A Characterization of the Uniform Topology of a Uniform Space by the Lattice of its Uniformity.

By Jun-iti NAGATA

We shall denote in this paper by R a uniform space, and by $\{\mathfrak{M}_x | \mathfrak{X}\}$ its uniformity.¹⁾ We denote by $\mathfrak{M}_x < \mathfrak{M}_y$ the fact that \mathfrak{M}_x is a refinement of \mathfrak{M}_y and by $\mathfrak{M}_x \land \mathfrak{M}_y$ the fact that $\mathfrak{M}_x^{\land} < \mathfrak{M}_y$. $\{\mathfrak{M}_x | \mathfrak{X}\}$ is a lattice by the order <, and has also the relation \land .

We shall show in this paper that in general a lattice-isomorphism between uniformities of two uniform spaces preserving the relations \triangle and < implies a uniform homeomorphism between the uniform spaces, and especially that when R has no isolated point, the structure of the lattice $\{\mathfrak{M}_x | \mathfrak{X}\}$ or of \mathfrak{X} defines R up to a uniform homeomorphism.

An element of $\{\mathfrak{M}_x \mid \mathfrak{X}\}\$, which is an open covering of R, is called simply a *u*-covering in this paper. German capitals are used for *u*-coverings but in 6 of the proof of Lemma 3.

Definition. Let \mathfrak{M} , \mathfrak{N} be two u-coverings. We denote by $\mathfrak{M} \not\ll \mathfrak{N}$ the fact that for every $M \in \mathfrak{M}$ there exists some $M' \in \mathfrak{M}$ such that $M \subset M'$ and $M' \not\subset N$ for all $N \in \mathfrak{N}$.

We denote by $\overline{\ll}$ the negation of \ll .

Lemma 1. In order that $\mathfrak{M} \not\ll \mathfrak{N}$ holds, it is necessary and sufficient that

(1) \mathfrak{M}^{Δ} contains no set consisting of one point,

(2) whenever $\mathfrak{M} \ll \mathfrak{P}$, $\mathfrak{M} \ll \mathfrak{P} \smile \mathfrak{N}$ holds.²⁾

Proof. Necessity: The condition (1) is obvious from the definition of \ll .

From $\mathfrak{M} \ll \mathfrak{P}$ we get $M \in \mathfrak{M}$ such that $M \oplus P$ for all $P \in \mathfrak{P}$. Since $\mathfrak{M} \ll \mathfrak{N}$, there exists $M' \in \mathfrak{M}$ such that $M' \supset M$, $M' \oplus N$ for all $N \in \mathfrak{N}$.

¹⁾ Cf. J. W. Tukey, Convergence and uniformity in topology, (1940).

²⁾ \Leftrightarrow denotes the negation of <.

Therefore $M' \oplus Q$ for all $Q \in \mathfrak{P} \smile \mathfrak{N}$. Thus we get $\mathfrak{M} \ll \mathfrak{P} \smile \mathfrak{N}$, i.e. the condition (2) is necessary.

Sufficiency: Let $\mathfrak{M} \not\in \mathfrak{N}$ and \mathfrak{M}^{\wedge} contains no set consisting of one point, then there exists $M \in \mathfrak{M}$ such that for all $M' \in \mathfrak{M}$: $M' \supset M$ and for some $N \in \mathfrak{N}$, $N \supset M'$ holds, and M containsat least two points. Hence there exists an open set U such that $U \cdot M \neq \phi$, $U \Rightarrow M$. Taking a point $a \in U \cdot M$, we construct a covering \mathfrak{P} from U and from \mathfrak{M} as follows. \mathfrak{P} consists of

- 1) $\{M'_{\alpha} \{a\} \mid \alpha \in A\}$, where $\{M'_{\alpha} \mid A\}$ denotes the set of all element M'_{α} of \mathfrak{M} satisfying $M'_{\alpha} \supset M$,
- 2) the set $\{M''_{\beta} \mid B\}$ of all elements M''_{β} of \mathfrak{M} such that $M''_{\beta} \stackrel{}{\to} M$,
- 3) U.

Then it is easy to see that $M \oplus P$ for all $P \in \mathfrak{P}$, i.e. $\mathfrak{M} \ll \mathfrak{P}$, and that at the same time $\mathfrak{M} \ll \mathfrak{P} \smile \mathfrak{N}$ holds.

Thus the sufficiency is proved.

Lemma 2. In order that \mathfrak{M}^{Δ} contains a set consisting one point, it is necessary and sufficient that there exists a covering $\mathfrak{R} > \mathfrak{M}^{\Delta}$ such that

1)
$$\mathfrak{N} = \mathfrak{N}^{\Delta} + \mathfrak{R}$$
,

2) $\mathfrak{N} \leq \mathfrak{P}$ implies $\mathfrak{P}^{\diamond} = \mathfrak{R}$,

where we denote by \Re the largest covering $\{R\}$.

(If we use the relation \triangle , then the relation $\mathfrak{N}^{\diamond} = \mathfrak{R}$ can be replaced by the proposition: $\mathfrak{N} \bigtriangleup \mathfrak{M}$ implies $\mathfrak{M} = \mathfrak{R}$.)

Proof. If \mathfrak{M}^{2} contains a set $\{a\}$ consisting of one point a, then the u-covering $\mathfrak{N} = \{\{a\}, R-\{a\}\}\)$ has the property of \mathfrak{N} in the lemma.

Conversely, let \mathfrak{N} be such a u-covering.

From $\mathfrak{N}^{\Delta} = \mathfrak{N}$ we see that $S(a, \mathfrak{N}) \cdot S(b, \mathfrak{N}) \neq \phi$ implies $S(a, \mathfrak{N}) = S(b, \mathfrak{N})$.

For let $a, c \in N \in \mathbb{N}$, then there exists $N' \in \mathbb{N}$ such that $S(a, \mathfrak{N}) \subset N'$, and hence $S(a, \mathfrak{N}) \subset N' \subset S(c, \mathfrak{N})$. In the same way $S(c, \mathfrak{N}) \subset S(a, \mathfrak{N})$ holds, whence $S(a, \mathfrak{N}) = S(c, \mathfrak{N})$. Therefore if $c \in S(a, \mathfrak{N}) \cdot S(b, \mathfrak{N}) \neq \phi$, we get $S(a, \mathfrak{N}) = S(c, \mathfrak{N}) = S(b, \mathfrak{N})$.

If more than two of elements $S(a, \mathfrak{N})$ of \mathfrak{N}^{\triangle} are different from the others, i.e. $\mathfrak{N}^{\triangle} = \{S_1, S_2, S_3\} \smile \{T_a\} (S_i + S_j (i \pm j))$, then the u-covering $\mathfrak{P} = \{S_1 + S_2, S_3\} \smile \{T_a\}$ has the property : $\mathfrak{P} \geqq \mathfrak{N}$. $\mathfrak{P}^{\triangle} = \mathfrak{N}$. which contradicts the condition 2). Since $\mathfrak{N}^{\triangle} = \mathfrak{R}$, \mathfrak{N}^{II} contains just two different elements. If S_1 and S_2 contains at least two points, then there exists an open set U such that

$$U \pm S_1$$
, $U \pm S_2$; $U \cdot S_1 \neq \phi$, $U \cdot S_2 \neq \phi$.

Hence, putting $\mathfrak{P} = \{S_1, S_2, U\}$, we get $\mathfrak{P} \geqq \mathfrak{N}, \mathfrak{P}^{\vartriangle} \ddagger \mathfrak{N}$, which contradicts the condition 2). Hence S_1 or S_2 consists of one point a, i. e. $\mathfrak{N} = \{\{a\}, R - \{a\}\}$. Since $\mathfrak{M}^{\vartriangle} < \mathfrak{N}$, it must be $\{a\} \in \mathfrak{M}^{\vartriangle}$.

Thus the proof of Lemma 2 is complete.

We notice that Lemma 1 and Lemma 2 show that the relation \ll can be replaced by the relations < and \triangle , and that if R has no isolated point, \triangle is needless.

Lemma 3. Let R and S be two uniform spaces with the uniformities $\{\mathfrak{M}_x \mid \mathfrak{X}\}$ and $\{\mathfrak{R}_y \mid \mathfrak{Y}\}$ respectively.

In order that R and S are uniformly homeomorphic. it is necessary and sufficient that $\{\mathfrak{M}_x \mid \mathfrak{X}\}$ and $\{\mathfrak{N}_y \mid \mathfrak{Y}\}$ are lattice-isomorphic by a correspondence preserving the relations \ll and <.

Proof. We concern ourselves only with R at first.

Definition. We denote by \mathfrak{M}_0 the u-covering such that

1) $\mathfrak{M}_{\mathfrak{d}} + \mathfrak{R}$,

2) $\mathfrak{N} \neq \mathfrak{N}$ implies $\mathfrak{N} < \mathfrak{M}_0$.

It is obvious that $\mathfrak{M}_0 = \{R - \{a\} \mid a \in R\}$.

Definition. We mean by *base-element* a collection μ of u-coverings which satisfies the following four conditions.

- i) $\mathfrak{M} \in \mu$, $\mathfrak{M} < \mathfrak{N}$ implies $\mathfrak{N} \in \mu$,
- ii) for every u-coverings \mathfrak{M}_x there exists $\mathfrak{N} \in \mu$ such that $\mathfrak{N} \not \in \mathfrak{M}_x$,
- iii) let $\{\mathfrak{N}_{\alpha} \mid A\}$ be a set of u-coverings \mathfrak{N}_{α} , and each $\mathfrak{N}_{\alpha} \ll \mathfrak{M}_{\alpha}$ for some $\mathfrak{M}_{\alpha} \in \mu$, then $\underset{\alpha \in A}{\smile} \mathfrak{M}_{\alpha} = \mathfrak{M}_{0}$,
- iv) μ is a minimum set satisfying the above conditions 1), 2), 3).

Definition. Let U be an open set of R. We denote by $\mathfrak{P}(U)$ the u-covering $\{U, R-\{a\} \mid a \in U\}$ of R.

1. We consider an arbitrary base-element μ .

Let \mathfrak{M}_x be an arbitrary u-covering, then by the condition ii) of μ

there exists $\mathfrak{N}_x \in \mu$ such that $\mathfrak{N}_x \not\in \mathfrak{M}_x$. Hence there exists $N_x \in \mathfrak{N}_x$ such that for all $N'_x \in \mathfrak{N}_x$: $N'_x \supset N_x$ there exists $M \in \mathfrak{M}_x$: $M \supset N'_x$.

For a definite point $a_x \in N_x$ we construct the u-covering $\mathfrak{P}(S(a_x, \mathfrak{M}_x))$ and denote it by \mathfrak{P}_x for simplicity. Then $\mathfrak{N}_x < \mathfrak{P}_x$ holds. For if $N \supset N_x$, $N \in \mathfrak{N}_x$, then $N \subset S(a_x, \mathfrak{M}_x)$, and if $N \rightrightarrows N_x$, $N \in \mathfrak{N}_x$, then for a point $b \in N_x - N \subset S(a_x, \mathfrak{M}_x)$, $N \subset R - \{b\}$, which shows $\mathfrak{N}_x < \mathfrak{P}_x$. Since $\mathfrak{N}_x \in \mu$, by the condition i) of μ we get $\mathfrak{P}_x \in \mu$.

2. Next we shall show that $\prod_{x>x_0} S(a_x, \mathfrak{M}_x) = \phi$ for some $x_0 \in \mathfrak{X}$.

Assume that the contrary holds, i.e. $\prod_{x>x_0} S(a_x, \mathfrak{M}_x) = \phi$ for all $x_0 \in \mathfrak{X}$.

When we take three points c_1 , c_2 , c_3 of R and take x_0 such that for each $b \in R$, $S(b, \mathfrak{M}_{x_0})$ contains at most one point of c_1 , c_2 , c_3 , then for every $x > x_0$ there exist at least two points in R which are not contained in $S(a_x, \mathfrak{M}_x)$.

Let b be an arbitrary point of R, then from the assumption there exists $x \in \mathfrak{X}$ such that $b \notin S(a_x, \mathfrak{M}_x)$, $x > x_0$, and hence there exists a point c of R such that $c \neq b$, $c \notin S(a_x, \mathfrak{M}_x)$.

Putting $\mathfrak{Q}_b = \{R - \{b\}, R - \{c\}\}$, we see easily that $\mathfrak{Q}_b \ll \mathfrak{P}_x$, and $\bigcup_{b \in R} \mathfrak{Q}_b = \mathfrak{M}_b$, which contradicts the condition iii) of μ .

This contradiction shows the validity of $\prod_{x \ge x_0} S(a_x, \mathfrak{M}_x) \Rightarrow \phi$ for some

$$x_0 \in \mathfrak{X}$$
.

3. We notice that in general $U \subset V$ implies $\mathfrak{P}(U) \subset \mathfrak{P}(V)$.

Let $b \in \prod_{x > x_0} S(a_x, \mathfrak{M}_x)$, then $S(a_x, \mathfrak{M}_x)(x > x_0)$ is a nbd-basis (nbd=neighbourhood) of b. Combining the last conclusion in 1, the above remark and the condition i) of μ we get $\mathfrak{P}(U(b)) \in \mu$ for all nbds U(b) of b.

Putting $\mu(b) = \{ \mathfrak{P} \mid \mathfrak{PP}(U(b)) \text{ such that } \mathfrak{P}(U(b)) < \mathfrak{P}, U(b) \text{ is some}$ nbd of $b \}$, we get $\mu(b) \subseteq \mu$. $\mu(b)$ satisfies obviously the conditions i), ii) of μ .

We shall show that $\mu(b)$ satisfies iii) too.

Assume that the assertion is false, i.e. $_{\alpha \in A} \mathfrak{N}_{\alpha} = \mathfrak{M}_{0}$, $\mathfrak{N}_{\alpha} \ll \mathfrak{P}_{\alpha}$, $\mathfrak{P}_{\alpha} = \mathfrak{P}_{0}$, $\mathfrak{N}_{\alpha} \ll \mathfrak{P}_{\alpha}$, $\mathfrak{P}_{\alpha} = \mathfrak{P}_{0}$, $\mathfrak{N}_{\alpha} \ll \mathfrak{P}_{\alpha}$, $\mathfrak{P}_{\alpha} = \mathfrak{P}_{0}$, $\mathfrak{P}_{\alpha} \ll \mathfrak{P}_{\alpha}$, $\mathfrak{P}_{\alpha} = \mathfrak{P}_{0}$, $\mathfrak{P}_{\alpha} \ll \mathfrak{P}_{\alpha}$, $\mathfrak{P}_{\alpha} = \mathfrak{P}_{0}$, $\mathfrak{P}_{\alpha} \ll \mathfrak{P}_{\alpha}$, $\mathfrak{P}_{\alpha} \gg \mathfrak{P}_$

Since $\subseteq \mathfrak{N}_{a} = \mathfrak{M}_{a}$, there must be \mathfrak{N}_{a} such that $R - \{b\} \in \mathfrak{N}_{a}$.

Since $R - \{b\} \in \mathfrak{P}(U_a(b))$ for every $U_a(b)$, remarking that $R \notin \mathfrak{N}_a$, we get $\mathfrak{N}_a \not\equiv \mathfrak{P}(U_a(b))$ for every $U_a(b)$, which contradicts the assumption. Hence $\smile_a \mathfrak{N}_a$ cannot be \mathfrak{M}_0 , and $\mu(b)$ satisfies the condition iii).

From the condition iv) of μ and the above obtained relation $\mu(b) \subseteq \mu$ we get $\mu = \mu(b)$.

4. As we saw above, an arbitrary base-element has the form $\mu(b)$ and an arbitrary $\mu(b)$ satisfies the conditions i), ii), iii) of μ . Now we shall show that $\mu(b)$ satisfies the condition iv) of μ .

Let $\mu(b) \supseteq \mu$ and let μ satisfy the conditions i), ii), iii) of μ , then by the same consideration as above there exists some $\mu(a)$ such that $\mu(b) \supseteq \mu \supseteq \mu(a)$.

If $a \neq b$, then there exist a point c of R and a nbd U(a) of asuch that $b \neq c$; $b, c \notin U(a)$. Since for each nbd V(b) of $b, R-\{b\} \in$ $\mathfrak{P}(V(b))$ and $R-\{b\} \Leftrightarrow P$ for all $P \in \mathfrak{P}(U(a))$, we get $\mathfrak{P}(V(b)) \ll \mathfrak{P}(U(a))$ for every nbds V(b).

Hence $\mathfrak{P}(U(a)) \notin \mu(b)$, but $\mathfrak{P}(U(a)) \in \mu(a)$, which is a contradiction. Therefore it must be a = b, and accordingly $\mu(b) = \mu(a) = \mu$; hence we conclude that $\mu(b)$ satisfies the condition iv) and is a base-element.

Thus we have obtained a one-to-one correspondence between R and the set B(R) of all base-elements of R. We shall denote this correspondence by B.

5. We introduce a topology in B(R) as follows.

Let B(A) be a subset of B(R).

We say that $\nu \in \overline{B(A)}$, when and only when

- (1) $\nu \in B(A)$,
- or (2) for every $\mathfrak{M}_x \in \{\mathfrak{M}^x\}$ there exist \mathfrak{N} , \mathfrak{M} and μ such that $\mathfrak{N} \in \nu$, $\mathfrak{M} \in \mu \in B(A)$; $\mathfrak{M}_x \triangleleft \mathfrak{M} \smile \mathfrak{N}$.

Then the topological space B(R) with this closure-operation is homeomorphic with R.

To see this we shall show that $a \in \overline{A}$ and $\mu(a) \in \overline{B(A)}$ are equivalent.

If $a \notin \overline{A}$, then $\mu(a) \notin B(A)$ is obvious.

When we consider the u-covering $\mathfrak{M}_x = \{R - \{a\}, (\overline{A})^e\}^{\mathfrak{I}}$ for every $\mathfrak{N} \in \mu(a)$ and $\mathfrak{M} \in \mu(b) \in B(A)$ we get $\mathfrak{M}_x \leq \mathfrak{M} \smile \mathfrak{N}$, because $R - \{a\} \in \mathfrak{N}$

and $(\overline{A})^c \subset R - \{b\} \in \mathfrak{M}$ from $b \in A$.

Conversely let $a \in \overline{A}$. If $a \in A$, then $\mu(a) \in B(A)$ is obvious. If $a \notin A$, then for every $\mathfrak{M}_x \in \{\mathfrak{M}_x\}$ there exists $M \in \mathfrak{M}_x$ such that $a, b \in M$; $b \in A$, $a \neq b$. Hence we may construct nbds U(a) of a and V(b) of b such that $b \notin U(a) \subset M$, $a \notin V(b) \subset M$.

Obviously $\mathfrak{P}(U(a)) \in \mu(a)$, $\mathfrak{P}(V(b)) \in \mu(b) \in B(A)$, and on the other hand $\mathfrak{M}_x \ll \mathfrak{P}(U(a)) \smile \mathfrak{P}(V(b))$ holds, because $M \ll P$ for all $P \in \mathfrak{P}(U(a)) \smile \mathfrak{P}(V(b))$.

Therefore $\mu(a) \in \overline{B(A)}$ according to the definition.

Thus B is a homeomorphism between R and B(R).

6. Next we introduce a uniform topology in B(R) as follows.

Let $B(\mathfrak{U}) = \{B(U_a) \mid A\}$ be an open covering of B(R).

We say that $B(\mathfrak{U})$ is a u-covering of B(R), when and only when there exists some \mathfrak{M}_x such that

 $\mathfrak{M}_{\alpha} \leq \underset{\alpha \in A}{\sim} \mathfrak{N}_{\alpha}$, whenever \mathfrak{N}_{α} and μ_{α} are selected so that $\mathfrak{N}_{\alpha} \in \mu_{\alpha} \in B(U_{\alpha})^{c}$.

We shall show that R and B(R) are uniformly homeomorphic.

When \mathfrak{U} is a u-covering of R, \mathfrak{U} itself satisfies the condition of \mathfrak{M}_x in the above definition.

For if $\mathfrak{N}_a \in \mu(a_a) \in B(U_a)^c$, then $a_a \in U_a^c$, and accordingly $U_a \subset R - \{a_a\} \in \mathfrak{N}_a$ holds, whence $\mathfrak{U} = \{U_a\} \subset \underset{\alpha \in A}{\smile} \mathfrak{N}_a$ Hence $B(\mathfrak{U})$ is a u-covering of B(R) according to the definition.

Conversely let \mathfrak{U} be no u-covering of R. Then for each u-covering \mathfrak{M}_x of R there exists an element M of \mathfrak{M}_x such that $M \subset U_a$ for all $U_a \in \mathfrak{U}$, i. e. $M \cdot U_a^c \neq \phi$ for all $U_a \in \mathfrak{U}$.

Since \mathfrak{l} is a covering, M contains at most two points. Hence taking $a_{\alpha} \in M \cdot U_{\alpha}^{c}$ for each $\alpha \in A$, we can construct a nbd $U(a_{\alpha})$ of a_{α} such that $U(a_{\alpha}) \subseteq M$.

Obviously $\mathfrak{P}(U(a_a)) \in \mu(a_a) \in B(U_a)^e$ holds, and on the other hand $\mathfrak{M}_x \ll \underset{\alpha \in A}{\smile} \mathfrak{P}(U(a_a))$ holds, because $M \oplus P$ for all $P \in \underset{\alpha \in A}{\smile} \mathfrak{P}(U(a_a))$. Hence $B(\mathfrak{U})$ is not a u-covering of B(R). Thus we have shown that B is a uniform homeomorphism between R and B(R).

7. Now it is easy to prove Lemma 3.

Since we can construct the uniform space B(R) from $\{\mathfrak{M}_x \mid \mathfrak{X}\}$ by

44

³⁾ M^c means the complement of M.

using only the relations $\langle \text{ and } \notin \rangle$, a lattice isomorphism between two uniformities $\{\mathfrak{M}_x \mid \mathfrak{X}\}$ and $\{\mathfrak{N}_y \mid \mathfrak{Y}\}$ preserving the relation \notin generates a uniform homeomorphism between B(R) and B(S), and this in turn generates a uniform homeomorphism between R and S.

Since the necessity of the condition is obvious, the proof of Lemma 3 is complete.

Combinining Lemma 1, Lemma 2 and Lemma 3, we get the following principal result.

Theorem. Let R and S be two uniform spaces with uniformities $\{\mathfrak{M}_x \mid \mathfrak{X}\}$ and $\{\mathfrak{N}_y \mid \mathfrak{Y}\}$ respectively.

In order that R and S are uniformly homeomorphic, it is necessary and sufficient that $\{\mathfrak{M}_x \mid \mathfrak{X}\}$ and $\{\mathfrak{N}_y \mid \mathfrak{Y}\}$ are lattice-isomorphic by a correspondence preserving the relations \triangle and \langle .

Especially if R and S have no isolated point, then an ordinary lattice-isomorphism between $\{\mathfrak{M}_x \mid \mathfrak{X}\}$ and $\{\mathfrak{N}_y \mid \mathfrak{Y}\}$ generates a uniform homeomorphism between R and S.

(Received Nov. 1, 1949)