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Abstract
Let M be the three dimensional complete simply connected manifold of constant

sectional curvature 0, 1 or�1. Let L be the manifold of all (unparametrized) com-
plete oriented geodesics ofM , endowed with its canonical pseudo-Riemannian metric
of signature (2, 2) and Kähler structureJ. A smooth curve inL determines a ruled
surface inM .

We characterize the ruled surfaces ofM associated with the magnetic geodesics
of L, that is, those curves� in L satisfyingr

P�

P� D J P� . More precisely: a time-
like (space-like) magnetic geodesic determines the ruled surface in M given by the
binormal vector field along a helix with positive (negative)torsion. Null magnetic
geodesics describe cones, cylinders or, in the hyperbolic case, also cones with verti-
ces at infinity. This provides a relationship between the geometries ofL and M .

1. Introduction

For � D 0,1,�1, let M
�

be the three dimensional complete simply connected mani-
fold of constant sectional curvature�, that is, R3, S3 and the hyperbolic spaceH3.
Let L

�

be the manifold of all (unparametrized) complete oriented geodesics ofM
�

.
We may think of an elementc in L

�

as the equivalence class of unit speed geodesics

 W R! M

�

with imagec such that{P
 (s)} is a positive basis ofT

 (s)c for all s.

Let 
 be a complete unit speed geodesic ofM
�

and letJ



be the space of all
Jacobi fields along
 which are orthogonal to
 . There exists a well-defined canonic-
al isomorphism

(1) T



W J



! T[
 ]L� , T



(J) D
d

dt

�

�

�

�

0

[
t ],

where
t is any variation of
 by unit speed geodesics associated withJ (see [11]).
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A pseudo-Riemannian metric of signature (2, 2) can be definedon L
�

as follows
[12]: For X 2 T[
 ]L� , the square normkXk D hX, Xi is well defined by

(2) kXk D h P
 � J, J 0i,

where X D T



(J), the cross product� is induced by a fixed orientation ofM
�

and J 0

denotes the covariant derivative ofJ along 
 . Indeed, the right hand side of (2) is a
constant function. In the following, for any vectorX, we will denotekXk D hX,Xi and
jXj D

p

jhX, Xij. Recall thatX is null, time-like or space-like ifkXk D 0, kXk < 0
or kXk > 0, respectively.

Let [
 ] 2 L
�

and let R



be the rotation inM
�

fixing 
 through an angle of�=2.

This rotation induces an isometryQR



of L
�

whose differential at [
 ] is a linear isom-
etry of T[
 ]L� squaring to� id. This yields a complex structureJ on L

�

. With the
metric defined above,L

�

is Kähler. Recent generalizations of this fact can be found
in [1, 3].

A magnetic geodesic� of L
�

is a curve satisfyingr
P�

P� D J P� . These curves have
constant speed, so they will be null, time-like or space-like.

A smooth curve inL
�

determines a ruled surface inM
�

. For � D 0,�1, a generic
geodesic ofL

�

describes a helicoid inM
�

[7, 6, respectively]. Our purpose is to char-
acterize the ruled surfaces inM

�

associated with the magnetic geodesics ofL
�

. For
v 2 T M

�

, 

v

denotes the geodesic ofM
�

with initial velocity v.

Theorem 1. A generic magnetic geodesic� of L
�

describes the ruled surface
in M

�

given by the binormal vector field of a helix. More precisely, � is a time-like
(space-like) magnetic geodesic ofL

�

if and only if � has the form

(3) � (t) D [
B(t)],

where B is the binormal vector field of a helix in M
�

with curvature k, speed1=k and
positive (negative) torsion, for some k> 0.

Now we study null magnetic geodesics inL
�1 D L(H3). We recall some concepts

related with the hyperbolic space (see for instance [5]).
Two unit speed geodesics
 and� of H3 are said to be asymptotic if there exists a

positive constantC such thatd(
 (s),� (s)) � C, 8s� 0. Two unit vectorsv,w 2 T1
H

3

are said to be asymptotic if the corresponding geodesics


v

and 

w

have this property.
A point at infinity for H3 is an equivalence class of asymptotic geodesics ofH

3.
The set of all points at infinity forH3 is denoted byH3(1) and has a canonical dif-
ferentiable structure diffeomorphic to the 2-sphere. The equivalence class represented
by a geodesic
 is denoted by
 (1), and the equivalence class represented by the
oppositely oriented geodesics 7! 
 (�s) is denoted by
 (�1).
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Given v 2 T1
H

3, the horosphere H(v) is the limit of metric spheres{Sn} in H

3

that pass through the foot point ofv as the centers{pn} of {Sn} converge to

v

(1).
Below we present a more precise definition.

Let  �

W L(H3) ! H

3(1) be the smooth functions given by �([
 ]) D 
 (�1)
and letD� be the distributions onL(H3) given byD�

[
 ] D Ker(d �

[
 ]). These distribu-

tions are calledthe horospherical distributionson L(H3).
Cones with vertices at infinity: Let x 2 H

3(1) and let vo 2 T1
H

3 such that



vo(�1) 2 x. Let t 7! v(t) be a curve inT1
H

3 such thatv(0)D �vo, v(t) is asymp-
totic to �vo for all t 2 R and the foot points ofv(t) lie on a circle of geodesic curva-
ture �k (with k > 0) and speed 1=k in the horosphere determined by�vo. Under
these conditions we say that the curve inL(H3) given by t 7! [


�v(t)] describes a
forward cone with vertex at x( for C) or a backward cone with vertex at x( for �).
These cones can be better visualized in the upper half space model of H3 (in partic-
ular H3(1) D {zD 0}[ {1}): Let 
�t (s) D ((1=k) cos(t),�(1=k) sin(t), e�s). A curve
� in L(H3) describes a cone with forward (respectively, backward) vertex at1 if it
is Sl(2,C)-congruent tot 7! [
Ct ] (respectively, tot 7! [
 �t ]).

Theorem 2. A null magnetic geodesic ofL(H3) describes inH3 a cylinder, a
cone with vertex at p2 H3 or a cone with vertex at infinity. More precisely, if � is a
curve inL(H3), then
a) � is a null magnetic geodesic withP� (0) 2 D�

� (0) if and only if � describes a cone
with vertex at� (0)(�1) ( forward for C and backward for�);
b) � is a null magnetic geodesic withP� (0) � D�

� (0) if and only if � either has the
form

(4) � (t) D [
B(t)],

where B is the binormal vector field of a helix h inH3 with curvature k, speed1=k
and zero torsion(in particular, h is contained in a totally geodesic surface S and B
is normal to S and parallel along h), or � has the form

(5) � (t) D [

v(t)],

wherev is a curve with geodesic curvature k and speed1=k in T1
pH

3, for some p2H3,
for certain k> 0.

Theorem 3. The ruled surfaces associated with null magnetic geodesicsof L
�

for � D 0, 1 are described in an analogous manner as in the previous theorem, except
that casea) is empty. Besides, for � D 1, a null magnetic geodesic has simultaneously
the forms(4) and (5).
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2. Preliminaries

For the simultaneous analysis of the three cases� D 0,1,�1, we consider the stand-
ard presentation ofM

�

as a submanifold ofR4. That is,R3
D {(1, x) 2 R4

j x 2 R3},
S

3
D {x 2 R4

j jxj2 D 1} andH3
D {x 2 R4

j �x2
0 C x2

1 C x2
2 C x2

3 D �1 and x0 > 0}.
Let G

�

be the identity component of the isometry group ofM
�

, that is, G0 D

SO3 Ë R
3, G1 D SO4 and G

�1 D Oo(1, 3). We consider the usual presentation ofG0

as a subgroup ofGl4(R). The groupG
�

acts onL
�

as follows: g � [
 ] D [g Æ 
 ]. This
action is transitive and smooth.

If we denote byg
�

the Lie algebra ofG
�

we have that

g
�

D

��

0 ��xt

x B

�

x 2 R3, B 2 so3

�

.

Let 
o be the geodesic inM
�

with 
o(0) D e0 and initial velocity e1 2 Te0 M
�

,
where{e0, e1, e2, e3} is the canonical basis ofR4. For A, B 2 R

2�2, let diag(A, B) D
�

A 02
02 B

�

, where 02 denotes the 2� 2 zero matrix. Then the isotropy subgroup ofG
�

at [
o] is

H
�

D {diag(R
�

(t), B) j t 2 R, B 2 SO2},

where

(6) R0(t) D

�

1 0
t 1

�

, R1(t) D

�

cost � sin t
sin t cost

�

, R
�1(t) D

�

cosht sinht
sinht cosht

�

.

Let j D
�

0 �1
1 0

�

. The Lie algebra ofH
�

is

h
�

D {diag(r
�

(t), s j) j s, t 2 R},

wherer
�

(t) D
�

0 ��t
t 0

�

. We may identifyL
�

with G
�

=H
�

via the diffeomorphism

(7) � W G
�

=H
�

! L
�

, �(gH
�

) D g � [
o].

For x, y 2 R2 we denoteZ(x, y) D
�

02 (��x, �y)t

(x, y) 02

�

. Let

p
�

D {Z(x, y) 2 g
�

j x, y 2 R2},

which is an Ad(H
�

)-invariant complement ofh
�

.
For � D 0, 1, we consider ong

�

the inner product such thath
�

? p
�

, kZ(x, y)k D
det(x, y) and

kdiag(r
�

(t), s j)k D �ts,



THE MAGNETIC FLOW 753

(for � D 0, we have learnt of this inner product from [9, p. 499]). Ong
�1 we consider

the Killing form (h
�

? p
�

also holds). For� D 0,1,�1, this inner product ong
�

induces
on G

�

a bi-invariant metric. Thus, there exists an unique pseudo-Riemannian metric on
L
�

' G
�

=H
�

such that� W G
�

! G
�

=H
�

is a pseudo-Riemannian submersion. For� D

0, 1, this metric onL
�

coincides with the given in (2), see Lemma 5 b). For� D �1,
the metric onL

�1 associated with the Killing form is different from the one in(2).
However, the magnetic geodesics of either metric onL

�1 are the same. This follows
since the geodesics are the same (see [11]), so the Levi-Civita connections coincide.

Let us call A D diag(02, j ), which is in the center ofh
�

. We have that adA is
orthogonal and ad2A D � id in p

�

. Hence, adA induces a complex structure onG
�

=H
�

.
A straightforward computation shows that it coincides, via� in (7), with the complex
structure given in the introduction. With the metric above and this complex structure,
L
�

is a Hermitian symmetric space.
As a direct application of a result by Adachi, Maeda and Udagawa in [2] (see also

[8] and Remark 1 in [4]) we have

Theorem 4. Let� be a magnetic geodesic of G
�

=H
�

with initial conditions� (0)D
H
�

and P� (0)D X 2 p
�

. Then� (t) D �(expt(X C A)).

As we saw in (1),J

o is isomorphic toT[
o]L� � p

�

. In the next Lemma we relate
p
�

andJ

o explicitly, involving the matrixA.

Lemma 5. Let ZD Z(x, y) 2 p
�

.
a) The Jacobi field J(s) D (d=dt)j0 expt(Z C A) � 
o(s) in J


o is the unique one that
satisfies J(0)D (0, 0,x)t and J0(0)D (0, 0, y)t .
b) T


o(J) D d(� Æ �)Z and its norm iskd(� Æ �)Zk D det(x, y).

Proof. For each�, we consider the following parameterization of
o:


o(s) D (1, s, 0, 0), if � D 0I


o(s) D (coss, sins, 0, 0), if � D 1I


o(s) D (coshs, sinhs, 0, 0), if � D �1.

Given ZD Z(x, y)2p
�

, the Jacobi field along
o defined byJ(s)D (d=dt)j0 expt(ZC
A) � 
o(s) belongs toJ


o, because for alls2R,

hJ(s), P
o(s)i D h(Z C A)(
o(s)), P
o(s)i D 0,

since (Z C A)(
o(s)) is orthogonal toe0 and e1, while P
o(s) has non zero components
only in these two directions.
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One verifies easily thatJ(0)D (Z C A)(e0) D (0, 0,x)t . On the other hand,

J 0(0)D
D

�s

�

�

�

�

0

�

�t

�

�

�

�

0

expt(Z C A) � 
o(s)

D

D

�t

�

�

�

�

0

expt(Z C A)(e1) D (Z C A)(e1) D (0, 0, y)t .

Besides,

T

o(J) D

d

dt

�

�

�

�

0

[exp t(Z C A) � 
o] D
d

dt

�

�

�

�

0

�(expt(Z C A)H
�

)

D

d

dt

�

�

�

�

0

�(�(expt(Z C A))) D d� Æ d�Z,

where the last equality holds sinceA 2 h
�

. Finally, the norm (2) ofd(� Æ �)Z equals

kd(� Æ �)Zk D h P
o(0)� J(0), J 0(0)i D det(x, y)

and the assertions of b) are verified.

Let Z(x, y) 2 p
�

and leth D diag(R
�

(t), B) 2 H
�

, where B 2 SO2 and

R
�

(t) D

�

c
�

(t) ��s
�

(t)
s
�

(t) c
�

(t)

�

is as in (6). Then Ad(h)Z(x, y) D Z(Bxt , Byt ), where

xt D c
�

(t)x � s
�

(t)y, yt D �s
�

(t)x C c
�

(t)y.

We denote by�1 and �2 the vectors of the canonical basis ofR2.

Lemma 6. Let Z(x, y) ¤ 0 in p
�

.
a) If {x, y} is a linearly independent set ofR2, then there exists h2 H

�

such that
Ad(h)Z(x, y) D Z(a�1, b�2), with a> 0 and b¤ 0, for � D 0,�1.
b) If � D 0, 1 and {x, y} is a linearly dependent set ofR2, then there exists h2 H

�

such that eitherAd(h)Z(x, y) D Z(0, b�2), with b¤ 0, or Ad(h)Z(x, y) D Z(a�1, 0),
with a> 0. This is true for� D �1 if in addition jxj ¤ jyj.
c) For � D 1, there exists h2 H

�

such thatAd(h)Z(�1, 0)D Z(0, �2).

Proof. For the proof of a), as{x, y} is a linearly independent set, then for� D
0,�1 there existst 2 R such thathxt , yti D 0. Indeed, for each�, this is equivalent
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to the fact that the equation

c3 � c2t D 0 if � D 0I

1

2
(c1 � c2) sin(2t)C c3 cos(2t) D 0 if � D 1I

�

1

2
(c1 C c2) sinh(2t)C c3 cosh(2t) D 0 if � D �1

has a real solution, wherec1 D hx, xi, c2 D hy, yi and c3 D hx, yi. But the linear
independence ofx and y determines the existence of the solution in each case. Then,
we can takeB 2 SO2 such thatBxt D a�1, with a > 0 and Byt D b�2, with b ¤ 0.
Therefore the isometryh D diag(R

�

(t), B) 2 H
�

satisfies Ad(h)Z(x, y) D Z(a�1, b�2).
For the proof of b), first we suppose thatx D 0 or y D 0 (but not both zero since

Z(x, y) ¤ 0). Let B 2 SO2 such thatBx D a�1 with a > 0, if x ¤ 0, and in the
case thaty ¤ 0, let B 2 SO2 such thatBy D b�2, with b ¤ 0. Then we can take
h D diag(I , B) 2 H

�

.
Now, let x ¤ 0 and y ¤ 0. So x D �y or y D �x, with � ¤ 0. We suppose

that y D �x (for x D �y the argument is similar). In the cases� D 0, 1 there exists
t 2 R such thatxt D 0. In fact, from the hypothesis and some computations,t 2 R is
obtained by solving

1� �t D 0, if � D 0 and cost � � sin t D 0, if � D 1.

Thus, taking B 2 SO2 such thatByt D b�2 (with b ¤ 0 as yt ¤ 0), we have that
h D diag(R

�

(t), B) 2 H
�

satisfies Ad(h)Z(x, y) D Z(0, b�2).
For � D �1, as in the cases� D 0, 1, we find t 2 R such that eitherxt D 0 or

yt D 0 by solving

cosht � � sinht D 0, and � sinht C � cosht D 0,

respectively. But these equations have a solution if and only if �¤ �1. That is, if and
only if jxj ¤ jyj. Hence, takingB 2 SO2 such that eitherByt D b�2 or Bxt D a�1 (with
a> 0; here again we have thatxt ¤ 0), as appropriate. ThenhD diag(R

�1(t), B) 2 H
�1

is as desired in this case.
For part c), we observe thath D diag(R1(�=2), B) 2 H1, where B 2 SO2 takes�1

to �2, satisfies Ad(h)Z(�1, 0)D Z(0, �2).

REMARK . The previous lemma corresponds, geometrically, with the fact of find-
ing s 2 R at which the Jacobi field associated withZ(x, y) (given by Lemma 5) and
its covariant derivative are orthogonal.
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Recall that ifh is a regular curve inM
�

of constant speeda, then the Frenet frame
of h is

(8) T(t) D
1

a
Ph(t), N(t) D

Ph0(t)

j

Ph0(t)j
, B(t) D T(t) � N(t)

(here the prime denotes the covariant derivative alongh), and its curvature and torsion
are given by

(9) k(t) D
1

a2
j

Ph0(t)j, � (t) D �

1

a
hB0(t), N(t)i.

For eachg 2 G
�

we have thatg is an isometry ofL
�

and preserves the Hermitian
structure. Hence,g takes magnetic geodesics to magnetic geodesics.

3. Time- and space-like magnetic geodesics

Proof of Theorem 1. LetZ 2 p
�

be the initial velocity of� , with kZk ¤ 0. First,
we consider the caseZ D Z(a�1, b�2), with a > 0 andb¤ 0.

For eacht 2 R, let �(t) D expt(Z C A). By Theorem 4 and the diffeomorphism
� in (7), we know that� (t) D �(t) � [
o], that is, � (t) D [�(t) � 
o].

Let h be the curve inM
�

given by h(t) D �(t)(e0). As � is a one-parameter sub-
group of isometries ofM

�

, we have thath is a curve with constant curvature and tor-
sion, thush is a helix in M

�

.
Let us see that� (t) D [
B(t)], where B(t) is the binormal field ofh. For eacht 2

R, the initial velocity of the geodesic�(t) � 
o is d(�(t))(e1), hence� (t) D [
d(�(t))(e1)].
Then, we have to verify thatB(t)D d(�(t))(e1), for all t 2 R. Since�(t) is an isometry
that preserves the helix and takes the Frenet frame att D 0 to the Frenet frame att ,
is suffices to show thatB(0)D e1.

By the usual identifications, since�(t) is a linear transformation, we can write
d(�(t))(e1) D �(t)(e1), so

Ph(t) D �(t)((Z C A)e0) and Ph0(t) D [�(t)((Z C A)2e0)]T,

where T denotes the tangent projection. Since

Ph(0)D (Z C A)e0 D ae2,

Ph0(0)D [(Z C A)2e0]T
D [��a2e0 C ae3]T

D ae3

and �(t) is an isometry, we havej Ph(t)j D a D j

Ph0(t)j. By the computation before and
(8) we obtain

B(0)D
1

a2
Ph(0)� Ph0(0)D e1.
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Consequently,B(t) D �(t)(e1). Then B0(t) D [�(t)((Z C A)e1)]T and B0(0)D be3.
Besides, using (8) and the previous computations, it follows that N(0)D e3. Therefore,
by (9) we have that the curvature and torsion ofh are equal to

(10) k D
1

a
, � D �

b

a
.

The assertion regarding the sign of the torsion is immediatefrom Lemma 5 b) and
(10). Thus, the theorem is proved in this particular case.

Now, let � be a magnetic geodesic with� (0)D [
 ] and initial velocity with non
zero norm. SinceG

�

acts transitively onL
�

, there is an isometryg such thatg � [
 ] D
[
o]. So, the magnetic geodesicg � � also has initial velocity with non zero norm and
g � � (0) D [
o]. By Lemma 5 b), if d(� Æ �)Z(x, y) is the initial velocity of g � � ,
we have that the vectors{x, y} are linearly independent. Then, by Lemma 6 a), there
exists h 2 H

�

such that Ad(h)Z(x, y) D Z(a�1, b�2), with a > 0 and b ¤ 0. Since
((h Æ g) � � )0(0)D d(� Æ �)(Ad(h)Z(x, y)), the curve (h Æ g) � � is a magnetic geodesic
of the type studied above. Therefore,� has the form (3).

Conversely, leth be a helix in M
�

with curvaturek > 0, non zero torsion� and
speed 1=k. Let {T, B, N} be the Frenet frame ofh. As M

�

is a simply connected
manifold of constant curvature, we have that there exists anisometryg of M

�

preserv-
ing the orientation such thatg(h(0))D e0 and its differential ath(0) takesB(0) to e1,
T(0) to e2 and N(0) to e3.

Let a D 1=k and b D ��=k. Let Z D Z(a�1, b�2) 2 p
�

. We consider, for each
t 2 R, �(t) D expt(ZC A). According to computations from the first part of the proof,
both helices have initial positione0, curvaturek, torsion � , speed 1=k and the same
Frenet frame att D 0. Hence (g Æ h)(t) D �(t)e0. So, if we call NB the binormal field
of g Æ h, we have that NB(t) D d(�(t))e1, for all t . Finally, since the curve [


NB(t)] is a
magnetic geodesic inL

�

and

[
B(t)] D [
dg�1
NB(t)] D g�1

� [

NB(t)],

we obtain that [
B(t)] is a magnetic geodesic.

4. Null magnetic geodesics

We deal first with the hyperbolic case. We use the notation given in the introduc-
tion and we recall from [5] certain properties of horospheres and related concepts. To
simplify the notation we omit the subindex� D �1.

Let 
 be a geodesic ofH3. Then, for eachp 2 H3 there exists a unique unit
speed geodesic� of H3 such that�(0)D p and � is asymptotic to
 . Let v 2 T1

H

3.
If p is any point ofH3, then v(p) denotes the unique unit tangent vector atp that is
asymptotic tov. The Busemann functionf

v

W H

3
! R is defined by

f
v

(p) D lim
s!C1

d(p, 

v

(s)) � s,



758 Y. GODOY AND M. SALVAI

and satisfies gradp( f
v

) D �v(p). The horospheredetermined byv is given by

H (v) D {q 2 M j f
v

(q) D 0}.

The Jacobi vector fields orthogonal toP
o have the form

(11) J(s) D esU (s)C e�sV(s),

whereU and V are parallel vector fields along
o and orthogonal toP
o.
A Jacobi vector fieldY along a geodesic
 of H3 is said to bestable (unstable)

if there exists a constantc > 0 such that

jY(s)j � c 8s � 0 (8s� 0).

In what follows we shall denote byO� the canonical projection fromTH3 ontoH3.
We recall that in the introduction we have defined the smooth maps �

W L(H3)!H

3(1)
by  �[
 ] D 
 (�1) and the distributionsD� in L(H3) given byD�

[
 ] D Ker(d �

[
 ]).

We need to relate the distributionsD� with distributions NE� andE� on G and T1
H

3,
respectively.

Let NE� be the left invariant distribution onG defined atI 2 G by

NE�I D {Z(u, �u) 2 p j u 2 R2}.

As the canonical action ofG on T1
H

3 is transitive, the projectionNpW G ! T1
H

3 given
by Np(g) D dge0e1 is a submersion. Since givenv 2 T1

H

3 there existsg 2 G such that
Np(g) D v, we define:

E�(v) D (d Np NE�)( Np(g)) D d Npg( NE�g ).

We have thatE� determines a well defined distribution onT1
H

3, which is called the
horospherical distributionon T1

H

3. This distribution has the following property: if
t 7! v(t) is a curve inT1

H

3 tangent to the distributionE�, then O�(v(t)) is in the horo-
sphereH (�v(0)).

Lemma 7. Let Z 2 NE�I . For each t2 R, let 
�t (s) D expt(ZC A) � 
o(�s). Then
the geodesics
�t are asymptotic to each other for all t2 R.

Proof. Let J be the Jacobi vector field associated with the variation by geodesics
t 7! 


�

t . By Lemma 5 a),J(0)D�J 0(0). Hence, by (11) we have thatJ(s)D e�sU (s),
whereU is a parallel vector field along
o orthogonal to P
o. Thus, J is a stable vector
field, that is, there existsc > 0 such thatjJ(s)j � c 8s� 0.

We have to show that givent0, t1 2 R with t0 < t1, there existsN > 0 such that

d(
�t0 (s), 
�t1 (s)) � N 8s � 0.
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For fixed s,

d(
�t0 (s), 
�t1 (s)) � length([t0, t1] 3 t 7! 


�

t (s)) D
Z t1

t0

�

�

�

�

d

dt



�

t (s)

�

�

�

�

dt.

For eacht 2 R, let Jt (s) D (d=dt)
�t (s). We observe thatJt 0Ct (s) D d exp(t 0Z)Jt (s) for
all t, t 0. Since exp(t 0Z) is an isometry, we havejJt (s)j D jJ(s)j. Therefore,

Z t1

t0

jJt (s)j dt D
Z t1

t0

jJ(s)j dt � c(t1 � t0)

for all s � 0. Then, we may takeN D c(t1 � t0) > 0.

We consider the projectionp W T1
H

3
! L(H3), p(v) D [


v

]. We call ND� the dis-
tribution on L(H3) p-related withE� (well defined). More specifically, given [
 ] 2
L(H3) and v 2 T1

H

3 such thatp(v) D [
 ],

ND�([
 ]) D dp
v

E�
v

.

Proposition 8. LetD� and ND� be the distributions onL(H3) defined above. Then
D�

D

ND�.

Proof. Since D� and ND� are G-invariant, it is enough to showD�

[
o] D

dp(e0,e1)(E�(e0,e1)) (we observe thatNp(I ) D (e0, e1) and p(e0, e1) D [
o]).

Let Z 2

NE�I . We take the curve inL(H3) given by �(t) D expt Z � [
o]. As
�(t) D p Æ Np(expt Z), we have that�(0) D [
o] and P�(0) D d(p Æ Np)I Z. That is,
P�(0) 2 dp(e0,e1)(E�(e0,e1)). Besides,

(12)
d

dt

�

�

�

�

0

expt Z � 
o(s) D
d

dt

�

�

�

�

0

expt(Z C A) � 
o(s),

since both Jacobi fields have the same initial conditions. Hence, Lemma 7 applies to the
geodesics
�t (s) D expt Z � 
o(�s). Thus, �

Æ� is constant. Then (d �)[
o]( P�(0))D 0,
that is, P�(0) 2 D�

[
o] .

On the other hand, let' W T1
e0
H

3
! L(H3), '(v) D [


v

], be the submanifold whose

imageLe0(H
3) consists of all the oriented geodesics passing throughe0. Besides,H (1)

is a manifold with the differentiable structure (well defined) such thatFe0 W T1
e0
H

3
!

H (1) given by Fe0(v) D 


v

(1) is a diffeomorphism. Then, since C

jLe0 (H3) Æ ' D Fe0,

we have that (d C)[
o] is surjective. Now, (d �)[
o] is also surjective because � is the
composition of C with the diffeomorphism ofL(H3) assigning [
 �1] to [
 ]. Therefore,
dimD�

[
o] D dim ND�

[
o] and equality follows.
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The word cylinder in the statement of Theorem 2 refers to a ruled surface deter-
mined by a parallel vector field along a curvec of constant geodesic curvaturek con-
tained in a totally geodesic surface inM

�

(and normal to it), as explained. For� D�1,
this ruled surface is diffeomorphic toS1

� R if jkj > 1; otherwise it is diffeomorphic
to a plane.

Proof of Theorem 2 a). By Lemma 5 b), we have that every elementof D�

[
 ] is

null. As G acts transitively onL(H3) and by theG-invariance of the horospherical
distributions, we may suppose without loss of generality that � (0)D [
o], hence P� (0)2
D�

[
o] . By Proposition 8, there existsZ 2

NE�I such that P� (0)D (dp)(e0,e1)(d Np)I Z. Thus,
by Theorem 4,� (t) D [exp t(Z C A) � 
o].

We assume thatZ 2 NECI . Let us show that� describes a forward cone with vertex
at 
o(C1). In a similar way, if Z 2 NE�I , then� describes a backward cone with vertex
at 
o(�1).

We consider the geodesics
t (s) D expt(Z C A) � 
o(s) of H3. As Z 2

NECI , by
Lemma 7, we have that the geodesics
t are asymptotic to each other for allt . Hence,
z(t) D P
t (0) is a curve inT1

H

3 of asymptotic vectors toe1.
Let c(t) D O�(z(t)) D expt(Z C A)(e0). In order to see thatc(t) 2 H (e1) for all t ,

we observe that

(13)
d

dt
fe1(c(t)) D (d fe1)c(t) Pc(t) D hgradc(t)( fe1), Pc(t)i.

Since gradp( f
v

) D �v(p) we have that

gradc(t)( fe1) D �z(t) D �d(expt(Z C A))e1.

On the other hand,

Pc(t) D d(expt(Z C A))(Z C A)e0.

Since expt(ZCA) is an isometry and observing that (ZCA)e0 ande1 are perpendicular
(Z 2 NECI ), it follows that the expression in (13) is equal to�he1,(ZCA)(e0)i D 0. Then,
fe1(c(t)) D fe1(e0) D 0 for all t , that is,c(t) 2 H (e1) for all t .

Now, as c is the orbit throughe0 of a one-parameter subgroup of isometries of
G preservingH (e1), its geodesic curvature and speed are constant. IfZ D Z(u, �u)
for certain 0¤ u 2 R

2, we obtain that the speed ofc is juj. For eachv 2 T1H3

we consider onH (v) the orientation given by� grad f
v

. The geodesic curvature ofc
is then

k D
h�grade0

( fe1), Pc(0)� Pc0(0)i

juj3
D

1

juj
,

since Pc(0)D (Z C A)e0 and Pc0(0)D ((Z C A)2e0)T. As for eachv 2 T1
H

3, H (v), with
the induced metric ofH3, is isometric toR2, we have thatc(t) runs along a circle on
H (e1) of geodesic curvaturek D 1=juj > 0 and speed 1=k D juj.
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Besides,� (t) D [
z(t)]. Thus we have that all conditions are satisfied in order to
assert that� describes a forward cone with vertex at
o(C1).

Conversely, let� be a curve inL(H3) that describes a forward cone with vertex
at infinity. As G acts transitively on the positively oriented frame bundle,and also
each element ofG takes horospheres to horospheres, preserving their orientation, we
may suppose that� (t)D [


v(t)], wherev(t) is a curve inT1
H

3 of asymptotic vectors to
v(0)D e1 andc(t)D O� (v(t)) is a curve of geodesic curvaturek and speed 1=k in H (e1)
with Pc(0)D (1=k)e2, for somek > 0. Let Z D Z((1=k)�1, �(1=k)�1) 2 NECI . We define

Nc(t) D expt(Z C A)(e0) and Nv(t) D d(expt(Z C A))(e1).

We showed above thatNc(t) is a curve of geodesic curvaturek and speed 1=k in H (e1).
Moreover, Nc(0)D e0 and the initial velocity ofNc is (1=k)e2. So, we obtain thatNc D c.
This implies, together with the identitiesO� Æ Nv D Nc and O� Æ v D c, that O� Æ Nv D O� Æ v.

According to the first part of the proof,Nv and v are curves of asymptotic vectors
to e1. Hence,�Nv(t) D grad

Nc(t)( fe1) D �v(t). Therefore, [

Nv(t)] D [


v(t)], which is a null
magnetic geodesic with initial velocity in the horospherical distribution since [


v(t)] D
[exp t(Z C A) � 
o].

Proof of Theorem 2 b). We suppose first that� is a null magnetic geodesic such
that � (0)D [
o] and P� (0)D d(� Æ�)Z(a�1, 0), with a > 0. The expression (4) and the
relation between the speed and curvature ofh are obtained as in the prove of The-
orem 1. By (10) we know that the torsion ofh is � D �b=a D 0 (sincebD 0). Thus
h is contained in a totally geodesic surfaceS of H3 and B is normal toS.

Now, we suppose thatP� (0) D d(� Æ �)Z, where Z D Z(0, b�2) with b ¤ 0. By
Theorem 4 we have that� (t) D [�(t) � 
o], where �(t) D expt(Z C A). Since Z C A
is in the Lie algebra of the isotropy subgroup ofG at e0 2 H

3, we get that�(t) fixes
e0. Moreover, if v is the curve inT1

e0
H

3 given by v(t) D d(�(t))e1, then

� (t) D [�(t) � 
o] D [

v(t)],

since the initial velocity of the geodesic�(t) � 
o is v(t), for eacht 2 R.
Furthermore, asv is the orbit throughe1 of a one-parameter subgroup ofH (the

canonical differential action ofG on T1
e0
H

3), then v has constant speed and constant

geodesic curvature inT1
e0
H

3
� S

2. Easy computations yield

Pv(0)D (0, 0,b)t and Rv(0)D (�b2, �b, 0)t .

So, the speed ofv is jbj and its geodesic curvature is

k D
hv(0), Pv(0)� Rv(0)i

jbj3
D

1

jbj
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(we consider the orientation of the sphere given by the unit normal field pointing out-
wards). Thus,v is a curve inT1

e0
H

3 of geodesic curvaturek > 0 and speed 1=k. Con-
sequently,� has the form (5).

Now, let � be a null magnetic geodesic such that� (0)D [
 ] and P� (0) � D�

[
 ] . As

G acts transitively onL(H3) and by theG-invariance of the horospherical distributions,
we may suppose that� (0) D [
o] and P� (0) � D�

[
o] . Let Z D Z(x, y) 2 p such that
P� (0) D d(� Æ �)Z. By Lemma 5 b), as the norm of the initial velocity of� is zero,
we have thatx and y are linearly dependent, and sinced(� Æ �)Z � D�

[
o] , we also
have jxj ¤ jyj. Now, the isometries in Lemma 6 b) take� to magnetic geodesics of
the particular types studied above. Therefore,� has the form (4) or has the form (5),
as desired.

Conversely, given a helixh in H

3 with curvaturek, speed 1=k and torsion� D 0,
the proof that the expression (4) is a magnetic geodesic is identical to the proof of
the converse of Theorem 1. Ash has zero torsion, the initial velocity of the magnetic
geodesic in (4) is not in the distributionsD�.

Let v be a curve inT1
pH

3 with geodesic curvaturek > 0 and speed 1=k. Let g

be the isometry ofH3 preserving the orientation such thatg(p) D e0, dg(v(0)) D e1

and dg(Pv(0)) D be3, for certain b > 0. Hence,g � v is a curve inT1
e0
H

3 having the
same geodesic curvature and the same speed asv, and alsob D 1=k. As we showed
above, Nv is a curve inT1

e0
H

3 with Nv(0)D g �v(0) and with the same initial velocity and
geodesic curvature thatg � v. By uniqueness, we have thatNv D g � v. To complete the
proof we observe thatg � [


v(t)] D [
g�v(t)] D [

Nv(t)].

Proof of Theorem 3. Lemma 6 b) implies that the analogue of Theorem 2 a) is
empty for the cases� D 0, 1. The proof of the fact that every curve� in L

�

is a
null magnetic geodesic if and only if� has the form (4) or (5) is similar to that of
Theorem 2 b).

We check the last statement of the theorem. Without lost of generality, we consider
only null magnetic geodesics passing through [
o] at t D 0. We observe that if, in
particular,� is a magnetic geodesic with initial velocityd(� Æ �)Z(a�1, 0), with a >
0, (that is,� has the form (4)), then by Lemma 6 c) there existsh 2 H1 such that
Ad(h)Z(a�1,0)D Z(0,a�2). Hence,h�� is a null magnetic geodesic with initial velocity
d(� Æ �)Z(0, a�2), and then it has the form (5). So,� also has this form.
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