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Abstract

Let M be the three dimensional complete simply connected mahdblconstant
sectional curvature 0, 1 orl. Let £ be the manifold of all (unparametrized) com-
plete oriented geodesics &, endowed with its canonical pseudo-Riemannian metric
of signature (2, 2) and Kéhler structude A smooth curve inl determines a ruled
surface inM.

We characterize the ruled surfaces Mf associated with the magnetic geodesics
of £, that is, those curves in L satisfying V;6 = Jo. More precisely: a time-
like (space-like) magnetic geodesic determines the rulethse in M given by the
binormal vector field along a helix with positive (negatieysion. Null magnetic
geodesics describe cones, cylinders or, in the hyperbabe,calso cones with verti-
ces at infinity. This provides a relationship between thengedes of £ and M.

1. Introduction

Forx =0,1,—1, let M, be the three dimensional complete simply connected mani-
fold of constant sectional curvaturg that is, R3, S® and the hyperbolic spacH®.
Let £, be the manifold of all (unparametrized) complete orienteddgsics ofM,.
We may think of an element in £, as the equivalence class of unit speed geodesics
y: R — M, with imagec such that{y(s)} is a positive basis of,c for all s.

Let y be a complete unit speed geodesic f and let.7, be the space of all
Jacobi fields alongsr which are orthogonal tgs. There exists a well-defined canonic-
al isomorphism

d
1) T T = Tple, T,(3) = at (],
0

where y; is any variation ofy by unit speed geodesics associated witlisee [11]).
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A pseudo-Riemannian metric of signature (2, 2) can be defored, as follows
[12]: For X € Tj,1L¢, the square nornff X|| = (X, X) is well defined by

) IX] = (v x 3, 3),

where X = T, (J), the cross produck is induced by a fixed orientation d#l, and J’
denotes the covariant derivative df along y. Indeed, the right hand side of (2) is a
constant function. In the following, for any vectet, we will denote| X|| = (X, X) and
|X] = /]{X, X}|. Recall thatX is null, time-like or space-like if|X|| =0, ||X] <O
or || X]| > 0, respectively.

Let [y] € £, and letR, be the rotation inM, fixing y through an angle ofr/2.
This rotation induces an isometr@y of £, whose differential atqf] is a linear isom-
etry of Tr,1£. squaring to—id. This yields a complex structur@ on L.. With the
metric defined abovef, is Kahler. Recent generalizations of this fact can be found
in [1, 3].

A magnetic geodesie of L, is a curve satisfyingv;6 = Jé. These curves have
constant speed, so they will be null, time-like or space:lik

A smooth curve inZ, determines a ruled surface M,.. Forx = 0,—1, a generic
geodesic ofZ, describes a helicoid itM,. [7, 6, respectively]. Our purpose is to char-
acterize the ruled surfaces M, associated with the magnetic geodesics{pf For
v € TM,, y, denotes the geodesic &, with initial velocity v.

Theorem 1. A generic magnetic geodesic of £, describes the ruled surface
in M, given by the binormal vector field of a helix. More precisetyis a time-like
(space-lik¢ magnetic geodesic of, if and only if o has the form

) a(t) = [yewl

where B is the binormal vector field of a helix in.Mvith curvature k speedl/k and
positive (negativg torsion for some k> 0.

Now we study null magnetic geodesics 4h; = £(H?®). We recall some concepts
related with the hyperbolic space (see for instance [5]).

Two unit speed geodesigs ando of H? are said to be asymptotic if there exists a
positive constan€C such thatd(y(s),o(s)) < C, Vs> 0. Two unit vectorsy, w € T H?3
are said to be asymptotic if the corresponding geodesjcand y,, have this property.

A point at infinity for H® is an equivalence class of asymptotic geodesic&Iaf
The set of all points at infinity foiI® is denoted byH?>(cc) and has a canonical dif-
ferentiable structure diffeomorphic to the 2-sphere. Thaeivalence class represented
by a geodesicy is denoted byy(co), and the equivalence class represented by the
oppositely oriented geodesg— y(—s) is denoted byy (—o0).
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Given v € T'H?, the horosphere Hv) is the limit of metric sphere$S,} in H®
that pass through the foot point of as the center$p,} of {S,} converge toy,(oc0).
Below we present a more precise definition.

Let v*: £(H3) — H3(co) be the smooth functions given by*([y]) = y(&00)
and letD* be the distributions orC(H®) given by Dy, = Ker(dyr;;). These distribu-
tions are calledhe horospherical distributionsn £(H?S).

Cones with vertices at infinityLet x € H3(co) and let v, € TYH® such that
Yo, (£00) € X. Let t = v(t) be a curve inTH® such thatv(0) = +uv,, v(t) is asymp-
totic to v, for all t e R and the foot points ob(t) lie on a circle of geodesic curva-
ture £k (with k > 0) and speed /k in the horosphere determined h¥v,. Under
these conditions we say that the curve AGH®) given byt — [yi,] describes a
forward cone with vertex at Xfor +) or a backward cone with vertex at ffor —).
These cones can be better visualized in the upper half spadelmof H® (in partic-
ular H3(00) = {z = 0} U {oo}): Let y,E(s) = ((1/K) cost), £(1/K) sin(t), €*°). A curve
o in £L(H®) describes a cone with forward (respectively, backwardjexeat oo if it
is SI(2, C)-congruent tot — [y;7] (respectively, tot — [y,7]).

Theorem 2. A null magnetic geodesic of(H?®) describes inH® a cylinder a
cone with vertex at @ H® or a cone with vertex at infinity. More precisglf o is a
curve in £(H®), then
a) o is a null magnetic geodesic with(0) € Dj(o) if and only if o describes a cone
with vertex ato (0)(+o00) (forward for + and backward for—);

b) o is a null magnetic geodesic with(0) ¢ Df(o) if and only if o either has the
form

(4) o(t) = [yspl,

where B is the binormal vector field of a helix h H® with curvature k speedl/k
and zero torsion(in particular, h is contained in a totally geodesic surface S and B
is normal to S and parallel along)hor o has the form

(%) o) = [ruwl

wherev is a curve with geodesic curvature k and spdgH in TF}]HI?’, for some pe H?,
for certain k> 0.

Theorem 3. The ruled surfaces associated with null magnetic geodesics,
for k = 0, 1 are described in an analogous manner as in the previous #maogxcept
that casea) is empty. Besidedor x = 1, a null magnetic geodesic has simultaneously
the forms(4) and (5).
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2. Preliminaries

For the simultaneous analysis of the three cases0,1—-1, we consider the stand-
ard presentation oM, as a submanifold oR*. That is,R® = {(1, x) € R*| x € R3},
SB={xeR*|[x?=1} andH® = {x € R* | —x3 + x? + xZ + xZ = —1 andxo > 0}.

Let G, be the identity component of the isometry group Mf, that is, Gg =
SOy x R3, Gy = SQ, and G_; = Oy(1, 3). We consider the usual presentationGaf
as a subgroup oGl4(R). The groupG, acts onL, as follows:g-[y] =[go y]. This
action is transitive and smooth.

If we denote byg, the Lie algebra ofG, we have that

o={(2 %)

Let y, be the geodesic iM, with y,(0) = & and initial velocity e; € Tg, My,
where {, €1, &, €3} is the canonical basis @&*. For A, B € R¥?, let diagA, B) =

(62 OEf), where @ denotes the % 2 zero matrix. Then the isotropy subgroup ®f

at [yo] is

x € R3, Besog,}.

H, = {diag(R((t), B) |t € R, B € SO},

where

(6) Ro(t)z(l O)' Rl(t)=(COSt —sint), R_1(t):(cosht sinht).

t 1 sint  cost sinht cosht

Let j = ((1) _ol>. The Lie algebra ofH, is

b, = {diagf.(t), sj) | s, t € R},

wherer,(t) = (? *c’)‘t ) We may identify £, with G,/H, via the diffeomorphism

(@) ¢: Ge/He = Le, ¢(gH) = g~ [vol-

For x, y € R? we denoteZ(x, y) = ((ony) (_’”B’Z_y)t ) Let

p ={Z(X,y) € g, | X,y eR?,

which is an AdH,)-invariant complement of,.
For k =0, 1, we consider om, the inner product such that. L p,, [|Z(X, y)| =
det, y) and

Idiag€.(t), sl = —ts,
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(for « = 0, we have learnt of this inner product from [9, p.499]). @n we consider
the Killing form (h, L p, also holds). Fox = 0,1,—1, this inner product of, induces
on G, a bi-invariant metric. Thus, there exists an unique pseRigorannian metric on
L. ~G,/H, such thatr: G, — G, /H, is a pseudo-Riemannian submersion. kot
0, 1, this metric onZ, coincides with the given in (2), see Lemma 5 b). ko —1,
the metric on£_; associated with the Killing form is different from the one (8).
However, the magnetic geodesics of either metrictbn are the same. This follows
since the geodesics are the same (see [11]), so the LewaQiwhnections coincide.

Let us call A = diag(®, j), which is in the center ofy,. We have that ad is
orthogonal and gd= —id in p,. Hence, ag induces a complex structure @®,/H,.
A straightforward computation shows that it coincides, gian (7), with the complex
structure given in the introduction. With the metric abovel ahis complex structure,
L, is a Hermitian symmetric space.

As a direct application of a result by Adachi, Maeda and Udagaw2] (see also
[8] and Remark 1 in [4]) we have

Theorem 4. Leto be a magnetic geodesic of &H, with initial conditionso (0) =
H, and4(0) = X € p,. Theno (t) = w(expt(X + A)).

As we saw in (1),7,, is isomorphic toT, L. = p.. In the next Lemma we relate
p, and 7, explicitly, involving the matrix A.

Lemma 5. Let Z= Z(X,y) € p,.
a) The Jacobi field §s) = (d/dt)|oexpt(Z + A) - yo(s) in J,, is the unique one that
satisfies J0) = (0, 0,x)' and J(0) = (0, 0, y)'.
b) T,,(J)=d(¢ox)Z and its norm is|d(¢ o 7)Z| = det(, y).

Proof. For each¢, we consider the following parameterization yf

vo(8) =(1,5,0,0), if «=0;
¥o(s) = (coss, sins, 0, 0), if « =1

Yo(S) = (coshs, sinhs, 0, 0), if « =—1.

GivenZ = Z(x,y) € p,, the Jacobi field along, defined byJ(s) = (d/dt)|pexpt(Z +
A) - vo(S) belongs ta7,,, because for alb € R,

(J(3), Yo(8)) = ((Z + A)(o(9)), Yo(8)) = O,

since € + A)(y(9)) is orthogonal toey and e, while y,(s) has non zero components
only in these two directions.
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One verifies easily thaf(0) = (Z + A)(ep) = (0, 0,x)!. On the other hand,

. D] #
J(0) = s Oa . expt(Z + A) - yo(S)
=5 expt(Z + A)(er) = (Z + A)(er) = (0, 0,y)".
0

Besides,

d
TVO(J) = &

d
[eXpt(Z + A) - yol = | ¢(expt(Z + A)H,)
0 0
= E‘ d((expt(Z + A)) = dp odr Z,

where the last equality holds sindee b,. Finally, the norm (2) ofd(¢ o 7)Z equals

ld(¢ o 7)Z]| = (70(0) x J(0), J'(0)) = det, y)
and the assertions of b) are verified. [l

Let Z(x, y) € p, and leth = diag(R(t), B) € H,, whereB € SO, and
_ ) —ksc(t)
R0=(Z o)

is as in (6). Then Ad()Z(x, y) = Z(Bx, By), where

Xt = Ce(t)X —Sc(t)y,  ¥e = kS ()X + C(t)y.

We denote bye; and e, the vectors of the canonical basis R¥.

Lemma 6. Let Z(x,y) #0in p,.
a) If {x,y} is a linearly independent set d&?, then there exists k& H, such that
Ad(h)Z(x, y) = Z(ae, bey), with a> 0 and b# 0, for « = 0, £1.
b) If x =0,1and{x,y} is a linearly dependent set ®?, then there exists k& H,
such that eitherAd(h)Z(x, y) = Z(0, bey), with b # 0, or Ad(h)Z(x, y) = Z(aey, 0),
with a > 0. This is true fork = —1 if in addition |x| # |y|.
c) For x =1, there exists ke H, such thatAd(h)Z(e1, 0) = Z(0, ¢2).

Proof. For the proof of a), agx, y} is a linearly independent set, then for=
0, £1 there existd € R such that(x, y;) = 0. Indeed, for each, this is equivalent
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to the fact that the equation
Gz—Ct=0 if «x=0;

1 . .
E(Cl —Cy)sin(2) + czcos(2) =0 if k=1,
1
_E(Cl + ) sinh(2) +czcosh(2) =0 if «=-1

has a real solution, where; = (X, X), ¢c; = (y, y) andcz = (X, y). But the linear
independence ok andy determines the existence of the solution in each case. Then,
we can takeB € SO, such thatBx = ae;, with a > 0 and By; = bey, with b # 0.
Therefore the isometr = diag(R, (t), B) € H, satisfies Ad)Z(x, y) = Z(aes, bey).

For the proof of b), first we suppose that=0 or y = 0 (but not both zero since
Z(x,y) # 0). Let B € SO, such thatBx = ae; with a > 0, if x # 0, and in the
case thaty # 0, let B € SO, such thatBy = bey, with b # 0. Then we can take
h = diag(, B) € H,.

Now, let x # 0 andy # 0. Sox = Ay or y = Ax, with A # 0. We suppose
that y = Ax (for x = Ay the argument is similar). In the cases= 0, 1 there exists
t € R such thatx; = 0. In fact, from the hypothesis and some computati¢rnsR is
obtained by solving

1-x=0, if «=0 and cogt—Arsint=0, if «=1.

Thus, takingB € SO, such thatBy; = be, (with b # 0 asy; # 0), we have that
h = diag(R,(t), B) € H, satisfies Ad)Z(x, y) = Z(0, bey).

For «k = —1, as in the cases = 0, 1, we findt € R such that eithex; = 0 or
y; = 0 by solving

cosht — A sinht =0, and - sinht + A cosht =0,

respectively. But these equations have a solution if angt dnl. # +1. That is, if and
only if |x| # |y|. Hence, takingB € SO, such that eitheBy; = be, or Bx = ae; (with
a > 0; here again we have that # 0), as appropriate. Them= diag(R_1(t),B) € H_1
is as desired in this case.

For part c), we observe th&t = diag(R.(z/2), B) € Hy, whereB € SO, takese;
to e, satisfies Adf)Z(e1, 0) = Z(0, €,). []

REMARK. The previous lemma corresponds, geometrically, with #w 6f find-
ing s € R at which the Jacobi field associated witt{x, y) (given by Lemma 5) and
its covariant derivative are orthogonal.
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Recall that ifh is a regular curve irM, of constant speed, then the Frenet frame
of his

h(t)
()’

(8) T(t) = éﬁ(t), N(t) = B(t) = T(t) x N(t)

(here the prime denotes the covariant derivative albjygand its curvature and torsion
are given by

© K = SO 0 =2 (B0, NO).

For eachg € G, we have thag is an isometry ofZ, and preserves the Hermitian
structure. Henceg takes magnetic geodesics to magnetic geodesics.

3. Time- and space-like magnetic geodesics

Proof of Theorem 1. Le¥ € p, be the initial velocity ofo, with || Z|| # 0. First,
we consider the casg = Z(ae, bey), with a > 0 andb # 0.

For eacht € R, let «(t) = expt(Z + A). By Theorem 4 and the diffeomorphism
¢ in (7), we know thato (t) = «(t) - [yo], that is, o (t) = [a(t) - o]

Let h be the curve inM, given by h(t) = «(t)(e). As « is a one-parameter sub-
group of isometries oM,, we have thah is a curve with constant curvature and tor-
sion, thush is a helix in M,.

Let us see that (t) = [ysy], where B(t) is the binormal field ofh. For eacht €
R, the initial velocity of the geodesia(t) -y, is d(c(t))(e1), henceo (t) = [Vaem)e)]-
Then, we have to verify thaB(t) = d(«(t))(e1), for all t € R. Sincea(t) is an isometry
that preserves the helix and takes the Frenet frame=a0 to the Frenet frame &t
is suffices to show thaB(0) = e;.

By the usual identifications, since(t) is a linear transformation, we can write

d(a(t))(er) = a(t)(er), so
h(t) = «()((Z + A)ey) and R'(t) = [«()(Z + Ae)]",
where T denotes the tangent projection. Since
h(0) = (Z + A)ey = ae,

N'(0) = (Z + A?eo]” = [~«a’eo +aes]” = aes

and«(t) is an isometry, we havéh(t)] = a = |'(t)|. By the computation before and
(8) we obtain

B(0) = a—lzﬁ(O) x W (0) = ey.
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ConsequentlyB(t) = «(t)(er). Then B/(t) = [«(t)((Z + A)e1)]” and B'(0) = bes.
Besides, using (8) and the previous computations, it faltlat N(0) = e;. Therefore,
by (9) we have that the curvature and torsionhoére equal to

(10) k==, 7=—.

The assertion regarding the sign of the torsion is immediaim Lemma 5 b) and
(10). Thus, the theorem is proved in this particular case.

Now, let o be a magnetic geodesic with(0) = [y] and initial velocity with non
zero norm. Sincés, acts transitively onZ,, there is an isometrg such thatg-[y] =
[¥o]- So, the magnetic geodesg- o also has initial velocity with non zero norm and
g-o(0) = [y,]. By Lemma 5 b), ifd(¢ o w)Z(x, y) is the initial velocity ofg- o,
we have that the vector, y} are linearly independent. Then, by Lemma 6 a), there
existsh € H, such that AdQ)Z(x, y) = Z(aey, bey), with a > 0 andb # 0. Since
((hog)-0)(0)=d(¢ om)(Ad(h)Z(X, V)), the curve ko g)-o is a magnetic geodesic
of the type studied above. Therefore,has the form (3).

Conversely, leth be a helix inM, with curvaturek > 0, non zero torsiorr and
speed 1k. Let {T, B, N} be the Frenet frame df. As M, is a simply connected
manifold of constant curvature, we have that there existsametryg of M, preserv-
ing the orientation such thaj(h(0)) = e and its differential ath(0) takesB(0) to e,
T(0) to e, and N(0) to es.

Leta=1/k andb = —7/k. Let Z = Z(ae;, bey) € p,. We consider, for each
t e R, a(t) = expt(Z + A). According to computations from the first part of the proof,
both helices have initial positiosy, curvaturek, torsion t, speed 1k and the same
Frenet frame at = 0. Hence ¢ o h)(t) = «a(t)e. So, if we call B the binormal field
of goh, we have thatB(t) = d(«(t))e, for all t. Finally, since the curveygp] is a
magnetic geodesic i, and

lvep] = [Vdgflé(t)] = 971 : [Vé(t)].
we obtain that fg¢)] is a magnetic geodesic. []

4. Null magnetic geodesics

We deal first with the hyperbolic case. We use the notatioergin the introduc-
tion and we recall from [5] certain properties of horospkeaad related concepts. To
simplify the notation we omit the subindex= —1.

Let y be a geodesic ofI®. Then, for eachp € H® there exists a unique unit
speed geodesie of H® such thatx(0) = p and« is asymptotic toy. Let v € T HS.

If pis any point ofH3, thenv(p) denotes the unique unit tangent vectorpathat is
asymptotic tov. The Busemann functiorf, : H® — R is defined by

fu(p) = _lim_d(p, 7(s) -
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and satisfies graff,) = —v(p). The horospheredetermined byv is given by
H(v) ={qeM] f,(q) =0}
The Jacobi vector fields orthogonal g have the form
(11) J(s) = €U (s) + €°V(9),

whereU andV are parallel vector fields along, and orthogonal to/,.
A Jacobi vector fieldY along a geodesi¢z of H? is said to bestable (unstablg
if there exists a constart > 0 such that

[Y(S)<c Vs=>0 (Vs=<0).

In what follows we shall denote by the canonical projection frorfi H® onto H?.
We recall that in the introduction we have defined the smoathsy*: L£(HS®) — H3(co)
by ¥*[y] = y(+o0) and the distributionD* in L(H?) given by D, = Ker(dy ).
We need to relate the distributior3* with distributionsé* and £* on G and T'HS,
respectively.

Let £* be the left invariant distribution o defined atl € G by

EF ={(Z(u, Fu) € p | U € R?}.

As the canonical action o0& on TYHS? is transitive, the projectiop: G — T1H? given
by p(g) = dgs,€1 is a submersion. Since givane TTH? there existsg € G such that
p(g) = v, we define:

E¥(v) = (dp E¥)(P(Q)) = dpy(EQ)-

We have that€* determines a well defined distribution an'H?®, which is called the

horospherical distributionon T*HS. This distribution has the following property: if
t — v(t) is a curve inT'HS® tangent to the distributio&®, thenz (v(t)) is in the horo-

sphereH (+v(0)).

Lemma 7. Let Ze &. For each te R, let ,(s) = expt(Z + A)- yo(£s). Then
the geodesicg,™ are asymptotic to each other for alld R.

Proof. LetJ be the Jacobi vector field associated with the variation lydgsics
t — y%. By Lemma 5 a),J(0) = —J'(0). Hence, by (11) we have thd(s) = e SU(s),
whereU is a parallel vector field along, orthogonal toy,. Thus, J is a stable vector
field, that is, there exists > 0 such that/J(s)] <c Vs> 0.

We have to show that given, t; € R with ty < t;, there existsN > 0 such that

d(Vtoi(S)a thi(s)) =N Vs=0.
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For fixeds,

d
— ¥ (9)] dt.

t
d(rE(s), 7(9)) < length(o, ti] 5 t = 17 (s)) = /t =

For eacht € R, let J(s) = (d/dt)y,*(s). We observe thafy ,(s) = d expt’Z) J(s) for
all t, t'. Since exp(Z) is an isometry, we haved(s)| = |J(s)|. Therefore,

tl t1
|Jt(s)|dt=/ 13(8)] dt < oft; — to)
Io t0

for all s> 0. Then, we may také\ = c(t; —tp) > O. []

We consider the projectiop: TH® — L(H3), p(v) = [y,]. We call D* the dis-
tribution on £L(H?®) p-related with£* (well defined). More specifically, giveny|]
L(H®) andv € T*H?® such thatp(v) = [y],

DH(y]) = dp.&;.

Proposition 8. LetD* andD* be the distributions or(H?) defined above. Then
D* = D*,

Proof. Since D* and D* are G-invariant, it is enough to showD{; =

dPey,e) (&g ey) (We observe thap(l) = (e, €1) and p(eo, €1) = [1o))-

Let Z € &F. We take the curve inC(H®) given by a(t) = exptZ - [y,]. As
a(t) = p o p(exptZ), we have thatx(0) = [y,] and &(0) = d(p o p);Z. That is,
@(0) € dpey,e)(Eg ) Besides,

(a2 8] exptz o) = 5| expt(z + ) ye(o)
0 0

since both Jacobi fields have the same initial conditionsxddeLemma 7 applies to the
geodesics;*(s) = exptZ - yo(£s). Thus,¥* o« is constant. Thendi*)(,,)(¢(0)) = 0,
that is,&(0) € Dy,

On the other hand, lgt: TIH? — L(H?), ¢(v) =[], be the submanifold whose
image L, (H®) consists of all the oriented geodesics passing thraggBesidesH (o)
is a manifold with the differentiable structure (well defi)esuch thatFe,: T;H3 —
H (00) given by Fg (v) = y,(c0) is a diffeomorphism. Then, sinofzﬂceo(ﬂs) op = Fe,
we have thatdy ), is surjective. Now, ¢y~);,,) is also surjective because™ is the
composition ofyy* with the diffeomorphism ofZ(H?®) assigning ¥ %] to [y]. Therefore,
dim D ; = dim Di | and equality follows. O
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The word cylinder in the statement of Theorem 2 refers to a ruled surface deter-
mined by a parallel vector field along a curgeof constant geodesic curvatukecon-
tained in a totally geodesic surface ih, (and normal to it), as explained. Feor= —1,
this ruled surface is diffeomorphic t8' x R if |k| > 1; otherwise it is diffeomorphic
to a plane.

Proof of Theorem 2 a). By Lemma 5 b), we have that every elemérﬂ?[ﬂ;] is
null. As G acts transitively onZ(H?®) and by theG-invariance of the horospherical
distributions, we may suppose without loss of generaligt #(0) = [y,], hences (0) €
Dy~ By Proposition 8, there exist& € EF such thats (0) = (dp)ey,en(dP)i Z. Thus,
by Theorem 45 (t) = [expt(Z + A) - yol.

We assume thaZ € £]". Let us show that describes a forward cone with vertex
at yo(+00). In a similar way, ifZ € é_‘l‘, theno describes a backward cone with vertex
at yo(—0o0). _

We consider the geodesigg(s) = expt(Z + A) - yo(s) of H3. As Z € &, by
Lemma 7, we have that the geodesjgsare asymptotic to each other for all Hence,
z(t) = y4(0) is a curve inT'H?® of asymptotic vectors t@;.

Let c(t) = 7 (z(t)) = expt(Z + A)(ey). In order to see that(t) € H(e) for all t,
we observe that

d
(13) g e () = (dfe)eE(t) = (gradyy(fe,). (1))

Since grag(f,) = —v(p) we have that

grad(fe) = —z(t) = —d(expt(Z + A))er.

On the other hand,
c(t) = d(expt(Z + A))(Z + A)ep.

Since exp(Z + A) is an isometry and observing that ¢ A)e; ande; are perpendicular
(Z € &), it follows that the expression in (13) is equal-tde;,(Z + A)(ep)) = 0. Then,
fe (C(t)) = fe (ep) = O for all t, that is,c(t) € H(ep) for all t.

Now, asc is the orbit throughey, of a one-parameter subgroup of isometries of
G preservingH(ey), its geodesic curvature and speed are constanZ # Z(u, —u)
for certain 0# u € R?, we obtain that the speed afis |u|. For eachv € T1H3
we consider onH (v) the orientation given by- grad f,. The geodesic curvature af
is then

_ (—grad, (fe,), ¢(0)x ¢'(0)) 1

k= -t
uf? |u

since¢(0) = (Z + A)gy and ¢'(0) = ((Z + A)%ep)". As for eachv € THS, H(v), with
the induced metric ofI®, is isometric toR?, we have that(t) runs along a circle on
H(e1) of geodesic curvatur& = 1/|u| > 0 and speed /K = |ul.
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Besides,o (t) = [y4»]. Thus we have that all conditions are satisfied in order to
assert that describes a forward cone with vertex jaf(+oo).

Conversely, letr be a curve inC(H?®) that describes a forward cone with vertex
at infinity. As G acts transitively on the positively oriented frame bundied also
each element ofs takes horospheres to horospheres, preserving their ati@mt we
may suppose that(t) = [y,q)], wherev(t) is a curve inT H?® of asymptotic vectors to
v(0) = e, andc(t) = 7 (v(t)) is a curve of geodesic curvatukeand speed /K in H(e;)
with ¢(0) = (1/K)ey, for somek > 0. Let Z = Z((1/k)e1, —(1/K)eq) € 5’,*. We define

C(t) = expt(Z + A)(ep) and u(t) = d(expt(Z + A))(e).

We showed above tha{t) is a curve of geodesic curvatukeand speed /K in H(e).
Moreover, ¢(0) = ey and the initial velocity ofc is (1/k)e,. So, we obtain that = c.
This implies, together with the identitiesov =C andz ov =c¢, thatm ov = 7 o v.

According to the first part of the proof; and v are curves of asymptotic vectors
to e;. Hence,—v(t) = grad,(fe,) = —v(t). Therefore, {5¢)] = [vu], Which is a null
magnetic geodesic with initial velocity in the horosphatidistribution since jf,¢)] =
[expt(Z + A) - yol.

Proof of Theorem 2 b). We suppose first thais a null magnetic geodesic such
that o(0) = [y,] and 6(0) = d(¢ o 7)Z(aey, 0), with a > 0. The expression (4) and the
relation between the speed and curvaturehofre obtained as in the prove of The-
orem 1. By (10) we know that the torsion bfis t = —b/a = 0 (sinceb = 0). Thus
h is contained in a totally geodesic surfaSeof H® and B is normal toS.

Now, we suppose thai(0) = d(¢ o 7)Z, where Z = Z(0, be) with b # 0. By
Theorem 4 we have that(t) = [«(t) - yo], where «(t) = expt(Z + A). SinceZ + A
is in the Lie algebra of the isotropy subgroup @fat ey € H3, we get thatx(t) fixes
e. Moreover, ifv is the curve inTIH?® given by v(t) = d(a(t))e, then

a(t) = [a®) - vl = [ruw),

since the initial velocity of the geodesialt) - y, is v(t), for eacht € R.
Furthermore, a® is the orbit throughe; of a one-parameter subgroup bf (the
canonical differential action oG on TG}J]HI3), thenv has constant speed and constant

geodesic curvature ifig H3 =~ S2. Easy computations yield
9(0) = (0, 0,b)' and #(0) = (—b?, —b, O).
So, the speed of is |b| and its geodesic curvature is

o _ (0,50 x5©0) _ 1
b bl
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(we consider the orientation of the sphere given by the uaitmal field pointing out-
wards). Thusp is a curve inTé)]HI3 of geodesic curvatur& > 0 and speed /K. Con-
sequently,c has the form (5).

Now, let o be a null magnetic geodesic such tladD) = [y] and 6 (0) ¢ D[ﬁ;]. As
G acts transitively onC(H?®) and by theG-invariance of the horospherical distributions,
we may suppose that(0) = [y,] and 6(0) ¢ D[ﬁ;ol. Let Z = Z(x, y) € p such that
6(0) =d(¢ om)Z. By Lemma 5 b), as the norm of the initial velocity ef is zero,
we have thatx and y are linearly dependent, and sindép o n)Z ¢ D[ﬂ;ol, we also
have |x| # |y|. Now, the isometries in Lemma 6 b) take to magnetic geodesics of
the particular types studied above. Therefarehas the form (4) or has the form (5),
as desired.

Conversely, given a helik in H® with curvaturek, speed 1k and torsiont = 0,
the proof that the expression (4) is a magnetic geodesicestichl to the proof of
the converse of Theorem 1. Ashas zero torsion, the initial velocity of the magnetic
geodesic in (4) is not in the distributior3*.

Let v be a curve inTpl]HI3 with geodesic curvatur& > 0 and speed /K. Let g
be the isometry ofH® preserving the orientation such thatp) = e, dg(v(0)) = e,
and dg(v(0)) = bes, for certainb > 0. Hence,g- v is a curve inT{H? having the
same geodesic curvature and the same spead amd alsob = 1/k. As we showed
above,v is a curve inTé)]HI?’ with 9(0) = g-v(0) and with the same initial velocity and
geodesic curvature tha- v. By uniqueness, we have that= g-v. To complete the
proof we observe tha - [y.] = [yg] = [vuo] O

Proof of Theorem 3. Lemma 6 b) implies that the analogue ofofidmra 2 a) is
empty for the cases = 0, 1. The proof of the fact that every cureein L, is a
null magnetic geodesic if and only & has the form (4) or (5) is similar to that of
Theorem 2 b).

We check the last statement of the theorem. Without lost oEgaity, we consider
only null magnetic geodesics passing through] [at t = 0. We observe that if, in
particular,o is a magnetic geodesic with initial velocity(¢ o w)Z(ae1, 0), with a >
0, (that is,o has the form (4)), then by Lemma 6 c) there existg& H; such that
Ad(h)Z(ae1,0) = Z(0,a¢3). Hence,h-o is a null magnetic geodesic with initial velocity
d(¢ o 1)Z(0, ac,), and then it has the form (5). Se, also has this form. O

References

[1] D.V. Alekseevsky, B. Guilfoyle and W. Klingenberg®n the geometry of spaces of oriented
geodesicsAnn. Global Anal. Geom40 (2011), 389—409.

[2] T. Adachi, S. Maeda and S. Udagawdimpleness and closedness of circles in compact Hermit-
ian symmetric spacedsukuba J. Math24 (2000), 1-13.



(3]
(4]
(5]
(6]
(7]
(8]

Bl
[10]
[11]

(12]

THE MAGNETIC FLOW

763

H. Anciaux: Spaces of geodesics of pseudo-riemannian space forms anthlhoongruences

of hypersurfacesto appear in Trans. Amer. Math. Soc.

A.V. Bolsinov and B. Jovanogi Magnetic flows on homogeneous spac€smment. Math.

Helv. 83 (2008), 679—700.

P.B. Eberlein: Geometry of Nonpositively Curved Manis| Chicago Lectures in Mathematics,

Univ. Chicago Press, Chicago, IL, 1996.

N. Georgiou and B. GuilfoyleOn the space of oriented geodesics of hypert®space Rocky

Mountain J. Math40 (2010), 1183-1219.

B. Guilfoyle and W. Klingenberg:An indefinite Kahler metric on the space of oriented lines

J. London Math. Soc. (22 (2005), 497—-509.

O. Ikawa: Motion of charged particles in homogeneous spadedProceedings of the Seventh
International Workshop on Differential Geometry (KMS Sggession on Geometry) (Taegu,

2002), Kyungpook Nat. Univ., Taegu, 2003, 29-40.

M. Kapovich and J.J. Millson:The symplectic geometry of polygons in Euclidean spdce

Differential Geom.44 (1996), 479-513.

M. Salvai: On the geometry of the space of oriented lines of Euclide@tespManuscripta

Math. 118 (2005), 181-189.

M. Salvai: On the geometry of the space of oriented lines of the hyperbphce Glasg. Math.

J. 49 (2007), 357-366.

M. Salvai: Global smooth fibrations dR® by oriented linesBull. Lond. Math. Soc41 (2009),

155-163.

Yamile Godoy

FaMAF - CIEM

Ciudad Universitaria

5000 Coérdoba

Argentina

e-mail: ygodoy@famaf.unc.edu.ar

Marcos Salvai

FaMAF - CIEM

Ciudad Universitaria

5000 Cérdoba

Argentina

e-mail: salvai@famaf.unc.edu.ar



