Journal of the Institute of Polytechnics
Osaka City University
Vol. 10, No. 1, Series A

Semi cubical theory on homotopy classification

By Katuhiko Mizuno

(Received Nov. 16, 1958)

If a topological space X has vanishing homotopy groups r; for i## and 7,=1,
it is a well known result of Eilenberg and MacLane [47] that there exists a one to

one correspondence between semi simpliéial maps of semi simplicial complex K
K — K(II,n)

and cocycles of Z*(K; IT), where K(II,n) is regarded as a minimal complex of
S(X).

Generally, let a topological space X have vanishing homotopy groups 7; for
i+, q,q,, g™) (A<n<qg<q -<q™) and m,=1, 1,=G, ng=G/, -+, mam=G™,
According to the Mathematical Reviews 18 (1957), it is reported that M. M.
Postnikov classified semi simplicial maps

K - %<K<H9 n>’ kv N7 k/, Nl, Tty k(m)’ N(’m))

by defining sequences (%, Xo X4, *++, £,™) each of which consists of one cocycle %,
and cochains %4,%q,-*,%,™, where ¥ is regarded as the minimal complex of S(X).

In this paper, we shall construct a complex % as a semi cubical complex and
discuss the chain homotopies between these maps. Our main purpose is to con-
struct these homotopies explicitly and as an application we shall explain some
classification theorems in the cases where the Eilenberg-MacLane invariant and

Postnikov invariants associated to 93 are additive in a sense [4].

1. Semi cubical complex
Let X be a topological space, consider the usual cubical singular complex @(X)
associated with X, in which the 7-cube is a function ¢(?4,...,%.) € X defined for
0<{#;<1 and continuous in the topology of the cartesian product of the variables.
If »=0, then ¢ is interpreted as a single point of X. The front and aft faces F'¢
and Flo(i=1,...,7) of ¢ are defined as (»—1)-cubes
Fio(ty, ...otr-1) =0y, .., ti-1,0, L5 ooy tr1),
Flo(ty, ..o tr) =0ty ooy tict, 1, E4y ooy Erer).

The ith degenerate cube D;s of ¢ is defined as (+1)-cube

Dio(ty, ..., tre1)=0(t1, ..oy ticty Eitty ooy Eren).
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Observation of the formal properties of F;, /! and D; presented above leads
to the following [3]

DEFINITION. A semi cubical complex (S. Q. complex) K=J.K, is a sequence
of disjoint sets K, r=0,1,2,... (# is called as the dimension of the element of

K,) together with mappings

Fﬁf:F?, e Kr g Kr—l i=1, ey ¥V 7’>0,
F:= i,r: Kr')Kr—l i=1,...,7" 7’>0,
D;=D; »: Kr— K1 '=1,...,7+1 >0,

subject to the following identities
FiFi=Fj.F;, FiF}=Fj. F} {<j,
FiFi=F;.F;, [\F,=F.F; i<j,

(1. 1 DiDs=D;nD; <7,
F(}DJ=DJ~—1F?, F;Dj:Dj—lF: Z<],
FD;=F}iD;=1I (I=identity),

FiD;=D;F},, FiD;=D;Fi. i>]j.
The integral chain complex C(K) of S. Q. complex K is defined by letting
C.(K) be the free abelian group generated by K, and setting, for ¢ € K., >0,
1. 2) 0o=3-1(—1) (Fic—Flo)

and 0¢=0 if 7=0.

It follows from (1.1) that 80=0. The chain and cochain complexes with any
coefficients are defined accordingly, and give rise to the homology and cohomology
groups of K.

If K and L are S. Q. complexes, an S. Q. map T : K— L is a sequence of

mappings
T.: K, —> L,
such that FT,=TF}, FiT.=T,+F} and D;T»=TruD; for any i. This map T
is then also a chain transformation of C(X) into C(L).
If K and L are S. Q. complexes, then the cartesian product K XL is the S. Q.
complex defined by

(KXL)y=K,x L,

F¥axb)=FjaxFb, Filaxb)=Fj;axXF}b,
D;(axb)=D;axDb, for a € K, b € L,.
And, the tensor product C(K) QC(L) is the chain complex with (K& L),
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=3 prq-rKp R L, and with boundary operator defined by
1. 3 0(a, @by =0ap Q@b+ (—1)%a, Q0b, for aye Ky, beL,.

2. The complexes K(II,n), F(II,n).
For each integer #>0 let I"=1IX---XI be the r-fold cartesian product of the
unit interval I. We shall introduce the special mappings
e I'1=Jr, el I1=Tr, oy AT
defined as
Q1 oo b)) =1, oo ticy, 0, tiy oy b)) 1<G<r,
ety e 1) =81y ooy bimty 1, By ooy Emy) 1<i<r,
ity oo b)) =1y cos imty vty oy b)) 1< 41,

The composites of pairs of these mappings satisfy the identities

ejei=elei1, eiei=cjej i<j,
ejei=ciej1, ejei=e;ej-1 i<j,
@. 1) NNi=NiNs+15 i<j,
nEl=emi-1, nei=en <],
NiET=NE5 =t (¢e=identity),
7,€i=¢1-17;, =iy 1>,

In the following we shall denote &; as the mapping e} or as the mapping ¢ if
no confusion would occur.

For each integer >0 the standard complex Q(I") is the S. Q. complex defined
as follows. An n-cube of Q(I") is a map a:I"—I" which is a composite of map-

pings presented above, and can be w-iilen un'quely as a form
A==€y .. BNy oo Nt

=i i1, 1< <. < ji<<n, ¥—s+t=mn, [4]. In the following we shall
denote &, B, ... as such a map. For each map p: [°P—[" the p-face of « is the p-
cube of Q(I") defined as the composite map «fS. Especially we define

Fia)=ae!, FYa)=ae, Di(a)=ay;.

Denote by C*(I";II) the (multiplicative) group of #z-cochains ¢ on Q(I") with
coefficients in the (multiplicative) abelian group I7. We assume that these cochains
are normalized in the sense that they vanish on all degenerate cubes of Q(I").
(The map « is called as a degenerate cube if >0 in above formula.) We could
equivalently regard C*(I"; IT) as the group of n-cochains ¢, coefficients in 77, for
the complex Qy(I7) in which all the n-cubes are a=e¢;,...ci.
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Any map B: I—I" induces an S. Q. map B:: QU?)—Q(U") as Ps(a)=pa for
a€Q(I") and hence a homomorphism
g¥. C(I"; II) — Cr(I7; ID).
In particular, the maps €}, ¢ and %; yield operators
pF=F3 CH(I'; 1) = Co(I'5; 1D,
ef=Fi: Co(I"; IT) — C*(I"™; II),
yf=D;: C*(I"; II) — C*(I"*; II),
satisfying the identities (1. 1). (It follows from (2. 1) obviously.)

The S. Q. complex F(J7,#) is now defined as the complex F(IT,%)=UF-(II,%n)
in which F.(IT,n) is the integral group ring of C*(I"; II), and the Fj}, F}, D;
homomorphisms are those induced above. An element ¢ of C*(J"; II) will be called
an 7-cube of F(II,n). Clearly the 7»-cubes are free generators of the additive
group F,.(I1, n). )

The S. Q. complex K(IT, n) is defined as the subcomplex K(IT,»n) = K.(IT,%n)
of F(I1,n) in which K,.(I7, n) is the integral group ring of Z"(I";II). An element
g of Z»(I"; II) will be called as an #-cube of K(II,#n), and for any map B: I*"1—I"

Aa)(B) =0 (~DiI(F;—F)HB
=% 1(—1)i(Be}— Be}) =0,
where A: Cr(I"; IT)—C™t(I"; IT) is the coboundary homomorphism.

3. Suspension operators

For any #-cube ¢ of F(II,n) wc define an (#-+1)-cube S(¢) of F(II, n-+1)
as follows

S(e) () =a(aer) in the case (1),
G. D =unit element of I7 in the case (2),
=(Ao) (1x) in the case (3);

Case (1): « is written as e e, 0 I*"1—I"™, where r+1>4:>-->14,,>1.
In this cace YICEL =8} —1"" "€y 1 I"—~[". It is convenient to denote e as «
in the following.
Case (2): a is written as eiy e, .6 ["1—I"1, where #+1>41>->irn-1>1, Or
"« is a degenerate cube.
Case (3): a is written as e; ey y6i: [, where 7 +1>61> >4, , ,>1.

In this case ma=e;1-es 10 [*H1—T

We shall prove in the following that S(¢) is an element of K,..(I7, n-+1).
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Case (1): If a=eireipy: "I, p4+1>4,>>14,n-1>>1, then
(AS(0))(@)=S(a) Zr(—1) iy Eippy1€l—Eiy***Eipp—1€})
=(A0) (@) +13(—1)io (ac]—aed)
=(A0) (@) — 211 (—1is{aei—ae)) =0.
Case (2): If a=eiei, ,el: I"2—I" 4 1>4>>{p2>1, then
(AS(0)) (@) =S(@) L (=D (eiy-elei—eiyelei)
=S() L(— 1D (eiy et el —eiy - einae)) =0.
Case (2): If a=ei--ei )y, and >0, then
(AS(0)) (@) =S(o) Lp3(— 1) (aei—ae}) =0, if £>2.
(AS(0)) (@) =S(0) 725(— 1) (eiy*€ipy, s€ — iy iy NsED)
=S5(0) ici(— 1 (ei - €ipp€i 51— 8ir*€ipy€i05-1)
+ (=180 (eiy iy —8ig " €ipy)
+255(=1)1S(0) (iy€ip g€sMs— iy "Eipp€l ) =0, if t=1.
Case (3): If a=e;-eip el *2—=I ¥ +1>0> - >4pp2>1, then
(AS(0)) (@) =S() T2 (=D (eiyrrelef—eip--eie)
=S(O)ZI(—Di(eiy e el —eip ehael)
=A) T (=D (o1 rei—eip-10-€)
=) LI~ Di(paei—mare)
=(AA0) (7:0) =0.
We shall prove in the following that
3.2 Fi(So)=S(F;-10) for i>2, o € F.(II, n),
3.3 0S(6)=—S0(s) for ¢ € K,(II, n).
If « is some type in the case (1) or (2), (3. 2) follows from the facts;
Fi(So)(a)=(So)(sict), eix=eisax,

and if « is a degenerate cube, e also degenearte.

If a=ei - eip,peis I"'—I" and r>i,>->i,., ,>1, then

Fi(So)(a)=(Se) <€i1+1‘ tBip1€iCipnsy " -el)
=(Ao) (Eil"'eip €i~18ip41-1°" -e;,,_n_z_l)
=(A0) (ei-18i1-1"**Eipyg1)

=(Ao) (6;—1?7162), if ip2i> Ip+1y
and
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S(Fi-10) (@) =A(Fi-106) (n1cx)
=(Finmo) LA (= DIF;—F 5 (ne)
=¢35 (=1 (eimiprae—ei-1proe})
=(A0) (eima).
If e K.(II, n), Ao=0 therefore (3.3) is the immediate consequence of (3.2),
considering

F(So)(a)=F!(Se¢)(«)=unit element of 7T

for any map a: I"1—]".

4. Minimal complexes

Two singular 7-cubes oo and ¢; in a topologicial space X are called compatible
if their faces coincide: Fiov=Flo:, Fioo=F}!o¢: for 1<i<r. If in addition ¢, and
o1 are members of a continuous one parameter family ¢;, 0<¢<1, of singular 7-
cubes, all of which are compatible, we say that ¢o and o1 are homotopic. For
=0 any two cubes are compatible, and if X is assumed to be arcwise connected,
they are also homotopic.

A subcomplex M=M(X) of Q(X) will be called minimal provided:

(4. 1) For each r the collapsed v-cube ¢: I'—x, is in M.

4. 2) If o is a singular r-cube all of whose faces are in M, then M contains
a unique singular r-cube o compatible with and homotopic to ¢.

The existence of such a subcomplex is obvious [1] and we have:

If the homotopy groups =n;(X) vanish for i<z then the minimal subcomplex
consists of some singular cubes such that all faces of ¢ of dimensions ># are col-
lapsed. Consider an 7-cube ¢ in M. Let a: I*—I" is any #n-cube in Q(I"), a-face

oo of ¢ determines an element
k(o) (w)=a(oa) € mo(X).
The function ¢—x(¢) defined above becomes an S. Q. map
. 3 £: M— K(m,(X), n).

If the homotopy groups =#,(X) vanish for i<z and n<i<q (1<n<q), then

there is an S. Q. map
(4. 4) £: Koo(X),n) - M
satisfying the following conditions :

(4.4.1) For each r-cube ¢ of K(n,(X), n), where v <q, there is a unique v-cube
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®($) in M such that £(x($))=6¢.

(4.4.2.) For each g-cube ¢ of K(n,(X),n) there is at least one q-cube o of M
such that £(c)=¢. Any two such cubes are compatible. One of these o will be
selected and denoted by %(¢). Thus & (k($))=¢. For the collased g-cube ¢, we
choose £ (g) to be the collapsed q-cube in M.

(4.4.3) For each (q+1)-cube ¢ of K(no(X), n), if we define a map fo:([¥) —X
such that fuei=r(¢e:), then we have

k(g)=c(fy) € ma(XD.

The function ¢—k(¢) defined above depends upon the selection in (4.4.2) and

becomes a cocycle
ke Zq+1<K<7Tn<X>’ %); ”q<X>>°

The cohomology class of this cocycle is a topological invariant (well known as the
Eilenberg-MacLane invariant [2]).

5. Postnikov constructions

Let X be a topological space, and the homotopy groups m;(X) of X vanish
without i=#n,¢. ¢, ..., ™ (A <n<g<...<q™). We shall denote 7,(X)=1II, n(X)=
G, ng(X)=G,...,ngm(X)=G™ in the following.

Consider an 7-cube ¢ in M=M(X). Let B: I">I" be any g¢-cube in Q(I").
We have 7-cube k(s) of K(II,n) as above, and 7-cube Yr=vyr(¢) of F(G, q)
defined as

Y(R)=dE(k(oR)), of) € mo(X)=G.
Above pair (k(e), Y¥(0)) for any 7-cube ¢ satisfies the condition
k(e(er)) =AY (o) in Z¥([*1;G)

where 7: I*'—]" is any (g+1)-cube in Q(I") and A: C(I*1; G)—C®(J*1; G) is
the coboundary homomorphism.

The S. Q. complex N=L(K(I,n),G,q, k) (simply denoted by K(I,n,G,q, k)
in the following) is now defined as the subcomplex of the cartesian product
K(II,n) XF(G,q) in which r-cube is a pair (¢, ) subject to the condition:

G E@r)=A¥y(r) . for any (q+1)-cube v of Q™.
By the above definitions, we have obviously
K;(Il,n,G,q, k) = K;(Il,n) for i<q,
K(1,n,G,q,k) D K(G,q),

and K(IT,n,G,q, k) is (g+1)-trivial (If ¢ and ¢ are compatible 7-cubes in
K(IT,n,G,q,k) and r—>q+1 then o=d").
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Generally, if M(X)=NG-D jn dimensions less than ¢®, and NG-D is g«
trivial, there is a cocycle

kG ¢ ZED(NG-1: GW)

associated to a pair of S. Q. mapé (¢, ¥) satsifying the following conditions:

5. 2) g:M - NGD,
6. 3) F: NGO > M,
(G.3.1) 8 (¢)=¢ for v-cube ¢ € NGV, y<q®,

(5. 3.2) For each (¥ +1)-cube ¢ of NG-D, if we define a map fy: (I€P+1)—X
such that fye;=%'(¢e:), then we have

ED (@) =c(fy) € m(i)(X)=G®.

Consider an 7-cube ¢ in M. Let B:I‘I(i)-—>I” be any g®-cube in Q(I"), we have
7-cube Yr=v(g) of F(GD,q®) defined as

V(R =d(&'(£'(6B)), 6B) € my»(X)=G®,
Above pair (x’(6),Yr(6)) for any 7-cube ¢ satisfies the condition
RO (o) =A(or)  in Z2Pn(@xPn: GO,

where 7: [Pagr s any (g®+41)-cube in Q(I").

The S.Q. complex N®O=P(NGD, G, ¢®, kW) is now defined as the subcom-
plex of the cartesian product NG-D X F(G®W, g®) in which 7-cube is a pair (4,yr)
subject to the condition:

G EOGr)=A¢()  for any (g +1)-cube v of Q).
These constructions make an S. Q. complex
PKUT, 1), k, Nk, N/, ..., k™, N™)

inductively, and obviously this complex isomorphic to M(X).

‘6. Representations of S. Q. maps

We wish to classify S.@. maps of an S. Q. complex K
6. 1 T: K—P(KU,n),k N,E,N, ..., k™,N™),
Such a map determines a sequence
6. 2) Ky Xgs X 3 0ey Xalmd
of a cocycle and cochains
| %,=T%b, € Z"(K; IT)
x,=T%b, € CY(K; G)
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xg=T%y € C*(K; G,

q(m)
Xymy=T#bym € C (K; G™).

In the above formula &, isthe basic cocycle in Z*(N™; [T)>=Z»(IT,n; IT) and b,
is the basic cochain in C*®(N®™; GOY=C1® (N®; G&)=Ca® (PN, G, k@)
G®) defined by

ba(8) = (e™) for any n-cube ¢ of K(II, n),

b (4, ¥) =¥ (e2”) for any g®-cube (4, ¥) of N®
where en: In—I" and &2 : [*P D are the identity maps, and ¢9=q, NO=N
=K(II,n,G,q, k). '

It is well known that there is a one to one correspondence between S. Q.
maps
T: K—K{I, n)

and cocycles x,€ Z*(K; IT) [4]. It is convenient to make a one to one correspon-
dence between S. Q. maps

T: K—F(II, n)
and cochains %, € C*(K; IT) by defining x, = T*, for the basic cochain &, €
C*(F(Il,n); II), and
T (o) (@) =x%,(0a) for any #n-cube a of Q(I4m9),

Generally, there is a one to one correspondence between S. . maps (6. 1) and
sequence (6. 2) satisfying the conditions
(6. 3) EOT Xy Xay vvvs XqG-1) =024 i=0,1, ..., m,
where T (Zn, Zgy ..., XoG-0): K—NGD is the S.Q. map which corresponds inductively
to the subsequence (Xu, Xg ..., XoG-D) of (6. 2):

The map T corresponding in this fashion to the sequence (%, Xq Xos ..or ™)

will be denoted by T (X, Xq, X¢’s ...y Xgem). Then, this map is characterized as that
S. Q. map for which

T Xy Xgy Xty oovy Xgm))a=(¢,Jr) for an 7-cube ¢ of K,
where ¢=T (Xn, Xy X5 ooy Xgim-1)o € N{™ D is the 7-cube defined by induction and
Y is the 7-cube of F(G™,q(™) defined by

Y (B)=x,m(eB) for any g™-cube B of Q(I").
Consider the diagram:
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T (%ns Xas = %) 0} 0 ©
Kq(c‘)ﬂ ’ : qzi)ﬂ Nq(i)
o ‘ : bg®
T(xn; xq [ xq(!"l))
Q) G
(i-1) i
Nq’(i)lu
then (6. 3) is an immediate consequence of the commutativity of this diagram.
Namely
baDOT (Xps Xqs ey Xg@D) =0%H
and
6. 4 E@OpD=p,»9.

In the above diagram p»@ is the projection defined by
PO, Y)=¢ for any cube () € Naths,
and if =0, (6. 4) is rewritten as
kp=b,0
where p:N®, — N&D, namely
p: Ken(IT,n,G, q, k) — Ko (11, n).
These formulas (6. 4) may be proved directly from (5.1), (5. 4), for instance
kp(, ) =k($) =AY (e¥) =Y I (—1DI(FI—FD ()
=y (—Di(ei—eD) =D (Y (e — Y (e}
=L DHF N () —Fiy (€D} =004, ).

7. Chain homotopies

We make reference to chain homotopies between special S. Q. maps of an S. Q.
complex K.
Let weC*(K; IT), owe Z*"(K; IT) induces the map

T(ow): K — K(II, n).
Lemma (7. 1). T(0w)=T(0).
Proor. Put
W(IRon-1)=w(0n-1) for IKon-1 € URQK)n,
w(1Ray) =8w(0n) for 1Re, € (IRK),,

w(0Ras) =0 for 0Ro, € (IRXK)n,
then
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ow(IRon) =w(0IRa,) —w(IRsy)
=W(ARer—0Q0,) —w (IRb0,) =0w(e,) —w(0c,) =0,
W(AR0n+1) =W(AROG4+1) =0w(0o,+1) =0,
OW(0R ar+1) =W(ORBa,+1) =0.

Therefore, we have a cocycle we Z*(IQK: II) and also an S. @. map
Tw): IQK — K(II, n).

Let I: K—IXK be a map defined by
I(o,)=IKa, .
Then we have a chain homotopy
Tw)eI: Co(K) — Cr:(K(IT, n))

between the maps T(dw) and 7°(0). The proof is complete.
The commutativity of the following diagram is obvious:

T(w)

C(K) C.(F(IT,n))

I
Con(IRE)—T® ¢, K, n)).
In the following, we shall denote T (w)+I=S+T(w) simply by D(w).

Let veC+1(K; G) and ceC*-1(K; G®), ve Z*(K ; G) and dce 2V (K ; G®)
induce the S. Q. maps
T, év): K~K(G,q)CK(,n,G,q, k)

T, ...,0,0c): K-K(G®, giO)CN®
respectively.
Lemma (7. 2). 70, ov) = T(0,0),
7(,...,0,0c)=1T(0,...,0,0).
Proof of this lemma is similar to above. Namely we may define cocycles
2 Z9(IRK; G), ce Z“(i)(I®K ; G) such that the commutativity of the following

diagrams is satisfied
CE)—LO 0 (F(G, )

_ |s
ContIRE)—LD ., (K (G, ),
CTCK)__.I‘_(C)——% r(pf(;(i), g™

S
S Crn(K (GO, g)).

| i
Con(IQK)—LE
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In the following, we shall denote 7°(9)«I=S+T'(v) and T (¢)+I=S+T(c) simply by
D(v), D(c) respectively. '

We have considered the constructions of chain homotopies; conversely, we
consider now the representations of chain homotopies.

LemMma (7. 3). Any chain homotopy
D: C.(K) = Crn(N®D)

between S.Q. maps T (Xn, Xay .y %) and T(x,, x5, ..., x4®) may be regarded as
the combination T I, where

T=T(Yns Yas +ves Ya®)
is an S. Q. map of IQK in N

C.(K)
7 D
T o
CriI®K) Cri1(NG)

Proor.
Case (7.3.1); i=-—1, namely N-V=K(II, n).
We define a n-cocycle y,€ Z*(IQK; IT) by
In(1 R0,) =bn(Fi(D(64))) =%u(04) for o, € K,
In(0 Q) =bu(F} (D(an))) =%,(0a) for on €Ky,
In(I @bu-1) =bu(D(0n-1)) for on-1€ Ky1.
It is obvious D=T(y.)+I.
Case (7.3.2); i=0, namely NO=N=K(II,n,G, q, k).
We define ¥, as (7.3.1) and define a g-cochain Y.€CUIRKRK; G) by
YA R09) =bo(F1(D(6a)))=%4(00) for eg.€K,,
Y4(0® 60) =by(F} (D(6)))=x4(a0) for o,€ Ky,
Ya(I @ 64-1) =be(D(dq-1)) for oo-16€ Ko
Then
092(1 @ 6411) =0%(0011) =kT (%) (6+1) =kT (32) A @ 61,
0940 @ 0q1) =0%4(00+1) =T (%2) (6q+1) =BT (9:) (0 R 64+1),
03 @ 02) =31 Q 0,—0 @ 6a— I Q@ 05¢) =% (62) —%4(62) —ba(D(B54))
=2%q(00) —%a(60) +0o((OD—T (%n, %) +T (X7, %)) 00)
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=b,0D(0¢) +*%q(00) —*4(0) —%a(6) +%5(0)
=(0b¢) (D(0))=kT (bs)(D(6,))
=kT (Yu) T Qa0).
Case (7.3.3): i>0.
We may prove similarly as above. For instance we define a ¢-cochain
o) € C*P(IQK; GD) by
YA Q04)) =bg) (F1 (D(04)))) =% (04>)  for aqire Ko,
YO (D R6()) =bed(F(D(0q))) =24>(64) for oqire Ky,
Yo (T R0q)-1) =be)(D(6qH)-1)) for gq(i)-1€ Ko(ir—1.

8. Classifiaction of S. Q. maps

For our purpose we shall define the internal products of S. . complexes
Fdr,»n), K(I,n), K(IT,n,G,q, k), ..., N®, .- as follows:

6.1.1) oY) (a)=Y(a)+y'Ca) for any.m-cube . of Q(I") for »-cubes Vr, Y’

of F(II, n).

(8.1.2) (¢o¢N(a)=¢(a)+¢/(a) for any n-cube a of Q(I") and for 7-cubes ¢, ¢’
of K(II,n).

(8.1.3) (¢, Yr) o (e, ) = (9, Yror)

for 7-cubes (¢,V), (¢, ¥") of K(II,n,G,q,k), where ¢ is the collapsed »-cube
of K(II,n), then (¢,y’) may be regarded as an 7-cube of K(G,q).

(8.1.4) (B9 o(e, ¥ )= (¢, Yroy)
for 7-cubes (4,V), (6, Y) of NO=P(NGED, GO, gD, k), where ¢ is the
collapsed #-cube of NU-D, then (;,y’) may be regarded as an 7-cube of
K(G®, g,
THEOREM (8. 2). The cocycles %, x,e Z"(K; II) are cohomologous if and only
if the maps T (x,), T (x,) are chain homotopic. (Theorem 5.2 of III [4]).

Proor. Since b,e Z"(K(II, n); II) is a cocycle, T (x,)=T (x;) implies that
Xn=0,T(x,) and x,=0,T(x;) are cohomologous. Conversely, assume that x,—x%
=0w, for some weC™1(K; IT), and construct a chain homotopy D(w) as in the
proof of (7. 1). On the other hand, we define a map

D'=D\T(x2): C-(K) — Crna (KT, 7)),
then we have a chain homotopy
(8. 3) E=D/oD(w): C-(K) = Crs(K(I, n)),

where o is the internal product defined in (8.1.2). Namely;
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(OE+E8)6=0(D'(¢)°D(w)(0)) +(D'oD(w))(80)
== FID (6)oFiD(w)(6) —F}D'(6)oF ; D(w) ()
+ (DD D) Fio— (D'D(w))F}o)
=F1D\T (x2)(0)oFi1D(w)(6) —F DT (x7)(6) o F1D(w)(a)
+ X (—DIFD' () FiDw)(6) —F}D'(6)oF,; D(w)(a))
+ X1 (=D (Fio) o D(w) (F o) —D'(Fie)oD(w)(F}o))
=T (x0)(0)°T (ow) (o) —T (%2 (6) T (0) (o)
=T (%n) (6)—T (x2)(0),
since FiuD/(6)oFiD(w)(0)=F ;DT (x4)(6)oF ST (w) (o)
=DiFiT (x2)(6)oSF{T (w) (o)
=DiT (%) (Fic)oST (w)(Fio)
=D'(Fio)°D(w)(Fis).
We next consider two S. Q. maps
T (Xny %9)> T (X, 2): K— N=K(Il, n, G, g, k).
If x, and x, are cohomologous, there exists a chain homotopy
E:T(x.) =T (x0).
Note that in this case x,—x;—kE is a- cocycle, because
0(xq—xe—kE)=kT (x,)—kT (x,)—kED
=k(E0+0E)—kEd=0,
since k£ is a cocycle.

THEOREM (8.4) S.Q. maps T (xn,%) and T (x,,xy) arve chain homotopic if
and only if xn and x. are cohomologous and x,—x;—kE is cohomologous zero for
arbitrary chain homotopy E:T (x,)>=T(x}).

Proor. Let E’: C,(K)—C,1(N) be a chain homotopy between 7T (%, %q)
and T (xn, %q); i.e.

OFE'+E9=T (Xu, ) —T (%1, X)),

it is obvious that x,=b,T (%, x,) and x,=0,T (%%, x;) are cohomologous, and
DE': C.(K) — Crn (K, 1))
gives a chain homotopy E: T (%) =(x0).
Then,
Xq—2q—kE=b,T (%n, £ —b T (%%, %) —kE
=b(0E’' +E'0)—kpE’
=0(bE")
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since b 0=Fkp (6.4).

Conversely, let E: T (x,)=T (x%) be a chain homotopy and x,—x;—kE=4dv for
veCT1(K; G). We first determine a cocycle y,€ Z*(IQK; IT) as in Lemma (7.3.1),
and define a cochain X, C(IQK ; G) as follows;

(1 Ro)=xq+EE)(6))  for oq.€ Ky,
%q(0%0q) =%x4(00) for g.€ Ky,
(I R0e-1)=0 for g€ Ko,
then we have a pair (¥.,%,), and
020(1® 011) =% @ 004+1) = (x4 + R E) (Bar1)
=(%q—00) (064+1) =%q(00¢+1)
=0%4(60+1) =kT (%n) (6q+1)
=kT (¥2) A Q6qr1),
6T2(0 @ 00) =F4(0 @ Bg+s) =£4(Do4r2) = %4(50r1)
=kT (1) (00+1) =ET (¥0) (0 Q 6¢+1),
0%2(IR0) =%4(1 R 6,—0 Raq—I R 00q)
=(xo+kE)(6,) —xa(6s) =kE(a,)
=kT ()T Q 0o,
therefore T°(Y,, Xq) is regarded as an S. Q. map
I®K — N=K(II,n,G,q, k).
Finally we have
D=T(yn, 2 +I:C,(K) — Crrs(IN)
with the following property

0D+DO=T (%n, %4+EE)—T (%7, 2.

The remainder of our proof is due to Lemma (7. 2) and (8. 1. 3). Namely, we

define a map
D' «y=D\T (%u, xq+kE):C.(K) — Cra(IN),
then we have a chain homotopy

D/ 0yoD(0): T (%n, x) =T (%n, xq+EE).

Inductively we shall consider two S. @. maps

T (Xny oees G-, Xq())y T (Xny vvy Xgli=1)y %)) 1 K — NO=P(NGED, GO, g, p@)),
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Let the following conditions be satisfied:

(8.5.1) %, and x;, are cohomologous,
(8.5.2) x,—x4—kRE is cohomologous zero,
(8.5.3) XqGi-0)—X5(i-1)—REDEGD is cohomologous zero,

where E@: T(Xn, ..., £a-0) =T (Xny ovy Xo-0) j=0,1,...i—1 are the chain
homotopy defined inductively.

Then, there exists a chain homotopy

(8.5.4) E®: T (Xny ooy £qG-1) 22 T (X veey XoG-1)

inductively. In this case note that x.(ih—xiiH—kWOE® is a cocycle, because

0(XgH) —%xqH) —kDED)

=ROT Xy vvy Xq(i=10) —EDT (Xpy ...y Xoi-0) —EOEDG
=EO(E®§+JED) —EOEDH=0,

since k@) is a cocycle.

THEOREM (8.6). S.Q. maps T (Xny ..y X¢) and T (Xn, ..., X)) are chain homo-
topic if and only if (8.5.1), (8.5.2),...(8.5.3) are satisfied and x> —xyH) —kEOE®
is cohomologous zero for arbitrary chain homotopy E@ (8.5.4).

Proor. Let EGD: C.(K)—Cri(N®) be a chain homotopy between T (%n, ...,
%) and T (xn, ..., Xg®); i.e.

OECD L EGDG=T (%ny vrs X¢)) —T (K75 o0, (D),
then inductively (8.5.1), (8. 5 2), +-+, (8.5.3) are obvious‘since
PPEGD: C(K)—Cpnn(NGE-D)
brings a chain homotopy E®: T (%n, ..., Xo(i-0)) =T (%5, ... £5G-1). And,
Xy —XgH —RDE®D
=0T (Xny vves X)) —bgDT (K, ..y 24()) — RO ED
=) (QE D EGDR) — B p(D) EGE+1)
=3(byHE™)
since bgHd=kWp (6. 4).
Conversely, let E@: T (xy, ..., -0)T (%7, ..., XoG-1) is a chain homotopy
and %) —xH) —kEOE®=¢c for ceC‘lG)-l(K ; G@). We first determine a sequence

Vs Vas Vo' s oevs Yali-1)
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of a cocycle ¥, and cochains ¥, ¥y, ..., YqGi-1) associated to the chain homotopy E®
as in Lemma (7. 6), and define a cochain Xq ec? IR K ; GD) as follows;

XaHd (1R aq(d) = (xe) +FEDEWD) (g¢) for eqh € Ky,

o (0 QR 6qtir= (¥4 (64() for o eKqw,

29T R 6qtd-1) =0 for gq-1€ K@),
then we have a sequence

Yns Yas Yo orer Yali-D), Xgld.
Here

0%y (1Q04()+1) =F () (ARDaq(id+1) = (X gD -+ EDE W) (Baqt+1)
=(%(H—0¢) (0040 ) +1) =X (Do o)+1)
=024 (06¢)41) =EDT (Kny oy Xqli-1) (Ga(id+1)
=EDT (Yay «.er Yoi-0) AR (D+1),

0% () (0R6e(H+1) =X (0K 00q(+1) =% (00 q(H+1)
=024 (0q)n) =EOT (X0, ...y £5G-1)) (Go(D)
=EDOT Py vees Yoli-1) (0R0q(H+1),

0% (I R6¢) =Z5(H (ARa () — X (0Rao(H) — X (IRBs o)
= Xq() +EDE®) (gq(1)) — %4> (6(H)
=kOE®D (gy)) =EDT (Y, ...r Yai-1) T Q)5

then (YnsVas «ves Yali-1), X)) satisfies the condition (6. 3), therefore T (Yns Yas oo
Yoli-1), Xq(d) is regarded as an S. Q. map

C:UIRK) — C(ND).
Finally we have
D=T(Yu,Ya> ves Yoli-0, Zg®) oI + Co(K) = Craa(N )
with the following property
OD+DO=T (%, ..., Xqi-1), Xo() +F RO ED) —T (xn,..., Xa(i-1), X5(D).

The remainder of our proof is due to lemma (7. 2), (8. 1. 4). Namely, we

define a map
Diy=DiT (Zny ..., Xali-1y oD +EDED): C(K) = Cria(N®),
then we have a required chain homotopy

DinoD(): T (Xuy ooes £G-1, 20) =T Ky vvny X oGi=1), XD FEDED)
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9. Applications to additive cases

It is obvious from the theorem (8. 3) that there is a one to one correspondence
between chain homotopy classes of S. . maps

T: K—K(I,n)
and cohomology classes of H"(K; IT).
Now, we assume that the Eilenberg MacLane invariant is additive, namely
ke H*1(K(II,n); G) induces the additive internal operation % [4]. If the space

X is a space of loops, it is well known that % is in the image of the suspension
map

S: H*:(Il,n+1; G) — H"'(II, n; G)
therefore k is additive (Theorem 16. 2 of III (41).
THEOREM (9.1). Chain homotopy classes of S.Q. maps
T: K—-KI,nG,q,k)
are calculated by elements of pairs of classes
[kernel (k)NH™(K; IT), H(K; G)/k + H*(K; II)].
Proor. We consider two chain homotopies
E\,E;: T(x0) =T (x0)

induced by two chain homotopies between the chain homotopic maps 7 (%, %q),
T(xn,x5). Then, we have two cochains w:,w. € C* (K ; IT) defined by

w;‘:bnEi, i:]., 2.
It is obvious that E; is represented as

E;=D°D(w,) .
Here

(xq—xq—kE)— (xq—2x4—kE;) =kE;—kE,
and
0(RE;—kE)=FkE.0—EkE.d

=ROE —T (xn)+T x0))—kROE:—T (x,) +T (%))
=0,

then kE;—EE: is a g-cocycle of Z4K; G).

On the other hand,
O(wr—wy) = Xn—2%0) — (Xn—2%7) =0

then w,—w:=u is an (n—1)-cocycle of Z» (K ; IT).
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Since k is additive, the cohomology class of kE.—kE; is unigely determind by
k(Ezo(E)™1), here
Eyo(Ey)t=(D'oD(w2))o(D'oD(w1))~*
=D(wz) o (D(w1))~'=D(w:—w1)
=D(u)=ST (u),

therefore the cohomology class of RE;—kE; is the class determined by (S&) hu.

Conversely, if x,—xi—kE: is in BY(K; G)“Y(Sk) +Z~(K; II), we may
represent X,—xo—EkE1=0v-+kST (u) for some pair (v,u) of veC*+(K; G) and
ue Z™1(K; Il), then we have a chain homotopy

Ey=E10STW): T (%) =T (x)

such that x,—xq—ERE, is cohomologous zero. The remainder of our proof is due
to Theorem (8. 4).

Generally, we consider the Postnikov invariant £, which is the cohomology

class of k(i>eZ‘1(i>+1(N<‘-1); G®). In this case there exists an injective S. @. map
j: K(GGD, gti-D) —> NG-D=P(NG-2, GU-1), gli-1), k(-1
then E® induces a cohomlogy class
F*ED ¢ HiP(K(GGD, gi-1 ): GO,

Now, we assume that these invariants are additive. If the space X is a space
of loops, it is well known that our assumption is satisfied.

THEOREM (9.2). Consider an S. Q. map
T (K eves Ko=) K — NG
and its prolongations
T: K —> NO=P(NGD,GD, g, @),

Then, chain homotopic classes of S.Q. maps T, p-image of which are chain
homotopic mutually, ave calculated by cosets of

H™(K; 6)/(7*K®) + HEP-1(K; Ga-w),
Proor. We consider two chain homotopies
ED,ED T (Xny oee, Xqli-2), Xg0G-10) 2 T (Xy wvvy a2, Xati-1))
induced by two chain homotopies between the chain homotopic maps

T (Kns evvy Xq =2, Xali=1), D)y T Xy o.vy Xali=2), Xo(i-1), X)),
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Then we have two cochains c1,c¢: € C*“™P-1(K; GG-D) defined by
c;=by(i-DE{ j=1,2.
It is obvious that E® is represented as

ED=(DiT (%n, ...» Xel-2), £(i-)) 0 D(c5).
Here
(Ho) — XD — kD ED) — (£,()— 2oy —kDE@) =k DE{P —kDEP,
and
S(RDED —kDEWD) =0.

On the other hand
0(c2—¢1) = (Xg(i-1) —x5(i-1)) — (Xq(i-1) — X oCi-1)) =0.

Since k() is additive, the cohomology class of EWEP—EkOE® is uniquely
determined by k@ (EDo(E{)-1),

EWo(E®)1=D(c,)o(D(c1))1=D(cs—c1)

then, the cohomology class of EMDEHN—EkOE® jis the class determined by
S(7*E®) b (c2—c1).

Conversely, if xgH—xH—kDE® is in B‘l(i)(K; G@) Y [S(*k®) |
Z V(K GG-D)1, we may represent () —%q(h—kDE®=30+kjeSeT (1) for

some pair (v, %) of veC*P-1(K:G®) and u e Z**V-1(K; GG-D), then we have a
chain homotopy

EP=EDo(SeTU)): Ty evvr 2oli-10) 22 T (s .0y 2406-10)

such that x,H—x,H—EHOE{D is cohomologous zero. The remainder of our proof
is due to Theorem (8. 6).
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