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Abstract
We construct a connected, irreducible component of the hggace of minimal
surfaces of general type withy = g = 2 andK? = 5, which contains both examples
given by Chen—Hacon and the first author. This component iergeally smooth
of dimension 4, and all its points parametrize surfaces whatbanese map is a
generically finite triple cover.

0. Introduction

The classification of minimal, complex surfac&sof general type with small bi-
rational invariants is still far from being achieved; nehetess, the study of such sur-
faces has produced in the last years a considerable amouesulfs, see for instance
the survey paper [9]. If we assume=l x(Os) = 1—-q + pg, that is py = g, and
S irregular, that isq > 0, then the inequalities of Bogomolov—Miyaoka—Yau and De-
barre imply 1< py < 4. If py = q = 4 thenS is a product of curves of genus 2,
as shown by Beauville in the appendix to [18], while the c@ge= q = 3 was un-
derstood through the work of several authors, see [14],, [3]. The classification
becomes more and more complicated as the valupyadecreases; indeed already for
py = 2 one has only a partial understanding of the situation.

Let us summarize what is known for surfaces wigh= q = 2 in terms ofK%; in
this case the inequalities mentioned above yield K2 < 9. The caseK2 = 4 was in-
vestigated by the first author, who constructed three famitif surfaces which admit an
isotrivial fibration, see [32]. Previously, surfaces wittese invariants were also studied
by Ciliberto and Mendes Lopes (in connection with the probleibirationality of the
bicanonical map, see [17]) and Manetti (in his work on the Bes@njecture, see [25]).
For K2 =5 there were so far only two examples, see [16] and [32]. Astittes sug-
gests, the present work deals with this case. Kér: 6 there is only one example,
see [32], [33], [34]. The study of the cad€Z = 8 was started by Zucconi in [45]
and continued by the first author in [32]. They produced a detepclassification of
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surfaces withpy = q = 2 and Kg = 8 which are isogenous to a product of curves; as
a by-product, they obtained the classification of all swefawith these invariant which
are not of Albanese general type, i.e., such that the imagiefAlbanese map is a
curve. Finally, fork2 = 7 and K2 = 9 there are hitherto no examples known.

In this article we consider surfaces wifly = q = 2 andK2 = 5. Our work started
when we noticed that the surfaces constructed in [16] an{l ja2e many features in
common. More precisely, in both cases the Albanese maf — Alb(S) is a gener-
ically finite triple cover, and the Albanese variety AB)(is an abelian surface with
a polarization of type (1, 2). Moreove6& contains a £3)-curve, which is obviously
contracted byx. We shall prove that Penegini's and Chen—Hacon's exampitslty
belong to the same connected component of the moduli spaserffces of general
type with py = q = 2 andK2 = 5.

In order to formulate our results, let us introduce some iteofogy. Let S be a
minimal surface of general type withy = q =2 and Kg =5, such that its Albanese
mapa: S— Alb(S) is a generically finite morphism of degree 3. If one consddie
Stein factorization otky, i.e.,

s x5 A(s),

then the mapf: X — Alb(S) is a flat triple cover, which can be studied by applying
the techniques developed in [27]. In particulzfr,is determined by a rank 2 vector
bundle £ on AIb(S), called theTschirnhausen bundlef the cover, and by a global
sectionn € HO(AIb(S), €V ® A €). In the examples of [16] and [32] the surface
X is singular; nevertheless in both cases the numerical ianasr of £ are the same
predicted by the formulae of [27], as X were smooth. This leads us to introduce the
definition of negligible singularityfor a triple cover, see Definition 1.5 and Remark 1.9.
Then, inspired by the construction in [16], we say tlais a Chen—Hacon surfacé
there exists a polarizatiod of type (1, 2) on PiS) = m such that€" is the
Fourier—Mukai transform of the line bundlé—!, see Definition 4.1.

Our first main result is the following characterization ofdbk-Hacon surfaces, see
Proposition 4.11 and Theorem 5.1.

Theorem A. Let S be a minimal surface of general type withpq = 2 and
Kg = 5 such that the Albanese map: S — Alb(S) is a generically finite morphism
of degree3. Let

s x5 A

be the Stein factorization af. Then S is a Chen—Hacon surface if and onIyA(ifhas
only negligible singularities.

Moreover, we can completely describe all the possibilities the singular locus
of X, see Proposition 4.9. It follows thaX is never smooth, since it always con-
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tains a cyclic quotient singularity of type (3)(1, 1). ThereforeS always contains a
(=3)-curve, which turns out to be the fixed part of the canonégatem|Ks|, see Prop-
osition 5.13.

Now let M be the moduli space of surfaces witly = q = 2 and let M“? ¢ M
be the subset whose points parametrize (isomorphism slasy&€hen—Hacon surfaces.
Our second main result is the following, see Theorem 6.6.

Theorem B. M® is an irreducible connectedgenerically smooth component of
M of dimensiord.

Since Chen and Hacon constructed in [16] only temeral surface inMCH, we
need considerable work in order to establish Theorem B. Q@oofpuses in an essen-
tial way the fact that the degree of the Albanese map is a éogpedl invariant ofS,
see [13]. As a by-product, we obtain some results of independterest about the
embedded deformations & in the projective bundléP(£Y), see Proposition 6.2.

We believe that the interest of our paper is twofold. Firstadif it provides the
first construction of a connected component of the modulcspa surfaces of general
type with py = q = 2, KZ = 5. Secondly, Theorem B shows that every small deform-
ation of a Chen—Hacon surface is still a Chen—Hacon surfacearticular, no small
deformation ofS makes the {3)-curve disappear. Moreover, sindg“" is generically
smooth, the same is true for the first-order deformations.c@ytrast, Burns and Wabhl
proved in [10] that first-order deformations always smoolhtlze (—2)-curves, and
Catanese used this fact in [11] in order to produce examglssirfaces of general type
with everywhere non-reduced moduli spaces. Theorem B dstraies rather strik-
ingly that the results of Burns—Wahl and Catanese cannotxtendéed to the case of
(—3)-curves and, as far as we know, provides the first explic@n®le of this situation.

Although Theorems A and B shed some light on the structureuofases with
pg=9=2and Kg =5, many questions still remain unanswered. For instance:

e Are there surfaces with these invariants whose Albanese maapdegree different
from 3?

e Are there surfaces with these invariants whose Albanese Imagpdegree 3, but
which are not Chen—Hacon surfaces? Because of Theorem djstlihe same to ask
whether X may have non-negligible singularities.

And, more generally:

e How many connected components of the moduli space of swrfaith py =q =2
and K% =5 are there?

In order to answer the last question, it would be desirabléng an effective bound
for the degree ofr: S— Alb(S), but so far we have not been able to do this.

Another problem that arises quite naturally and which is r#sent unsolved is
the following.

e What are the possible degenerations of Chen—Hacon supfaces
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An answer to this question would be a major step toward a cofifijgation of MCH,
In Proposition 5.11 we give a partial result, analyzing saitegenerations of the triple
cover f: X — Alb(S) which provide reducible, non-normal surfaces.

Now let us describe how this paper is organized. In Sectiore present some pre-
liminaries, and we set up notation and terminology. In pattir we recall Miranda’s
theory of triple covers, introducing the definition of negflile singularity, and we dis-
cuss the geometry of (1, 2)-polarized abelian surfacesthereader’s convenience, we
recall the relevant material from [27] and [4] without prepthus making our exposition
self-contained.

In Section 2, which is the technical core of the paper, we ril@sall possibilities
for the Tschirnhausen bundle of the triple covlerX — A. The analysis is particularly
subtle in the case where the (1, 2)-polarization is of prodype; eventually, we are
able to rule out this case, showing that it gives rise to aaserK which is not of
general type (see Corollaries 2.8 and 2.11).

In Section 3 we briefly explain the two examples from [16] aB&][ which mo-
tivate our definition of Chen—Hacon surfaces. The properiesuch surfaces are then
investigated in detail in Section 4.

Finally, in Section 5 we prove Theorem A, whereas Section &sdeith the proof
of Theorem B.

Notation and conventions. We work over the fieldC of complex numbers.

If A is an abelian variety and\ := Pic°(A) its dual, we denote by and 6 the
zero point of A and A respectively.

If £ is a line bundle onA we denote byp, the morphismg,: A — A given by
Xt L ® L7 If ¢(L) is non-degenerate thepy is an isogeny, and we denote by
K (L) its kernel.

A coherent sheafF on A is called alT-sheaf of index iif

HI(A, F® Q) =0 forall QePi®A) and j#i.

If 7 is an IT-sheaf of index and P it the normalized Poincaré bundle ohx A, the
coherent sheaf

F = R, (P ®niF)

is a vector bundle of rank' (A, F), called theFourier—-Mukai transformof F.

By “surface” we mean a projective, non-singular surf&end for such a surface
ws = Og(Ks) denotes the canonical clasgy(S) = ho(S, ws) is the geometric genus
a(S) = h'(S,ws) is theirregularity and x(Os) = 1—q(S)+ pg(S) is the Euler—Poincaré
characteristic If q(S) > 0, we denote byx: S— Alb(S) the Albanese map o8.

If |D| is any linear system of curves on a surface, its base locusbeiddenoted
by BgD]|. If D is any divisor, Deq Stands for its support.
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If Z is a zero-dimensional scheme, we denote its length(gY.

If X is any scheme, by “first-order deformation” & we mean a deformation
over SpedC[€]/(e?), whereas by “small deformation” we mean a deformation aver
disk B, ={teC||t| <r}.

1. Preliminaries

1.1. Triple covers of surfaces. The theory of triple covers in algebraic geometry
was developed by R. Miranda in his paper [27], whose main trésthe following.

Theorem 1.1 ([27, Theorem 1.1]) A triple cover f: X — Y of an algebraic va-
riety Y is determined by a ranR vector bundle€ on Y and by a global section
n e HO(Y, S’ ® A\’ &), and conversely.

The vector bundl€ is called theTschirnhausen bundlef the cover, and it satisfies
f.Ox = Oy ®E.
In the case of smooth surfaces, one has the following forenula

Proposition 1.2 ([27, Proposition 10.3]) Let f: S — Y be a triple cover of
smooth surfaces with Tschirnhausen bunélleThen
(i) hi(S, 0s) = hi(Y, Oy) + hi(Y, &) for all i > 0;
(i) K& =3KZ—4c1(E)Ky + 2¢2(€) — 3cz(€).

Let f: X = Y be a triple cover, and let us denote ByC Y and by R C X the
branch locus and the ramification locus bf respectively. By [27, Proposition 4.70
is a divisor whose associated line bundle/i§ EY. If Y is smooth, thenf is smooth
over Y — D, in other words all the singularities ok come from the singularities of
the branch locus. More precisely, we have

Proposition 1.3 ([30, Proposition 5.4]) Let ye Sing(D). Then X is singular over
y if and only if one of the following conditions holds
(i) f in not totally ramified over y
(i) f is totally ramified over y andnult,(D) > 3.

Proposition 1.4 ([42, Theorem 4.1]) Let f: X — Y be a triple cover of a smooth
surface Y, with X normal. Then there are a finite number of blow-upsY — Y of Y
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and a commutative diagram

&
—_—

=4l

1) f

«—
<<—/—X

o
—_

=<2

where X is the normalization off xy X, such thatf is a triple cover with smooth
branch locus. In particularX is a resolution of the singularities of X.

We shall callX the canonical resolutiorof the singularities off: X — Y. In gen-
eral, it does not coincide with theinimal resolutionof the singularities ofX, which
will be denoted instead b.

DEFINITION 1.5. Letf: X — Y be a triple cover of a smooth algebraic surface
Y, with Tschirnhausen bundlé. We say thatX has onlynegligible (or non essential
singularities if the invariants of the minimal resoluti@are given by the formulae in
Proposition 1.2.

In other words, negligible singularities have no effect e tomputation of in-
variants. Let us give some examples.

EXAMPLE 1.6. Assume that the branch locid = Dy contains an ordinary
quadruple pointp over which f is totally ramified. In this casd is the blow-up of
Y at p, and one sees that the exceptional divisor is not in the brémzus of f. We
have S= X and the inverse image of the exceptional divisor ¥nis a (~3)-curve.
Therefore X has a singular point of type (3)(1, 1) overp, and by straightforward
computations (see [42, Section 6]) one checks that it is digielg singularity.

ExamPLE 1.7. Assume that the branch loci®d = D,eq contains an ordinary
double pointp. A standard topological argument shows tbatcannot be smooth over
p, so Proposition 1.3 implies that is not a point of total ramification forf. Again,

Y is the blow-up ofY at p and the exceptional divisor is not in the branch locus of
f. The inverse image of the exceptional divisor ¥nconsists of the disjoint union of
a (—1)-curve and a+2)-curve; then the canonical resolutioh does not coincide with
the minimal resolutionS, which is obtained by contracting the-1)-curve. It follows
that X has both a smooth point and a singular point of typg2J@, 1) overp, and

as in the previous case one checks that this is a negligibgukirity for X.

ExAmMPLE 1.8. Assume thaD = 2D,¢q and suppose in addition th&teq = D1+
D,, where D; and D, are smooth curves intersecting transversally in precisely
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points. We will provide examples wherkis totally ramified anchon-Galois the singu-
larities of X are a point of type (43)(1,1) and a point of type {B)(1,2), and moreover
both of them are negligible.

REMARK 1.9. The definitions of canonical resolution for a triple epis similar
to the corresponding definition for double covers, that cenfdund for instance in
[7, Chapter V]. However, in contrast with the double covesesawith our definition
negligible singularities for triple covers are not neceggaational double points, see
for instance Example 1.6.

1.2. Abelian surfaces with (1,2) polarization. Let A be an abelian surface and
L an ample divisor inA with L? = 4. ThenL defines a polarizatior := Oa(L) of
type (1,2), in particulah®(A, £) = 2 so the linear systeriL| is a pencil. Such surfaces
have been investigated by several authors, see for insfd@hc¢?4], [6, Chapter 10]
and [8]. Here we just recall the results we need.

Proposition 1.10([4, p.46]) Let(A,L) be a(1,2)polarized abelian surfacevith
L = Oa(L), and let Ce |L|. Then we are in one of the following cases
(a) C is a smoothconnected curve of genus
(b) C is an irreducible curve of geometric genBswith an ordinary double point
(c) C=E+ F, where E and F are elliptic curves and E¥ 2;
(d C=E + F; + F,, with E, F;, F, elliptic curves such that EfF= 1, EF, = 1,
FiF, =0.
Moreover in case(c) the surface A is isogenous to a product of two elliptic curaesl
the polarization of A is the pull-back of the principal pradypolarization whereas in
case(d) the surface A itself is a product E F and £ = Oa(E + 2F).

Let us denote byV(1,2) the moduli space of (1,2)-polarized abelian surfaten
there exists a Zariski dense open &t W(1, 2) such that, given anyA( £) € U, all
divisors in|L| are irreducible, i.e., of type (a) or (b), see [8, Section 3].

DerINITION 1.11. |If (A,£) € U, we say thatl is ageneral(1, 2)-polarization. If
|L| contains some divisor of type (c), we say thais a special(1, 2)-polarization. Fi-
nally, if the divisors in|L| are of type (d), we say thal is aproduct(1,2)-polarization.

If £ is not a product polarization, theih| has four distinct base poin{gy, e, e,
€3}, which form an orbit for the action oK (£) = (Z/2Z)? on A. Moreover all curves
in |L| are smooth at each of these base points, see [4, Section Hre & also a
natural action ofK(£) on [L|, given by translation.

Let us denote by—{1)a the involutionx — —x on A. Then we say that a divisor
C on A is symmetricif (—1),C = C. Analogously, we say that a vector bundfeon
A'is symmetric if 1), F = F.
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Since L is ample, [6, Section 4.6] implies that, up to translatiansatisfies the
following

ASSUMPTION1.12. £ is symmetric and the base locus ¢f| coincides
with K(£).

In the sequel we will tacitly suppose that Assumption 1.12atisfied.

Proposition 1.13. The following holds
(i) for all sections se HO(A, £) we have(—1)is = s. In particulay all divisors in
[L| are symmetrig
(i) we may assumepe= 0 and that g, e, e; are 2-division points satisfying e +
€& = €3.

Proof. The first part of the statement follows from [6, Ccao}l 4.6.6], whereas
the second part follows from Assumption 1.12. O

Proposition 1.14. Let Q = Oa(Q) € Pic®(A) be a non-trivial degree0 line bun-
dle. Then we have @ BYL + Q|, and moreover

h%A L®Q®T)=1, h'(ALR®Q®T,) =0, h*A LR QKL =0.

Proof. Sincel is ample, the line bundl€ ® Q is equal tot L for somex € A.
Theno € Bg|L + Q] if and only if x € K(£), that is£ ® Q = £, which is impossible
since Q is non-trivial. The rest of the proof follows by tensoringtiwiQ the short
exact sequence

0> LR®ILy,>L—>LRO,—0
and by taking cohomology. ]

In the rest of this section we assume thatis not a product polarization. We
denote byey, ..., e5 the twelve 2-division points ofA distinct from ey, €1, &, €.
Some of the following results are probably known to the etgpelnowever, since we
have not been able to find a comprehensive reference, foreter's convenience we
give all the proofs.

Proposition 1.15. The following holds.
(a) Assume that is a general(1, 2)-polarization. Then|L| contains exactlyl2 singu-
lar curves Ls, ..., Lig. Every L has an ordinary double point atjeand the set
{Li}i=4..15 consists of three orbits for the action of(K) on |L]|.
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Fig. 1. The reducible curveg& + F and E’' 4+ F’ in the linear
system|L|.

(b) Assume thatC is a special(1, 2)-polarization and let E+ F € |L| be a reducible
divisor. Then the KL)-orbit of E + F consists of two curves E F, E’ + F’ which
intersect as inFig. 1 Referring to this figurethe set{p,q,r,s} is contained in{ey,...,

eis}, and it is an orbit for the action of K£) on A.

Proof. (a) If a curve ofL| contains any of the points,...,es then it must have
a node there, see [4, Section 1.7] and [44, Remark 11]. Inrdadprove that there are
no more singular curves, we blow-up the base pointd_pobtaining a genus 3 fibration
7: A— P! By the Zeuthen—Segre formula, see [5, Lemma 6.4], we have

&) Ca(A) = e(Ph)e(L) + ) (e(Ls) — (L)),

where the sum is taken on all the singular curtesof |L|. Sincee(Ls) = e(L) + 1
for a nodal curve, relation (2) implies th#t| contains precisely 12 singular elements.
This proves our first statement. The second statement is siree the twelve points
€, . . ., €15 consist of three orbits for the action &f(£) on A.

(b) Both curveskE and F are fixed by the involution{1)s, so they must both
contain exactly four 2-division points. In particular theot intersection points okt
and F must be 2-division points, saf N F = {p, q}. Since we have

tocE=t.E=E, tgF =t F=F,

it follows that the orbit ofE + F contains exactly two elements, namety+ F and
E'+ F’ where

E =t E=tE F =t F=tF.

Setting E' N F' = {r, s}, it is straightforward to check that the set of 2-divisionints
{p, g, r, s} is an orbit for the action oK (L) on A. O

REMARK 1.16. In case (b) of Proposition 1.15, if one makes the furdssump-
tion that A is not isomorphic to the product of two elliptic curves, itrist difficult to
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see thatt + F and E’ 4+ F’ are the unique reducible curves|in|, and that the singular
elements oflL| distinct fromE + F and E’ + F’ are eight irreducible curvek; which
have an ordinary double point at the 2-division pointsAotlistinct fromey, e, &, €3,
p, g, r, s. Moreover, these curves form two orbits for the actionkof£) on |L|.

There exist examples of abelian surfaces which are isonotplthe product of two
elliptic curves and which admit also a special (1, 2)-palation £ besides the product
polarization, see [44]. For such surfaces, the linear aystel could possibly contain
more than two reducible curves (hence, less than eightucibtt nodal curves).

The other special elements of the perjti| are smooth hyperelliptic curves; let us
compute their number.

Proposition 1.17. The following holds.
(a) Assume that is a general(1, 2)-polarization. TherL| contains exactly six smooth
hyperelliptic curves.
(b) Assume thatC is a special(1, 2)-polarization. Then|L| contains at most four
smooth hyperelliptic curves. More precisethe number of such curves is given by
6 — v, wherev is the number of reducible curves |b]|.
In any casethe set of hyperelliptic curves is union of orbits for theiactof K(L)
on |L|, and each of these orbits has cardinaliy

Proof. (a) We borrow the following argument from [8, Propiosi 3.3]. Let us
consider again the blow-up of A at the four base points g¢f.| and the induced genus
3 fibrationr: A — PL. By [37, Sections 3.2 and 3.3] there is an equality

(3) KZ = 3x(0) — 10+ degT,

where7T is a torsion sheaf oiP! supported over the points corresponding to the hyper-
elliptic fibres of r. Since L is a general polarization, we can have only smooth hyper-
elliptic fibres and the contribution of each of them to @égwhich is usually called the
Horikawa number, is equal to 1. So (3) implies thabas exactly six smooth hyper-
elliptic fibres. On the other han® (£) acts on the set of hyperelliptic curves ff],

so have three orbits of cardinality 2.

(b) The Horikawa number of a reducible curve|ln| is equal to 1, see [1], so (3)
implies that|L| contains precisely 6 v smooth hyperelliptic curves. In particular, by
Remark 1.16|L | contains exactly six hyperelliptic curves & is not isomorphic to the
product of two elliptic curves. Since the hyperelliptic ves have non-trivial stabilizer
for the action ofK(£) on |L| when L is a general polarization (see part (a)), by a limit
argument we deduce that this is also true wieis a special polarization. It follows
that the orbit of each hyperelliptic curve consists agairexdctly two curves. ]
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Proposition 1.18. Let(A,L£) be a(1,2)polarized abelian surface and let €|L].
Then the stabilizer of C for the action of (K) on |L| is non-trivial if and only if
either C is a smooth hyperelliptic curve or C is a reducibleveu(in the latter case
L is necessarily a special polarizatipn

Proof. The action oK (£) on|L| = P! induces aZ/2Z)?-coverP* — P*, which
is branched in three points by the Riemann—Hurwitz formdihis implies that there
are exactly six elements gt | having non-trivial stabilizer. Our claim is now an im-
mediate consequence of Proposition 1.17 and Propositith, part (b). []

Let us consider the line bundlé? = Oa(2L). It is a polarization of type (2,4) on
A, henceh®(A, £2) = 8. Moreover, sincel satisfies Assumption 1.12, the same is true
for £2. Let HO(A,£?)* and HO(A,£?)~ be the subspaces of invariant and anti-invariant
sections for {1)a, respectively. One proves that

dimHO(A, £ =6, dimH%A, £?)~ =2,
see [4, Section 2].

Proposition 1.19([4, Section 5]) The pencilPHY(A, £2)~ of anti-invariant sec-
tions has preciselyi6 distinct base pointsnamely g, €y, ..., e15. Moreover all the
corresponding divisors are smooth at these base points.

The 12 pointsey, . . ., €15 form three orbits for the action oK (£) on A; without
loss of generality, we may assume that these orbits are

{€4, €5, €, €7}, {63, &, €10, €11}, {€12, €13, €14, €15}.
Now let us take the 2-torsion line bundl€} := Oa(Q;), i = 1, 2, 3 such that
4 teL=L®Q1, BL=L®Q, tiL=LQ Qs
Then

Bs|L + Q1| = (&4, &, €, €7},
Bs|L + Q2| = {es, &y, €10, €11},
BsL + Qz| = {ex, 13, €14, €15}.

Moreover, for alli =1, 2, 3,
) h(AL®Q®T)=h(AL2Q®I) =1
Let us callN;, i =1, 2, 3, the unique curve in the pen¢ll + Q;| containingo (and

having a node there, see (5)). Af is a general (1, 2)-polarization then tiNg are all
irreducible, in particular they are smooth outsidle
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DEFINITION 1.20. We denote byD the linear systenPHO(A, £? ® T%). Geo-
metrically speaking® consists of the curves itfRL| having a point of multiplicity at
least 4 ato.

Proposition 1.21. The linear systen® C |2L| is a pencil whose general element
is irreducible with an ordinary quadruple point at o and no other singuleg.

Proof. Since the sections corresponding to the three c@Me®bviously belongs
to HO(A, £? ® Z2), by Bertini theorem it follows that the general element ®fis
irreducible, and smooth outside On the other hand, (22 = 16, so the singularity at
0 is actually an ordinary quadruple point. Blowing up this mipithe strict transform
of the general curve i has self-intersection 0, sB is a pencil. O

The following classification of the curves i will be needed in the proof of The-
orem 6.6.

Proposition 1.22. Let (A, £) be a(1,2)polarized abelian surfageand let Ce D.
Then we are in one of the following cases
(&) C is an irreducible curve of geometric gen8swith an ordinary quadruple point
(b) C is an irreducible curve of geometric gen@swith an ordinary quadruple point
and an ordinary double point
(c) C =2C’, where C is an irreducible curve of geometric gen@swith an ordinary
double point
(d) L is a special(1,2)polarization and C= 2C’, where C is the union of two elliptic
curves intersecting in two points.

Proof. By Proposition 1.21 the general elementsdfis as in case (a). Now as-
sume first thatC is a general polarization. Thed contains the following distinguished
elements:

e three reduced, irreducible curv@s, B, Bs such thatB; has an ordinary quadru-
ple point ato, an ordinary double point & and no other singularities (see [6, Corol-
lary 4.7.6]). These curves are as in case (b);

e three non-reduced elements, namelNs 22N,, 2N3. These curves are as in case (c).
Moreover, all the other elements ®f are smooth outside; one can see this by blowing-
up o and applying Zeuthen—Segre formula as in the proof of Pitipnsl.15.

Finally, assume that’ is a special polarization. Then there is just one more pos-
sibility, namely C = 2C’, whereC’ is the translate of a reducible cunie+ F € |L|
by a suitable 2-division point. This yields case (d). ]

Proposition 1.23. Every se H(A, £? ® 77) satisfies(—1)4s = s.
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Proof. Letv, € HO(A, £L® Q1), v2 € HY(A, L® Q,) be sections corresponding to
the curvesN; and Ny, respectively. SinceN; and N, are invariant divisors, it follows
(—1)hv1 = +v; and 1)4v, = £v,. Therefore £1)iv? = v2 and (1)3v3 = v3. But
vZ, v3 form a basis forHO(A, £? ® Z), so we are done. O

Proposition 1.24. We have
ho%(A, £2®Z3) = h%(A, L2® T2) = 2.

Geometrically speakingevery curve in|2L|, having multiplicity at least3 at o, actu-
ally has multiplicity 4.

Proof. By contradiction, suppose th&t®(A, £2 ® Z3) is strictly contained in
HO(A, £2 ® Z3). Then there existss € HO(A, £2 ® 73), w ¢ HY(A, £2 ® T?) such
that the three sections?, v3, w € HO(A, £?) are linearly independent; let us write

w=w"+w", where w"eHYA £)* and w e HYA, £?) .
Consider the sum
s=vi+vs+w=0v+vs+w" +w € HYA, £L2® )
then Proposition 1.23 implies
(-1as=vi+vi+wt—w.

On the other hand,«1), fixes the tangent cone at of the curve corresponding tg
hence ¢1)3s also vanishes of order at least 3dnthat is (1)3s € HO(A, £2® Z3).
This implies

wh, w™ e HYA, L2 T3).

Since by assumptiow = w* + w™ ¢ HO(A, £2 ® Z%), it follows that eitherw™ ¢
HO(A, £L2®T3) or w™ ¢ HO(A, £L2®1T2). In the former case, the curw* := div(w™)

is anevendivisor (i.e., corresponding to an invariant section)|2h.| which has multi-
plicity exactly 3 ato; but this is impossible, since every even divisor|2L| has even
multiplicity at the 2-division points ofA, see [6, Corollary 4.7.6]. In the latter case,
the curveW™ := div(w™) is anodd divisor (i.e., corresponding to an anti-invariant sec-
tion) in |2L| which has multiplicity exactly 3 ab; but this is again a contradiction,
since all the odd divisors if2L| are smooth at the 2-division points & see Prop-
osition 1.19. O
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2. Computations on vector bundles

Let (A, £) be a (1, 2)-polarized abelian surface. Throughout thigiegcF will
denote a rank 2 vector bundle ¢k such that

(6) h°(A, F) =1, hYA,F)=0, h’A F)=0, detF=L;

note that (6) together with Hirzebruch—Riemann—Roch iegpt,(F) = 1. These re-
sults will be needed in Section 5.

Proposition 2.1. If F is the direct sum of two line bundlethen it cannot be
strictly £-semistable.

Proof. SetF = Oa(C;1) & Oa(C,), whereC,, C, are divisors inA, and suppose
by contradiction thatF is £-semistable. Sincé = C; + C,, we obtain

Ci(C1 +Cp) = Co(CL + Cp) = 2.
On the other hand % c,(F) = C;C, and soC2 = C3 = 1, which is absurd. O

From now on, we assume th& is indecomposable We divide the rest of the
section into three subsections according to the propecfies and F.

2.1. The case wherel is not a product polarization.

Proposition 2.2, If £ is not a product polarizationthen F is isomorphic to the
unique locally free extension

0> 0pn—F— LRI, — 0,
with x € K(£). Moreover F is H-stable for any ample line bundi® on A.
Proof. Sinceh®(A,F) = 1, there exists an injective morphism of sheai®s— F.
By [19, Proposition 5 p. 33] we can find an effective divisbrand a zero-dimensional
subscheme such thatF fits into a short exact sequence
(7 0— OA(C) > F > Zz(L-C)—0.
Then hO(A, OA(C)) = 1 and
(8) 1=cy(F) =C(L-C)+1(2).

Now there are three possibilities:
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(i) C is an elliptic curve;
(i) C is a principal polarization;
(i) C=0.

In case (i) we haveC? = 0, then by (8) we obtaifCL = 1 and|(Z) = 0. Thus
[6, Lemma 10.4.6] implies thaf is a product polarization, contradiction.

In case (i), the index theorem yield€ [)?> > C2L? = 8, so using (8) we deduce
CL = 3,1(Z) = 0. SettingC := Oa(C), sequence (7) becomes

0O-C—>F—->Cle®L—0.
Being F indecomposable by assumption, we have
(9) HYA C?@ LY =Ext(Ct® L, C)#0.
Moreover, since £2C + L)L = -2, the divisor—2C + L is not effective, that is
(10) H2(A, C2@ LY = HYA C?® L) =0.

On the other hand, by Riemann—Roch we have
2 -1 1 2
x(A,CTQ® L) = E(ZC—L) =0,

so (9) and (10) yieldH%(A,C?® £71) # 0. This implies that € — L is effective, so by
using [4, Lemma 1.1] and the equalityG2- L)C = 1 one concludes that there exists
an elliptic curve E on A such that £ — L = E. Thus [6, Lemma 10.4.6] implies
that A is a product of elliptic curves and th& is a principal product polarization.
In other wordsA = E x F and C is algebraically equivalent t& + F. But thenL
is algebraically equivalent t&e + 2F, contradicting the fact that’ is not a product
polarization.

Therefore the only possibility is (iii), namelZ = 0. It follows that Z consists
of a single pointx € A and, sinceF is locally free, x is a base point ofL]|, i.e.,
x € K(L).

Therefore (7) becomes

(1)) 0> Op—>F—> LRI, — 0.

Tensoring (11) with7¥ and taking cohomology, we obtain

2
1<hA FRF)=h"AF' ®LRTL) = h°<A, FY ®/\J—'®Ix>

=h%(A, F®I) <h%A F)=1.
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ThereforeH(A, F ® F¥) = C, that is F is simple. Sincecs(F)—4cy(F) = 0, by [40,
Proposition 5.1] and [41, Proposition 2.1] it follows thatis H-ample for any ample
line bundle? on A.

It remains to show that (11) defines a unique locally free resit. By applying
the functor Hom{-, Op) to

(12) 0> LRIy > L—>L®VOx—0
and using Serre duality, we get
0 — ExtY(£ ® Iy, Op) — EX(L ® Oy, Oa) = HY(A, L ® Ox)”
2 Ex(L, On) = HO(A, £)".
Being x € Bg|L|, it follows that ¢ is the zero map (see [12, Theorem 1.4]), so
(13) Ext(£ ® Zy, Op) = C.
This completes the proof. ]

REMARK 2.3. Up to replacingl by t;£, which is still a symmetric (1, 2)-
polarization, we may assume= 0. So F will be isomorphic to the unique locally
free extension

(14) 0> Op—>F—>LRT,— 0.

Proposition 2.4, If £ is not a product polarizationF is a symmetriclT-sheaf
of indexO.

Proof. Sincel is a symmetric polarization, by applying-{), to (14) we get
00— Op— (1o F > LI, — 0.

But (13) implies thatF is the unique locally free extension & ® Z, by Oa, SO we
obtain (1)3F = F, that is F is symmetric.
In order to prove thatF satisfies IT of index 0, we must show that

VYA, F):={Q e Pid°(A) | h{(A, F® Q) > 0} = 9,

(15) 5 . )
V3(A, F):={Q e Pid°(A) | h¥(A, F® Q) > 0} = 0.

First, notice thatOa ¢ V(A, F) and Ox ¢ V2(A, F), sinceh(A, F) = h?(A, F) = 0.
Now take Q € Pic°(A) such thatQ # Oa. Tensoring (14) withQ and using Propos-
ition 1.14, we obtain

h'A F® Q) =1, hYA, F® Q) =0, h*A F® Q)=0.
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Hence (15) is satisfied, and the proof is complete. L]
Since F is simple andy(A, F ® F¥) = 0, we have
(16) A FRF)=1, hY(A FRF)=2 hAFRQF)=1

On the other hand, the Clebsch—Gordan formula for the tepsmduct ([3, p.438])
gives an isomorphism

2
Or® (SZJ-"(X)/\]-"V) =FQF,

so by using (16) we obtain
2 2
h°<A, SFe /\J—"V> =0, h1<A, SF® /\]—"V> =0,
2
h2<A, gre /\ ]—"V> =0.

17)

Proposition 2.5. If £ is not a product polarizationwe have
2
(18) hO(A, sSre A\ ]-'V) =h%A L2013 =2
Proof. The Eagon—Northcott complex applied to (14) yields

2 2
0>SFoN\NF - SFe \ 7' - 2RI -0,
SO our assertion is an immediate consequence of (17) and$ttiop 1.24. []

2.2. The case whereC is a product polarization and F is not simple. Now
let us assume thaf is a product (1, 2)-polarization. TheAh = E x F, whereE and F
are two elliptic curves, whose zero elements are both ddint®. Let 7g: ExF — E
andr: E x F — F be the natural projections. For anye F andq € E, we will
write Ep, and Fyq instead ofzz1(p) and 7z%(q).

Furthermore, up to translations we may assufne Oa(E, + 2F).

Following the terminology of [29], we say th&k is of Schwarzenberger typé it
is indecomposable but not simple.
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Proposition 2.6. Suppose that is a product(1, 2)polarization. ThenF is of
Schwarzenberger type if and only if it is a non-trivial exdem of the form

(19) 0-C—>F—>L®CT=D0,
whereC := Oa(E, + Fq), with p € F different from o and ¢ E a 2-division point.

Proof. If F is a non-trivial extension of type (19), then [29, Lemma [ P&hows
that 7 is indecomposable but’(A, F ® F¥) = 2, soF is not simple.

Conversely, assume that is of Schwarzenberger type. Beird not simple, it is
not H-stable with respect to any ample line bundieon A. In particular, 7 is not
L-stable. An argument similar to the one used in the proof @pBsition 2.1 shows
that F is not strictly £-semistable, so it must b&-unstable. This implies that there
exists a unique sub-line bund@&:= OA(C) of F with torsion-free quotient such that

(20) XL>L2=4.

Now let us write

(21) 0— OA(C) > F - Zz(L —C) = 0,

whereZ C A is a zero-dimensional subscheme. Then by using (20) werobtai
(22) 1=cy(F)=C(L-C)+1(Z2) > 2—C?+1(2),

that isC? > 1 4+ 1(Z). On the other hand, sinde’(A, C) = 1, the only possibility is
I(Z) = 0 andC? = 2, in particularC is a principal polarization. But (22) also gives
3=CL = C(E, + 2F,), soC is numerically equivalent t&, + F,. Therefore we can
write C = Ep, + Fy for somep e F, g € E and (21) becomes

(23) 0— OA(Ep + Fq) = F — Oa(Eo — Ep + 2F, — Fy) — 0.

Sinceh®(A, F) = 1, we havep # o. On the other hand, sinc& is indecomposable,
(23) must be non-split, so

H(A, Oa(REp — Eo + 2F4 — 2F,)) # 0.

This implies that &, is linearly equivalent to B, that isq € E is a 2-division point.
O

Proposition 2.7. If £ is a product polarization andr is of Schwarzenberger type
we have

2 2 2
hO(A, 83]-"®/\]-‘V> = h°<A, gFe \F ®c) = h°<A,}'®/\}"V ®cz)

=3.
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Proof. The Eagon—Northcott complex applied to (19) gives
2 2
0->F \F'e?>SFe \F'®C—>LeC"' -0,
2 2
0>Fe \F'eC—>SFe \F' - 2eCc® -0
On the other hand, we have
HOA, L& C™) = HY(A, Oa(Eo — Ep + Fq)) =0,
HO(A, £2® C3) = HY(A, Oa(2E, — 3E, + Fq)) = 0.

Tensoring (19) with/\” ¥ ® C? we obtainh®(A, F ® A\ F¥ ® C?) = 3, so the claim
follows. ]

Corollary 2.8. If £ is a product polarization and* is of Schwarzenberger type
then the natural product map

2 2
H°<A,]~"®/\]~"V ®02) ® HYA, F®C H)®? — HO<A, s3f®/\fV>

is bijective. Thereforeif f: X — A is the triple cover corresponding to a non-zero
sectiony € HO(A, SSF ® \? FY), the surface X is reducible and non-reduced.

Proof. The first statement follows from Proposition 2.7 amairf HO(A, F®C™1) =
C. The second statement is an immediate consequence of therfeéssincen can be
written asn = nin3, wheren; € HO(A, F ® A*F¥ ® C?) and n; is a generator of
HYA FoC™). O

2.3. The case whereC is a product polarization and F is simple.

Proposition 2.9. Suppose that is a product(l,2)-polarization. Then the follow-
ing are equivalent
@iy F is simple
(i) F is H-stable for any ample line bundi® on A
(i) there exists &-division point ge E such thatF is isomorphic to the unique non-
trivial extension

0— Oa(Fq) > F = Oa(Eo + Fg) = O;

(iv) there exists a2-division point ge E such thatF(—Fy) = 7£G, where§ is the
unique non-trivial extension

0— O - G — Og(0) — 0.
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Proof. (i)= (i) See [40, Proposition 5.1] and [41, Proposition 2.1].

(i) = (i) If F is H-stable, then it is simple. By [29, Corollary p.249], there
exists an abelian surfacB, a degree 2 isogeny: B — A and a line bundleV :=
Og(N) on B such that

(24) o N = F.

Let Q := Oa(Q) € Pic(A) be the 2-torsion line bundle defining the double coyer
then the following equality holds in Pigj:

OA(Eo + 2Fp) = c1(F) = Oalp«N + Q),

see [19, Proposition 27 p.47]. This implies
e B=ExF and

¢=idxp: ExF > ExF,

where$: F — F is a degree 2 isogeny. Note th@t = Ep— Eo, wherepe F is a
2-division point.

e N is a principal product polarization of the forld = E, + Ifq, wherea € F is
such thatp(a) = p andq € E is a 2-division point.

Since Ifq = ¢*Fq, by using (24) and projection formula we obtain

(P*OB(Ea) = %(N(_'fq)) = -F(_Fq)

Thus h%A, F(—Fg)) = 1, and so there exists an injective morphism of sheaves
Oa(Fq) = F. Then we can find an effective divisd on A and a zero-dimensional
subschemeZ C A such thatF fits into a short exact sequence

0— Oa(Fq+ D) > F - I7(Eo + Fg— D) — 0.

Sinceh®(A,Oa(Fq+ D)) = HY(A,F) =1, eitherD = 0 or Fq+ D is a principal product
polarization. The latter possibility cannot occur, othsenF would be of Schwarzen-
berger type (Proposition 2.6). Thdh = 0 andl(Z) = c(F) —(Eo + Fq)Fq =0, so Z
is empty and we are done.

(i) = (iv) We haveOa(Eo) = £ Or(0). By [29, Footnotex x x, p. 257] the map

Ext'(Or(0), Or) — Ext'(Oa(Es), Oa)
is an isomorphism. Since the unique not-trivial extensiérOg (0) with Of is G, we

get (iv).
(iv) = (i) Again, [29, p.257] gives End§) = End@G) = C. ]
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Proposition 2.10. If £ is a product polarization andF is simple we have
2 2
h0<A, §f®/\}"v ®OA(_FQ)) = h0<A, Sr /\]_—v) -2

Proof. By Proposition 2.9, we havg(—Fq) = n£G, whereg is the unique non-
trivial extension ofOg(0) by Og. Therefore

(25) h%(A, F(—Fq)) = h%(F, ne. F(—Fq)) = h%(F, G) = 1.
By [3, pp.438-439] we have
SG(-0)BOA=GRG" =0a® Q1D P Qs

where theQ; are the non trivial 2-torsion line bundles gx Since the decomposition
of a vector bundle in indecomposable summands is uniqug \{&] get

S°G = Q1(0) ® Q2(0) ® Q3(0),

hence

SGeG(0)=SGRG=0® 91(0)® G ® 02(0) ® G ® Q3(0)
= G(0) ® G(0) ® G(0).

ThereforeS*G = G(0) @ G(0) and by straightforward computations one obtains

2
(26) SFe \NF' =FarF
Now the claim follows from (25) and (26). O

Corollary 2.11. Assume thatC is a product polarization and tha# is simple
and let f: X — A be the triple cover defined by a general sectipa H°(A, S*F ®

/\2 ]-"V). Then the variety X is non-normahnd its normalization X is a properly
elliptic surface with g(X*) =2, q(X") = 3.

Proof. Proposition 2.10 shows that every sectiorSoF @ /\2 FVY vanishes along
the curveFy; this implies thatX is singular alongf~1(F,), in particular X is non-
normal. The composition of : X — A with the normalization map is a triple cover
f: XV — A, whose Tschirnhausen bundleds := F(—Fg)". Since/\zé’” = Oa(—Ey),
the morphismf” is branched over a divisor belonging to the linear sysi2g,|, hence
X" contains an elliptic fibration. Moreove£(£”) = 0, c,(£*) = 0 and a straightforward
computation usingF(—Fq) = 7£G and Leray spectral sequence yields

ho%(A, £Y) =0, hY(A &%) =1, h*A &) =1
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Therefore Proposition 1.2 impliepg(X”) = 2, q(X") = 3 and K2, = 0, henceX" is
a properly elliptic surface. ]

3. Surfaces withpg =q = 2, Kg =5 and Albanese map of degree 3

3.1. The triple cover construction. The first example of a surfacg of general
type with py = q = 2 and K% = 5 was given by Chen and Hacon in [16], as a triple
cover of an abelian surface. In order to fix our notation, Etrecall their construction.

Let (A, £) be a (1, 2)-polarized abelian surface, and assume £hist a general,
symmetric polarization. Since

ho(A, L®Q)=2, h'(A,L®Q)=0, h* A L®Q) =0

for all Q € Pic’(A), the line bundle. ! satisfies IT of index 2. Then its Fourier—Mukai
transformF := £-1 is a rank 2 vector bundle oA which satisfies IT of index 0, see
[6, Theorem 14.2.2]. Let us consider the isogeny

¢ =1 A A,
whose kernel isK (£1) = K(£); then by [28, Proposition 3.11] we have

(27) G F=LBL.

Proposition 3.1. The vector bundle ¥ ® /\2 FY satisfies
2 2
h°<A, SF® /\]—"V> =2, h1<A, SFe /\]—'V) =0,
2
h2<A, Sre /\fV> =0.

Proof. We could use Proposition 2.5, but we prefer a diffesgument exploit-
ing the isogenyg. Since x(A, SF ® A®F¥) = 2, it is sufficient to show that
hi(A SSF® \* FY) = h?(A, SSF® A\* F¥) = 0. Since¢ is a finite map, we obtain

H‘(A, §F®/2\]:V) zcﬁ*Hi(A- S3JT®/2\JTV) < Hi(A’ ¢*(§f®/2\fv))

for all i =0, 1, 2. On the other hand, (27) yields

2
H (A, ¢*<S3]-"® /\]—'V>> = H'(A, £)®,

so the claim follows. O
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By Theorem 1.1 there is a 2-dimensional family of triple agvé: X — A with
Tschirnhausen bundlé = FY. We have the commutative diagram

X:AXAXw—>)A(

(28) lf lf
A;) A

wherey: X — X is a guadruple étale cover arfd X — A is a triple cover determined
by a section of

2 2
¢*H°(A, §F®/\]~"V) C H°<A, ¢*<§]—"®/\]—"V>) = H%A, £)®.

By [6, Chapter 6] there exists a canonical Schrédinger sspration of the Heisenberg
group#, on HO(A, £), where the latter space is identified with the vector Sga(&/27)
of all complex valued function on the finite gro#y2Z.

Following [16, Section 2] we can identify the 2-dimensionslibspace of
HO(A, ¢*(S*F ® A\* FY)) corresponding tap*HO(A, S*F @ A\? F¥) with

(29) {(sx, ty, —tx, —sy) | s, t € C} € HO(A, £)®4,

wherex, y € HO(A, £) form the canonical basis induced by the characteristictfans
of 0 and 1 inC(Z/2Z). By [27], we can construct the triple covdr: X — A using
the data

(30) a=8Xx b=ty, c=-tx, d=-sy

Over an affine open subskt of A the surfaceX is defined inU x A? by the deter-
minantal equations

Zz+a w-—2d c
<
(31) ra”’( b z-2a w+d) =1

where w, z are coordinates im2. Moreover, the branch locup of f: X — A is
given by

(32) D = (t? — s%)2x%y? — 4(s’x? + sty?)(s?y? + stx®) € HO(A, LY.

This corresponds to a divisdD; + D, + D3 + D4 with D; € |L|; moreover the set
{D1,..., D4} is an orbit for the action oK (£) on |L|. For a general choice ¢t, the
D; are all smooth, so the singularity @ are four ordinary quadruple points &4, e,
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&, e3. Over these pointd : X — A is totally ramified andX has four singularities of
type (1/3)(1,1). Blowing up these points and the base pointiLdfwe obtain a smooth
triple cover f: X — A, which is actually the canonical resolution of singulastiof X,
the proper transform of th®; in X. Then Ei2 =-3,EE;=0fori#j, RRj =0
and RE; =1 for alli, j. Since

4 4
Ky=) R+ E
i=1 i=1

we obtain K>2~( = 20. MoreoverX has only rational singularities, so &: X — X is
the resolution map we havﬁl&*O;( = Oy; therefore

pg(X) = h?(X, Og) = h*(X, Ox) = h?(A, Op) + 2h*(A, L) = 5,
a(X) = h}(X, Og) = h'(X, Ox) = hY(A, Oa) + 20} (A, £71) = 2.

This shows thab((f(,O;() = 4. Now let S be the canonical resolution of singularities of
X; thenKs is ample andA = Alb(S). Since there is a quadruple, étale coyerX —
S induced byy: X — X, the invariants ofS are

Pg(S) = q(S) =2, KZ=5.

REMARK 3.2. Both X and X only contain singular points of type (3)(1, 1),
which are negligible singularities, see Example 1.6. Heweecould compute the in-
variants of bothX and S by directly using Proposition 1.2.

3.2. The product-quotient construction. In [32] it is shown that there exists
precisely one family of surfaces withy = g = 2 andK2 = 5 which contain an isotriv-
ial fibration. Now we briefly explain how this family is obtad, referring the reader
to [32] for further detalils.

By using the Riemann existence theorem, one can construxtstmooth curves
C,, C, of genus 3 which admit an action of the finite gro8gp such that the 2-cycles
act without fixed points, whereas the cyclic subgroup gdedray the 3-cycles has ex-
actly two fixed points. Therg; := Ci/S is a smooth elliptic curve and the Galois
cover C; — E; is branched in exactly one point with branching number 3. Newws
consider the quotienf( = (C1xCy)/S3, whereS; acts diagonally on the product. Then
X contains precisely two cyclic quotient singularities asice the 3-cycles are conju-
gated inS;, it is not difficult to show that one singularity is of type/@)(1,1) whereas
the other is of type (13)(1, 2). LetS — X be the minimal resolution of singularities
of X; thenSis a minimal surface of general type wifly = q = 2 andK3 = 5; notice
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E,xE,
Fig. 2. The product-quotient construction.

that Ks is not ample. The surfac& admits two isotrivial fibrationsS — E;, which are
induced by the two natural projections 6f x C,.

The Albanese variety& of Sis an étale double cover d&; x Ej; it is actually a
(1, 2)-polarized abelian variety, whose polarizatifris of special type. The Albanese
mapo: S — A is totally ramified, and its reduced branch loctgq = E + F is a
curve of type (c) in Proposition 1.10, having one of its node. It is clear that
the two singular points oK lie precisely over the two nodes @f,eq. In particular X
has only negligible singularities, see Example 1.8. Thigstmction is summarized in
Fig. 2.

Therenr: Ci x Cy, — X is induced by the the diagonal action 8f on C; x C,,
while f: X — A is the Stein factorization of the Albanese map S — A. Since the
diagonal subgroup is not normal i x S, it follows that f is not a Galois cover;
let h: Z — A be its Galois closure, which has Galois gro8p The surfaceZ is
isomorphic to the diagonal quotien€{ x C,)/(Z/3Z), where Z/3Z is the subgroup
of S generated by the 3-cycles; therefatehas four singular points coming from the
four points with non-trivial stabilizer oi€; x C,. More precisely,

. 1 1
Sing@) = 2x 3(1, 1)+ 2x 5(L, 2).

In addition, the coverC; — E; factors through the cove€; — E/ := C;/(Z/3Z),
where E{ is an elliptic curve isogenous tB;; this induces the cove€; x C; — (C1 x
C,)/(Z/3Z)* = E] x EJ, which clearly factors througlz. Observe that also the cover
7:CixCy— X factors throughZ. Finally the compositioreoy: E; x E; — E; x Ej
is a (Z/2Z)?-cover, which factors througth. Using the commutativity of the diagrams
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in Fig. 2 and the theory of abelian covers developed in [3tf can check, looking
at the building data off: Z — E; x E, andy: E}, x E, — A, that the Tschirhausen
bundle€ of f: X — A satisfies/\>EY = L ® Q, where Q is a non-trivial, 2-torsion

line bundle. This is a particular case of a more general tiitmasee Proposition 5.8.

4. Chen-Hacon surfaces

In this section we will generalize the triple cover constimt described in Sub-
section 3.1. In fact, since we want to be able to “take thetfiof a 1l-parameter
family of surfaces obtained in that way, we shall drop theuagstions that( is a gen-
eral polarization and that andt are general complex numbers. Among other results,
we will show that the product-quotient surface describe@isection 3.2 can be also
obtained as a specialization of Chen—Hacon’s example, seell@ry 5.6.

Let us start with the following

DEFINITION 4.1. LetS be a minimal surface of general type witly = q =2
such that its Albanese map: S — A := Alb(S) is a generically finite morphism of
degree 3 onto an abelian surfade Let

~ f A
(33) sB XA

be the Stein factorization of, and 7V be the Tschirnhausen bundle associated with
the triple coverf. We say thatS a Chen—Hacon surfacd there exist a polarization

£ of type (1, 2) onA = Pic®(A) such thatF = £-1.

REMARK 4.2. SinceA is an abelian variety and is a finite map, it follows that
p contracts all rational curves iB. The surfaceS is the minimal resolution of singu-
larities of X but it is, in general, different from the canonical resantiX described
in Proposition 1.4. For instance, in Example 1.7 the surféceontains a {1)-curve.

The line bundlef is a IT-sheaf of index 0, so by [6, Theorem 14.2.2] and [6,
Proposition 14.4.3] we have

(34) h%A, F) =1, h'(A, F)=0, h%A F)=0, detF =_Ls,

where Ls := O4(Ls) is the dual polarization of. ThereforeF belongs to the family
of bundles studied in Section 2.

Proposition 4.3. Let S be a Chen—Hacon surface. Th&nis indecomposable.

Proof. Sincel is a non-degenerate line bundle, by [6, Corollary 14.3.1.6jllows
that F is H-semistable with respect to any polarizatitih Now the claim follows from
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Proposition 2.1. Alternatively, one could also remark tsiaice £~* is indecomposable
the same must be true for its Fourier—Mukai transfofm O

Proposition 4.4. Let S be a Chen—-Hacon surface. Thénis not a product
polarization.

Proof. L is a product polarization if and only ifs is a product polarization. If
Ls were of product type, thexX would not be a surface of general type (see Corol-
laries 2.8 and 2.11), contradiction. O

Since £ is not a product polarization, we may use the results of Silmse 1.2.
Moreover, for any Chen—Hacon surfaBawe can consider its associated diagram (28).
Being the morphism/ étale, X is nonsingular in codimension one if and only if the
same holds forX. Similarly, f is totally ramified if and only iff is totally ramified.

Proposition 4.5. The following holds
() X has only isolated singularities unless=t0 or t? — 9s?> = 0.
(i) If t =0 or t? — 9s? = 0, then X has non-isolated singularities. Moreqvér
v: X — X is the normalization maphen the composition §v: X" — A is an étale
triple cover. Thereforgin this case X is not a surface of general type.

Proof. (i) A local computation as in [16, Claim 2] shows thét,t £ 0 and
t2 # 9s?, above a neighborhood of any of the base pointgldfthe equations (31)
define a cone over a twisted cubic, hence an isolated sirityutsrtype (1/3)(1, 1).

(i) We can assume = 0, since the proof in the other cases is the same. Looking
at (31), we see that in a neighborhood of any of the base peints, e, e;, the surface
X is defined inA* by

x+2(2x-2)=0, Y+w)y-w)=0, X+2(y—-w)=0,

and it is straightforward to see that these equations defieeubhion of three 2-planes
intersecting along two lines. This shows thatcontains non-isolated singularities. The
normalization map: X — X can be computed by using the computer algebra system
Si ngul ar, see [39]. It turns out thaX” is locally given by three mutually disjoint
2-planes inA®; moreover, for each of these planes the projection onto teetfio co-
ordinates ofA® is an isomorphism. In the global picture this means tkatis smooth
and f ov: X¥ — Ais an étale triple cover. O

REMARK 4.6. In Proposition 5.11 we will show that tf= 0 ort> —9s> = 0
then X (and henceX) is a reducible surface.

Proposition 4.7. Assume that X has only isolated singularities. Then thevel|
ing holds



670 M. PENEGINI AND F. PoLIzzI

(i) f:X — Ais totally ramified if and only if s=t, s=—t or s=0.

(i) f: X — Ais totally ramified if and only if
(ila) either D= 2D; + 2D,, where O, D, € |L| are distinct smooth hyperelliptic
curves belonging to the same(K)-orbit, or
(iib) £ is a special polarization and B= 2(E + F) + 2(E’ + F’), where E+ F
and E + F’ are as inProposition 1.15 (b)

Proof. (i) The triple coverf: X — A is totally ramified if and only if the dis-
criminant of the polynomial definingd® in (32) vanishes. This happens exactly for
s=0,t=0,s=t,s=—t,t =3s,t =—3s. Since we are assuming that has
isolated singularities, the only acceptable values siee t, s = —t ands = 0 (see
Proposition 4.5).

(i) The triple cover f: X — A is totally ramified if and only ifD = 2D’ for
some effective divisorD’. Since the four curved®; form an orbit for the action of
K(£) on |L|, this is equivalent to say that the; have non-trivial stabilizer. Now the
assertion follows from Proposition 1.18. ]

Proposition 4.8. Assume thatX has only isolated singularities. TheX always

contains a singular point of typé&l/3)(1, 1), lying over6 € A. Moreover this point is
the unique singular point oK, unless
() one of the B is an irreducible nodal curve in this caseX also contains a singu-
lar point of type(1/2)(1, 1);
(i) £ is a special polarization and we are in caggb) of Proposition 4.7 Then
f: X - A is totally ramified over the image ik of the divisor E+ F + E' + F/,
which is a curve isomorphic to B F and having a node ab. In this caseX also
contains a singular point of typ€l/3)(1, 2)

Proof. Since there exists an étale morphigmX — X, it is sufficient to analyze
the triple coverf: X — A. If all divisors D; are smooth, then the only singularities
of X are the four points of type (B)(1, 1) lying over the base points ¢E|. If one
of the Dj is an irreducible, nodal curve, then all th® are so, because they form a
single K(£)-orbit, see Proposition 1.15 and Remark 1.16. In this cés@so contains
four points of type (12)(1, 1), which are identified by, to a unique point of type
(1/2)(1, 1) in X; this yields (i). Finally, if £ is a special polarization an® = 2(E +
F)+2(E'+ F’), then locally around any of the four poinfs g, r, s the equation ofX
can be written ag® = xy, so they give singularities of type (3)(1, 2). The morphism
¥ identifies E with E’ and F with F’. Then f: X — A is totally ramified and its
reduced branch locus is isomorphic b+ F, in particular it has two nodes. One of
these nodes is di and it gives the singular point of type /3)(1, 1); the second one
gives instead a singular point of type/@)(1, 2). This is case (ii). ]
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In the sequel we will denote by the branch locus of : X — A. By construction,
it is precisely the image ob via ¢: A — A. It follows that A always has a point of
multiplicity 4 at 6 € A. More precisely, we have the following

Proposition 4.9. The branch locusA belongs precisely to one of the following
types
(@) A is reduced and its only singularity is an ordinary quadrugleint at o; in this
caseSing(X) = (1/3)(1, 1)
(b) A is reduced and its only singularities are an ordinary quaaleupoint até and
an ordinary double pointin this caseSing(X) = (1/3)(1, 1)+ (1/2)(1, 1)
(c) A = 2Aeq, Where Aeq is an irreducible curve whose unique singularity is an or-
dinary double point a®; in this caseSing(X) = (1/3)(1, 1)
(d) A =2Aqgand Aeg= E + F, where E F are elliptic curves such that EE 2
and 6 € E N F; in this caseSing(X) = (1/3)(1, 1)+ (1/3)(1, 2)
The canonical divisor K is ample if and only if we are either in caga) or in case(c).

Proof. Case (a) corresponds to the general situation. @s®iresponds to Prop-
osition 4.8, (i). Case (c) corresponds to Proposition 4id). (Finally, Case (d) corres-
ponds to Proposition 4.8, (ii) or, equivalently, to Propiosi 4.7, (iib). []

REMARK 4.10. The equation oA is given by a non-zero element I11°(A,£§®

Ig), where L; is a (1, 2)-polarization oA which coincides, up to translations, with
the dual polarization ofZ, see [6, Chapter 14] (we cannot denote the dual polarization

by L, since this is the Fourier—Mukai transform a9. Notice that the four cases in
Proposition 4.9 correspond exactly to the ones in Propusiti.22.

Summarizing the results obtained in this section, we have

Proposition 4.11. If S is a Chen—Hacon surfacéhen it is a minimal surface of
general type with p=q = 2, K& = 5. Moreover X contains at least one and at
most two isolatednegligible singularities which belong to the the types described in
Examples 1.6, 1.7, 1.8n particular, X is never smooth.

5. Characterization of Chen—Hacon surfaces

In this section we prove one of the key results of the papenetyathe following
converse of Proposition 4.11.
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Theorem 5.1. Let S be a minimal surface of general type with=pq = 2, Kg =

5 such that the Albanese map S — A:= Alb(S) is a generically finite morphism of
degree3. Let

P oo 4
S—X—A
be the Stein factorization af. If X has at most negligible singularitiethen S is a

Chen—Hacon surface.

The proof will be a consequence of Propositions 5.2 and 5ldwbd.et £ be the
Tschirnhausen bundle of the triple covér X — A. Since by assumptioiX has at
most negligible singularities, Proposition 1.2 implies

ho(A, ) =0, hYA &) =0, h¥A €& =1

(35) )
AE) =4, ) =1.

In particular, A’ €Y yields a polarization of type (1,2) oA; let us denote it byC; =
Oa(Ls). SettingF := £, we have

h%(A, F) =1, h'%(A, F)=0, h%@A F)=0, detF =Ly,
that is F belongs to the family of vector bundles studied in Section 2.
Proposition 5.2. F is an indecomposable vector bundle.

Proof. Assume thatF is decomposable. Then there exists a line burdle
Oi(C) such that

F=C®(C*® L)
Following [27, Section 6], we can construét X — A by using the data

ac HYA, ),

be HYA C®® £;h),
ce HYA Cc3® L),
d e HYA, C 1 ® Ly).

Moreover, beingX irreducible,b and ¢ are both non-zero.

Sinceh®(A, F) = 1, we may assumb®(A,C) = 1 andh®(A,C1® Ls) = 0. There-
fore there are two possibilities:
(i) C is an elliptic curve;
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(i) C is a principal polarization.

In case (i), we have £ C(L; —C) = CLs. Then (X —Ls)Ls = -1, so T —L;
cannot be effective. This impligls = 0, contradiction.

In case (i), the index theorem yields=8C2L2 < (CL;)?, soCLs > 3. It follows

(—3C 4+ 2Ls)Ls = —3CLs + 8 < -1,
hencec = 0, contradiction. O
Proposition 5.3. Ls is not a product polarization.

Proof. By the results of Section 2, especially Corollaried @d 2.11, ifL; were
a product polarization the would be either a reducible surface or a non-normal sur-
face birational to a properly elliptic surface, in part@uit would not be a surface of
general type. L]

Proposition 5.4. There exists a symmetr{d, 2)-polarization £ on A such that

—

[i=F.

Proof. SinceL; is not a product polarization (Proposition 5.3), it follotsat 7
is the unique non-trivial extension

(36) 0> 03— F— Ls®Ly— 0,

see Proposition 2.2. Moreover,—l)}]-' = F and F satisfies IT of index O (Propos-

ition 2.4). ThusF is a line bundle onA that we denote by.1; the sheafl satisfies
IT of index O too, see [6, Theorem 14.2.2]. Therefore by [2& get

—_ T

A

(-1)3F = F.

Sinceh(A, £) = rank(F) = 2, it follows that £ is a (1, 2)-polarization. Notice that
coincides with the dual polarization dfs, in particular it is not a product polarization
(see also Remark 4.10). []

This completes the proof of Theorem 5.1.

REMARK 5.5. It is interesting to compare Proposition 2.5 with Pifion 1.24.
In fact, an explicit isomorphisnHO(A, £2 ® Z2) =5 HO(A, 2 ® Z3) can be given by

associating to every sectione HO(A, £3 ® Z3) = HO(A, S*F ® \* F) the equation
defining the branch locua of the triple cover given by, see again Remark 4.10.
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An immediate consequence of Theorem 5.1 is

Corollary 5.6. The isotrivially fibred surface constructed [i82], i.e., the product-
guotient surface ofSubsection 3.2is a Chen—Hacon surface. More preciséatycorres-
ponds to casdii) of Proposition 4.8or, equivalently to case(d) of Proposition 4.9

Proof. The product-quotient surface contains only neléggsingularities, see Ex-
ample 1.8, so Theorem 5.1 implies that it is a Chen—HacoraserfSinceX has one
singularity of type (¥3)(1, 1) and one singularity of type (3)(1, 2), looking at Prop-
osition 4.8 we see that it corresponds to case (ii). ]

The remainder of this section deals with some further prggeiof Chen—Hacon
surfaces.

Proposition 5.7. Let S be a Chen-Hacon surface. ThenS — A is never a
finite morphism.

Proof. By Proposition 4.9S always contains a—3)-curve, which is contracted
by a. ]

Proposition 5.8. Let S be a Chen—Hacon surfacnd assume thaf: X — A is
totally ramified. ThenAq is linearly equivalent to k+ Q, where Q is a non-trivial
2-torsion divisor.

Proof. By [27, Proposition 4.7] the divisoh = 2A,cq is linearly equivalent to
2Ls, henceAeq is linearly equivalent toLs + Q, where Q is a 2-torsion divisor. On
the other handAeq is singular atd (Proposition 4.9), sd is not trivial. ]

Proposition 5.9. Let S be a Chen—Hacon surface. Thén X — A is never a
Galois cover.

Proof. By [43, Theorem 5.5] it follows that is a Galois cover if and only ifitis

totally ramified and the line bundl@\®F is isomorphic toO;(Areq). Since A>F = L;,
this is excluded by Proposition 5.8. ]

Proposition 5.10. Let S be a Chen—-Hacon surfaand assume that A is a sim-
ple abelian surface. Then S does not contain any penciSp> B over a curve B
with g(B) > 1.

Proof. SinceA is simple, the same is true foh. Then the seVi(9) :={Q e
Pic°(S) | h}(S, @¥) > 0} cannot contain any component of positive dimension, &nd
does not admit any pencil over a cur@ with g(B) > 2, see [22, Theorem 2.6]. If
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insteadg(B) = 1, the universal property of the Albanese map yields a stiv@genor-
phism A— B, contradicting again the fact tha is simple. This concludes the proof.

O
It would be very interesting to classify the possible degatiens of Chen—Hacon

surfaces; however, this problem is at present far from bsilged. The following re-
sult describes some natural degenerations obtained biygtakiducible triple covers.

Proposition 5.11. Let f: X > A be the non-normal triple cover corresponding
to either t= 0 or t2 = 952 (seeProposition 4.5) ThenX is a reducible surface. More

precisely there exists ie {1, 2, 3 such that the section deﬁninﬁ is in the image of
the multiplication map

2 2
H°<A, SFINF'® Qi) ® HUA F® Q) — H°<A, §f®/\fV>,

where theQ; are the non-trivia] 2-torsion line bundles omA defined as in4).

Proof. It is sufficient to show that
A 2 A
h°<A, SF® /\]:V ® Qi) #£0 and h%A F® Q) #0

fori =1, 2, 3. Tensoring (14) withQ; and using (5) we obtain
h%(A F® Q) =h"A L;® Q ®T) = 1.
On the other hand, Eagon—Northcott complex applied to (3@)sg
0> F— SF > L2QTIZ—0,
hence we obtain
2 2
@) 0-FINF' ®Q->SFRINF'®Q > L;®Q I, 0.

Using F ® /\2 FY = FY, Serre duality and (15) we deduce
2
hO(A, FONF'® Qi) =h%A F'® Q) =h*(A, F® Q) =0,

2
hl(A, FoN\F'® Qi) =h'(A 7' ® Q) =h'(A F® Q) =0,
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so by (5) we have
2
hO(A, SFONF'® Qi> = h%(A £;® Q ®T2) = 1.

This completes the proof. ]

REMARK 5.12. Further degenerations of Chen—Hacon surfaces ceutibtained
by looking at the case whergs becomes a product polarization, see Corollaries 2.8
and 2.11.

We will now describe the canonical systeiis| of a Chen—Hacon surfacg show-
ing that it is composed with a rational pencil of curves of ges.

For the sake of simplicity, we will assume thatis a simple abelian surface. Let
a: S— A be the Albanese map @, let o: A* — A be the blow-up ofA at 8, and
let A C A be the exceptional divisor. Then there is an induced ag — A*, which
is a flat triple cover. The branch locus gf coincides with the strict transform of the
branch locusA of f, so it belongs to the strict transform of the pen®ij C |2L;|
given by]P’HO(A, Esz ®I§). The general element in this pencil is a smooth curve of
genus 3 and self-intersection 0, meetingin precisely four distinct points; so we have
a base-point free pencp: A* — PL. The exceptional divison\ is not in the branch
locus of B and E := B*(A) is the unique {3)-curve inS. Considering the Stein fac-

torization of the composed ma@i A2 P!, and using Proposition 5.10, we obtain
a commutative diagram

S_ﬂ> Al

(38) wl l@

pl_—P ,pt

whereb: P! — P! is a triple cover simply branched on four points, correspogmdo
the branch curve o and to the three double curves By, see Proposition 1.22.

Proposition 5.13. Let S be a Chen—Hacon surface. Théts| = E + ||, where
® is a smooth curve of genu& which satisfies %S, Og(®)) = 2, > =0, Ed = 4.
It follows thatp: S — P! coincides with the canonical mapkg of S.

Proof. The canonical divisor o8 is given by

Ks=pg"Kz+R=E+R,
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where R is the ramification divisor off. By diagram (38) it follows thatR € |®],
where |®| is the pencil induced by. The general element dfb| is a smooth curve
of genus 3, isomorphic to the strict transform of the genetament of©;. Since

2 = h%(S, 05(Kg)) = h%(S, O5(®)) = h°(S, Os(Ks — E)),

it follows that E is contained in the fixed part 9K s|. The rest of the proof is now clear.
O

6. The moduli space

The aim of this section is to investigate the deformation€bén—Hacon surfaces.
The first step is to embe& in the projective bundleP(F) as a divisorcontaining
a fibre

Proposition 6.1. Let S be a Chen-Hacon surface with ample canonical glass
then there is an embedding $ < P(F) whose image is a smooth divisor in the linear
system|3& — 7*Ls|, where¢ is the divisor class of)p(1) and 7: P — A is the nat-
ural projection. Moreover (S) contains the fibrer=1(0) of P; more preciselyz ()
coincides with the uniqué—3)-curve E of S.

Proof. Let us consider again the blow-up A’ — A, with exceptional divisor
A C A, and the flat triple cove: S — A’ described in the previous section. A
straightforward calculation shows that the Tschirnhausemndle associated tg8 is

FP=0*F ® Oz(—A)
and that we have a commutative diagram

P(F%) —— P(F)

(39) l l

A2 LA

Since S is smooth andg is flat, by [15] there is an embeddiri§: S < P(F?). lts
image is a divisor in the linear syste|®®—(z*)* detF*|, where&* is the divisor class
of Opx2(1) andx?: P(F*) — A’ is the projection. We have natural identifications

2
HOP(F), 3 — (7)* detF?) ~ H°<Aﬁ, SF'® /\(fﬁ)V)

2
= H°<Aj, o*<§’f® /\J—'V> ® O/_”\u(_A))
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2
H°<A, o <a*<§f® /\fv) ® O,M—A)))

2
= H°<A, sSre \F’ ®I(,),

2

hencei = t oi?: S P(F) provides an embedding dé as a divisor in the linear
system|3& — 7*L;| containing the fibrer=1(6). Such a fibre must coincide witl,
becauseE is the unique rational curve iS. ]

Given the embedding: S <> P, the Albanese map:: S — A of S factors as
a =moi, as in the following diagram:

S

LN
(40) \

Since Kp = —2¢ + n*Ls, the adjunction formula implies that the canonical line
bundle of S is the restriction ofOp(1) to S, that is

«~—H

b

>

(41) ws = Os(§).

In the sequel we shall exploit the following short exact sspes:
e the normal bundle sequence iof S— P, i.e.,

(42) 0— Op — Op(S) = Ngp — 0
e the tangent bundle sequenceiofS— P, i.e.,

(43) 0— Ts— Tp ® Os — Ngp — O;
e the tangent bundle sequenceof P — A ie.

(44) 0— Tp, 4= Te —> 7" Tz — 0.

Recalling thatS € |38 — 7*L;s|, we get

2
7.0p = 0; R'70p =0, m0p(9=5F® /\F’, R'm0p(9 =0,
so by the Leray spectral sequence we obtain

HI(P, Op) = H'(A 0y, H'(P,0p(9) = H (A SSF® A2FY), i>0.
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Hence, considering the long exact sequence associated (##)hand using Propos-
ition 3.1, we deduce

(45) h%(S, Nsp) =3, h%(S, Nsp) =1, h%(S, Ngp)=0.

Let us denote byHE the complex analytic space representing the functor of el
deformations ofSinsideP (with P fixed), see [38, p.123]. An immediate consequence
of (45) is

Proposition 6.2. HE is generically smoothof dimension3.

Proof. Sinceh?(S, Nsp) = 3, the dimension of the tangent spacetd§ at the
point corresponding t& is 3. On the other hand, the family of embedded deformations
of Sin P is at least 3-dimensional: indeed, we can m&ento the 1-dimensional
linear system|Op(S)| and we can translate it by using the 2-dimensional family of
translations ofA. ThereforeH¢ is smooth atS, hence generically smooth of dimension
3. In particular, the obstructions iH*(S, Nsp) = C actually vanish. []

Now let us consider the long cohomology sequence associgitad(43). SinceS
is a surface of general type, we hat#(S, Ts) = 0 and we get

0
s ° HO(S, Te ® Os) > HY(S, Ngp) — H(S, To)
1
— HYS, Tp ® Os) - HY(S, Ngp) 2, H2(S, Ts) - H?(S, Tp ® Og) — 0.

By standard deformation theory, see for instance [38, pl, 182 maps®: H%(S,Ns/p) —
HY(S, Tg) is precisely the map induced on tangent spaces by the ‘tfafgaorphism”
HE — Def(S), where Def@) is the base of the Kuranishi family &.

Now we look at (44). Sincd; is trivial, we obtain

Tp a4 = Op(—Kp) = Op(26 —7"Ly).

Then Rln*TP/A = 0, and Leray spectral sequence together with (17) yields
(47) H'(P, Ty z) = H' (A, 82f®/\fV) =0, i>0.

Therefore Ext(7*Ty, Tp,4) = HY(P, Tp,2)®? = 0, so (44) actually splits and we have
(48) Tp=Tp, @7 T3 =Op(2% —7"Ls) ® 7" T,
Since Ngp = Os(3¢ — *L;), by restricting (48) toS and using (41), we obtain

(49) Te ® Os = (Tp )4 ® O5) @ (7T ® Os) = (Ns/p ® 05") & Ty



680 M. PENEGINI AND F. PoLIzzI
Let us now compute the cohomology groups§p ® a)gl = Og(25 — m*Ly).
Lemma 6.3. We have
h%S, Ns/p ® ws!) =0, hX(S, Ngp ® 05') =0, h*(S, Ngp ® wg') = 0.
Proof. Let us consider the short exact sequence
0 — Op(—§) — Op(2£ —7*Ls) — Os(26 —n*Ls) — 0.

By [20, p.253] we haver,Op(—£) = R'7,0p(—£) = 0, so by Leray spectral sequence
we deduceH(P, Op(—£)) = HY(P, Op(—£)) = 0. It follows

2
H'(S, Nsp ® wg") = H'(P, Op(25 —7°Ly)) = H' (A, Szf@/\]:v) —0

fori =0,1, 2, see (17). [l

By using (46), (49) and Lemma 6.3 we obtain the exact sequence

(50) 0— HY%S &*Tz) — H(S, Ng/p) LN HY(S, Ts)
7o HY(S, @' Ty) — HY(S, Np) 2> HX(S, Ts) > HZ(S, a*T5) — O,

The key remark is now contained in the following

Proposition 6.4. The image ofy: HX(S, Ts) > H(S, «*T;) has dimensiors.

Proof. SinceT; is trivial and there is a natural isomorphism

H(S, Os) = HY(A, 0y),
we can see the map as a map
y: HY(S, Ts) — HY(A, Ty).

Take a positive integem > 2 such that there exists a smooth pluricanonical divisor
C € ImKg| and letC’ be the image ofC in A; then we have a commutative diagram

H(S, Ts(C)) —— H(A, T4(C))

HY(S, Ts) ———— HY(A, T).
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Here, following [38, Section 3.4.4 p.177], for each closebsschemeX of a projective
scheme) we denote byTy (X) the sheaf of germs of tangent vectors)iowhich are
tangent toX. When ) is smooth, the vector spade'(), Ty (X)) parameterizes the
first-order deformations of the paip)( X). Notice thatTy,(X) is usually denoted by
Ty(—log X) when X' is a normal crossing divisor with smooth components.

Let us observe now the following facts.
e Since S is smooth, the line bundley extends along any first-order deformation
of S, because the relative dualizing sheaf is locally free foy amooth morphism
of schemes, see [26, p.182]. Moreover, sirfgés minimal of general type, we have
hi(S, o) = 0, so every section ohT extends as well, see [38, Section 3.3.4]. This
means that no first-order deformation 8f makesC disappear, in other words is
surjective. Thereforémy C ime’.
e Since C)? > 0, the line bundleD;(C") is ample onA; therefore it deforms along
a subspace oH 1(A, T4) of dimension 3, see [38, p.152]. Since every first-order de-
formation of the pair A, C') induces a first-order deformation of the paik, ©x(C),
it follows that the image ot’ is at most 3-dimensional.
According to the above remarks, we obtain

dim(@my) < dim(ime¢’) < 3.

On the other hand, given any abelian surfaavith a (1, 2)-polarization which is not
of product type we may construct a Chen—Hacon surf&csuch that Albg) = A.
Hence the dimension dfm y is exactly 3. O

Corollary 6.5. We have
hi(S, Ts) = 4, h*(S, Ts) = 4.
Proof. By Riemann—Roch theorem we obt&il(S, Ts) — h?(S, Ts) = 10x(Os) —

2K§ = 0. On the other hand, Proposition 6.4 together with (45) iesgh’(S, Ts) = 4,
so we are done. ]

Now let us denote byM the moduli space of minimal surfaces of general type
with py = q = 2, KZ =5 and by M“" the subset of\ given by isomorphism classes
of Chen—Hacon surfaces.

Theorem 6.6. M®" is a connectedirreducible, generically smooth component
of M of dimension4.

Proof. The construction of Chen—Hacon surfaces dependsumplarameters: in
fact, the moduli spacéV(1, 2) of (1, 2)-polarized abelian surfaces has dimension 3,
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whereasP HO(A, S*F ® \? F¥) is 1-dimensional (note thaF does not give any con-
tribution to the number of parameters because of (13)). @hgsiment also shows that
one has a generically finite, dominant map

P — MCH,

whereP is a suitabléP!-bundle ovedV(1, 2). ThereforeM“H is an irreducible, algebraic
subset ofM and dimM®H = 4. On the other hand, s is ample Corollary 6.5 implies

dim Tig M = HY(S, Ts) = 4,

so M is generically smooth.

It remains to show that\i®" is a connected component ¢ft, i.e. that it is both
open and closed therein.

MCH is open in M.

Let S 2> B be a deformation over a small disk such tiat= 7~%(0) is a Chen—
Hacon surface. We want to show that the same is tru&foe 7~1(t). By Ehresmann’s
theorem,§ is diffeomorphic t0S, so it is a minimal surface of general type wit =
q=2, Kg = 5. Moreover, by [13, p.267], the differentiable structuretloé general
fibre of the Albanese map & is completely determined by the differentiable structure
of §; it follows that the Albanese map;: S — AIb(S) is a generically finite triple
cover. Let

s 2 X 2 Alb(S)

be the Stein factorization af;, and let& be the Tschirnhausen bundle associated with
the flat triple coverf;: X; — Alb(S), that is

(51) i Ox, = Oan(s) ® &

By Proposition 4.9,X, has only rational singularities, so the same holds Xerif 5
is small enough.

The branch locug\; of o is a deformation ofAq, in particularp,(At) = pa(Ag) =
9; moreover, by [27, Proposition 4.7] the class/f must be 2-divisible in the Picard
group of AIb(]). It follows that Alb(S) is a (1, 2)-polarized abelian surface and
[2L¢]. Moreover/\2 & is numerically equivalent te;, in particularc?(&;) = 4. Since
f; is a finite map andX; has only rational singularities, we obtain

h'(AIb(S), f.Ox,) = h' (X, Ox,) = hX(S, Og) = 2,
h?(AIb(S), fOx,) = h3(X, Ox) = h4(S, Og) = 2,

so by using (51) we deduce

h°(AIb(S), &) =0, hY(AIb(S), &) =0, h%(AIb(S), &) = 1.
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Now Hirzebruch—Riemann—Roch theorem yields

1= x(AIb(S), &) = %cf(&) — (&),

hencec,(&;) = 1. It follows that the invariant o§ are computed by formulae in Prop-
osition 1.2, in other words; contains only negligible singularities. By Theorem 5.1,
S is a Chen—Hacon surface.

M is closed inM.

Let S % B be a small deformation and assume that, fg¢ 0, § is a Chen—
Hacon surface. We want to show th&f is a Chen—Hacon surface. Arguing as before,
we see thatyy: S — AlIb(S) is a generically finite triple cover, and that Alj is a
(1,2)-polarized abelian surface. L®% C |2L;| be the linear syster® H(AIb(S), L2 ®
7%). Since A; € D, for all t # 0, we haveAg € Do. The possible curves ifDo| are
classified in Proposition 1.22; in all cases the correspandiiple cover contains only
negligible singularities (see Examples 1.6, 1.7, 1.8),Sds a Chen—Hacon surface
and we are done.

This concludes the proof of Theorem 6.6. []

Theorem 6.6 shows that every small deformation of a Cheneilaarface is still
a Chen—Hacon surface; in particular, no small deformatibi® snakes the {3)-curve
disappear. Moreover, sinc#1H is generically smooth, the same is true for the first-
order deformations. By contrast, Burns and Wahl proved B fhat first-order defor-
mations always smooth all the-2)-curves, and Catanese used this fact in [11] in order
to produce examples of surfaces of general type with evesyavimon-reduced moduli
spaces. Theorem 6.6 demonstrates rather strikingly tieatagbults of Burns—Wahl and
Catanese cannot be extended to the case-8j-€urves and, as far as we know, it also
provides the first explicit example of this situation.
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