define a local diffeom@phgi, from a neighbor-
hood of x in X,, to a neighborhood of the image afin X,,.
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Let &, denote the restriction of X, to R,. The last paragraph shows that these
bundles glue to form a smooth rank 2eal vector bundle€ on R. The metricu on
TX induces a metric on the bund&

The restriction of the quotient maf|g,: R, — X, is a homeomorphism onto its
image. As a result the spade is homeomorphic to the subspadé®) of X used by
Kustarev [10]. The map: P — X is a homeomorphism given by the composition

P PxTn L, X wherei is the inclusion given by(ps,..., pn) = (P1,..., Py L,..., 1)
and j is the quotient map that defines. For any faceF of P we denote its image
in R under the composition of above homeomorphismsR4E). The restriction of
this homeomorphism to the relative interior Bf is smooth, and we denote the image
by R(F°).

Let X,(F) be the preimage ofX(F) in X,. If F is the intersection of facets
Fi,, ..., Fi,, then X,(F) is the submanifold ofX, defined by the equations, , =
0, 1< j <t. Then arguments similar to the case &fshow that the restrictions
T>~(U(F)|RmR(,:) glue together to produce a subbundle of &|r(r).

It is easy to check from (2.16) that

0
aZiJ’vl

d

3.3 =
(3.3) .

X X

at any pointx in R, N R, N R(F). Therefore we obtain a subbunds of &|re)
corresponding to the normal bundles fif:,v in X,. The bundleNt obviously splits
into the direct sum of the rank 2 bundl@g, wherek € Z(F) := {iy, ..., it}.

Recall the torusTyry corresponding to the facé of P from equation (2.1) and
Definition 2.1. For any vertex of F, the moduleN(F) is a direct summand of the
module N(v). ConsequentlyTyr) injects into Tyy. Supposex is a point in R(F°).
Then Ty(ry is the stabilizer of any preimage of in Xo.

Tnery is the product of the circled;,, k € Z(F). The circleT,, acts nontrivially
on N, and induces an almost complex structure on it correspontiingptation by
/2. Note that this structure depends on the sign,obr, in other words, the specific
omniorientation. Thus th&y) action induces an almost complex structure.gp.

Using the method of Kustarev [10] it is possible to constrarctorthogonal almost
complex structure on £ that satisfies the following condition:

() For any faceF of P of dimension less tham, the restriction ofJ to Ng|gr(-)
agrees with the complex structure induced by Thgry action and the omniorientation.

For future use, we give a brief outline of the proof of existemf such a structure.
The details may be found in [10]. In our case, the bundlesand N, play the roles
of the bundlesr(Mg) and & in [10].

An orthogonal almost complex structure énmay be regarded as a map R —
SQ2n)/U(n). We proceed by induction. Lek (R) denote the union of al-dimensional
faces of R. Fori = 0, existence of] is trivial. Extension tosk (R) is possible due to
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positivity of omniorientation. For > 2, suppose] is a structure orsk_;(R) satisfying
the condition £). ThenJ may be regarded as a map frat_;(R) to SQ2i —2)/U (i —1)
as it is fixed in the normal directions by the torus action. €aorct a cellular cochain
ol e C(R, mi_1(SQ2i)/U(i)) by defining the value of on ani-dimensional face of
R to be the homotopy class of the value &fon the boundary of the face, composed
with a canonical isomorphism between ;(SQ2i —2)/U (i — 1)) andn;_1(SQ2i)/U(i)).
J extends tosk (R) if and only if o, = 0. Following [10], one proves that) is a co-
cycle. Therefore, by contractibility dR it is a coboundary. Supposxé = 68, whereg €
C'Y(R, m_1(SQ2i)/U(i)). Note thatsf(Q) = + > _ccag B(G). For eachH € sk_1(R),
one perturbs] in the interior ofH by a factor of—8(H). This makesr} = 0. (Note that
if B(H) =0, no change is required for fa¢e. This will be used crucially in Lemma 3.2.)
By (x) the structured on &, is invariant under the action of isotropy groups. We
can therefore use the action ®f,) to produce an invariant almost complex structure
on TX, as follows,

(3.4) J(t-x) =dtoJ(X)odt™, Vxe R, andVt € Tyg).

The local groupG, of orbifold chart (>~(,J, G,, &) is a subgroup ofTye). Thus J is
G,-invariant onX,.

The compatibility of J across charts may be verified as follows. Take any point
X e X, NX,. LetX e )~(vl be a preimage ok underé&,,. Supposex = t; - Xo where
Xo € R andt; € Ty,). Choose an embeddin{az of a smallG-stable neighborhood of
% into X,, as outlined in Section 2.3. Suppoge(X) = t - Xo Wheret, € Ty, Then

(3.5) $r2=tro ooty .

By construction ofJ on &£, J commutes withd¢i,|g. J commutes withdt and dg‘l
by its construction on>~<v‘. ThereforeJ commutes withdgy,, as desired. O

Theorem 3.2. Suppose an orthogonal invariant almost complex structsirgiven
on a characteristic suborbifolX(F). Then it can be extended .

Proof. We follow the notation of the previous theorethhas been already spec-
ified on X(F) where dimf) = n — 1. This determines) on the subbundl€r of &
over R(F). We use the torus action and omniorientation to exténtb &|r).

We construct an extension df to R skeleton-wise. Extension up 8k(R)UF is
achieved using positivity of omniorientation. For extamsito higher skeletons we need
to use obstruction theory. We need to take care so Jhist preserved on sub-faces of
F. We use induction. Supposé& has been extended t&k_;1(R) U F, whered < n.
(We will deal with thed = n case separately.)
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Let 09 € CY(R, my4_1(SQ2d)/U (d))) be the obstruction cocycle. Lét R(F) — R
be inclusion map. Restriction t6 produces a cochain

i*(0) € CUR(F), mq-1(SQ2d)/U(d))).

Theni*(c9) = 0 since we know thatl extends toR(F). Sincecd = 88, i*(8) is a
cocycle. AsR(F) is contractiblei*(g8) is a coboundary. Leit*(8) = 581 where ; €
CY9=2(R(F)). Define a chaing, € C4%(R) such that

__[Bu(H) for any d —2) faceH C R(F),
(3.6) Pa(H) = {O otherwise.

Then definefs = B — 8(B,). This new cochain has the property thgps) = o¢
and its action ¢ — 1)-dimensional faces oR(F) is zero. So we can now extend the
structure tosky UR(F) without affecting the sub-faces d®(F).

By induction, we may assume thdt has been extended &k, 1(R) U R(F). Let
o" e CY(R, mn—1(SQ(2n)/U (n)) be the corresponding obstruction cochain for extension
to sky. Since R is contractible we have" = §8. We modify 8 as follows. Suppose
K is a facet adjacent t&. Define 8/ € C"! as follows.

0 if H = R(F),
(3.7) B'(H) = {ﬂ(R(F)) + B(R(K)) if H = R(K),
B(H) otherwise.

Thensp’ = 68 = o" and B'(R(F)) = 0. So we may extend to R without changing
it on R(F). []

Corollary 3.3. Suppose an orthogonal invariant almost complex structsirgiven
on a suborbifoldX(F) where F is any face of P. Then it can be extende to

Proof. Consider a nested sequence of faEes Hy C H;--- C Hx = P where
dim(H;) = dim(F) 4+ i. Extend the structure inductively frond(H;) to X(Hi;1) using
Theorem 3.2. ]

4. Blowdowns

Topologically the blowup will correspond to replacing awvanant suborbifold by
the projectivization of its normal bundle. Combinatorjalle replace a face by a facet
with a new characteristic vector. SuppoBeis a face of P. We choose a hyperplane
H = {fo = 0} such thatfy, is negative onF and P := {fip > 0} N P is a simple
polytope having one more facet thé SupposeFs,...,Fy are the facets oP. Denote
the facetsF, N P by F without confusion. Denote the extra facddtn P by Fo.
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Without loss of generality leF = ﬂ';;l F;. Suppose there exists a primitive vector
Mo € N such that

k
(4.1) A=) bjij, bj>0,Vj.
j=1

Then the assignmerf, — 1o extends the characteristic function Bf to a character-
istic function A on P. Denote the omnioriented quasitoric orbifold derived freine
model @, A) by Y.

Consider a small open neighborhodd.= {x € P: fip(x) < €} of the faceF, where
0 <e < 1. DenoteU N P by . By Lemma 2.3 we may assume that

(4.2) f:U=Fx]0, 1)

We also assume without loss of generality that the definimgtfan p; of the facetF;
equals thej-th coordinatep; of R" on U, for each 1< j < k.

Choose small positive numbees < €, < € and a smooth non-decreasing function
8: [0, 00) — R such that

_toif t <y,
(4.3) 50 = {1 if t> e

Then definer: P — P to be the map given by

(4.4)  T(P1, -\ P Pt - -0 Pn) = (B(P0)™ Pu, - - -, 8(P0)™ Pis Pty - - -4 Pr)

The blow down mapp: (P x Ty/~) — (P x Tn/~) is defined by

(4.5) p(p, 9) = (z(p), 9).

Sinced = 1 if i > €, p is a diffeomorphism of orbifolds away from a tubular
neighborhood ofX(F). We study the map near X(F).

Letw = ﬂrj‘:l F; be a vertex ofF. Supposev be a vertex offy such thatr(v) =
w. Then the edge joining and w is the intersection ofi — 1 facets common to both
which must includeFy,1, ..., F,. Therefore there ar& choices forv, namelyv; =
(Mo<jrizn Fj With 1 <i <k.

Let p; = O be the defining equation of the facB{ for k + 1 < j < n. Order
the facets atw as Fy, ..., F,, and those av; asFy, ..., F_1, Fo, Fiy1, ..., Fn. Let
z;» and z;,, be the coordinates oiX,, and \?vi defined according to (2.8) and (2.9).
Then by using a process similar to the one used for (2.16), bteiro the following
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description ofp nearY,,,

Ziwo p =12, V(PP (o),
(4.6) Ziw © P = 2, 20 V(PP () P i 1<) AT <k,

Zjwop =12, If k+1=j=n
We define a new coordinate system ¥p, for each 1<i <k, as follows.

Z, = 2.0 (VPP V8 (Bo) (o) L,
(4.7) Z, =z (VPO i 1= #i =k

Zi, =2y f k+l=<j=n
This is a valid change of coordinates psis positive on\?ui and §(po)(Po)~?t is iden-
tically one nearfy = 0.

In these new coordinateg, can be expressed as

Ziyop= (Zi’]vi)b‘,
(4.8) Ziwop=(Z,)7, i 1<j#i<k
zjyop=12, if k+1l=j=n

Vi
Lemma 4.1. The restrictionp: Y — Y(Fg) — X — X(F) is a diffeomorphism of
orbifolds.

Proof. This is obvious outsida 1(U). On 7~ 1(U) — X(F), by formula (4.8),
o is locally equivalent to a blowup in complex geometry. Tliere p is an analytic
isomorphism onz~1(U) — X(F). However since our quasitoric orbifolds are primitive,
there is no complex reflection in our orbifold groups. Hensig the results of [13],
analytic isomorphism yields diffeomorphism of orbifolds. []

Lemma 4.2. If X is positively omniorientedthen so is a blowupy.

Proof. Recall the positive ordering of facets at a ventex Section 2.9 to define
the matrix A,y whose determinant has the same sign as sign. of

Let w be any vertex ofF andv; be any vertex ino~*(w). Let Fy,..., F, be posi-
tively ordered facets a. An inward normal vector td~ is a positive linear combin-
ation of the inward normal vectors t6,..., Fx. ThereforeF,,...,F_1,Fo, Fii1,...,Fn
are positively ordered for eadh=1,...,k. So the matrixA(,) is obtained by replac-
ing thei-th column of A, namely;, by 1o = Z'}zl bjx;. Therefore det\,) =
by detA,). The lemma follows. O
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DEeFINITION 4.1. A blowdownp is said to be a resolution if for any vertex
of the exceptional fac& and any vertex; € p1(F) we haveo(G,,) < o(G,,).

Lemma 4.3. A blowdownp is a resolution if p < 1 for each i.

Proof. The lemma holds since by (2.11) we ha(€, ) = |detA,, | = bj|detA,| =
bi O(Gw)- ]

5. Pseudoholomorphic blowdowns

Lemma 5.1. Letp:Y — X be a blowdown along a subset(X). Suppose there
exist holomorphic coordinate systems, z. .., z; , on the uniformizing chariX,, for
every vertexw of F, which produce an analytic structure on a neighborhood'(U) of
X(F). Assume further that this analytic structure extends to lamoat complex structure
on X. Then the blowup induces an almost complex structurey owhich is analytic
near the exceptional set(¥y). Moreovey with respect to these structurgsis analytic
near Y(Fg) and an almost complex diffeomorphism of orbifolds away f(ho).

Proof. Note that for two vertices;, wo of F, the coordinates must be related as
n
(5.1) Z ., = [ @)
i=1

where thed;js are rational numbers determined from the mam'gzlAwl, see (2.13)
and (2.16).

Also the coordinateg] ,, have to relate to the coordinates defined in (2.8) and (2.9)
as follows,
(5.2) Zj,=2z,f, 1<j=n
where eachf; is smooth and non-vanishing oX,. For eachv, € p Y(w) we define
coordinates in its neighborhood, by modifying the coortBsaof (4.7) as follows,

Zi*,u — Zi/,ui(fi ° ‘E)l/bi,

(5.3) 2, =7, (fon)(fion)™™ if 1<j#i<k

*
150

i =17 if k+1<j<n.

Jovi
In these coordinatep takes the following form neaw;,

Zi*:u) © 10 = (Zi*;l,“)bil
(5.4) Z,op=@Z,)0z, if 1<j#i=<k

z,op=2, if ktl=j=n

jow
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We define an almost complex structudeon Y by defining the coordinates; , to be

holomorphic neafy(F) and byj =dp~to Jodp away from it. This is consistent as
o is a diffeomorphism of orbifolds on the complement \4f.
By (5.1) and (5.4), for any two verticag; and u, of Fy, we have

n
(5.5) Z, = H(z{‘jul)al
i=1

for some rational numbers; . But these numbers are determined by the matrjtA,, .
It is then obvious from the arguments about compatibilitycbérts in Section 2.2 that
the patching of the chartg,, andY,, is holomorphic. []

Examples of blowdowns that satisfy the hypothesis of LemniaiBclude blow-
downs of four dimensional positively omnioriented quasitarbifolds constructed in
[9] and toric blow-ups of simplicial toric varieties.

DEFINITION 5.1 ([9]). A function f on X is said to be smooth if o& is smooth
for every uniformizing systemU, G, £). A complex valued smooth functiofi on an
almost complex orbifold X, J) is said to beJ-holomorphic if the differentiad(f o &)
commutes withJ for every chart {J, G, £). We denote the sheaf af-holomorphic
functions onX by QE’]’X. A continuous mapp: Y — X between almost complex orbi-
folds (Y, J) and X, J;) is said to be pseudo-holomorphic ffo p € ngyy(ﬂ’l(U )) for
every f € le,x(U) for any open set C X; that is, p pulls back pseudo-holomorphic
functions to pseudo-holomorphic functions.

Lemma 5.2. Blowdowns that satisfy the hypothesis lofmma 5.1are pseudo-
holomorphic.

Proof. Supposen: Y — X is such a blowdown. Since is an almost complex
diffeomorphism of orbifolds away from the exceptional ¥t), it suffices to check
the statement nea¥(Fp). Pick any vertexw of F. DefineW = X,, N #~(U). For
any vertexv; € p~Y(w), let Vi =Y, N p~}(z~1(U)). We will denote the characteristic

vectors atv; by 4j, j =1,...,n. Note that
s A i A,
(5.6) o= {xo it =i

The ring le,x(W) is the G, -invariant subring of convergent power series in vari-
ablesz] . It is generated by monomials of the form

(5.7 f =[]z
j=1



994 S. GANGULI AND M. PODDAR

where thed;s are integers such that a;d; is an integer whenever the vectpraji; €
N. This last condition follows from invariance under actiofitbe elementg € G,
corresponding td_ ajA;.

Using (5.4) andio = Y 1_; bjA; with b; = 0 for j > k + 1, we get

(58) fop= (Zi*,ui)z bjd; H(ZT,vi)dj'
j#i
Take any element in G,,. Supposeh is represented by c,—ij € N. The action
of h on f o p is multiplication bye2™¥ 1 where

(5.9) OlZCiijdj-l-Zdej =Cibidi+Z(Cj+Cibj)dj.
j j# j#i

Note thatn := ¢ibjAj + Zj;éi(Cj +cbjrj =c Zj bjA; + Zj;ﬁi CiAj = ZCjij.
Hence this is an element df.
Supposef is a generator ofszglyx(W) as in (5.7). Consider the action of the

element of G,, corresponding tay on f. It is multiplication by eV=1  gince f
is G,-invariant, « is an integer. Hencef o p is G,, invariant. The ringQ‘J’LY(Vi)
is the G, -invariant subring of convergent power series in variabtes. Therefore
fope le,v(Vi)- O

The proof of the following corollary of Lemma 5.1 is straifgrivard.

Corollary 5.3. Consider a sequence of blowups: Y; — Yi_1 wherel <i <
r and p; satisfies the hypothesis dfemma 5.1 Assume that the locus of the i-th
blowup is contained in the exceptional set of {fne- 1)-st blowup for every i. Then
we can inductively choose almost complex structures so ehah blowdown map in
the sequence is pseudoholomorphic.

Theorem 5.4. There exists a pseudoholomorphic resolution of singulaor any
primitive positively omnioriented four dimensional quastc orbifold.

Proof. For any primitive positively omnioriented four dimsonal quasitoric orbi-
fold, Theorem 3.1 of [9] produces an almost complex strgcthat satisfies the hypoth-
esis of Lemma 5.1 for every vertex. The singularities arecgdllic. We can resolve
them by applying a sequence of blow-ups as in Corollary 5.3. O

6. Crepant blowdowns

DEFINITION 6.1. A blowdown is called crepant §_ b; = 1.

This has the following geometric interpretation.
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DEFINITION 6.2. Given an almost complexnalimensional orbifold X, J), we
define the canonical she#fy to be the sheaf of continuous,(0)-forms onX; that is,
for any orbifold chart {J, G, &) over an open set) C X, Kx(U) = I['(A\" 7+90)*)®
whereT is the functor that takes continuous sections.

An almost complex orbifold is called Gorenstein 8k orbifold if the linearization
of every local group elemerg belongs toSL(n,C). For anSL-orbifold X, the canonical
sheaf is a complex line bundle ove.

Lemma 6.1. Supposeo: Y — X is a pseudoholomorphic blowdown of SL quasi-
toric orbifolds along a face F satisfying the hypothesis ladfmma 5.1 Thenp is
crepant if and only ifp*Kx = Ky.

Proof. We consider the canonical shdéf as a sheaf of modules over the sheaf
of continuous functionsig’(. Sincep is an almost complex diffeomorphism away from
the exceptional set it suffices to check the equality of gh&y and Kx on the neigh-
borhoodp~1(r~%(U)) C Y of the exceptional set. Choose any vertexof F. On X, N
7~1(U), the sheafKy is generated over the sheﬁi by the formdz , A---Ad7 ,,
see (5.2). Lety be any preimage ofv underp. Similarly onY,, N p (7 1(U)), Ky
is generated over the she@} by the formdz , A---AdZ; .

Using (5.4) we have

;0* dz*w = bi (Zi*,v\)b‘_1 d;'*,vi’
61 o7 dZ, =(z,)"dz, +b,@,)" 7, d7, i 1<)#isk
p*dz, =dz, if k+1<j=<n

Therefore we have

(6.2) p*dZz , Ao ndZ,) = bz, )P dZ A A dZ

Uit

The lemma follows. O

7. Chen-Ruan Cohomology

The Chen—Ruan cohomology group is built out of the ordinaifyoenology of cer-
tain copies of singular strata of an orbifold called twiststtors. The twisted sectors
of orbifold toric varieties was computed in [14]. The deteration of such sectors
for quasitoric orbifolds is similar in essence. Another ortant feature of Chen—Ruan
cohomology is the grading which is rational in general. I case the grading will
depend on the omniorientation.

Let X be an omnioriented quasitoric orbifold. Consider any eleingeof the group
Gr (2.19). Theng may be represented by a vect@ieI(F) ajj. We may restrict,
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to [0, 1)N Q. Then the above representation is unique. Then define theaahifting
number or age ofj to be

(7.1) (9 =3 a

For faceskF andH of P we write F < H if F is a sub-face oH, andF < H if
it is a proper sub-face. IF < H we have a natural inclusion @y into Gg induced
by the inclusion ofN(H) into N(F). Therefore we may regar@y as a subgroup of
Gg. Define the set

(7.2) G =Gr — ] Gu.
F<H

Note thatGg = {3 ;.zr @j2j: 0 <a <1} NN, andG = Gp = (0}

DEFINITION 7.1. We define the Chen—Ruan orbifold cohomology of an omni-
oriented quasitoric orbifolX to be

H&(X R) = @D €D H*O(X(F), R).

F<P geGy

Here H* refers to singular cohomology or equivalently to de Rhamooablogy of
invariant forms whenX(F) is considered as the orbifold(F). The pairs K(F), g)
whereF < P andg € G? are called twisted sectors &f. The pair X(P), 1), i.e. the
underlying spaceX, is called the untwisted sector. We denote the Betti number
rank(HZz(X)) by hdp.

Note that if X is a manifold then its Chen—Ruan cohomology is same as itgisin
lar cohomology.

7.1. Poincaré duality. Poincaré duality is established in a similar fashion as for
compact almost complex orbifolds. We need to distinguigh dbpies ofX(F) corres-
ponding to different twisted sectors. Therefore fpe G¢, we define the space

(7.3) S(F, 9) = {(x, 9): x € X(F)}.

Of courseS(F, g) is homeomorphic taX(F). It is denoted byS(F, g) when endowed
with an orbifold structure which is the structure ¥{F) with an additional trivial ac-
tion of Gg at each point. With this structure, it is a suborbifold>fin a natural way.
The untwisted sector is denoted I$(P, 1). In this notation the Chen—Ruan groups
may be written as

(7.4) HEr(X, R) = €D €D H*2O(S(F, g), R).

F=P geGp
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Lemma 7.1. Suppose & G2. Then2(g) + 2(g™1) = 2n — dim(X(F)).

Proof. WhenF = P, G} = {0} and the result is obvious. SuppoBe= ﬂ:‘:l Fi.
Theng = Z!‘zla,-/\i where each O< & < 1. Theng! is represented by the vector
Zik:l —a A in N modulo N(F). Thereforeg™ may be identified with the vector
Zik:l(l — a)Ai. Note that 0O< 1 —a < 1 for eachi. Therefore the age of™,
(g =Y, (1—a). Hence Ag) +2(g) =2Y 1 a +2X ,(1—a) = 2k =
2n — dim(X(F)). O

For any compact orientable orbifold, there exists a notibrorbifold integration
forb for invariant top dimensional forms which gives Poincarélidy for the de Rham
cohomology of the orbifold, see [5]. For a chait= (U, G, £) orbifold integration for
an invariant forme on U is defined by

(7.5) /UOFbw = T](.B) /;; .

Let I: S(F,g) — S(F,g 1) be the diffeomorphism of orbifolds defined Ibyx,g) =
(x, g71). We define a bilinear pairing

(7.6) (, )iy HI2O(S(F, g)) x H 420 (S(F, g") - R

for every 0<d < 2n by

b orb
@.7) By = [ ani’e)

This pairing is nondegenerate because of Lemma 7.1. Bydakimirect sum of the
pairing (7.6) over all pairs of sectorsH(g), (F,g™1)) for F < P, we get a nonsingular
pairing for each 0< d < 2n

(7.8) () HER(X) x H&E9(X) — R.

8. McKay correspondence

First we introduce some notation. Consider a codimenkifece F = FiN---NFy
of P wherek > 1. Define ak-dimensional coné€Cr in N ® R as follows,

k
(8.1) Cr = {Z ajrj:a > o}.
j=1
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The groupGg can be identified with the subsBox: of Cg, where

k
(8.2) Box := {Zajkj:OSaj <1}0N.

j=1

Consequently the séB; is identified with the subset

k
(8.3) BoX. := {Zajxj:0<aj <1}mN

i=1

of the interior of Ce. We defineBox, = Box, = {0}.
Supposey = F1N---NF, is a vertex ofP. ThenBox, = | |,. Box:. This implies

(8.4) G, =[] G:.

v=F

8.1. Euler characteristic. An almost complex orbifold iSL if the linearization
of eachg is in SL(n, C). This is equivalent ta(g) being integral for every twisted
sector. Therefore, to suit our purposes, we make the fatigvdefinition.

DEFINITION 8.1. An omnioriented quasitoric orbifold is said to be quakiif
the age of every twisted sector is an integer.

Lemma 8.1. SupposeX is a quasi-SL quasitoric orbifold. Then the Chen—-Ruan
Euler characteristic ofX is given by

xcr(X) = Y 0(G,)
v
where v varies over all vertices of P.
Proof. Note that eaclX(F) is a quasitoric orbifold. So its cohomology is con-
centrated in even degrees, see [15]. SiXcés quasiSL, the shifts 2(g) in grading

are also even integers. Therefore the Euler characteastithen—Ruan cohomology is
given by

(8.5) XeR(X) = Y x(X(F))- o(Gg).

F<P

Each X(F) admits a decomposition into even dimensional strata dewsl

(8.6) X(F) = | | X(H?)

H<F
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where H® is the relative interior ofH and X(H°) = 7~1(H®). We have

(8.7) X(X(F)) = Y x(X(H®)).

H<F

However X(H®) is homeomorphic to the product dfi® with (S)¥™H), Therefore
x (X(H?°)) = OunlessH is a vertex. Hence

(8.8) x(X(F)) = number of vertices of-.

This formula also follows from the description of the honmtogroups of a quasitoric
orbifold in [15].
Using (8.4), (8.5) and (8.8), we have the desired formulafgg(X). []

Lemma 8.2. The crepant blowup of a quasi-SL quasitoric orbifold is qtfis.

Proof. Suppose the blowup is along a fdee= F; N --- N F. The new sectors
that appear correspond @}, where H < Fo. Take any vertexo in H. Supposev
projects to the vertexv of F under the blowdown. Without loss of generality assume
w =(]1 Fj. Thenv = Mo, Fj for some 1< i < k. Without loss of generality
assumei = 1. Sincev < H, Z(H) C {0, 2,..., n}. Therefore anyg € G}, may be
represented by an element= COAO+Z?=2 cjr; of N where eaclt; € [0,1)NQ. We
need to show that the age gf namelycy + Z?=2 cj, is an integer.

But usingio = Y_; bjA; we get thaty € C,,. In fact

k n
(8.9) n = Cobirs + Y (Gobj +C)Aj + D Cjhj.
=2 j=k+1

We may writen = er‘zl(mj +a;)A; where eachm; is an integer and eadly < [0,1)N
Q. Then ZT:l a;Aj corresponds to an element Gf,. SinceX is quasiSL, Z’j‘zl a;
must be an integer. TherefoE?zl(mj +4a;) is an integer. Henceobl—l—Z'j‘:z(Cobj +
¢j) + Y141 G is an integer. Using"¥_; by = 1, this yields thatco + Y]_, ¢; is
an integer. []

Theorem 8.3. The Euler characteristic of Chen—Ruan cohomology is presegr
under a crepant blowup of a quasi-SL quasitoric orbifold.

Proof. Letp:Y — X be a crepant blowdown along a fage= ﬂ'}zl F; of P.

Let w be any vertex ofP and letvy, ..., vk be the vertices oP such thatp(v;) = w.
Supposew = ﬂlfjsn Fij. Thenvy = FpN ﬂli#ifn Fi.
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The contribution ofw to xcr(X) is 0(G,) = |detA, |, see (2.11). The contribution
of eachv; to xcr(Y) is 0(G,,) = |detA,, | = bi|detA,| = bjo(G,). As the blowdown
is crepant, we have(G,) = Zikzl 0(G,,). The theorem follows. ]

8.2. Orbifold K-groups. Orbifold K-theory is theK-theory of orbifold vector
bundles. Adem and Ruan [2] proved that there is an isomarpluf groups between
orbifold K-theory andZ,-graded orbifold cohomology theory of any reduced differ-
entiable orbifold, with field coefficients. Almost complettigcture is not necessary for
this result as the grading for orbifold cohomology is theioady grading. For a quasi-
SL quasitoric orbifold, since the degrees of cohomology @asss well degree shifting
numbers are even integerk, has rank same as the Euler characteristic of Chen—
Ruan cohomology and&}, is trivial. Hence by Theorem 8.3, the orbifold-groups

are preserved under crepant blowup of quslsiquasitoric orbifolds.

8.3. Betti numbers. We prove a stronger version of McKay correspondence,
namely the invariance of Betti numbers of Chen—Ruan cohogyolinder crepant blow-
down, when dimension of is less or equal to six. A more restrictive result was proved
for dimension four in [9].

Theorem 8.4. Supposeo: Y — X is a crepant blowdown of quasi-SL quasitoric
orbifolds of dimension< 6. Then the Betti numbers of Chen—Ruan cohomolog¥ of
andY are equal.

Proof. Assume that dinX) = 6. Note that there are no facet sectors as every
characteristic vector is primitive. Therefore the twisssttors correspond to either ver-
tices or edges. The age of a vertex sector is either 1 or 2 actd awsector contributes
a generator tHZ; or HZ; respectively. An edge sector always has age 1. Since such
a sector is a sphere it contributes a generatoHfg, as well asHZ. There is only
one generator iHZ; and HE; coming from the untwisted sector. Therefdigs and
h&; are unchanged under blowup. Hf; changes under blowup then by Poincaré du-
ality, h¢g must change by the same amount. That would contradict theeceation of
Euler characteristic. Therefore all Betti numbers are anged.

The proof for dimension four is similar. ]

Lemma 8.5. Supposep: Y — X is a crepant blowdown of quasi-SL quasitoric
orbifolds of dimensiorx 8. Then Igg(Y) > h2(X).

Proof. The sectors that contribute it are the untwisted sector and twisted sec-
tors of age one. Each age one sector contributes ohédoThe untwisted sector con-
tributesh?. It is proved in [15] thath? = m —n wherem is the number of facets and
n is the dimension of the polytope.
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Suppose the blowup is along a faée The twisted sectors that may get affected
by the blowup are the ones that intersettF). These must be of the formS(g)
where g belongs tol J,, G,, wherew varies over vertices oF. Consider any suchp.
Supposeirs, .. ., Ap are the corresponding characteristic vectors. Note thatatie one
sectors ofX coming fromG,, belong to the set

n n
(8.10) Ay =1 ajr: Y ay =1,
j=1 j=1
Sincels, ..., Ap are linearly independent, there exists a unique vectsuch that the

dot product(x;i, v) = 1 for eachi. HenceA,, is a hyperplane given by
(8.11) A, ={xeN®R: (x,v) =1}.

Note that since the blowup is crepant, € A, NCr N N. The sector corresponding
to Ao is lost under the blowup. However the losstig; because of it is compensated
by the contribution from the untwisted sector on accounthef mew facetr.

Consider any other age one sectpiof X in G,,. C, is partitioned inton sub-
cones by the introduction ofy. Accordingly g may be represented bZOS#iSn CjAj
with eachc; > 0, for some 1<i < n. This means thay becomes a sector of
coming fromG,, wherev = (o, <, Fj- Now g € A, as it is an age one sector of
X. Also eachij € A,. Therefore by (8.11)) -, Cj = 1. This implies that each
0 <cj <1 and age ofy as a sector of is one as well. The lemma follows. [

8.4. Example. We will consider the weighted projective spaXe= P(1,3,3,3,1)
which is a toric variety. The generators of the one dimerai@mones of the fan of
X aree; = (1,0,0,0),e;, =(0,1,0,0),e3=(0,0, 1, 0),e, = (0,0, 0, 1) andes =
(-1,-3,-3,-3). X may be realized as a quasitoric orbifold with the 4-dimemaio
simplex as the polytope and thees as characteristic vectors. Howeve(l, 3, 3, 3, 1)
is not an SL orbifold and this choice of characteristic vectors comimgnf the fan
does not make it an omnioriented qu&i-quasitoric orbifold. So we choose a differ-
ent omniorientation.

To be precise, by the correspondence established in [11jzameconsidetX as a
symplectic toric orbifold with a simple rational moment ypwpe P whose facets have
inward normal vectorsey, ..., es. The moment polytope may be identified with the
orbit space of the torus action. The denominations of thgtppk are related to the
choice of the symplectic form and is not important for us. tenthe facet ofP with
normal vectorg by F. We assign the characteristic vectors as follows

e if 1<i=<4,

(8.12) M= {—es if i=5.
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The singular locus oK is the subseX(F) where F = F; N Fs. The groupGe is
isomorphic toZs and

(8.13) Gy = {g = ZM + h;,, g’ = }xl + E)L&-,} =1{(1,1,1,1), (1,222
3 3 3 3

Thus there are only two twisted sectdBéF, g) and S(F, g°), each of age one. Since

F is a triangle, the 4-dimensional quasitoric orbifo{dF) hash® = h? = h* = 1.

Therefore each twisted sector contributes ondngg(X) for k =2, 4,6.

We consider a crepant blowug of X along X(F) with 1o = (1, 1, 1, 1). The
singular locus ofY equalsY(H) whereH = Fp N Fs. Gy = Z; and G}, = {h =
(2/2)r0 + (1/2)A5} = {(1, 2, 2, 2}. The age one twisted sect&H, h) contributes one
to h‘éR(Y) for k = 2,4, 6. Buths(Y) also has an additional contribution from the
new facet. ThereforéZ(Y) = h25(X). Then by Poincaré dualith®y are also equal.
Finally by conservation of Euler characteristic we get digaf hiy.

It is also possible to directly ascertain the change in thdinary Betti numbers
due to blowup. The new facd¥, is diffeomorphic toF x [0, 1]. So the new polytope
has three extra vertices. We can arrange them to have intligs3 and keep indices
of other vertices unchanged, see [15] for definition of ind€kis means that ordinary
homology, and therefore cohomology, %fis richer than that ofX by a generator in
degrees 2, 4, 6.

If we perform a further blowup o alongH with (1,2,2,2) as the new character-
istic vector, we obtain a quasitoric manifoltl It is easy to observe that Betti numbers
of Chen—Ruan cohomologies 8f and Z are equal. If we switched the choice of char-
acteristic vectors for the two blowups, McKay corresponéefar Betti numbers would
still hold.

Finally consider other choices of omniorientation that Idomake X quasiSL
Switching the sign(s) oh,, A3 or A4 does not affect quasiiness or the calculations
of Betti numbers. Another option is to take = —e; and As = es. The calculations
for this choice are analogous to the ones above.

9. Ring structure of Chen—Ruan cohomology

We will follow [4] and define the structure of an associativegron Chen—Ruan
cohomology of an omnioriented quasitoric orbifold.

The normal bundle of a characteristic suborbifold has amatraomplex structure
determined by the omniorientation. More generally suppgese ﬂ:;l Fi is an arbitrary
face of P. The normal bundle of the suborbifo®F, g), see Section 7.1, decomposes
into the direct sum of complex orbifold line bundlés which are restrictions of the
normal bundles corresponding to facéisthat containF. Each of these line bundles
L; have a Thom fornv;. (Note that the Thom forms oX(F) and S(F, g) in X may



QUASITORIC ORBIFOLDS 1003

differ at most by a constant factor.) For agy= ) o, axi € Box define the formal
form (twist factor)

9.1) @) =[] 6

1=i=k

The order of thef;s in the above product is not important. The degree(gj is de-
fined to be 2Zg). For any invariant formw on S(F, g) define a corresponding twisted
form wt(g). Define the degree abt(g) to be the sum of the degrees of and t(g).
Define

(9.2) QER(F, 9) = {wt(9): w € Q*(S(F, 9)), deg@t(g)) = p}.

Define the de Rham complex of twisted forms by

(9.3) Q= P &F.9
F<P,geBox:

with differential

(9.4) d(Ywit@) = 3 d@)t(@):

It is easy to see that the cohomology of this complex coirkcidéh the Chen—Ruan
cohomology defined in Section 7.

Now we define a produck: QPL(K1, g1) x Q&(Ka, G2) — Q8P (K, g102) of
twisted forms as follows,

(9.5) w1t(g1) * wat(Q2) = ifw1 AT5w2 A O(91, B2)1(912).

Here K is the unique face such thaK{ N Kj) < K and g:g,» € G%. The mapi; is
the inclusion ofX(K1 N Ky) in X(K;). The form ®(g;, 92) is obtained as follows.
Consider the product(g:)t(g2). We can think of theg;s as elements oBox,
wherev is a vertex ofK; N Ky, Write gj = >/, ajAi. Write the twist factort(g;)
as [ [1<<n Gia”. A term in the product(g;)t(gz) looks Gf“l“’“. We may ignore the’s
for which botha;; and a, are zero. Then there can be three cases:
(1) a1+ a2 < 1. Thend¥ 2 contributes tot(g1gz).
(2) a1+ a2 > 1. Then fractional parn‘?i"’“*a*'z’l contributes tot(g;g92) and the integral
part is the Thom forny; which contributes as an invariant 2-form &g, gz).
(3) a1 + a2 = 1. When this happensg;g, € BoxXy where K; N Kz) < K and 6;
contributes to®(g1, 92).
If case (3) does not occur for amy thenK = K1 NK, andifwi Al5w AO(91,02)
restricts toS(K,g10,) without problem. If case (3) occurs for soriie then the product
of the restrictions of correspondirgys to X(K) is, up to a constant factor, the Thom
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form of the normal bundle oX(K; N Ky) in X(K). The wedge of this Thom form
with ijwy Aijw, and the restriction of the contributions from case (2)X{K) defines
a form onX(K). Thus the star product is well-defined.

We extend the star product to a product Qficg by bilinearity. The differential
acts on the star product as follows,

(9.6) d(w1t(g1) *w2t(Q2)) = d(wit(gr))*wat(gp) + (—1)1e9+de2) 1y, (g1 ) xd (w3t (G2)).-

Hence the star product induces a product on the Chen—Ruamodbgy.

Observe that the formy wi Aijws A©(g1, 92) is supported in a small neighborhood
of X(K1 N Ky). Therefore the star product of three formgt(g;) € QQR(Ki, g) 1<
i <3, is nonzero only ifK; N Ky N K3 is nonempty. Now it is fairly straightforward
to check that the star product is associative.
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