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1. Recently E. Schenkman [4] has pointed out the similarlity between the
properties of ideals in a commutative ring and of normal subgroups of a group.
In particular he obtained that every radical® A of a group G such that G/A has
finite principal series has a unique minimal decomposition as an intersection of
primes?.

In the present note we shall define a radicial element of a commutative re-
siduated cm-lattice® L, and obtain a decomposition theorem for radical elements.
of L, which is a lattice-formulaltion of the above result and of the minimal
decomposition theorem® of radical ideals in (commutative) Noetherian rings.

2. Let L be a commutative residuated cm-lattice with a greatest element e,
and suppose that ab<{a for any two elements @ and & of L.

For example, the lattice of all normal subgroups of any group forms a com-
mutative residuated cm-lattice with above properties, if we define a multiplication
A+B of normal subgroups A and B as the subgroup generated by all commutators.
xyx-1y-1 (xe A, ye B)®.

For any element ¢ of L, we define inductively a®=a, a®@=q-D.qt-1 for
0>1D. Then we have

1) a<b implies a®<h®,

(2) p<o implies a®@>a@,

(3) (anb)P<La® ~b®,

@ (ara)®P=ag®eq®,

(5) @@ =g,

(6) a®I<LaP®,

D (@) <La®p@,

M, -+, (4) are immediate by induction on the whole number p.

D, 2) Cf. [4, p. 376].

3) Cf. [1, p. 201]. The associative law for multiplication is not assumed.

4) Cf. [2, p. 202, Theorem 70].

5) The greatest element ¢ is not necessarily a unity of L. If e is a unity then gb<g for
any two elements ¢ and b of L. ‘

6) Cf. [1, p. 204].

7) No confusion arises, even if we write ar=a( for p=1, 2.
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Proof of (5): Fix the whole number p. (5) is trivial for ¢=1. Assume
that -1 =gl-1)®)  Then a(p)(ﬂ)=a(p)(c—1).a(p)(«r—l)=a(a—1)(p).a(a—1)(p)=(a(a‘—-l).a(d—l))(p)

=q@®, Similarly for p.

Proof of (6): Fix the whole number p. (6) is trivial for s¢=1. We assume
that @lPo-1) < g1,  Then @@©@ = g o-1)¢gp)o-1) > gre-1) 4 g(ple-1)) = glplo-1)+1)

>qPe-1) =g, Similarly for p.

Proof of (7): Since(a“b)P<a® b, we have (a=b) @@L (g Vb)) @< g 2 ph@,
Hence, using (6), we obtain (a“5)®?<g®"YpH@),

Let I'y be the set of all elements x which satisfies ¢<{x and x®@W<a for a
suitable whole number p=p(x).

DEFINITION. Sup [I".] is called a radical of a, and denoted by rad (@). If rad (a)
=a, then a is called a radical element of L.

LemMA 1. In order that an element p is prime, it is necessary and sufficient
that (1°) p is a radical element and (2°) p is a meet-irveducible element.

Proof. Suppose that p is a prime element. Then it is easily verified that I',
consists of p only. Hence p is evidently a radical element. If p=a~b, then we
have ab<p because ab<a~b. Hence a<lp or b<p; and a=p or b=p.

Conversely, if p has the properties (1°) and (2°), then ab<{p implies (@“p)
«(0Vp) = abPap-bppr<Lp.  Since ((@VP) OV (@GP <p<
(@-p)~ (" p), we have (a-p) ~ (6 p)<rad(p)=p. Hence (a“p)~OG-p)=p.
This implies ¢“p=p or b p=p. That is, either a<p or d<p.

LeMMA 2. Let p be a prime element of L. Then p:a is equal to e or equal
to p according as a<p or alp.

Proof. If a<p, then ax<p for every element x of L. Particularly ae<p.
Hence p:ae, p:a=e. Since (p:a)a<p, we have p:a<p, if a<lp. On the other
hand p<p:a is evident. Hence p:a=p.

LeEMMA 3. Suppose that a is a rvadical element of L. If a=b~c, then a=b'~c’
for any b’ of I'y and ¢’ of T..

Proof. Since there exist whole numbers p and ¢ such that /<6 and ¢/@<c,

we have that (&' ~c)®I< /@) /00 PN /OO < H@ cDhc=a. It is

evident that a<<0’ ~c¢’. Hence we have that o' ~¢’<rad(a)=a, and ¥’ ~c’'=a.
LEMMA 4. Suppose that the ascending chain condition holds for the closed

interval (e, a). Then the radical of any element of (e, @] is a radical element.

Proof. Let ¢ be any element of [e, a]. By the ascending chain condition for
[e, al, the lattice-ideal J(I'.) generated by I'. of the sublattice [¢, @] forms a prin-
cipal ideal: J(I';)=J(c*) where c*=supl[l.]. Since c*e J(I';), there exists a
finite number of elements i, ..., #, such that c*<wu;“---“u,, u;eI';. Hence c¢¥
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=y, ---Yu,. Hence c* is contained in I';®, i.e. c¥®< ¢ for some whole number
0. Let x be any element of I'x. Then x@<c*<x for a suitable ¢. Hence
2@ x@O<L ¥ c<x. Hence I’c% is contained in I'.. We get therefore
c*sup[ e ]sup[I's]<sup[ J(I'D]1=c* c*=sup[l'»]=rad(c*). This completes
the proof.

DEFINITION. If a=ai~-- ~Gn wheve no av can be omitted, then this decomposi-
tion is called minimal.

TureOREM. Let a be a radical element of L. If the ascending chain condition
holds for the interval [e, al, then a has a unique minimal decomposition of prime
elements.

Proof. 1t is easy to see that ¢ can be decomposed as a meet of a finite num-

ber of meet-irreducible elements: a=ci~--~¢,. Then by Lemmas 3 and 4 we have
a=cfn~~CcE, cr=rad(c).

If ¢¥ is meet-reducible, then repeating the ahove arguments we obtain, after a finite
number of steps, a meet-irreducible radical elements of @. That is, @ can be de-
composed into a finite number of prime elements: ¢=pi~ " ~Pm-

Now we suppose that ¢ has two minimal decompositions of prime elements:
a=pi~ - Pu=DF~ " ~pE. Then either m=n and the set of all p’s coincides with
the set of all p¥s or else it is possible to pick a p; or pi which is not contained
in the set of p*s or the set of p’s respectively. For definiteness suppose it to be
pi. Then, using Lemma 2, we have® a: pi= (Pi: p0)~ (D2t P A~ (Dm: D)
=enprn o Bn=Pr~ Pm. On the other hand a: py=(p¥: p1) ~-- ~ (D PO
=pF~-~pi=a. Hence ¢=pi~~Pmw=pPz~"""~Pm. This contradicts to the
minimality of the decomposition. q.e.d.

REMARK 1. The prime elements determined by the Theorem is called the prime
elements of a. Suppose that ¢ is a radical element with prime elements pi, ..., Dn.
If pis a prime element containing @ then p contains one of the p,. For, since
(Do) ) <DPi Dz~ ~Pmla<p, there exists p, such that p,<p.

REMARK 2. If a:b=a then b is called relatively prime to a. Let a be a
radical element with prime elements pi,--, pm. Then in order that & is relatively
prime to a, it is necessary and sufficient that b is contained in no p». For, since
a:b=Cpi~"Pm): b=(P1: 0) > ~(Dw: b), we have p,:b=p, if a:b=a. Hence by
Lemma 2 we get 0Lp, (v=1, ..., m). Conversely, if b<lp,, then p,:b=p, (v=1,
..., m). This implies @:b=a. Using the above results, we obtain the following:

Let a and b be two radical elements with minimal decompositions: a=p;~--
ADms O=pl~"~Dh In order that b is relatively prime to a, it is necessary and

8) I, forms a sublattice.
9) Cf. [1, p. 202, Theorem 3].
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sufficient that no p, is contained in a p..
REMARK 3. Suppose that L is associative and integral'®. If any prime ele-

ment is divisor-free, then it is verified that Lemma 2 in [3] holds for L, and we
can prove the following:

Suppose that a is a radical element such that the descending chain condition

holds for [e, al. If a=ci~~cCy, then a=rad(c\) ~-~rad(cy), where rad(c,)
is a radical element of L, v=1, ..., A.
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