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§1. Introduction

1. 1. This paper has two central themes; the first is to establish a generalized
notion of Laplacian operator and the second is the construction of balayage in a
general situation by uéing a well-known theorem of Krein-Milman in the theory of
linear topological spaces.

In an earlier period, so-called Laplacian has been considered as a linear operator
from functions to functions, that is, f being a function of class C? (p = 2), the
Laplacian (in the classical type, which shall be denoted by 4 hereafter) transforms

. 2
f into a function of class C?2, 4f = 25;1%;.

Recently, this concept has been developed, notably in the following two direc-
tions: the one is appeared in the theory of Riemannian (or Euclidean) manifolds,
in which the generalized operator of Laplace-Beltrami 4,= (§+d)*=dé+d3§ trans-
forms a form of class C?, degree 7, into another form of class C?~% of the same
degree; especially if we consider forms e, of degree 0, which are nothing but
usual functions, we have

B, d2) = [ Ay = [A(=dw) er..ndy - dxa,
where e;..., means the component of Levi-Civita’s tensor (=1/g, g being the
determinant || g;;|] of the fundamental covariant tensors g;;, under taking the
coordinate system to be positive). Thus, setting d(da)=( —-A‘a)el...,,dxl...dxn, we
see that the application @ —> da represents a linear operator from functions to

measures and (B, 4,2) becomes a usual integral J,@d (4a), for which the poten-

tial related to the Knaster-Hodge’s parametrix w(x, y) is represented as

(@, 42) = [0(z, 9) d(4a).
Even for forms of general degree, these circumstances are still preserved in
considering da= (dya)* instead of 4y itself.

1. 2. Another developement has been appeared in the theory of distributions of
L. Schwartz [16]; his extended Laplacian 4 is defined in the space of distributions ;
however, a superharmonic distribution H is reduced to an almost superharmonic
function of M. Brelot’s sense, which is further equal to a uniquely determined
ordinary superharmonic function almost everywhere. On the other hand, since
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—4H is positive, it is nothing but a positive measure. Such being the case, the
Laplacian of L. Schwarts represents a linear operator from a certain kind of func-
tions to measures, and it is very remarkable that, as far as we concern ourselves
with super- or subharmonic distributions, we shall be satisfied with such an operator
4= (—j) that transforms functions to measures, without considering any extended
sense of Laplacian such as 4.

Of course, 4 has an important meaning in some other aspects, for instance, in
the relation with the elementary solutions of some partial differential equations of
distributions ; in fact, the most elegant proof of the decomposition theorem of F.
Riesz, owing to L. Schwartz, depends on the use of such elementary solution. We
shall establish this theorem in a more general situation in § 2, which also guaran-
tees its classial form by refering to the discussion in Example 3, §4. Theorem 5
shows a necessary and sufficient condition for the global decomposition of this
type ; such problem has arrisen in S. Hitotumatu [8], who gives a sufficient con-
dition for this problem.

1. 3. Thus, our first task is to construct a general notion of Laplacian, which
is a linear operator from some kinds of functions to measures and general potential
as its inverse. We shall find that such a generalized investigation involved not to
speak of the classical study of super- or subharmonic functions and potentials, but
also that of Fourier transformation (with its inverse transformation) and the
Fourier expansion of almost periodic functions, etc.

This study gives otherwise an estimation for how much conditions to be
sufficient to support the several important results in the classical potential theory,
and from another point of view it is an abstract potential theory without any notion
of “metric”.

These are the contents of the first half of this paper.

1. 4. The second half is devoted to the new construction of balayage which plays
an important roéle in the theory of potentials, earlier and modern, especially in the
problem of Dirichlet. H. Cartan [4], [5], has constructed the balayage theory in
using the projection method in a (pre-) Hilbert space which is generated from
some measures; our present tool is however the noted Krein-Milman’s extreme-
points theorem in the theory of linear topological space, as is said before. There
are some coveniences peculiar to our method, that is, we can treat the balayage of
such measures as are not necessarily of finite energy from the start (contrary to
this, H. Cartan’s construction is at first done only for the measures of finite energy
and afterwards, using the foregoing results, for general measures) ; moreover, we
can obtain some close relation between regular (boundary-) points and extreme
points of considering convex set, 6. 5, which offers a short criterion of sufficiency
in order that a boundary-point be regular, Prop. 16.

Finally, we may say that the balayage of the present sense is more akin to
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the classical one. .

1. 5. The last paragraph is occupied by the application of the foregoing discussion
to Dirichlet problem and its extension, by a functional-analytic (or Banach space)
method ; some extension of the same type has been treated by M. Brelot in other

way.

I express my hearty thanks to Prof. Dr. M. Inoue for his precious guidance
throughout this work.

§2. Generalized Laplacian

2. 1. Let E be a locally compact space. For a given domain D of E we shall define:

{H(D) is a convex set of real- (or complex-) valued functions defined on D,
satisfying the following conditions;

i) £+(D) forms a positive cone, i.e. for positive numbers ¢, 5 =0 and f, g
€ L (D), af+Bg belongs also to (D).

ii) for any open set GCD, the absolute value | f(x) | of every f€ " (D) cannot
be identically infinite on G, i.e. | f(x)| £+ for x€G,

iii) if f=g excepting a non-dense set in D for f, g€ £ (D), then f =g every-
where on D.

According as the functions of £"(D) are real or complex, we call L"(D)
itself real or complex respectively.

(D) is a linear space generated algebraically from the convex set L™ (D),
over the real or complex field according as ¥ (D) is real or complex, in which
we define fi—fo=g1— g if and only if fi+g,=g:1+/> (as functions) for f;, g€ L (D)
(i=1, 2) ; in other words, (D) is a free linear system with the generator (D).
We remark that, in an open set UCD in which both f(x) and g(x), f, g€ & (D),
are finitely definitive, we can identify f—g¢€ €(D) with the function f(x)—g(x).

Throughout this paper, we shall assume that the functions of ¥"(D) are at
least semi-continuous (sometimes, continuous) unless otherwise specified by adding
further terms.

2. 2. We shall next fix our notation for spaces of functions and measures accord-
ing to N. Bourbaki [1] as follows:

MT(D) is a convex set of positive Radon measures defined on D, and M(D) is
the linear envelope of MM (D) over the real or complex number field; we denote
by K(X) the Banach space (algebra) of real or resp. complex continuous functions
of the compact support defined on X, X being any set, then M (D) is the dual space of
K(D) if M(D) is furnished of the topology of simple convergence in K(D), i.e.
vague topology, and it is a space of Montel, that is, any subset of (D) which is
bounded with respect to the norm || x| of meausre p is always relatively vague
compact.
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2. 3. We shall understand by a local laplacian 4p (related to D) such an operator

from (D) into M(D) that;

4y) 4y is linear, i.e. dp(af+g) =adp(f)+4p(g) for f, g€ &(D),

4:)dp(f) is in MH(D) if and only if f€ LT (D).

For two domains D, and D, such that D,CD,(CE), we shall make the as-
sumption :

(A. 1)  8Y(Dy)DL(D,), therefore ¥(D;) may be considered as a linear sub-
space of L(D,).

Then, 4p is assumed to have a further condition;

43) if D,CD,, then we have for any f€ £(Dy)
(2-1) 4p,(f)=(d4p,(f))p, (connective relation),
where (+)p means the restriction of measure (+) to D. Using merely 4 instead
of 4z, we see directly that 4,(f)=(4(f))p for every f€ Q(E)CL(D).

TueoreEM 1. (Extension theovem). Let fe€X¥(DywDy): if fe&Y(Dy) and
simultaneously €87(Dy), then f€ & (D Dy).

Proof. Suppose now this were not so, and that JquAD1UDz< f)< 0 foragepcK(D
wD,), ¢ = 0. Decomposing ¢ into ¢;+¢,, where ¢; =0 and ¢; € K(D;) for i=1,
2, we have

[ 020,00, = [0iddn,00,05) + [ 02dnon, () = [0idido, () + [@uddn, (1) =0,

which is absurd.
2. 4. Next we define the potential operator ¢ (inverse operator of 4p in a sense

A
for every DCE) which is a linear mapping of a linear subspace I (D) of M (D)
into Q(E) (C&(D)) and satisfies the following conditions;

A A
b)) () € &Y (E) (hence€ £ (D)) for every p€IMH(D)=M(D)~M*"(D),
¢,) as far as the integral has a meaning, it holds

(2+2) Jqp(ﬂ)dv - fgb(y) dy  (Fubini’s relation),
and moreover
P3) dpp(w)=p  (reciprocity).

In this paper, for the sake of simplicity and utility we shall assume that, in
the case of real M(D), $(u) is well defined for all x€ M (D) either as a function
of &"(E) or as the function which is identically infinite, and assume moreover
that, if D is relatively compact, ¢(x) is in the class Lo (E) of all functions vani-
shing at o®. Also in the case of complex M (D), always assume ¢ (x) to be defined
for all € M(D) and bounded on E as far as D is relatively compact.

Thus, under these situations if D is relatively compact, we can set
(2+3) E)%E(D) = M(D)
and we shall see (at §4) that these assumptions are valid in all of the later

%) Every function f of Ly (E) is characterized; for a given &>>0, there corresponds a compact
Fg such that | f (#)|<& for every x € E—Feg.
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cited examples.

On account of this (2:3) and the reciprocity ¢3), we see that 4p is then an
onto-mapping from L(D) to M(D) for any relatively compact D, because for
every €MD), ¢(n) is well defined and is in (D).

In the later discussion there are some cases where we might need another
assumption for ¢(x) such that;

2:2)" j(ﬁ(ﬂ)dﬂ >0 (=0, if and only if z = 0).

However, it is certain that there exist some important examples in which this
assumption is rejected, so that we adopt it only when we say so definitely.

. b. For a given domain GCD, such an element f € 8(D) that 4¢(f) =0 is said
to be harmonic in G; the set of all f € (D) which are harmonic in G is denoted
by 9c(D); we write (D) for H(D). Each Hc(D) (or also H(D)) forms evidently
a linear subspace of £(D), which is Cc2.(D).

ProposiTION 1. 1) Let G and G’ be two sub-domains of D such that G'CG.
If feR(D) is harmonic in G, then so is it in G'. i) If the support of n€M(D)
has no intersection with GCD, then ¢ () is harmonic in G. (This guarantees the
existence of non-trivial harmonic functions).

In fact, ) de/(f)=Us(f))er=(0e=0 and i) dePp(n)=dpp(1))e=pc=0.

ProrosiTioN 2. Let G and G be two domains in E; for every f € (GoG") we
have
@4 depdc: () = de:Pdc(f) =4 cner (f).

Proof. By d43), it follows that dePpde = (douePder)c= (der)e=dcnc’ ; exchange-
ing G and G" mutually, we obtain the above equalities.

THEOREM 2. Let G be relatively compact

D RWD)/DHe(D) =M(G),™

ii)  Each residue-class of the quotient /¢ contains one and only one potential
P of neMG),

iii) The diffevence of any two elements f and g in the same rvesidue-class is
harmonic in G.

This immediately implies the well-know decomposition of F. Riesz:
(2+5) f=bde(f)+fe in G, where fe€9c(D),
for every f € "(D), and the uniqueness of this decomposition is also evident.

Even if G is not re/l\atively compact, the decomposition (2+4) is valid for such
F€8T(D) that 4e(f) € M*(G) ; in fact, we have de(f —~Pde(f)) =4c(f) —4decbdc(f)
= 0. The uniqueness comes from the fact: suppose now f=¢@)+f¢ in G,
fé € HDc(D), then it follows that 4¢(f) =4cp(v) =» and hence fe=f7 in G.

. 6. In this section we shall assume that the considering integralation is never
meaningless ; let f, g€ 8*(D) be given and by the above theorem put f=¢(de(f))
+f¢ and g=d(de(g)) + g5, where f¢, g6€He(D), GCD. By ¢, it holds

*) The sign =~ means an isomorphism between two linear spaces.
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fq&(dc (f))ddcg = fq& (4¢(g))ddcf, from which it follows

2-6) [ F=Foradog = [ (g-go)ddof
or equivalently
(2+6)" f fddeg— jgdAG f= L;( foddog—geddcf)®.

Putting [f, gJc = J (fddg—gddf), we see that

D [f, gle=-[g fle¢, and hence [f, flec=

ii) [f, g]c is bilinear with respect to f and g.

iii) If f is harmonic in G (.e., f=f¢ in G), it holds

[f, &7 = [ fadg,
consequently, if both f and g are harmonic in/\G, [f, gle=0

iv) [P, p(»)Jec =0 for any x and v€ M(E).

v) Denoting by &, the point measure of total mass + 1 (Dirac measure)
placed on a point x€ E and by ¢(x) the potential of &,, i.e. ¢(&,), we have for
feL (D) and GCD,

27 fe()=[f, )] in G (=0, in D-G).

In fact, from iii), iv) and (2:5), it follows [f, ¢(x)]ec = [Pde(f), ¢(x) ]
+Lfe, ()16 = [fo, P e = fo(x).

vi) If the unit function 1 (1(x)=1 identically) is in $(D), we have

@-8) [fle=01 flo = ddr

for fe€&*(D) and GCD, which shall be called “f-capacity of G” (cf. 5+5).

In respecting to (2:8), [ fe can be linearly prolonged to a linear functional on
L(D), satisfying the following conditions; ) [fl¢=0 if and only if f € 9c(D), £)
fe8" (D) implies [f]s = 0. We note in passing, in the later mentioned Example
3 (§4), we can easily see by the classical Green’s formula in vector analysis that

G0N
where 9G de51gnates the boundary of G (supposed to be regular now), dS being
the surface element on it, and #» refers to the outwards normal with respect to

0G. In the case, [¢(w)]c —jd,u =N, jj 6¢(u) —>22dS for any u with the support

in G, which shows the classical Gauss theorem in potentlal theory.
vii) On the other hand, if 1=¢(e), e being the origin of E, we have

@8 [fle=[1 flo=—[, ddf Gf c€G), or = [ ddf (if e€G),
since in this case f (e)=JFdA f on account of (2-12) below. Finally, we remark

that X¢(x) =[1, ¢(x)J¢ is the characteristic function of GCD.

%) We remark that fdAsz .rchGf: IGdAf
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2. 7. Let E be a (locallv compact) topogical group having the Haar measure dx
and denote ¢(p) = Pp(pdx) for ¢€ K(E), or EI/%(E), the space of measurable
functions with comapact supports in E. From (2-6)” it follows that, if the support
of ¢ is contained in D,

2-9) [ fedx=[ $@dan(r)+[ _ fovds,

since it must be that the harmonic part of ¢(p) vanishes on D. In particular,
if D=E and fp=0 (such is the case, e.g., in which f=¢(u), or f is arbitrary
but H(E) itself consists only of zero function as in Example 1, 2 ( §4)), then as far
as ¢(n) is integrable with respact to 4(f), we have

(2-10) j fodx = f () FACF) (Bochner formula)

From this point of view, we may call (2-9) an extended formula of Bochner.
More generally, under such condition that fp=0, we have directly from (2-2) that

2-11) [ fan=[@ascr)
and particularly,
2-12) F@) = [padch).

Of course, (2+11) and (2-12) are valid whether E is a group or not.
2. 8. We shall finally investigate about the integral representation of the operator
¢ and f€LH(E): To see it, put at first
(2:13) 0(x, ) = (@)

then we can state
A
TueoreMm 3. If peMH(E), ¢(n) is represented as follows,

2-14) B ) = [0, 9)dn(3),

where O(x, y) is symmetrical with respect to x and y, @ (x, y) =0y, x), and it belongs
to &Y (E) in vespect of both x and vy, i.e. D€L (EXE).

In fact, @(x, y) =f¢»(x)d8y=fqb(y)d8x=a)(y, x) and moreover one sees

() () = [p(de.= [ (@I () = [0 D).
For f€&"(E) having AfE‘)JAE(E) and fg=0, it holds
(2-15) £ = [0, ndaf (). (of: (2:12))

O (x,y) is called the “kernel function” of the potential operator ¢.

§ 3. The real cases and modulus principle.

3. 1. Throughout this paragraph we restrict ourselves within the real £*(D) and
assume always that: given a general domain DCE, which is however supposed to
be a union of a countably infinite number of compact sets at present, the following
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three conditions are fulfiled;
(R. 1) every constant function (on D) is contained in (D),
R. 2 2+(D)ﬁl/i\'(D)= (0), where 0 means the zero function on D, and moreover
(R. 3) for any f, ge (D), fng also belongs to &*(D).
PropositioN 3. Let f e (D) and he (D) ; if f=h on D—G fora relatwely
compact G such that GCD, then f = h everywhere on D.
Proof. Put fo=(frh)—h, then fo€ &(D) by (R. 3) and f,=0 on D—G, hence
fo=0 everywhere on D by (R. 2),i.e. f = frh=h on D.
ProrosiTioN 4. If f€9(D)Lo(D), then f is identically zero on D.
Given a positive number & >0, let G be a relatively compact domain such
that | f(x)|<& on D~G. By the above Prop. 3, it yields that f =& and simul-
taneously —& = f everywhere on D, that is, | f| =& on D, from which follows
that =0 on D, & being arbitrary.
. 2. In the real case, we shall always lay down another assumption concerning
with the opeation ¢ as follows:

(A. 2) The application of p#€MT(D) to ¢(u) € L (D) is lower semi-continuous
with respect to the vague topology of MM*(D).

We begin with a fundamental proposition as follows :

TuEOREM 4. If f€ Y (D)NLe(D), then f =0 on D. Threfore, the potential
() of positive measure is everywhere positive on D under the condition d(u)
€L (D).

Proof. Suppose it were not so and, for any sufficiently small positive number
&>0, put z=(f(—E&))+&, then & vanishes in D—F for a suitable compact
FCD, so that 2 must be 0 in D since A€ £*(D). Thus, fn(—&)=¢& or equivalently
f = —&. & being arbitrary, one concludes that f = 0.

Next, take a series of compact sets K; such that w;K;=D; denoting the rest-
riction of x# in K; by p; for each j, we have by hypothesis (mentioned in 2. 4)
b (u;) € ¥(D) " Lo (D), since K; is compact, and so ¢(x;) =0 on account of the
avove argument. Therefore, we get ¢(u) = lim ¢p(x;) =0, as desired : this com-
pletes the proof of Theorem. !

The similar method shows that, if f€2"(D) and x, is any (inner) point of D,
f(xg) = 122 f(x) for all x€ D, or evuivalently f(x,) cannot be smaller than the

greatest lower bound of f(x) in D. But, in order to state positively that f (xo)

is greater than the greatest lower bound of f(x), x € D, supposing f is not constant

in D, one shall need some conition about mean values.

. 3. Now, under the assumptions (R. 1)~(R. 3), we research a necssary and

sufficient condition for the decomposition of F. Riesz’s type (2. 5) in the case

where D is not necessaly relatively compact. Here is the result which we desire:
THEOREM 5. A necessary and sufficient cnodition that f € &, (D) might be decom-

posed in the from f=¢dp(f)+ fp, fo€ D(D) (or equivalently that 4p(f) € ‘J/;}E*(D)),
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is that therve exists a h€ (D) such as f =h on D.

Proof. 1). Let {D;} be the family of relatively compact domains such that
D;CDj.y and D=U%4D;; by Theorem 2 we have

{ [ =¢dp,(f) + fo;, Jo,€9WD)
f = ()bAD]‘+1(f> +ij+1 , fD]-+1 € @(Djﬂ)-

Since  4p;,,(fp;) = dp;.,(f —P4p;(f)) =0 by Prop. 2 (4p,,,p4p,;(f) = 4p;()),
we have fp;€2"(Dj.1). On the other hand, fp,=f—¢pdp;(f)€ £+ (D~-D;) because
d)ADj(f)EeZ)(D—Dj) by Prop. 1, ii). Thus, owing to Theorem 1, we conclude
that fp;€ 8(D,,,w(D—D,))=8*(D).

2) Suppose now f =0 on D, then &€ = —¢pdp,(f) = —f+fp; = fp; on D—F
for a suitable compact F' (in fact, ¢4p;(f)€ Lo(D); see the assumption noted in
2. 4), hence by Prop. 3 fp; = & everywhere on D. Thereby it comes that

$dpf Shim ¢, (f) = Im(f = f,)

jo+o

~ f=Tmfo, < f-E < f,

that is, ¢pdpf#£+o0 on D or in other words 4pf € S/J\E+(D).

For a fe€&"(D) such that f =k, h€ (D), one has only to put g=f—h =0.
Then g=0 and so 4p(f)=4p(g) € A*(D), which proves the sufficiency.

3) The necessity seems somewhat evident, since ¢(x) = 0.

Hereafter in this pargraph, we shall define, for any g€ S/J\I(D), the integral
ICp) called energy of p as follows;

(3+1) I = [¢Gdn
= [dCundm + [$Cumdm 2 ¢ (uidnm,

as far as the last term .is not meaningless, where u = gy — o, s €M (D) for
i=1,2, and assume always that /(#) =0 (finite or infinite) and =0 if and only
if u=0. Therefore, the assumption (2-2)" is held here.

Then we can state:

THEOREM 6. Let f be in &' (D) and f=0;if p€ M (D) satisfies, I(1) < +oo
and f=¢() on a kernel of u, then the above inequality takes place in the
whole D.

Proof. Putting fdp(u)=g, then g€ &(D) and by Theorem 4 f, ¢ (1) =g=0
on D, besides ¢(z)=g on a kernel of # by hypothesis. g =0 implies the pos-
sibility of the following decomosition; g = ¢4p(g)+gp, in which gp€H(D) but

simultaneously gp€ Lo (D), so that by Prop. 4 gp=0 on D. Consequently,
g=¢4p(g). Now consider the integral;

I=[ $(u=p(@)d(u—45(8) =~ [ () ~Dddn(e) =0,

but 7 is always non-negative, then I must be =0. Thus, #=4p(g) and hence f=g
=¢pdp(g) =¢ (1) everywhere on D. It remains to show the integral I being
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reasonable. In fact,
[gad5(e) = [#(waso(e) = [$(ar@)dn = [gdn = [d(wdn,

which is < +oo. This concludes the proof.

In this Theorem, we may take f € &(D) nLy(D) (instead of f¢€£"(D) and
f=0); of course by Theorem 4 we get f = 0.

When f = constant in D, this Theorem shows the maximum principle of Maria-
Frostman’s type.

3. 4. Now, we shall exhibit some applications of the results obtained before. The
first is;

ProposITION 5. If f€8°(D) is upwards bounded by &(p) for a p€M(D)
with compact support, then f=¢ ) for a suitable v€ M+ (D).

Proof. By Theorem 1 and Prop. 4, it is clear.

TaEOREM 7. If K is compact, then there exists a measuve p€ M (E—K) such
that ¢$()=1 on K.

Proof. For each x€ K, consider the set V(x) = {y; ¢(&.) (») > 1} Gf H(EL)
(x) =1, take ¢(a&,) instead of ¢p(&,) for a suitable positive number « that ¢(aé&.)
might be > 1 in x); then, as ¢(») is lower semi-continuous for »€ M+ (D), such
defined V(¥) is open and assumed not to be void. Since K is compact, it is
covered by a finite oumber of V(x,), x,€ K, for i =1, 2, -, n; putteing p#=>"_1&;,
(or 2 qa,&,,) we see ¢(u) >1 on UV (x)DK. Then f=¢(u)n1 is a desired
one; we shall now prove this.

Such f just obtained is =1 on a certain open set W containing K, so that
f=1 on K. By Prop. 5, f must be = ¢(v) for a certain positive meausure v
which is necessarily distributed in £— K, since f is harmonic in W. Thus, Theorem
7 is completely proved.

This theorem is available for the later discussion of balayage in §86.

§4. Examples of 4 and ¢.

‘We shall exhibit some improtant and concrete examples, at first, of complex
cases and, succeedingly, of real cases.

4. 1. Example 1. Let E be the one-dimensional Euclidean space R, that is the
additive group of real numbers, and £"(E) the collection of all continuous positive
definite functions defined on E. Furthermore, denote by L*'(E) the commtative
self-adjoint Banach algebra consisting of integrable functions on E, with respect

to the involution ¢*(x) =¢(—x) and the multiplication ¢+ (x)= an(x — W ()dy
(convolution). Then, the convex set &F(E) of functions € £*(E)with norms less

than 1 constitutes a weakly compact convex set in the unit sphere of the dual
space (L(EY))* of L*(E) in regard to the relation
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(4D F@) = [F@etads for [T B, g€ IN(E) .

By the noted theorem of Krein-Milman, % (E) coincides with the weakly
closure of linear envelope of extreme points of &F(E) in (LY(E))*. Since L'(E)
is commutative, each extreme point X is multiplicative, that is, X(¢+¥) =X ()
X (), so that the corresponding function X(x) must be a character of E. More
concretely, X(x) is in the form; X (x) =¢’* for a y€ E.

Denoting by qfo\ the Fourier transform of ¢€ L'(E), i.e. Q(z‘) =Je"’”¢7(x) dx, it

. . . . . A
is easily seen by Stone-Gelfand’s approximation theorem that the collection L of

A . . N A
all ¢ constitutes a dense sub-space of L. (E) (in fact, we see that g = qa-\/b\").

Put

(4-2) 1@ =f(g) for fEL(E), p€ LUE);

if fe%F(E), there exists, for every & >0, a finite number of #,€ E such that
| F(9) = Yy e (¢) | <& Say=1. Thus we see that | f(p) | = Slas| oty |+& =
Hg/;l]m-}-é. & being arbitrary, we have for any f € 8" (E) that f/,tf((/;)] =l fleotllell,
or in other words, 2, is a bounded linear functional on 2, so that, on K(E).
Thus, ¢, defines a bounded measure on E. We shall denote

(4-3) A(f)=py and 4p(f)=(us)p, DCE.

4. 2. It remains to prove the positiveness of thus obtained measure 4(f). Let
¢€ K(E) and ¢ = 0; suppose now {D—n/? uniformely on E, then @ = l/«\,!flz
—> ¢ uniformely and accordingly 0= f(J*J) = u,(|4|?), since f is positive
definite. Thus, we conclude z;(p) = 0.

On the other hand, for a bounded measure €M (E), we shall define the opera-
tor ¢ as follows;

-0 P () = [ertdn®), 0Cx, =€,

for which it is easily seen by simple calculation that ¢(u) € L*(E) as far as
,u€9/J\E+(E) and by Fubini’s theorem 4¢(u)=p (reciprocity ¢3), §2). In passing,
we shall make a short remark; for a point measure +1 on %, it holds ¢(&,) =¢*
and ¢(&,) =1, e being the orginal point of E.

In the present case, £(E) and so M(E) must be complex, and (D) is con-
sidered as a space of functions since every f€ &"(E) is bounded; | f(%) | =l fllwo
= f(e), so that f—g represents a function just as it is. Moreover, $(E) consists
only of the zero function, and this implies every fr, harmonic part of f in E, has
to vanish, that is, the Riesz’s decomposition is now in the from;

(4-5) f =¢4(f) (Inversion formula).

Combining this with (4:4), we have f(e)=¢4(f) (e) =J'dA N.

4. 3. Let E be n-dimensional Euclidean space R” for » = 2, in which every point
% is assigned by coordinates (x;,%s, ¥,). Then replacing e’** by eCsfit - "t
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the preceding investigations remain valid thoroughly in this case.

4. 4. Example 2. Again let E be one-dimensional Euclidean space R'; let Q(E)
be the complex linear space of all continuous almost periodic functions defined on
E, while €*(E) the collection of those which have the Fourier expansions in such
forms; > a;e’*i* and a; =0 for every j. The definition of M(E) is, however,
somewhat different from the others, that is, the topology of E for M (E) is assumed
to be discrete. For theis reason, every measure of MM (E) is also discrete and, if
it has the compact support, it is nothing but a finite measure. Now we define:
if f has the Fourier expansion Y a;e'*s,

(4-6) dp(f) = 2la;dés;, x;€ D.
¢ () is defined also by (4+4), and H(E)=0. But the inversion formula (4:5)
does not necessarily hold true.

4. 5. We shall investigate slightly on the representation theory of the group E.
Given a domain DCE, let Ny be a linear subspace of L'(E) consisting of such
f€L'(E) whose Fourier transformation belongs to K(D), i.e. has the support
contained in D. Then we have

TueoRrREM 8. The translation S,, x€ E,
Seo=0s 0:() = ¢t—x) for g€ L'(E),

is invariant on every Np, DCE. If f€&(E) (in the sence of Example 1) is
harmonic in D, and never in D’ such that D C D’ properly, then Np coincides with
the collection of such @€ L*(D) that JJ Fx—3 o) ¢(y)dxdy=0. Then the map-
ping x —> S, is a faithful unitary representation of E by the unitary opevators in a
Hilbert space H; completed from the quotient space L*(E)/Np having the inner
product and norm ;

7 ()= [ [ £ =9 9@ V() dxdy
- [Fe v @adz, 11ol,=@ oF

where ¢ means the corresponding element in L*(E)/Np for ¢ € L*(E).

Proofs come from the general unitary representation theory and (2-10) above.
About the former, see H. Cartain-R. Godement [6], L. H. Loomis [11], S. Matsushita
[12] [13], etc. We shall remark that, for a suitably choosen element § € H.  f s
represented as follows:

@) = (6, S:0);.

4. 6. Example 3. Let E be n-dimensional Euclidean space R"(# = 3), and (D)
the convex set of all superharmonic functions defined on DCE; C? designates the
collection of functions having continuous partial derivatives up to the order p,
l1=p <+ oo,

For a ¢ € K(D)~C? whose support is in a relatively compact domain B such
that BCD, we define

%) See e.g. T. Radé [17].
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) [oddn(r) = [ f(~dp) dz, for any fee (D),

. n 2
where d¢ = Z gxf . Indeed, we see immediately that, as there exists a sequence of

f; € ¥(B) nC? such that f;/f it holds by the classical Green’s formula, if ¢=0, then
0=( o(=dNdx = [ (~dp) fidx—>[(~dp) fax.

Thus, 4p(f) is positively linear on K(D)~C? since this is positively dense in
K(D),® 4p(f) is uniquely prolonged up to a positive measure on D, which is a direct
consequence of a Proposition of N. Bourbaki [17. Conversely, we have:

ProrosiTION 6. Let f be an element of (D), real linear envelope of L(D).
In order that dp(f) € M*(D), it is sufficient that f € &+ (D).

Proof. Suppose now f=fi—f; for f;,€(D) (i=1,2). If 4p(f) e M (D)
and consequently 4p(f) €M (D) for any BCD, then for any sphere XCD we
can choose a relatively compact domain B such that 3CB, BCD, and a sequence of
fi€(B)nC?such that f} / f;(j—>+) for =1, 2. Take morenver a sequence of
spheres 3, of the common center x, with that of 3, which converges to the centre x,.

Denoting the spherical measure with total mass +1 on 93 by 4, on 923} by
ks, we see that 0= [$(h=Ddds(f) = [$(h=Dd(Us(f) ~da(f)=lim [ $(hi=2)
dp} —dp}, where ¢() is the Newtonian potential of s,

4.9 b () (x) =NnJ7’2‘”(x, »de(y), N,=T'(n/2)/2(n—-2)n""?
r(x, y) being the Euclidean distance between x and y in E, and du = (—4f})dx

for each j and 7 = 1, 2. On the other hand, one sees h_r)n Jq’)(lk—l)duj- = 1i_)m J¢(/¢§-)
] jooco

(dh—d) = lim J Fi (da—dd) = J fi(dAy—dd) for i=1,2. Hence 0 gf (fi—fo)
(dA,—dA) for each k; if fo(x,) 5% +oo, the function f;—f, is definitive in x, and
i1 G —( [ fida= [ £udd) = tim [ fi(dds=ad) = lim [ fudds—d2) = 0. Thus
the function f; — f; is defined almost everywhere on D and satisfies (f;—f2) (%)
= J( fi—f2)dA for every 3CD, which implies that f;—f; is almost superhdrmom'c
on D in the sense of Szpilrajn,** so that there exists one and only one f, € & (D)

which coincides with f;—f; almost everywhere on D. Consequently, fo+/f2 is equal
to f; almost everywhere, therefore, properly everywhere on D, that is, fo=fi—/f2
€2H(D). Thus, f=f1—f€ (D) represents a function f, and is in (D), which
proves the Proposition.

Thus, every h€$H(D) is harmonic in D in the proper sense, that is, jh

*) By Bourbaki’s terminology, it is “positivement riche.” xx) T. Rad6; Loc. cit.
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Next, we shall show the reciprocity ¢;) (in §2): Let A2 and A" be spherical
measures (of total mass +1) placed on the surfaces of spheres X and 3" with
the common center respectively, where 3C3'CD. For u€ ‘)/}E* (D), choose an open
set B (relatively compact) such that BCD, 3'CB, and a series of f;€I'(B)C?
such that f; /7 ¢(x) in B. Since $(A—21") € K(B), =0, we have

[$G=1ddop () = [ (= 2)d b ()
= lim [$Q=2)dp; = lim [$n)ddat ()
~tim [ £,dG=4) = [ G-,

joo

which is equal to J(}S(Z—l’)d,u, where p;=(—4f)dxs: & (A—2") being positively
dense in K(D), we conclude that p=4pd ().

Finally, we remark that the assumptions (R. 1)~(R. 3) in §3 and (2-2)
are always held here.
4. 17. Example 4. Let E be two-dimensional Euclidean space R? or the open unit
circle | z| < 1 in the complex number plane Z2% The operator 4p is defined in the
same way as in the above Example 3, but the definition of ¢ is alternated respec-
tively as follows:

(410 (@)= [ gz 108 17 duo).
(4-10)° pw@=[]  tog LE | au),

In the second case, the same situation as in the above Example remains as it
is; however, in the first case, the condition (2-2)’ is not necessarily true for a
general € M(E) and yet ¢(n) € Lo (E) is false.
. 8. Example 5. Again, let E be n-dimensional, E = R" for =3, and D a
domain CE, in which a Green’s function G(x, y) is regular; leave the definitions
of (D) and 4¢(GCD) as those in Example 3 and adopts that of ¢ as follows;

(4-11) S @ = [ G »dn(.

For thus defined 4, and ¢, it is easily seen that the whole circumstances
as in Example 3 remain completely. In fact, we have 4dp(Pp(w) = 4p ((i") @)

—-JDh(x, y)du(y))=AD<13(ﬂ) = u, where qfc; denotes the potential operator ¢ in Ex-
ample 3 and H(x)=th(x, y)du(y) is harmonic in D in the sense of Example 3.

A
4. 9. Example 6. Let E=R"(n=2) and define M,(E) as a subspace of M(E)
constituted by such measures z that

| alg=[[a(s) T dx < +o0 ©O<a<m,

where
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( n;ﬂ ) /2
412 bplw = H(B)rPdn, H(B) =35 T ur2)

for a certain fixed B, 0< B <n (the potential of ,C/?\-order in the sence of M.
Riesz). Take as S(E) the space of ¢,(x) for all €M, (E), which is linear since
a2 lle = 21 llw + || 222]ls (see H. Cartan [3]). Then, we can define the operators
4 and ¢ as follows;

(4-12) df =p(for f=du () and ¢(n) =y (1),

for which 4¢ () =p.

§5. Spectrum, mean value and capacity.
5. 1. We now observe some important values related to the generalized Laplacian.

A
Let II, be a certain directed family of measures 7% € M(E), x € E, such that
1, if t=1x%,
.1 li Y () = .
G-1 lm S @) {olftséx.
Then we call the value

(5-2) o(f, 0 = lim [(f=fo) drt, f €L (E)

the spectrum (or more precisely point-spectrum) of f in x. In virtue of (2:2),
when every ¢(z%) is integrable with pespect to 4(f), we have

5-3) o(f, ) = lim [bGrhdA(P).

Thus, if 4(f) has a continuous density in a neighborhood of x, (5:2) yields that
o(f,x)=0; and so ¢(¢(¢), x) =0 for all x€ E if ¢ € K(E), where E is a topologi-
cal group.

In the Examples in §4, where E is assumed to be #z-dimensional Euclidean
space for 1 =% < + oo, one may meet with two distinguished cases; let 3,
(k=1, 2,---) be spheres (closed intervals for »=1) with common center x, and
A, the series of measures A4=dxs, ,, restrictions of dx in X, ;.

A) In the first case (Example 1, 2)*), x shall be always fixed upon the original
point ¢ of E and the radius of 3, =23, will tend to +o0 as £—— +co. Since

A
() (o) =de for any € M(E), it holds that op = (%) () = f o dx = total mass

of 2, for the Lebesgue measure dx in usually topologized E. Thus, one may put

(5:4) mh= p (e ) e
x —x o ok ’
which statisfies the condition (5-1). Indeed, we see
; b -1 _Lfit<x~y) P Ljit(x—) S S
’}ggd)(m) (» ’}LIE) o )€ drk 252 o )¢ Pdx, which is = 1 if x=y,

otherwise = 0.

*) In this case, fp = 0, so that o(f, x) = lim | fdrk,
k00,
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If Eis one-dimensional, for a suitable non-decreasing bounded function V(x)*
defined on (—co, o), fEL'(E) is represented as f(x) =j:>e"”d V(¢), cf. (4+5),
and by plain calculation it is seen that .

o(f,0) = limg [* f(Dedt=V(t+0) = V(E-0) .

The spectrum in e, o(f)=0(f, e), is called the mean value of f, which is linear
with respect to f,o(af+g)=ad(f)+o(g), and o(f) =0 for f =0. This plays
an important role especially in Example 2, on account of its invariability for trans-
lations, that is, as is easily seen it holds

a(f)=0(fo) for fi(x)=f(x—s),

whatever s€ E may be. Such is a proper situation to Example 2.

B) In the second case (Example 3, 4), we can take as the sequence of measures
%
En
where the radius of X, , will tend to 0 as £ —— + oo, contrarily to the former case.

G-’ Ty =

>

Putting now p, = Jz dx = total mass of X, ., the value p,(f, %) ;
Xy k
. -1 k
55 pu(f, ) = [ rai

is called the mean value of f in 5,,. We remark; in the first case, it happens
that ¢, = p; for all &, but in the latter o;s% p;.

5. 2. In the case where the assumptions (R. 1)~ (R. 3) are held and the kernel
function of ¢ is a function only of distance we have that ¢(x)nk is in ¥ (E)
for every constant 2> 0 and moreover it is equal to ¢(4.(k)) for a suitable
2, (k) eEMT(E). Denote by 03,(k) the set of such € E that ¢4, (&) &) = &k, we
see by the metric condition for the kernel function of ¢ that 923,(k) must be a
surface of sphere with the center x and A,(k) is distributed on §3,(k), since
¢ (A.(R)) is harmonic outside of 9§23, (k).

We call such 4,(k) the spherical mean of &, on §23,.(k); conversely, for any
sphere 3, with center x, we have the spherical mean of &, on 93,. To see this,
we only put k= ¢(&,) (¢) for t€93,; we shall write As,= 4, (¢ (&) (D) for £€03,.

For every f€&(D) and sphere X,CD, the value

56 1) = [ Fdzs,

is call spherical mean of f on X,. Since ¢(As,) =P (x) nk = d(x) for k=P ) (1),
t€3,, we have ¢ (0) —4z:(d() = jsb(wd(«‘?x—lz,,) = j (@) —P(43,))dv =0
(or = 0 if the support of v is contained in E— J3,) for any »€M"(E), so that

(E) P =43, for 3, =D (since f(x)=12s,(f) forall f€ H(3,) ; about the notations
H(), ()P, etc. see §5. Thus, we state

» V@ = [ 44
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ProrosiTioN 7. For f €& (D) (or €H(D)) and any X,CD,
G-7) £ 2 23,(F) (or resp. = Az, ().

5. 3. Hereafter, let E be always #n-dimensional Euclidean space and put @,(x, ¥)
=7"1(x,¥); 47Dy (x, ¥) is obviously the kernel function of 3-dimensional newtonian
potential. For a suitable function 7 (¢) defined for 0 < ¢ <+oo (or —oo < ¢ <+00),
which is monotone increasing, continuous there, providing that tllg 7(t) = +o0
and ltgloa 7(t)=0 (or resp.tl)izrgon(t)=0), if we can put
(5-8) Do(x,y) = 7(0(x,y)) for every x,y€E,
then the kernel function @(x, ¥) of a cartain potential operator ¢ is said to be of
type . n(t) is usually convex or concave, since so is @ itself.

The exact forms of such 7(#) for some concrete examples shall be enumerated
as follows:
i) If n=3 and ¢ is newtonian, #(f) = 47+¢.

1
i) If »>3 and ¢ is newtonian, 7(¢) =C,t"2,

where
1 oms2/(m—2)! _
c 1 S =P /“—47z , for n=2m,
"=/ N, 1 om-2 /135 om—3
i 2 = 1/ 2m+1(nm ) for n=2m-+1.

iii) M n =2 and ¢ is logarithmic type, % (&) =exp (/27
iv) If » =2 and ¢ is of order « in the sense of M. Riesz, 0 < a < #,

(D) = VG

We shall hereafter restrict ourselves to such # that its inverse function 77(-)
would exist; 7' is also continuous, monotone increasing and satisfies that ;llglo
771(¢) = +oo. We define the n-norm of f €L (E) as follows;
59 I fll, = sup 7(f (%)
for f €8 (E), where 7 is adopted in accordance with the considering potential ¢.
On the other hand, (f). means ?lelg f(x); (f)ew may be negative, nevertheless
Il £1I, is always positive, i.e.

D lfill,=0,
and morever

i) 72((Ne) =1 flly,

i) if f=0, then (Ne =1 fllw (=xsél§ [ f ) =0.

5. 4. In view of the relation mentioned in 2. 3 (2-2), we can extend the defini-
tion of the local laplacian 4, for a general open set or compact X in E in such
a fashion that
(5-10) Ax(f) = mx(4(f)) (= U x),

where 7x(x) means the restriction of « in X. For a countable union or intersection
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of compact or open sets X;, we can define also the local laplacian 4yx;, 4dnx;, in
repeating the followin two transpositions ;

(5-11) dx.nx,(f) =dx,(Pdx,(f)) =dx,(Pdx,(f))
and
51D dx,0x, () =dx,(f)+dx,(f) —dx,~x,(f).

Matter of course, f €& (D) brings 4x(f) € M+ (D) for any such X that is a
countable combination, by taking intersection and union, of compact or open sets
X;cD.

Now we shall define the norm of operator ||| 4x ||l as as follows: let an open
or compact set XCE be given, then we define

(5:12) I dx i = sup_ | dx (1,
for f€8Y(E) such that f=¢4f, where || 2| means the norm of measure x (in
the present case, || 2 || =fdu since f €L (E) implies 4x(f) €M (E)). Thus de-

fined norm ||| 4x ||l satisfies the following condions;

D l4x =0,

i) if XCY, then || 4x|ll =Il4v]ll,

i) Nl dxoy Il = [ dx [l + Il 4 Il

Proof. i) and ii) are trivial. To see iii), it is sufficient to prove for the case
where X and Y are mutually disjointed on account of ii) ; indeed, we see

Il dxur ll = sup | dxor (D1l = sup (1 4x(H 11+ 1 4eH D) = sup_ |l dx(P |
+(§;1WD§JI Ay (@ 1=l dx Il + Il ¢ IIl -

Next, let @ (x, y) be of 5-type for such a 7 that M=max((f)e, || fII,) 70 as
far as 4(f) 0. Then we have an important inequality :

PRrROPOSITION 8. for every f €LV (E) with f=¢d4(f), it holds
(5-13) Hdx () Il = M-Il 4x II] .

Proof. Put fo=f/M (assuming 4f 50), then (f)eo = (/M =1 and by
definition ||| dx || = || 4y (fo) || = || 4x(f) ||/ M, from which follows (5-13). If 4f=0,
then the assertion is trivial.

We shall remark that, in the quoted examples in 5. 3, we find each # satisfies
the above condition, so that (5-13) is valid in these examples.

. 5. We shall now define the capacity by using the 7-norm : as well known, there
have been several ways to define the capacity, for instance, that of N. Wiener, de La
Vallée Poussin, O. Fastman [7], or H. Cartan [4], etc., and unfortunately they are
not necessarily conciliatory each other. Our present methode of definition is akin
to that of O. Frostman, but includes any other ones mentioned above.

For a compact or open XCE, we define the capacity ¢(X) as follows; for
fELN(E) with f=bdx(f) and || 4x(f) || =1,

(6149 c(X) = K, sup (| £, K, =71(D).
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For a general set XCE, we define further the inner capacity ¢/(X) of X by
sup(c(F)) for all compact F such that FCX. In a dual fashion, we define the
outer capacity ¢*(X) of X by inf(c(U)) for all open U such that XCU. There-
fore, if X is compact, ¢(X) =¢'(X) and if X is open, c¢(X) = ¢*(X).

As immediate consequences of definition, we have:

cy) c(X) =0, and ¢! (X), c*(X) = 0.

co) If XCV, then ¢(X) =¢c(Y) (X, Y being compact or open) and ¢'(X)
=c(Y), ¢*(X) =c¢(Y),

Cs) (X)) =c(xX) for every X.
Moreover, we have an important inequality ;
Cs) 7 (EK,c(XD™ = (Neo/I4x (O 1.

From this, we get a characteristic property of capacity zero, which plays an im-
portant role in the later discussions. That is:

ProrosITION 9. If ¢*(X) is zevo, then there exists no measure u having the
support in X and whose potential ¢ () is finite.

Proof. Let F be a compact set contained in X and suppose that 7zz(x) 5=0;
then 0 =c¢(F) =c¢(X) =0 and hence by c¢) +oo =710 = (d(W)o/ll 21l <
+ o0, which is absured.

We shall next extend the notion of “f-capacity” defined in 2. 6. for a general
open or compact XCFE as follows; putting [ f, glx = Jx(fddg—gd.df) for f, g€
LH(E) and
(2-6)" [F1x=L1, Fle= | asf,
we call 7([ f1x)/K, the “f-(n-) capacity of X.” Then we assert:

cs) Let X be compact and 7 is separating type (see 5. 6.); if there exists
such fo € L7 (E) with fo=¢dx(fo) that fo=1 on X except a set of capacity 0, then
(5-16) e = g1 foJ.

In fact, suppose now there were such f €& (E) that f=¢dx(f), [[4x(Hll=1
and (foo) <1/v, v=[folx=1l4x(fo)ll, then we have 1= ffoddx(f) = deAX(fo)
<% JdAX( fo)=1 (refer to Prop. 10 above), which is absurd; so that, it must be
[If1[;*=2()/K2 for every feR"(E) with ||[4dx(f)||=1 and f=¢dx(f), from
which (5+16). Such f, is called “equilibrum potential of X.” In regard to 2. 6.,
for Newtnian 7 in E=R3 we have c(X)=N3[f0]X=N3[f0]G=—4EJJSG%_J;’CZS
(Wiener’s definition) for a regular domain GDX.

5. 6. 'We shall proceed to study about the capacity and consider the relation between
the norm of 4x and the capacity. Therefore, we should restrict ourselves to the
to the case where @(x, y) is of 7-type. For the present discussion, it is convenient
to name two distinguished type of #; the first is separating itype, that is 7(fs)
= I%ﬂ?]( t)n(s) for every t, s = 0. Such is the one appeared in the example i), ii), or
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iii) in 5. 3, while in the example iv) there, # has the following property; 7 (#+s)
= n(t)n(s). This type is called character type.
THEOREM 9. If 7 is of separating type, then it holds

(5+15) c(X) ~—77 Clll dx 111

Proof. 1) We see at first that, if # is separating type, then every f € L7 (E)
with f=¢4(f) is non-negative. In fact, @(x,y) = 77 (@(x, y)) is always non-
negative whatever x, y may be, hence so is ¢4(f) = j(D(x, yd4(f) as far as
fe(E).

By this reason, the condition f=¢4x(f) in the definition of the capacity may
be weakened as follows;

(5-12)' c(X) —K sup Hfl , for f=¢pd(f) €XT(E).

iax (A1

2) Let || 4dx(f) ]| =1 and (f)eo»k>0 then putting fo= f/k, we see fo= d4(fp)
€L (E) and (fo)w=1, so that || 4x||={4x(fo) | =ldx (HII/k=1/(f)e . Varying f
under the restriction || dx(f) || =1 and f = ¢4x(f), we have

"2
2l a1 = sup o h-) = swp A = K3 sup |l = K, ¢,

3) Conversely, let (flew =1, f= ¢4(f) and || 4x(f) || = m > 0, then putting

fo=f/m, we see that fo= p4(fo), (fo)<>° 1/m and || 4x (fo) ||=1, so that by definition

c(X) =K, 1 foll7' = Ky/1(Heo) = 7{7 7(m). Varying f = ¢4(f) under the the

condition (f)e=1, we have ¢(X) = sup (|| 4x (/) ) =57l dx]l}). Combining
“ i
this with 2), we conclude (5-13). Thus, the proof is completed.
CoRrROLLARY 1. If 71 is of separating type, we have
(5+17) 77 Ky o XD)= 30 MK, e(XD).
By (5+15) and iii) in 5. 4, this is evident.
Partictlarly, when E isn-dimentional (#=3) and @ is newtonian or otherwise
of order a« for n—1= a > 0, then it holds
(5-17)" (XD = Fie(X)).
Indeed, let 2=n—2 and N=1/»-21/N, in the first cace, or let k=#n—a and
N=1/n=/F,(a) in the second case (see §4), then we have =1 and by the

above Corollary Nk(N c(z_. X))k = Z k (N ¢(K;))*, from which it comes by using

Minkowski’s inequality that ¢ (ZX D = (}_,C(X DR < éc(Xi)'

COROLLARY 2. n(I\AX(f)H) HfH,, c(X) (precision of (5-13)).

This is an immediate consequence of c,).

In newtoniain or a-order potential case, independing upon the assigned density
to @, the definition of capacity here is just equivalent to that of de La Vallée Poussin
or of Frostman as is easily seen. For example, if E is 3-dinemsional, one has
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c(X) = Il 4x Il .

5. 7. Let us now consider about 7 of chracter type. Since 7 is continuous, 7 should
be in the from 7 (¢) = €%’ for a certain constant K. Here, we shall restrict our-
selves to a positive K(e. g, in the example iii) 5. 3, we have K = 1/27), and
suppose further that there exists a f€ ¥ (E) with f= ¢pdx(f), such that ¢(X)
=K, |l fll;* and || 4x(f) Il = 1 (such is the equilibrum potention of X, if its existenc
were proved). Then, it is possible to write ¢(X) = K,e ¥V, where V = (f)c.

If V=1, then1=|4x(f) | =]l4x]l, so that KV =K<= K|||4x || and hence
c(X) = K, e ¥V = K, e X liaxll,

If V=1, then fo=f/VEL(E), fo=¢4(f,) and (fo)ew =1, so that 1/V
=[[dx(OI/V =1 dx(f) I =l dx [|.  Therefore, c¢(X) = K,e XV = K, e ¥/Maxl,
Summarizing these, we assert:

TueoreM 10. If 7 is of character type and X admits such a measure p that
c(X) = [[¢(w II;%, then

a)  c(X) = Ky/nClll 4% lll), when ¢(X) =1,

<y, c(X) = Kq/n(lll dx I, when ¢(X) = 1.

§6. General construction of balayage.

6. 1. Let E be a general locally compact space. Throughout this paragraph and
the next, we shall denote by letters F, 9F, intF and extF, a compact set in E,
its boundary, interior and exterior respectively. Further, C(+) denotes a Banach
space (simultaneously, Banach algebra with respect to the usual product and the
usual norm) of all continuous functions defined in (+).

Now we shall constitute a normed linear space H(D), D = intF of a given
compact F, which is generated of all such bounded f€L'(E) that 4(f)eM
(E-D), with respect to the norm;

6-1) 1 fllo=supl|f(x)| (=sup|f(x) | for a certain I' C F).

xeD xel

Remark: Matter of course, since such f is bounded in D, so that we might
as well consider H(D) as to be constituted of the collection &, of all such functions
FER(E)N B(D) that A(f) €M(E—D); then denoting by %, the linear subspace
of ¥ consisting of all such f that || fllp =0, we have H(D) = &,/%p. So far as
there occurs no confusion, we shall use the same letter f for an element of H(D)
as well for the corresponding function of p.

We shall assume that :

*) Some subspace By,(E) of B(E), the space of all bounded potentials in E, is
dense in C(F) on every FC E.

Next, My(D) denotes a convex set of all such €M (D) =M (F) that || »]|
=Jd/z=1. Then, every u€Mo(D) defines a linear continuous functional 2" on the
linear normed space H(D) in the following manner :
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(6-2) #NE) = ffdﬂ-

The collection, M) (D), of such #N forms a weakly relatively compact convex
set in the dual space (H(D))* of H(D), with respect to the weak topology as
funtionals, which shall be called w*-topology hereafter ; that is,

ProposrTion 10. 4N (D) is w*-compact convex in (H(D))* =My (D) vaguely.

The convexity is obvious, since so is My(D). Thus we need only to prove that

ND) is w*-compact in (H(D))*, and it is achieved in the following manner.

In fact, we see at first that MMy,(D) is vaguely compact in M(E), since the set
of such £€M(E) that || x| =1 is relatively compact (see N. Bourbaki [1]) and
Mo (D) is closed for the vague topology. On the other hand, H(D) is considered
as a linear subspace of B(D)=B(D)/Np; My(D) is contained in the unit sphere
2 of (B(D))*, whose w*-topology is stronger than that of (C(F))*=M(F); & is
w*-compact in (B(D))*, so that M,(D) is w*-compact, too. Since the application
n#—> p\, defined by (6-2), from the dual space of B(D) into (H(D))* is con-
tinuous, so that MM (D) is also compact and =My(D) vaguely in (H(D))*, which
completes the proof of Proposition.

. 2. Our chief tool to construct the balayage is the noted theorem of M. Krein-
D. Milman [10] on extreme points of regular convex set; see also N. Bourbaki [2].
By that theorem, we can state:

TrEOREM 11. MG (D) =P (D) possesses the extreme points, whose closed convex-
ly linear envelope coincides with Mg (D) itself ; in other words, denoting the set of all
extreme points of Mg (D) by Ext. WMy (D), for any p~ €My (D), f€ HD) and & > 0,
theve exist a finite number of p; € Ext. Mg (D) such that
6+3) |~ () =X e.nr ()| < & where Ya;=1, a; > 0.7

Throughout the following discussions, we shall set a natural assumption that:
for any two points x; and x,, xy %= x, of F, there exists at least one point z€ E—F
such that
6-4) P (&) #= b (a2 (2). )

This assumption is valid in all the Examples quoted in §4: for instance, in
Example 1, 2, it is clear since ¢(x) =e'**, and in Example 3, 4, we owe it to the
fact that ¢(x) is defined by metric condition.

Then under this assumption we have

TaeOREM 12. If p/N€ Ext. M5 (D), 1 is a point-measure of total mass +1, &,
placed in a certain point x€D = F.

Proof. Suppose now the support K, of ¢ contains at least two points x; and
X2, X1 F= %5, and take neighborhoods U(x;) of x; (¢=1, 2) such that U(xy) ~ U(xp)
is empty. Denote further the restrictions of # in U(xy, U(xe) and K, — (U(xy) ~
Uxy)) by 4, #e and py respectively. Setting uf = w/a; for a; = || 4| =0 (G =1,

%) Since My (D) C M () (in (H(D))*), we can take x; € M (") as such 27 ; in fact,
MMA(T) is also regularly convex and any x4~ € 5 (D) cannot be separated from 253-20" .
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2 and 3), but if u3 = 0, #¥ should be set = 0, we have (4HAN€MP(D) and
3 3
(6-5) o= ,Zla,-/x;", 2iai=1
i= i=
If it has been proved that (HA£ ()N, we have #f = (ay/(A—ay))uf
+ (ato/ (1 —a3)) pEN is an inner point of the segment combining A with A, so that
uN = (1—ay) pENFazuF could not be extreme. Thus, we need only to prove (z)A

£ ()N ; indeed, by assumption there sxists a point y outside of F such that

P (%) = Pd(xp) (¥) &= P(y) (x2). Since $(y) is continous in D, we can take
such neighborhoods V(xy) and V(x,) of x; and x, respectively that sup|$(y) (x1)
—¢(9) (xp) | > & for a given sufficiently small &(e.g. <3| P () () —d(y) (x2) |),
where x;€ V(x;) for i=1, 2.

If we have adopted U(x;) as these V(x,) (G =1, 2) from the first, we have

certainly that J' d)o(y)dui"séj%(y)du;‘ for the restricted ¢, (y) of ¢(y) in F (Po(y)

is clearly considered as in H(D)), whence it follows #f"s& uf/\ as desired. This
completes the proof of Theorem 12.

. 3. The set of such x that & belongs to ExtI; (D) is denoted by T, then
TocT and T is compact. Therefore, M,(I) is vaguely compact.

For a given #€Mo(D), the collection of measures gy ey = St € Mo(D)
which satisfy (6:3) constitutes a base of filter ¥, in Mo(I) and an ultrafilter
(maximal filter) §% containing &, converges to a measure zp in Me(I). Such sz
has the following fundamental properties;

By LA =uN(f) for every f€ H(D), or equivalently

(6+6) de,a=ffdur for every f € &p,

By $(w)=¢(zp) outside of F.
By (apm+Budr=ap +Bue, for p, #,€Me(D), a+F=1, if these are uniquely
determined.
In fact, By is a direct consequence of the definition; by the same reasoning as
in the latter half of proof of Theorem 12, for any y € E—F, we have ¢q(y) € H(D)
and ¢ () () =f¢>o(8y)du = f $o(€)dpr = ¢(pr) (y). Finally, Bs) comes from the
following inequality ; for every & >0, if |20 (f) =2 N(H) | < & and |4 ()
=22 BiN(f) | < ¢, then
| (@t BN () ~La (e (1)) +8 3 BN ()]
sal|pf(f)~ };a;u%A(f) |+ Blu(f) — ;ﬁjuﬁ/\(f) 1
< (@+P)E=¢,
where a> a; + B2 f; =a+pF=1
4 J
. 4. Now, we define for any positive number « and for u € M,(D) with unique zp
6.7 (@) = ayp, and (—pp = —p4r;
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then these are well defined and satisfy the above conditions By) ~B;) as is easily

verified. Moreover if @, 8> 0, then (au+Br)r= (@+/) (ﬁ/@ s afﬁ u)

— (@+p) (aiﬂﬁﬁ af_ﬁ v )by B) = apt B for s v €MD), whence it
follows the linearity of the operation () for measures with unique .

We call such a measure g of M(T) which satisfies the conditions B;~By)
for a given n€M(F) a balayaged mearure of p related to T'.

Of course, a balayaged measure is not necessarily uniquely determined since
it depends upon the selection of ultrafilter §% which contains &,. However, we
have especially :

PropositioN 11. If x€T,, (&.)r is unique and coincides with &, itself, i.e.
(&:)r = &,

In fact, suppose now &, (§,)r and put sz = 3(&,+ (&), then gN = 3(&D
F(EXD) = ()P =8D€ Ext. M5 (D), since (&) =& by By). But we see, this con-
tradicts with Theorem 12 because N is not a point measure by hypothesis, from
which it follows the Proposition.

This property characterizes the set Iy (whose point shall be called regular) ;
the further characteristic properties of I'y will be mentioned later.

ProPOSITION 12. ¢(u)=¢(ur) on 0D excepting a set of capacity zero, and

Jan = [dn.

In fact, suppose now ¢(x) > (up) in SCHD with ¢(S)>0, then we can find
a compact KCS on which a measure v with ¢(v) € H(D) is placed. For such w,

we have J'QS (w)du= fcj) (wdv >Jq5(up) dv =j d(w)dpy, which is absurd; thus

¢(S)=0. By the same fashion, the set C8D in which ¢ (up) >¢(») is of capacity
0. About the last, refer to Theorem 7.

6. 5. We now consider the most important and interesting case, that is, real
case where always TI'C§F and the assumptions (R.1)~(R.3), (3.1) in § 3
(consequently the maximum principle ; Theorem 6) are held.

Owing to Prop. 7, if (R. 1)~ (R. 3) are held and if @ is a function only of

metric, then the condition T'yC 8D is fulfiled since 84‘=%(84‘+/1§x) and 4;_is not
a point measure.
ProposiTioN 13 If ¢ (w) is bounded, so is ¢ (uy) and moreover ¢ (1) = (up)
everywhere. Such pyn is uniquely determined.
Let x€6D, then we have for y€ E—D
P () (x) = lylfi b (y) = 17il_1)1x<i>(up) () =P ) (),

Owing to Proy. 12, such up is not distributed in any set on which ¢ ()
# ¢ (ur), that is, ¢(u) = p(up) on a certain kernel of gy, so that ¢(u) =¢(up) in
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E®, Next, let #} be another balayaged measure of #, then we can consider s, or
up being a balayaged measure of up or resp. of up, so that ¢ (up) = ¢(up) and
hence s = A (up) = AP (W) = uf, which proves Prop. 13.

A
For every v € M(E) with bounded ¢ (»), naturally ¢ (v5) being bounded, put
now

ve=(wp),+v5-5,
then such v, satisfies also the conditions By)~B;) and Prop. 12~13. For every
o € M (D), put further

L@@ = [$@odu for all $() € BE).

Then, in virtue of the assumption *), such linear bounded functional L, (in
fact, | L) | = | [$dn| = | [$Godm | =160 llw [ 1av]) defines a po-
sitive measure ) which satisfies
©-8) Jewam - [ odn.

On the other hand, for every ¢ () =0 there exists a sequence of ¢(u;) €
B(E) such that ¢(u;) /7 (). Then, for any ¢ () € B(E)

[ ot = [ Grddpe= [ ) dh =tim [ ¢ Ay

= lim ng(l)d(ﬂj)%, that is (x;)%—> 4% vaguely; so that, for » € M+ (D),
[® 0t = tim [ $@d () ~lim [d(updit = [$ G dih,

that is, J‘¢ () dpd §J¢ (w)dv}. Replacing 2 and », we have qu (ﬂ)du%§j¢ W .
Comming these, we conclude:
(68’ [onds = [ for mveMe(D)

THEOREM 13. 2 is a balayaged measure of 1€ Mo(D), and if ¢ (v) is bound-
ed, pp=p3.

As an immediate consequence of Prop. 12 and Theorem 13, we have a further
characterization of I'y as follows:

ProprosiTION 14, For any x €T, it holds (£,)2=E&,, and hence
6.9 () = () on T,
whatever 1€ No(D).

It is possible of course to define xf for a general positive x# or a compound
#=w;—ps placed on F= D, in accordance with extended y defined by (6+7), for

%) Since J(j)(/z) dﬂ%zjqﬁ(pc%) dul, we have
(6-8)” p(u)=p(#)) in certain kernel of 23 ;

we call here such X that j |dv| = 0 a kernel of v.
E-X
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which we state:

ProposiTioN 15. The application p—>p) brings on a homomorphism of
M(F) into M(OF). Moreover M(Ty) is invariant for this application ; that is,
(6+10) pn=pu for every peMT,y).

The latter half of the proposition comes from the fact that ¢ (x) (x) =ng (&)dp

=f¢((8x>%)dﬂ (by.- (6:9)) =j¢(ﬂ)d(3x)?~ =J¢<ﬂ%)d‘9x (by (6-8)") =P (pd) (x) for
any x€F; in E—F, $(n)=¢(u) is evident, so that this equality holds everywhere
in E. Thus, we obtain =4} () = 4P (1) =2, which concludes the proof.

We call thus obtained % properly balayaged measure of n on 9F, while up a
general balayaged measure of it: hereafter, if we call merely balayaged measure
of u with no indefinite article, we shall always mean #%, and the operation x—>
1% is called the balayage.

We now want to characterize the balayaged measure £ : this is actually answer-
ed as follows;

TuEOREM 14. . The balayaged measure 1% of p€M* (D) satisfies the following
two conditions,

o) () = b8 on (E—D)wTy, and on 0D except a set of capacity 0.

2 d(w) = b () everywhere in E.

Conversely, 1 is characterized as a measure of W' (D), whose potential ¢ (1) is
the minimum among all of ¢ () for such v as fulfil the condition a) above.

Proof. We have only to prove the latter half, but it is obtained by a very

simple course; $(4) (¥) = [$(Edt=[$(e)tds (by (6:8)) = [$(E v (by @)
= J(i) (&)dv = () (x), for x€ D, and soin E and g itself satisfies the condition a).

In the case where T'yCaD, we call every point of Ty (or of §D—Ty) a regular
(resp. irregular) boundary-point of D.

In passing, we shall show, in the case where @ is of %-type, a short criterion
of sufficiency in order that a boundary-point be regular.

PROPOSITION 17. If we can draw outside of D an osculation sphere S to 9D
at a point x, then x is a regular boundary-point of D.

In fact, let x, be the center of > and take an inner point z on the segment
combing x and x,; suppose now &Q=apN+pBvN, pstv and a, 8>0 with a+8 =1,
then we have 2N($(E.)), vN(P(ED) <7 (r™'(x, 2)) =2 ((€)) =d (&) (x), which
is absurd. Thus, the Proposition is established.

6. 6. According to H. Cartan [5], we shall define the balayage of functions of
€ (E). Let G and F=G be taken as they were (in the preceding section). For
a general f€ 8 (E) with f= ¢(dpf)+ fo, o€ D(D), GCD, put
(6-11) fR=(pfIV + fo;
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then we see immediately that fi? is harmonic in G and satisfies

i) f=/f>® everywhere in D,

i) =52 inL,YD-6G).

Moreover, let f, g€ 2"(D) and assume that fp and gp are continuous on G,
then we have
6-13) [ racngt ~ [ goacans).

6. 7. Next, we shall deal with the general case where F is closed but non com-
pact: instead of My(D) for D=intF, we now take M, (D) of measures p €M+ (F)
with norms less than 1, || #|| =1, and define M{N(D) as a convex set in (H(D))*,
the dual of H(D) whose definition shall be leaved as it was in 6. 1, consisting of
linear functionals #A defined by (6-2) for all #€ (D). Since M(E) is a Montel
space, Nt (D) is vaguely compact and, by the same reason as in 6. 1. M7 (D)
is also compact (and naturally convex) in (H(D))* with respect to the w*-
topology in it, so the theorem of Krein-Milman is again applicable to M; (D) and

(6-12)

Theorem 11 remains valid.

Under the assumption (6-2) in 6. 2, which is guaranteed e. g. in the newtonian
potential case, see S. Matsushita [14], pp. 125~126, we can settle

THEOREM 12%s.  The set of extreme points of M7 (D), C MPN(D) consists of
ER. & being a point measure of total mass +1 on x € D, and of the zero functional ON.

By the same fashion as in the proof of Theorem 12, we see that, if x50 is

not a point measure, then £\ cannot be extreme ; next assume || z|| <1, > 0, then
N=apf+1—a) 0N, for a= || x|l and u=p/a, which shows #” not being extreme.
Thus, Theorem 12° is proved.

Define T, as the set of such x€ F that &€ Ext. M5 (D), then My(T) is also
vaguely compact, and analogically as in 6. 2, we can define x4 which satisfies
B,)~By) and, in the case where I'"C9D, define also #% for every x#€My(D) and
hence €M+ (D).

For such #2, (6+8), Theorem 13, Prop. 14, 15 and Theorem 14 remain valid.

6. 8. Let now D be an open set with the boundary 9D. Take a series of closed
sets F, such that i) F,CD, ii) D—F,.sCD—F,, and iii) 8D = N.(D—F,). For
a general u€ Q/I}F (D), denote by u, the restriction of ¢ in F, and by 4 the balaya-
ged measure of u, in §F, for each n(n=1, 2, ---) ; then we see that u, converges
vaguely to x and there exists a sub-sequence {z2;} of {u9} such that 43, converges
to a measure 29 defined in 9D, with respect to the vague-topology in M (E)
since MF (D) is vague-compact. Such x@ is called the balayaged measure of
2 €W+ (D) in 8D.

ProrosiTiON 17. ¢ () = P (ud) everywhere in E for p € M (D).
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In fact ¢(w) () = lm ¢ () (0) 2 lim ¢ (1) () = b () ().

A
ProposiTION 18. For any p, v€MY (D), we have
6-16) [pCman = [dGrdss.

A
Proof. At first, let #be in M*(F,) for a certain 7, then we see u,=pu
for n = ny and ¢ () is contained in B(E). We have

[#Gndvt=tim [¢ @9 dn = tim [$C)dw; = [$GIdue,
J
whence for general p=lim u; it comes JqS(/z) dv? = lim f ¢ (v dy; = lim

ng(y) du = Jqﬁ (»)dpd and, replacing 2 and » one another, J'¢(M)dv%= j(;b »dud.

Thus, Proposition 18 is completely proved. By definition, the following is claimed ;
ProrositionN 19. If v€MT(0D) has a bounded potential, then we have for any
neM(D),

(6:17) [$Gdv = [ptrar.

‘THEOREM 15. 20 satisfies the following conditions :
a) d(w) =P everywhere in E,
B b)) = () in E—D and, excepting a set of capacity zero, on 9D,

0 fgb(ﬂ)dyfg - qu(u)du% for any »EM (D).

§7. Application to Dirichlet Problem

7. 1. In this paragraph, we shall concern ourselves with some applications of the
foregoing discussions, especially with Dirichlet problem. For this sake, we shall
be content with the following restricted conditions, all of which are however ful-
filed in the case of newtonian potentials in E=R" for n = 3, as noted later; let
D = int D be a considered domain, then
19 T is included in the boundary 8D, which is always assumed compact.

29) D is approximated from within by a sequence of D, such that 8D, consists of
the regular boundary-points of D, and D, = int D,.
39 9D-T, is of inner capacity zero, 7. e. ¢/(§D—T,) = 0. Moreover, the assump-
tions (R. 1)~ (R. 3) are always assumed.
Remark: Condition 2% is satisfied when the kernel function @ is of 7-type for
a certain # quoted in 5. 3, in the following manner ; take spherse S,(x) of radius
p and center x for every x€9D — T, and put D, =D — US,,(x) for p,=1/2*
If D, is not empty, 9D, satisfies 2°) owing to Prop. 16, and we have clearly
D,—> D.

In the case of newtonian potential in £= R"(n = 3), H. Cartan [5] has proved
that there exists a positive measure « such that ¢(a) is continuous in E and
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A
JqS(,al)da =J¢(/12)da implies that gy=u, for uy, uo € M*(E). Using such a, we

can prove some important facts; at first, every point x €I, is characterized as
such a point that ap(x)=(ap)%(x) for the restriction ap of « on D. In fact, if

the above equality is held, then we have jqﬁ(x)daﬁ = f ¢ (x)dap® = jd)((ex)%)daa

and hence ng(x)da =f¢((8x)8)da, so that &,=¢,2. The inverse is trivial.

Owing to this fact, 3%) is shortly verfied : that is, for every »€M* (D) such
that ¢ (») is bounded, it holds

[$@pdv=[¢@ndn=[$(@pDdn,

hence the set of x€ 6D for which ¢(ap) (1) > ¢ ((ap)?) (®) is of inner capacity
zero, then so is 9D—T.

-2, We start with the following Lemma.

LEMMmA. Let D=int D, 9D=T\, then the collection HO(D) of all the restricted
f9 of fEH(D) ~C(0D) on 8D is dense in the Banach space C(0D) of all con-
tinuous functions in 6D.

Proof. Suppose it were not so, then there must be a continuous linear functional
&(+) =0 such that £(f) =0 for every f€ H°(D) ; on the other hand, such ¢ defines
a measur xg on @D, generally in a composed type s;=pt—uz for ,u‘é eM* (D)

(i=1,2). By hypothesis, we have j fdi = lim j frdpt = lim j fds = j fdu for
J J

every f€ H(D), and f; 7 f, f; € B(E) n C(E) for which f; = (f;)% on 8D, so that

/% is considered as a balayaged measure of xf, but as 9D=TI% it must be p}=uf by

Prop.. 15. Consequently, #;=0 and this contradicts with the assumption, which
guarantees the Lemma.

If $(D) is complete for the uniform convergence in D, we get easily the
solution of Dirichlet problem for such D that §D=TI", as follows; for every f€C
(0D) there exists a sequence of f}€ H°(D) such that f$—— f uniformly on §D.
Then, we have

£1G) = [ £yt —> [ face?
uniformly for all x€ D, since Jdex=1. Putting f (x) =f fd(e)® for x€ D, such f

belongs to $(D)*. Since f;(x) converges uniformly to f(x) on D, f(x) is also uni-
formly continuous on D, and f € I:I(D), the completion of H(D) ~ C(@D). On

the other hand, | f(x)| =||fllsp for every x €D, where || f ||sp means the norm
in C(@D). Summing up these, we establish :

ProrositioN 20. If H(D)is complete for the uniform convergence in D and

*) Such f; is continuos on D, see Prop. 22.
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o0D=T, then ﬁ(D) is isometrically isomorphic to C(@D) by the relation ;
@1 F@=[Fod@EdR, fFEHWD), fECOD).
More sharply we get :

PrROPOSITION 21. Under the same condion as above, C(0D) is isometrically
isomorphic to Ho (D)=L (END)NY(D) so that every f€ Hy(D) is uniquely repre-
sented in the form (7-1) for the restriction f® of f in 8D.

This Proposition offers the solution of Dirichlet problem for a domain D such
that §D=T" (Dirichlet problem in a classical type).

To prove Prop. 21, we need only to show that the correspondence between f

and f° is unique: let f€ H,(D) be given, then putting f(x)=jabf de.)P, we see

by Prop. 20 that f€ H(D) C H.,(D) (see 35, about f€ Lo (EN 5))*2)111(1 f—f vanishes
on 9D, hence f— }~’ € Lo(D)NH(D)=(0) by Prop. 4, that is, f=}’ in D, which com-
pletes the proof of Prop. 21.

7. 3. Let D be now a general domain which however satisfies the conditions 1°) ~
3°) above, and assume that (D) forms a Montel space with respect to the topo-
logy of compact convergence in D: In view of the discussion in 6. 9, for a given
x € D there exists a number j, for which x € D;, and we get a sequence of (607 (j=
Jo), balayaged measures of &, on 9D;, which converges vaguely to (&.)f. Let
fo be an arbitrary prolonged continuous function in E (with the compact support)
of f€C(0D) : Since 9D is assumed to be compect, the existence of such an fo is
quite doubtless.

Denote further for each j the restriction of fo on §D; by f;, then by (7-1) it
holds for j = 7,

fiw=[, fdexs= [ faess—>  fdedt,

i o
which is JGD fd(&)P. Set now
(7+2) F =fand<8x>{~’ for every x€D;

then f;(x) converges to f(x) as j—> o0 (j=jo) for x€D,,, On the other hand,
denoting the uniform norm of f, in E by || fo||, which could be =||f]|| (the norm
of fin C(@D)), we see clearly |f;(x) | = fol| for every x€ D, and all j=j,, so
that { f;} are uniformly boubded on Dj; ; as $(D;,) is a Montel space, {f;} from
a relativelry compact set in $(D;,) and hence there exists a sub-series of {f;}
which converges to a function of $(D;,) which must be equal to f for every x¢€

Dj, or equivalently f is harmonic in Dj,. Increasing j,(——>+o), we see that f

%) In fact, by Thr. 7, there exists a ¢(v) such that ¢(v)=||f|lap on §D, and P(v) —> 0

as x——rco,
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is harmonic in every Dj;, hence D, ie. f€ (D).
We can state then:
THEOREM 16. For every f€C(OD), 0D being compact, therve exists the unique

solution f of Dirichlet problem with vespect to D, such that
) fis harmonic in D and bounded in D,

i) lim f(x) =f(xo) for x€D and x€ I,
x> %,

iii) fe Lo (END) Gf D is compact, this iii) is unnecessary). Moreover, such

f and f are related by (7-2).
Proof. Tt remains us to prove only ii), iii) and the uniqueness of the solution

but ii) is an immediate consequence of the following Proposion (mentioned in a

general situation) and iii) is somewhat clear for the above obtained } ; thus, we
need only to prove the uniqueness. Now, suf)pose that we have from the first
adopted as {D;} the sequence of domains which were mentioned just in 7. 1. (that
is, D,=D—-US,;(x), x€9D—Toand p;i=1/27). Denote the restrictions of (&,)% on
6DN6D; by (3% and on 61_7,-—013 by (&.% for an arbitrary fixed x€D; a sub-
sequence of {(€,)%} converges vaguely to a measure », necessaily distributed on §D.
As (&) = lim H((ED2) = P (), ¢(v) is bounded on §D and hence in E, while
J

lim Sd(&x)§= gdv< +oo. If (»)sp-r, 70, these are contradictory with ¢/ (@D —T) =
J
0, hence it must be (»)3p-r,=0. &>0 being given, there is a number j such that, for
any 2€9(D) which is bounded on D and satisfies the conditions i)~iii) above,

(17 =h1dce3|< e and so

F@-hels[ frideas=[ | IF-hldEi<e

whence it concludes that }=h in D.

PRroPOSITION 22. In the case where T'oC 0D, for a point x, € I'y and every sequence
of points x; —> x,, we have
(7-3) ,llglo (&:)) 2= &., for the vague topology.

Proof. Since any sub-sequence of {(Exj)ﬂ} forms a relatively compact set in
M*(@D), we can choose a sub-sequence of it, say {(&,)P}, which converges
vaguely to a certain measure v on 9D. For every f€ B(E)NC(E), we see;

Fl) =72 Ceo) Slim f4.Co) = lim | fd(en)0= [ fdv=flx),

so that, v=(&;,)r=¢&;, since x,€ I';; thus, we can conclude that {(&,))2} itself con-
verges &, . This completes the proof.

7. 4. Now we shall restrict ourselves in the case where D is relatively compact;
the case where D is not so but 9§D is compact may be treated in an analogous
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manner.

If 9D+r",, the isomorphism in Prop. 20 or Prop. 21 must be in fault, because
if it were not so, then for any f€ C(pD) there would exist a sequence of g; € H(D)
~ C(D) which converges uniformly to f on 8D, so that

Flo) =lim g0 ~lim | gid(e o= | racest

for every %,€ @D, still for x € 9D—TY; on the other hand, the above equality yields
that &,,= (&,,) 2 since f is arbitrary in C(§D), which conducts us to an inconsistency.

Then, what relation would take the place of that?

Next will answer for it.

TueoreMm 17. If §D+Ly, then H°(D) forms a dense subspace of C°(I'y) with
respect to the topology of compact convergence in I'y. In ovder that this topology
would be replaced by the uniform topology in C°(I'y), it is necessary and sufficient
that Ty is closed, wheve CO(+) means the space of uniform continuous functions.

Proof. Let K be any compact set in I'y. If the restrictions fx of f€ H°(D) on
K does not form a dense subspace in C(K), there exists at least one linear con-
tinuous functional €(+)#0 on C(K) whicn satisfies ¢ (fx) = 0 for every f€ H'(D) ;
such ¢ defines a measure pg=pt—pf for € M"(K) (=1, 2). In an analog as
in the proof of Lemma, it follows easily that u#;=0, which is absurd. Thus, we
see that every f€C°(T,) is uniformly approximated by functions of H°(D) on
every K. Next, if T’y is not closed and if f€ C°(T"y) is uniformly approximated by
g€ HO (D) on Ty, hence on Ty (since f and g; are all uniformly continuous in I'y),
then for a point x,€ I';—TI, an inconsistency would occur similarily as just before
(since f(xo) = li§n 8i(xo)).

This completes the proof of Theorem 17.

Remark : This theorem will suggest something about the functional determi-
nation of the solution for Dirichlet problem, which has been pursued by M.
Keldych, M. Inoue [9], etc. We shall not go into details on that interesting sub-
ject here, but some further investigation about it may be appeared elsewhere in
the future.

. 5. Extension of Dirichlet problem: In the foregoing sections we have been
exclusively occupied in the case where the boundary functions are continuous. We
shall now investigate the boundary-value problem of the same type for some more
general boundary functions which may permit of the solutions.

We treat here only x#-dimensional Euclidean space E= R”(n = 3) and newtonian
potentials. Let D be a relatively compact domain in E, whose boundary 8D is
assumed as a measure space with respect to a certain measure s such that i) ¢’ (X)
=0 implies m(X) =0, and ii) every bounded potential is m-measurable on 9D.

TueoREM 18. For every essentially bounded wm-measurvable function g on 6D,
theve corresponds a harmonic function g in D such that; if x,€ Ty has a neigh-
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borhood U (xy) such that g is continuons in U(xe) NOD, then g(x)—> g(xy) as x€
D—>x,.

Prbof. Denote by M(®D) the Banach space of all m-measurable, essentially
bounded functions difined on 9§D, with respect to the norm (of essential maximum)
[l fllsr=ess. max. |f(x) |. The restricted f, of all f€ H(D) on @D forms a sub-

space B,(0D) of M(©D).

We shall prove first B,(§D) is dense in M(9D) ; suppose if it were not so, then
there exists a non-trivial functional in the conjugated space (M(6D))* of M(8D),
say &, which vanishes on By(8D). Such ¢ difines a Radon measure z¢ of bounded
variation in @D, which satisfies z¢(X)=0 for every X with m(X)=0, hence by
hypothesis with ¢/ (X) =0; since ¢ () =¢p(ud) excepting a set X with ¢/(X) =0 for
every # € M*(D), we have then S¢(“)dﬂs =Sq5(u{2)du§ .

Applying this for the Cartan’s measure «(cited in (7. 1)) with its restrictions

a3 in D and a, in E—D, we have
0= Saqu((al_’)l("])d/‘é"‘sapQb(a*)dﬁ‘S: gabqs(“)d#g,

so that u,=0, which is inconsistent.
Next, let x be in D and A, the measure of spherical mean of &, in a sphere

2.CD (of center x), then the functionals ¢, defined by ¢.(f) = f(x)= faD Jod(E) 2
and . by Y. (fo) =S fdi, = S fod(2,)2 are obviously linear continuous on By(6D)

(llgsll, Irsll =1) and have respectively the unique extensions &, and ¥, in
(M(oD))* with the same norms. For every g€ M(D) put g(x) =¢,(2), x € D, then

for such f; € B,(9D) as —> g(in M(9D)), it holds er €] =limwﬁx(fj) =lir_nS fid(A)2
J J

=1im { ¢, () 44 = {0, d() = ()b

On the other hand, \r,=¢, implies 1}7x=<7>x, so that we see that g is harmonic in D.

Next, suppose x, to satisfy the condition.in Theorem 18 and take a neigh-
borhood V(x,) of x such that V(x,) CU(x,) ; putting V= V(xs) N6D, Vis compact
and, since the restriction gy of g in V is continuous there, we have a continuous
extension gf € C(@D) with || g llap = |l gvllv =l gllu. %o being in Ty, (€,)Q con-
verges vaguely to &.,(as x€ D—> %), so that

[, dear—o.
oD~V
Then we have
G =g = lim | gpaceot~lim | g diens
2%y J3D xx9 JV

~lim( gde)t~lim | gdcenp=tim 2,

X%

which proves Theorem 18 completely.
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