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Abstract

Our main goal is to prove the existence of multiple solutievith precise sign
information for a Neumann problem driven by thpeLaplacian differential operator
with a (p — 1)-superlinear term which does not satisfy the AmbrosBiibinowitz
condition. Using minimax methods we show that the problera fiee nontrivial
smooth solutions, two positive, two negative and the fiftidalo In the semilinear
case p = 2), using Morse theory, we produce a second nodal solutiongftotal
of six nontrivial smooth solutions).

1. Introduction

In a recent paper [2], we studied the following nonlinear Meun problem

—Apu(2) + BlU@)IP u@) = f(zu@) in @,
1.1
(1) a_u =0 on 0%,

an
where @ € RN is a bounded domain with &% boundaryd<, n is the outward unit
normal ond®, B > 0, 2=< p < oo and A, stands for thep-Laplacian differential
operator defined by

Apu(2) = div(]| Du@) | 2572 Du(2)).

Also f(z, x) is a Caratheodory function which exhibits @ { 1)-superlinear growth
near +£oo. More precisely, it satisfies the so-called Ambrosetti—-RaWwitz condition
(AR-condition, for short), which says that there exist- p and M > 0 such that

(1.2) O< uF(z,x) < f(z,x)x foraa. zeQ, all [x|>=M,
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where F(z, x) = fox f(z, s) ds. Integrating (1.2) we obtain the weaker condition
(1.3) Co|X|* < F(z,x) fora.a. ze, all |x|>M, and some ¢, > 0.

From (1.3) we infer the much weaker condition

| F(z x)
|X|—=00 |X|p

(1.4) = +oo uniformly for a.a. ze Q.
This condition dictates a-superlinear growth foiF(z, -) for a.a.z € Q. It is easy to
see that it is satisfied if (z,-) is (p—21)-superlinear neat-co, uniformly for a.a.z € Q.

In (1.1), the presence of the terfix|P~2x on the left-hand side facilitates con-
siderably the study of the equation, since the correspgndonlinear operator of the
problem is maximal monotone and coercive. In [2], we did roidrass the question of
what happens i3 = 0, in which case the nonlinear operator is no longer coerdive
this paper we consider this limit case. So, here the problademuconsideration is

—Apu(z) = f(z u(@) in Q,
1.5) M _y on 9%,

an
with 1 < p < oo. Note that in contrast to [2] we do not need the restrictiors 2
p. Again, we consider ap— 1)-superlinear perturbatiori(z, -) but we no longer
use the AR-condition (see (1.2). Instead, we use a weakatitcam allowing a larger
class of nonlinearities. We prove a multiplicity result foroblem (1.5) by producing
five nontrivial smooth solutions with precise sign inforiat for all of them. In the
semilinear casep( = 2), we obtain six nontrivial smooth solutions with precisgns
information. Our approach combines variational methodsetaon the critical point
theory, with truncation techniques, the method of upper lamgtr solutions, and Morse
theory. Our strategy for proving the existence of the seaoodl solution in the case
p = 2 is comparable to that used by Dancer—Du [13] for semilifigiachlet problems.

Superlinear equations were investigated primarily in tbatext of Dirichlet prob-

lems. We mention the works of Bartsch—Liu [8], Garcia AzordPeral Alonso—Manfredi
[17], Guo-Zhang [20], Motreanu—Motreanu—Papageorgiou ,[26lapageorgiou—
Papageorgiou [28] and Papageorgiou—Rocha—Staicu [29]thEdNeumann problem, to
the best of our knowledge, the only such works are [2], [3jthwithe mention that in
[3] we obtain only three nontrivial solutions of (1.5), wifign information for two of
them. There have been some other multiplicity results farrii@nn problems; see Anello
[5], Binding—Drabek—Huang [9], Bonanno—Candito [10], Gaaroto—Chinni—Di Bella
[11], Filippakis—Gadiski—Papageorgiou [16], Motreanu—Papageorgiou [27],&Ri¢80]
and Wu-Tan [32]. However, in the aforementioned works th@s impose restrictive
symmetry or dimensionality (i.eN < p) conditions, and in the nonsymmetric case, pro-
duce at most three nontrivial smooth solutions and do natigeosign information for all
of them.
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In the next section, for the convenience of the reader, weflprieview the main
mathematical tools that we will use in the sequel.

2. Preliminaries

We start with elements of critical point theory. L&t be a Banach space arki
its topological dual. By(-, -) we denote the duality brackets for the pai*( X). Let
¢ € CY(X) andc € R.

We say thatp satisfies thePalais—Smale condition at level ¢he P$-condition
for short), if: every sequencg,}n=1 € X such that

(X)) — ¢ and ¢'(x,) =0 in X* as n— oo,

has a strongly convergent subsequence. We saygthsattisfies thePalais—Smale con-
dition (the PSeondition for short) if it satisfies the RScondition at every levet € R.

Sometimes, it is more convenient to use a weaker compaetyyessondition onp.
So, we say thap satisfies theCerami condition at the level € R (the G.-condition for
short), if every sequencexp}n>1 € X such that

(X)) —c and (14 X )¢’ (X)) = 0 in X* as n— oo

has a strongly convergent subsequence. We sayg¢hstisfies theCerami-condition
(the Ceondition for short) if it verifies the @-condition at every levet € R.

It was shown by Bartolo—Benci—Fortunato [7] that the defation lemma, and
consequently the minimax theory of the critical values ofiaction ¢ € C1(X), remain
valid if instead of the PS-condition, one employs the wedRearondition.

The next two theorems are two well known such minimax resulibe first is
known in the literature athe mountain pass theorem

Theorem 1. If X is a Banach spagep € C(X), Xo, X1 € X and r> 0 satisfy
maxX{¢(xo), p(x1)} = inH{e(X): [[X =Xoll =1} =27, [[X2 —Xol >
and ¢ satisfies theC.-condition where

¢ = inf max t
inf tEHl](/)(y( )

with
I'={y € C([-1, 1], X): y(=1) = %o, y(1) = Xa},

then ¢> 5, and c is a critical value ofp. Moreovey if ¢ = n,, then there exists a
critical point x € X of ¢ such thatyp(x) = ¢ and || X — Xo|| = .
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The second minimax theorem is known in the literature asstddle point the-
orem (Below, “Id” stands for identity.)

Theorem 2. If ¢ € CY(X), X =Y @V withdimY < oo, r >0,

D={xeY:|x]|<r}, Do={xeY:|x|]|]=r} and mDax<p§iof<p=:no
0

and ¢ satisfies theC.-condition where

¢ = inf maxg(y(x)) with I'={y € C(D, X): y|p, = ld|p,},
yel' xeD

then ¢c> no and c is a critical value ofp. Moreovey if ¢ = ng, then there exists a
critical point x € X of ¢ such thatp(x) = ¢ and xe V.

Another variational result that we will use in the study oblplem (1.5) is the
so calledsecond deformation theorelsee, for example, Gasinski—Papageorgiou [18,
p.628]). Let us introduce the following sets:

K, ={x e X:¢'(x) =0} (the critical set ofp),
K; = {x e K,: ¢(x) =c} (the critical set ofyp at the levelc € R),

¢ ={x e X:p(X) <c} (the sublevel set op at c € R).

Theorem 3. If ¢ € C}(X), a€ R, a < b < oo, ¢ satisfies thePS-condition at
every level c= (a, b), ¢ has no critical values ina, b) and ¢~(a) contains at most a
finite number of critical points op, then there exists a homotopy [I@,l]x(qab\Kg) —

¢P such that

(@) h(t, -)|ea =1d|,a for all t € [0, 1];

(b) (1, 9"\ KD) € ¢?;

(©) o(h(t,x)) < p(h(s, x)) forall t,se[0,1], 0<ss<t<1, all x €\ K.

REMARK. In particular, this theorem implies thaf is a strong deformation re-
tract of p? \ K.

The following notion from the theory of nonlinear operatat monotone type

will help us verify the PS and C conditions. (Here and in thgusd 5 designates
weak convergence.)

DEFINITION 4. A map A: X — X* is said to be of type )., if for every se-
quence{Xn}n=1 € X such thatx, — x in X and

lim sup{A(Xn), Xn — X} <0,

n—o0
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one has
Xn =X in X as n— oo.

In the analysis of problem (1.5) we will use the following sps:
1a 15y, 0U
C,(Q) = ueC(Q):%=00naQ

and
—|l

WHP(Q) = CYQ)

|- || being the norm of the Sobolev spad¢™P(2). As usual, if p = 2, then we write
Ha () = W A(<).
The Banach spac€l(Q) is an ordered Banach space with the positive cone

C, ={ueCl®):u( >0 for al ze Q).
This cone has a nonempty interior, given by
intC, ={ueCy:u(2 >0 for all ze QJ.
Let X =WirP(Q) and X* =WrP(Q)*. Consider the nonlinear operatar Wi (Q) —
Wi P(Q)* defined by
(2.1) (A(u), y) = /Q||Du||£;2(Du, Dy)gn dz for all u,ye Wnl'p(Q).

The following result is well-known (see, e.g., [2]):

Proposition 5. The map AWnl'p(Q) — Wnl’p(SZ)* defined by(2.1) is of type(9). .

We also recall (cf., e.g., [22]) the following result retedilocal minimizers irC1(<)

and in Wnl‘p(sz) (see [17], [20] for a corresponding result for Dirichlebplems.)
So, let fg: 2 x R — R be a function such that:

(i) for all x e R, z— fy(z, X) is measurable;

(i) for almost all z € 2, x — fo(z, X) is continuous;

(i) for almost all z€ 2 and allx € R

| fo(z, X)| < 20(2) + colx|" ",
with ag € L*®(2),, ¢o > 0 and 1<r < p*, where

{ﬁ if p<N,

~+o00 if p>N.

(2.2) p* =
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We set Fy(z, X) = f(;‘ fo(z, s) ds and consider the functionagg: Wnl’p(sz) — R
defined by

1
wo(u) = —p||Du||E —/ Fo(z u(z))dz for all ue WHP(Q).
Q

Evidently o € CHWP(R)).

Proposition 6. If ug € Wnl‘p(sz) (1 < p < ) is a local G(2)-minimizer ofgy,
i.e., there exists ¢ > 0 such that

@o(Uo) < go(Uo +u) for all u e CHR), Ilullcim) < ro,

then € C}(Q) and it is a local W P(Q)-minimizer ofgg, i.e., there exists 1 > 0
such that

¢o(Uo) = ¢o(Uo +u) forall ueWyP(Q), [ull=rs.

Next, let us recall a few basic facts about the spectrum ofnggative Neumann
p-Laplacian (1< p < o0). So, we consider the following nonlinear eigenvalue peoafl

—Apu(2 = Au@|P?u(@ in
@3) du =0 on 9.
an
We say that» € R is aneigenvalueof (—Ap,Wnl’p(Q)), if problem (2.3), has a non-
trivial solutionu e Wnl"’(sz). In fact, nonlinear regularity theory implies thate C1(<)
(see for example, Gasinski—Papageorgiou [18, pp. 737+ #88] Lieberman [24].) It is
easy to see that an eigenvaltie=s R satisfiesh > 0. Moreover,Ao = 0 is an eigen-
value with corresponding eigenspaRe(i.e., the space of constant functions) akg
is isolated. By(y we denote the correspondinig’-normalized eigenfunction (principal
eigenfunction). We have

1 _
Op(z) = — forall zeQ,
el
(where by| - |y we denote the Lebesgue measureRdY). By virtue of the Ljusternik—
Schnirelmann theory, we have a whole strictly increasingusace{ig}k=o of eigen-
values (known as the LS-eigenvalues ef/, Wnl"’(SZ))) such thatiy — oo ask — cc.
If p=2 (linear eigenvalue problem), then these are all the emaas of A, W%(Q)).
If p # 2 (nonlinear eigenvalue problem), then we do not know if thithe case.
However, sinceio = 0 is isolated and the spectrum(p) of (=Ay, Wnl"’(sz)) is
closed, then
A =inf{x: A e o(p), A > 0} > 0.
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Evidently, A] > O is the second eigenvalue (the first nonzero eigenvalue) of
(—Ap, WaP(R)) and 17 = 11 (i.e., the second eigenvalue of £, Wa'P(2)) and the
second LS-eigenvalue coincide).

A similar spectral theory is valid for the weighted eigemalproblem

—ApU(2) = Aam@u@)|P2u@) in @,
2.4 9
(@.4) o =0 on 9%,
on
wherei € R andm € L®(2),, m # 0. The eigenvalues of (2.4) will be denoted by
A(m). In particular, A (1) = Ax (k =0,1,2,...). See, e.g., [2].
The Ljusternik—Schnirelmann theory provides a minimaxrabgerization ofA; >
0. However, for our purposes that characterization is noleoient. Instead, we will

use an alternative one, due to Aizicovici—Papageorgioaie®t([4], Proposition 2).
So, let

0B = {x € L°(Q): [Ix]lp = 1}

and set
S=WP(Q) naBL.

Then we have (see [4]):
Proposition 7. If
FO = {V € C([_lr 1]! S) }/(_1) = _001 7/(1) = 00}!

then
! yngtE[fl,l]” ( )”p

We will also use the notions afpper and lower solutionswhich we recall next.

DEFINITION 8. (a) A functionu € W-P(Q) is said to be arupper solutionfor
problem (1.5) if

/||Du||§;2(Du, Dh)gn dzz/ f(z,u)hdz for all heWP(%), h=> 0.
Q Q

An upper solution is astrict upper solutionfor problem (1.5), if it is not a solution
of (1.5).
(b) A function u € WHP(Q) is said to be dower solutionfor problem (1.5) if

/||Du||£;2(Du, Dh)gn dz < / f(z,uphdz for all heW+P(Q), h> 0.
Q Q
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A lower solution is astrict lower solutionfor problem (1.5), if it is not a solution
of (1.5).

Finally let us recall some basic definitions and facts from $éotheory, which we
will use in the sequel.

The critical groups ofp € C1(X) at an isolated critical poirt, € X with ¢(xo) = ¢
are defined by

Ci(p, X0) = He(e® NU, (¢° NU)\ {Xo}) for all integers k > 0.

Here U is a neighborhood ok, such thatK, N ¢° N U = {x} and H(V, W) de-
notes thek™-singular homology group with coefficients & for the topological pair
(U, W) (cf. Mawhin—Willem [25]). The excision property of singuldbomology im-
plies that the above definition of critical groups is indegemt of the choice of the
neighborhoodJ.

Suppose thay satisfies the C-condition and {@f(x): x € K} > —oo. Letc <
inf{o(x): x € K,}. The critical groups ofg at infinity are defined by

Ci(p, 00) = Hy(X, %) for all integers k > 0.

The deformation theorem (see, for example, Gasinski—Rapgpu [18, p.626]) im-
plies that this definition is independent of the choicecot inf{o(x): x € K,}.
If K, is finite, then theMorse type numbers op are defined by

My = > rankCi(g, X)

xeK,

and theBetti-type numbers ap are defined by
Bk = rankCy(¢, oo)

for all integersk > 0. Then thePoincaré—Hopf formulaholds, namely

(2.5) D D M=) (1) B
k>0 k>0
In what follows we use the notationt = max{+£r, 0} for all r € R. Also, by
Il - || we denote the norm oWnl'p(Q). Finally, || - ||, denotes the norm i.P(<2) or
LP(Q, RN).

3. Solutions of constant sign

In this section, we produce four nontrivial smooth solusiasf constant sign for
problem (1.5) (two positive and two negative). Here and uglmut the remainder of
the paper we lep € (1, o).
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The hypotheses on the nonlinearify(z, x) are the following:
H(f)1: The function f: Q x R —R is such that:
(i) for everyx e R, z— f(z, x) is measurable;
(i) for almost allz e ©, x — f(z, x) is continuous andf (z, 0) = 0;
(i) for almost all z€ ©Q and allx € R we have

[f(z x| =a@ +clx"

wherea € L*(Q2),, c >0 andp <r < p*, where p* is given by (2.2);
(iv) if F(z,x)= [y f(z s)ds, then

F(z, x
- F@x
|X|—=00 |X|p

= 400, uniformly for a.a.ze Q

and there exisi € ((r — p) max{1, N/p}, p*) and By > O such that

f(z, — pF(z, .
(2, x)x ~ PF(z %) > Bo uniformly for a.a.z € Q;

(3.1) im inf

X|—oc |X|”

(v) there existn, n1 € L>®(R), n # 0 such that

. f=Zx) f(z, x) . )
n(z) < I||;n_)|(r)1f X[P2x < Iwr;sgp X[P2x <n1(2) uniformly for a.a.z € ;

(vi) there existé- <0< &4, andf, B > 0 such that for a.az € Q
f(z,6,)<—0<0<0=<1(z,&)

and the functionx — f(z, x) + B|x|P~2x is nondecreasing ore[, £,].

REMARK. In hypothesisH(f); (iv) we have assumed condition (1.4) which dic-
tates ap-superlinear growth for-(z, -) for a.a.z € 2, and we have also imposed
condition (3.1) which is weaker than the AR-condition (s&e€?)). Similar conditions
were used by Costa—Magalhaes [12] (for Dirichlet elliptiziaipns) and Fei [15] (for
Hamiltonian systems).

ExampLE. The following function f: R — R, f = f(x) satisfiesH(f);. (For
the sake of simplicity we drop the-dependence.):

Ix|P~2x — £|x|" ~2x it |x] <1,

f(x) = 1
) |x|p‘2x(ln|x| + _p) +c if |x|>1

with & > 1, c=(p—1)/p—&, r > p. Note that thisf(-) does not satisfy the
AR-condition.
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First we will produce a strict lower solution € intC, and a strict upper solution
v e —intC, (see Definition 8). To this end, we prove two auxiliary lemanathich
are of independent interest. So, let

V= {u e WHP(Q): / u()dz= O}.
Q
We have the following direct sum decomposition
WP(Q) =R @ V.
We set

P
(3.2) Av =inf{m: uev, u;éo}.

lullh
Lemma 9. 0< Ay < A1.

Proof. Evidentlyry > 0 (see (3.2)). Ifay = 0, then we can findv,}ps1 C V
such that

lonllp =1 and [Duvgll, > Ay =0 as n— ooc.
Hence we may assume that
v —> & i WIP(Q) with £eR, [&],=&[Q" =1.

Sincev, € V for all n > 1 andV is a closed subspace af°(Q), we havet € V
and so¢ = 0, a contradiction to the fact thdt |, = 1. Thereforery > 0.

Next letyg € To = {y € C([—1,1],9): y(—1) = —00, y(1) = O¢} and consider the
function op: [—1, 1] - R defined by

oo(t) = [Q w)(2)dz forall te[-1,1].

Evidently og( - ) is continuous andro(—1) = —Qg|2|n < 0 < 00(1) = 0p|R2|n. So, by
Bolzano’s theorem, we can fing € (—1, 1) such that

ofto) = [ olta@ dz=0,
Q
henceoy(tg) € V. Consequently from (3.2) we infer that
< P < p
(3:3) M = [Dyo(to)llp = max [ Dyot) I}

Becausey € 'y was arbitrary, from (3.3) and Proposition 7, we conclude tha< 1.
O
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Recall that the antimaximum principle says thatmfh € L>*(Q2),, h # 0 and we
consider the nonlinear Neumann problem

(3.4) —Apu(z)=im(z)|u(z)|p’2u(z)—h(z) in Q, 2—: =0 on 0%,
then there exists = §(m, h) > 0 such that ifA € (0, §), any solutionu € Wnl'p(Q) of
(3.4) satisfiesu € int C, (see Godoy—Gossez—Paczka [19]).

In general, no suclh > 0 independent oh can be found. In the next lemma, we
show that the antimaximum principle for the Neumapiiaplacian holdsL*-locally
uniformly with respect to the weight functiom (i.e., § > 0 can be chosen independent
of m locally).

Lemma 10. If m, h € L*®(Q),, h # 0, then there exist$ > 0 such that for
£ € L®(Q), with |€§ — | < and for i € (0, 8), any solution ue Wa(Q) of the
nonlinear Neumann problem

—Apu(z)=i§(z)|u(z)|p’2u(z)—h(z) in Q, 2—2:0 on 9%,

satisfies ue intC,

Proof. We argue by contradiction. So, suppose we can &ind L>(2), \ {0},
An > 0 andu, € CX(R), n > 1 such thatg, — m in L®(),, 4, — 0 asn — oo, and
foralln>1, u, ¢intC,,

A . au

(35) —Auun(2 = AnEn(@)|un(@)|P 2un(2 —h(@) in «, 8_nn =0 on 9.
First assume thafun}neny € L*(R2) is bounded. Invoking Theorem 2 of Lieberman
[24], we can findy € (0, 1) such that, € Ca” () and {Un}nen C Ca” () is bounded.

Recalling thatC&’V(ﬁ) is embedded compactly i61($2), by passing to a suitable
subsequence if necessary, we may assumeuthat u in C}(Q) asn — oo.Therefore
u € CH(Q) satisfies

(3.6) —Apu(z) =—-h(z) in , g—:zo on 9%,

(see (3.5)).

But problem (3.6) cannot have a solution (just taéke= 1 as test function in (3.6).
So, we may assume (at least for a subsequence)|thdt, — oo asn — oco. Let
Yn = Un/|[Unllee, N = 1. Then from (3.5) we see that

@ o

(3.7) —Apw(2) = ingn(z)|yn(z)|p_2)’n(z) - W Q, — =0 on 9.

on
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As above, using Theorem 2 of Lieberman [24] and by passingftother subsequence
if necessary, we may assume that

(3.8) Yo=Yy in CHRQ) as n— oo, |yll=1 (hencey #0).
Theny € C() \ {0} satisfies

. 0
—Apy(2) =0 in 8—z=0 on 0%,

hence

y=p R\ {0}.
Note thaty, ¢ intC, for all n > 1, hencey ¢ intC, (see (3.8) and sg(z) =8 <0
for all z e Q. Thereforey, € —intC, for all n > ny (see (3.8)) and sa, € —intC,
for all n > ng (for a sufficiently largeng). But then from (3.5) we have a contradic-

tion of the antimaximum principle (see Godoy—Gossez—Ra¢zR], Theorem 3.2 and
Remark 3.7). O

Using the above two lemmata, we can produce a strict lowertisalu € int C..
for problem (1.5).

Proposition 11. If hypothesedH(f); hold, then problem(1.5) has a strict lower
solution ue intC,, u(z) < &, for all z e Q, and for everys € (0, 1], eu € intC,. is a
strict lower solution too.

Proof. Letm=0,h= 08‘1 € R and conside$ > 0 as postulated by Lemma 10. We

can always assume thaae (0,1y). Leté € L>(2), \ {0} with 0 < £(2) < min{§?/2,n(2)}
a.e. inQ2. We consider the following auxiliary nonlinear Neumannipeon

(3.9) —Apu(z) = £(2)|u@)|P%u(2) — og—l in Q, 2—E =0 on 9.
Let ¢o: Wnl'p(sz) — R be the energy (Euler) functional for problem (3.9) defined by
1 1 ~p—1 1
po(u) = —p|| Dullp - B/ £(2)lu(2)|? dz+ Qg / u(z)dz for all ue W;P(Q).
Q Q

Evidently go € CHWirP(R)).

Claim 1. ¢, satisfies the®?Scondition.
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Let {up}n=1 C Wn“’(sz) be a sequence such that

(3.10) lpo(un)] < My for some M; >0, all n>1,
and
(3.12) go(un) — 0 In WHP(Q)* as n— oco.

We show that the sequen¢g,}n-1 C Wnl'p(sz) is bounded. Arguing indirectly, suppose
that ||up|] = o0 asn — oo and set

Un

yn = _7
[[unll

Then ||y,|| = 1 for all n > 1 and so we may assume that
(3.12) Yo=Yy in WMP(Q) and y,—y in LP(Q) as n— co.
From (3.11) we have

abt
(A(Y:), yn—y>—/ ElynlP2ya(yn — y) dz 4+ —0 ,1/(yn—y)dz
Q lun|/P Q

<eénllya—yl forall n>1 with e, — 0.

Evidently

/s|yn|p—2yn(yn—y)dz, /(yn—y)dHo as N oo
Q Q

(see (3.12)). Hence
Nim (A(yn), Yo —y) =0
therefore
(3.13) Yo=Yy in WHP(Q) as n— oo, andso |y|=1

(see Proposition 5). From (3.11) we have

~Ap—1
(A(yn), h) —f £lynlP 2yoh dz+ —0 / hdz <e|h| for all he WLP(Q).
Q Q

llun [P~

Passing to the limit as — oo and using (3.13), we obtain

(A(y), h) = /Q§|y|p‘2yh dz for all heWHP(Q),
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which, by an argument similar to that used in [27, pp. 24—25],a Neumann problem
with a p-normal derivative, yields

ay

(3.14) ~ApY(@) = £@)Yy@)IP?y(2 ae.in Q, —nzo on Q.

From the choice of the weight functiche L>(2), \ {0} we have
E(2) <iv <A1 ae.in Q

(see Lemma 9). Exploiting the monotonicity property of theighted eigenvalues of
the Neumannp-Laplacian, we havé.;(1;) = 1 < A1(¢) (see Barletta—Papageorgiou [6,
Proposition 4.3]). Using this fact in (3.14)), we infer that= 0, a contradiction (see
(3.13)). This proves that the sequengg}n>1 C Wnl’p(sz) is bounded. So, we may
assume that

(3.15) Up—u in WPQ) and u,—u in LP(Q) as n— oo.

Again from (3.11) it follows

‘(A(Un)a Un_U)_/§2$|Un|p_zun(un_u)dz+ 0871 /Q(Un_u)dz

<eénllup—u] forall n=>1.
We have
/§|Un|p’2un(un—u)dz, /(un—u)dz—>0 as n— oo
Q Q

(see (3.15)), and so

nango(A(Un)a Uy —u) =0,

therefore

Uy —u in WHP(Q) as n— oo.
This proves Claim 1.
Claim 2. ¢glv = 0.
Let v € V. Then
1 p 1 p Ap-1
po(v) = —||Dvllg — — | §(@)[v(z)|°dz+ (g v(2)dz
P pJa Q

1 1
1Dl p/ﬂ&(z)h;(zﬂ dz (sincev e V)
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1 A
> —p||Dv||g - FV”UHE (since&(2) < Av a.e. inQ)
>0 (see (3.2).
This proves Claim 2.

Claim 3. For t > 0 large, we havegpy(£tlp) < O.

For everyt € R, we have

N tP N
(3.16) @o(tho) = —%u@Aé(z)dz+tu§|Q|N.
Since p > 1, it is clear from (3.16) that fot > O large, we have
(po(ﬂ:tf]o) < 0.

Claims 1, 2 and 3 permit the use of Theorem 2 (the saddle poaurém) and so
we obtaint € W P(€), i # 0 such that

oo(0) = A() — £10|P~20 + 0+ =0,

hence

AT) = £[a|P20 - 087,

therefore

(317)  —4,0(2) = £@0(2)|P %02 — 05" ae. in @, g—zzo on 9%,

(see [27]). From the choice of the weight functiére L>°(2); \ {0} and Lemma 10,
it follows that G € int C,. Since(y € intC,, we can findeg € (0, 1) small such that

(3.18) 00— goiP L eintC,.

By virtue of hypothesiH(f)1(v), givene € (0, &o), there existsd = §(¢) > 0 such that
(3.19) f(z,X) > (n(2) —e)xPt foraa ze, al xelo, S].

Sincel € intC,, we can choosé¢ € (0, 1) small such that

(3.20) 0< u(2) := Bii(2) < min{&,, 8} forall zeQ.
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Then for a.a.z € , we have
—Apu(2) = P H=0,0(2) = B HE@IE@P - 05T (see (3.17))

= £(2)u(2)P ! — (Blo)*
<£(2Qu@P " —eu(Pt (see (3.18))
<(E@ -e)u@P ™ (sincee € (0, £))
<@ —-e)u@P?t (since&(z) <n(z) ae. inQ)
< f(z,u(2) (see (3.19) and (3.20)),

henceu € intC, is a strict lower solution for problem (1.5). Moreover, frohetabove

argument it is clear that for everye (0, 1), eu € intC, is also a strict lower solution
for problem (1.5). O

In a similar way, working on the negative half-axis, we obtai
Proposition 12. If hypothesedd(f); hold, then problem(1.5) has a strict upper
solutionv € —intC,, £ <u(z) for all z € Q, and for everyes € (0, 1], v € — intC,.

is a strict upper solutiontoo.

Next usingu € intC, andv € —intC,, we will produce the first two nontrivial,
smooth constant sign solutions of (1.5).

Proposition 13. If hypotheseH(f); hold, then problem(1.5) has at least two
nontrivial smooth constant sign solutiong @ intC, with up—u € intC,, &, —up €
intC,, and vy € —intC, with v —vg € intC,, vo—&_ €intC,

Proof. Letr,: WrP(Q) — WHP(Q) be the continuous map defined by

u@ if u(2 =u@,
(3.21) (W@ = u@ if u@ <u(@ <é,,
& If & =< u(2).

Then, fore € (0, 1) we consider the functionglt : Wa'P(2) — R defined by
e 1 P e € P 1,p
gl (u) = EllDU||p+5||U||p— i F(z, U(Z))dZ——p||T+(U)||p for all ue W;P(%).

Note thaty?, € Cl(Wnl"’(Q)). Moreover, exploiting the compact embeddingwi’p(sz)
into L"(R2) (p <r < p*), we can easily verify thap’ is sequentially weakly lower

semicontinuous. Then we conclude that there exigts[u,&.]:={u € Wnl’p(SZ): u(z) <
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u(z) < &, a.e. inQ} such that
(3.22) ¢’ (Uo) = inf{e’ (u): u € [u, &1}
For anyy € [u, &,] let
o (t) = ¢l (ty + (1 —t)ug) forall te]O0,1].

From (3.22) it follows that
0<0/(0)

hence
(3.23) 0< (A(Uo), y — Uo) — [ £z, Uo)(y — o) dz

Let h € WrP(Q), 8 > 0 and consider

u(z) if ze{up+ sh=<uj,
y(2) = {uo(z) +68h(z) if ze{u<ug+dh<Eg,l}
$+ |f Z€{$+ §U0+5h}

We havey € Wnl’p(SZ) andu(z) < y(z) <&, for all ze Q. We usey as a test function
in (3.23). We obtain:

0<$ / ||Du0||]§;2(Duo, Dh)gn dz—B/ f(z, ug)hdz
Q Q
+ / [1IDulI?%(Du, D(U — o — ) — 1z u)(u — o — sh)] dz
{Uo+sh=<u}
+/ f(z, & )(ug+6h—&,)dz
{€; <ug+sh}
+[ (12 u)— 1z u))(U — U — sh) dz
{uo+8h=u}
(3.24)
4 / (12 &) — (2 U))(Es — U — oh) dz
{&4 <ug+sh}
= [ {1Dusl?Duo - |DuIEDu, Dug ~ Dul, 0z
{up+8h<u}

s / (I DUoII%s2D o — [|DullP32Duy, Dhl, , dz
{up+sh=<u}

2
—/ ||Duo||]§N dZ—(S/ ||Duo||]§N (Dug, Dh)g~n dz
{&+<up+dh} {£4 <up+8h}
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Recall thatu € intC,. is a lower solution for problem (1.5) (see Proposition 11gnkee
(3.25) [IDullp?(Du, D(u — ug — 8h))rw — f(z, U)(u — up — 8h)] dz < 0.
{Up+58h<u}
Also, hypothesisH(f); (vi), implies that
(3.26) f f(z, &4)(Up+8h—¢£,)dz<0.
{51 <Ug+5h)
Due to the monotonicity of the map — ||§||]§;2§‘, £ e RN, we have
@2 = [ {IDuol:Duo |DUIZ?Du, Duo — Dul, dz = 0.
{up+sh=u}

HypothesisH( )1 (iii) implies that

/ (f(z,u)— (2 U)(U — U — sh) dz
{Uo+sh=u}

(3.28)
<—Cé hdz for some ¢, >0
{Uo+8h=u<uo}
and
/ ((2, &) — F(z Uo))(Ex — Up — sh) dz
(3.29) {£+ <uo-+5h)

< CZS/ hdz for some ¢, > 0.
{Uo<&4 =uo+8h}
We return to (3.24) and use (3.25)—(3.29). We obtain
0</||Duo|| (Dug, Dh)gn dz— / f(z, ug)h dz

—c1/ hdz+02/ hdz
{Uo+8h=u<uo} {ug <& =uo+sh}

(3.30)
~ [ (IDulE:?Duo — DUl Dy, Dhjs dz
{up+8h<u}
- | DUo | 22( Do, Dhjgs dz
(€, <up+dh}

In (3.30) we pass to the limit a& — 0". Using Stampacchia’s theorem (see, for ex-
ample Gasinski—Papageorgiou [18, p.195]) we obtain

0= / ||Duo|| Duo, Dh)gn dz— / f(z,up)hdz forall he W1 P(Q),
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hence A(ug) = N(ug), whereN(u)(-) = f(-,u(-)) forallue Wnl’p(Q), therefore

: ou
—ApUp(2) = f(z, ug(2)) ae.in Q, a_no =0 on 9dQ

(see [27]), and we conclude thap solves (1.5),up € [u, &;] and ugp € intC, (by
Theorem 2 of Lieberman [24]).

Let s > 0 and setys(z) = u(z) + s. Note thatys € intC,. Let 8 > 0 be as in
hypothesisH(f); (vi). We have

—ApYs(2) + BYs(2)P!
(3.31) = —Apu(2) + Bu@Pt + p(s) with p(s) - 0" as s— 0OF
= £(@Uu@)" " — (Blo)P ™ + Bu@’ ' + o(s)

(see the proof of Proposition 11). Recalling thek) < [0, §] for all z € Q and using
(3.19), we have

f(z u(2) - @U@ + (BOo)"™
(3:32) > (1(2) — &))" = £(@u@)P + (BUo)P

> (Blo)P * — U@ (sincet < n).
We chooses € (0, gg) close toegg so that
(Blg)Pt—euPteintC, (see (3.18)),
hence
(3.33) Blg)Pt—cu@Pt>E>0 foral zeQ.
We chooses > 0 small such thap(s) < & (recall p(s) — 0" ass — 0*). Then
£(Qu@P = (BUo)* ™t + BU@DP ' + p(s)
< f(z, u(2) + Bu(@’ ! (by (3.32), (3.33) and since(s) < £ for s > 0 small)
< f(z, up(2)) + Bug(2)P 1 (seeH(f); (vi) and recall thatu < ug)
= —Apup(2) + Buo(x)P* a.e. ong,
hence
—LpYs(2) + BYs(2)P7H < —Apuo(2) + Buo(@)P in @ (see (3.31)),

therefore
Ys(2) < uo(2),
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and we conclude that
(3.34) Up—ue€intC, (recall thatys=u+s, s> 0.)

Also, if T >0 andy, = up+ t € intC,, then

—ApY:(2) + By ()P

= —Apug(2) + Buo(@Pt + p(zr) with p(r) - 0" as 7 —0"
= f(z, Uo(2)) + BUo(2)* + A(2)

f(z &)+ BEL™ + p(r) ae.in Q

IA

(seeH(f); (vi) and recall thatug < &,). But we know thatf(z, &,) < —0 < O for
a.a.ze€ Q (seeH(f)y (vi)). Sincep(r) — 0t ast — 07, we chooser > 0 small such
that p(t) < 6. Then

—ApYe(@) + BY (2P < BEP T = —ApEL + Bu(@)P L ae. in®,
hencey, < &,, therefore
(3.35) &, —Up€intC, (recall thaty, = ug+ 7, 7 > 0).

As a remark of independent interest, we note that by virtu€3a@4) and (3.35), we
can findrg > 0 small such that

HCi® 1S
(3.36) B = {u e CI@): u—Uollcym = Fo} € [U, &1

So, if ¢: WiP(Q) — R is the Cl-energy functional for problem (1.5) defined by
1 1
o(u) = —p||Du||E —/ F(z,u(z))dz for all ue W;P(S),
Q

then

¢l i@ = ¢ | _cia
Brc0 (@) + Brc0 (@)
(see (3.21) and (3.36)). This means thate [u, £,] is a local C}(Q)-minimizer of ¢,
and so from Proposition 6 we infer thap is also a IocaNV#‘p(Q)—minimizer of ¢

Similarly, let t_: WEP(Q) — WHP(R) be the truncation map defined by

& if u@@=é.,
(3.37) (U2 = {u(z) if & <u(2 <v(2),

v(z) if v(2) <u(2).
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Then fore € (0, 1) we consider th&€-functional ¢¢ : Wi P(Q2) — R defined by
. 1 & £ 1
pi(u) = —pllDullg + —pllulls — | F(z u()dz— IBHL(U)HE for all u e Wy P(Q).
Q

Working now with¢® and using (3.37), as above we obtain a second nontrivial ¥moo
constant sign solutiomg € —intC,.. O

Next, usingup and vg, we will generate two additional smooth constant sign solu-
tions for problem (1.5).

Proposition 14. If hypothesisH(f); hold, then problem(1.5) has two additional
nontrivial smooth constant sign solutiofise intC,, up <0, 0 # up and v € —intC,,

f)fl)o,f);évo.

Proof. LetB > 0 be as in hypothesi#i(f); (vi) and consider the following
Caratheodory function

—8 _ )@ uwo@) + puf i@ i x < uo(2),
(3.38) f+(Z: X) = {f(Z, X) + /3pr10 if  up(2) < Xx.

We setfi(z, X) = [o T_’i(z, s)ds and introduce theC-functional @’ : Wa'?(Q) — R
defined by

1 _
@' (u) = —p||Du||g + %||u||g —[ Fi(z, u@)dz for all ue WrP(Q).
Q
We consider the following auxiliary nonlinear Neumann peoi
(3.39) —Apu(z) + Blu@)|P2u(z) = Ti(z, u(2) ae.in , du/on=0 on IQ.

The critical points of@ffr are the solutions of (3.39). By virtue of hypothesi$f)i(vi)
and (3.38),u = 0 is a lower solution for problem (3.39). Also

Ti(z, £)=f(z &) +BEP < peP™ foraa zeQ

(see hypothesisi(f); (vi)), henceé, € intC, is a (strict) upper solution for problem
(3.39). We introduce the following truncation of the noemity Ti(z, X):

iz o if x=<o
(3.40) @z ={F@zx if 0<x<k,
Tlze) if & =x
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This is a Caratheodory function. We s@ﬁ(z, X) = OX gﬁ(z, s)ds and consider the
C!-functional wﬂcolon\/\(}'p(sz) — R defined by

Yp(u) = I%||Du||g + %||u||g —/ G’i(z, u)dz for all ueWHP(Q).
Q

It is clear from (3.40) thais is coercive and it is also sequentially weakly lower semi-
continuous. Hence, we can fing € Wﬁ'p(sz) such that

Yp(lo) = {¥p(u): u € WyP(Q)},

hence

Yg(0o) = 0,
therefore
(3.41) A(lio) + Bltio|P 2o = Np(To)
where

Ns(u)(-) =d%(-,u(-)) forall ueWP(Q).
On (3.41) we act with g — Go)* € Wnl’p(Q) and obtain

(A(lo), (Uo —To)™) + B |Gio|P~2Tio(Uo — Gip) dz
{uo>Uo}

= /{ . o/, (z, To)(uo — Tio) dz
- / (f(z Uo) + BUE Y)(Uo — Gg) dz (see (3.40) and (3.38))
{Uo>Uo}

= (A(Up), (o —To)™) + B ud (U — tip) dz,

{Uo>Uo}

hence
(A(E) — A(Uo), (o — o))+ [ (o]0~ luol” Zu)(to — ) dz = O,
Q
which implies
[{up > Up}|n = 0, hence ug < Co.

In a similar fashion we also show théip(z) < &, for a.a.z € Q, i.e., Uy € [Uo, &4 ].
Hence from (3.41), (3.40) and (3.38), we infer tligtis a solution of (1.5), and non-
linear regularity implies thatip € int C, (see Lieberman [24]).
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If Up # up, then we are done, because this is the desired second tansrivooth
positive solution of (1.5) andiy < Ug, Ug # Uo.

If Up = ug, then becauseg € intC, and&, —ug € intC, (see (3.35)), we see that
o = Up is a C}(Q)-local minimizer ofaﬁ, hence by Proposition 6 it is also a local
Wnl‘p(Q)—IocaI minimizer ofaﬁ. Then reasoning as in Aizicovici—Papageorgiou—Staicu
[1] (see the proof of Proposition 29), we can fipde (0, 1) small such that

(3.42) 9 (Uo) < inf(g (U): lu—uoll = p} =77}
Claim 1. @’ satisfies theC-condition.

Let {up}n=1 C Wnl'p(sz) be a sequence such that

(3.43) 12" (u))l < M, for some M, >0, all n>1,
and
(3.44) A+ unlD@?)(Un) = 0 in WHP(Q)* as n— .

We show that{un}p>1 C Wnl’p(SZ) is bounded. From (3.44) we have

‘(A(un),h)—l—ﬂ/9|un|”2unh dz—/gTﬁ(z, un)h dz

(3.45)

€n

<—" ||| forall heW(€Q) with &, — 0.

In (3.45) we first choosé = —u; € Wnl'p(sz) to obtain

‘H Duy [Ip + Bllug 15 — [Q(f(Z. Uo) + Buf)(—uy) dz
<e foralln=>1
(see (3.38)), hence

u, I° < csllu, || for somecs > 0, all n > 1,

therefore

(3.46) {U7}n=1 C WHP(Q) is bounded.
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Next, in (3.45) we choosé = u} € Wi'P(%). Then

—||Dun+||g—ﬁ||un+||g+/ (2, ug)ur dz

{ur <uo}

(3.47) + / N f(z uf)us dz+ B uttut dz+ B (u)Pdz
{un >Uo}

{ug <uo} {un >Uo}

<e, foralln>1 (see (3.38)).

On the other hand, from (3.43) and (3.47), we have

IDUF I + Bllug 5 — p i f(z ug)u, dz
Un =<Uo
- pf (F(z uf) ~ F(z u) dz— p ud Uy dz
(3.48) (Ut > o) <)
- B ((uy)P —ug) dz
{Un >Uo}

< Mz for someM3z >0, alln> 1.

Adding (3.47) and (3.48), we obtain

/ (f(z, uh)ut — pF(z,ut)) dz
{un >Uo}

(3.49) <t (p-1) (f(z uo) + pug )uy dz

{ui <uo}
<cs for somecy, cs >0, alln>1.
By virtue of hypothesisH(f); (iv), we can findg; € (0, Bp) and M4 > 0 such that
(3.50) O< Bix* < f(z,xX)x — pF(z,x) foraa. zeQ, all x> M.
On the other hand, hypothedi$( f); (iii) implies that

| f(z, x)x — pF(z, X)] < Ms for some Ms > O,
(3.51)
fora.a. zeQ, al 0<x < M.

Combining (3.50) and (3.51), we have

Piluy @) = Ms < 1(z, uy (D)uq (2) — PF(Z Uy (2)

(3.52)
foraa. ze{ul >up, al n>1 and some Mg > 0.
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Returning to (3.49) and using (3.52), we obtain
Biluy |l < M7, for some a.a. My >0, all n>1,
hence
(3.53) (U }n=1 C LK) is bounded.

We can always assume that<r < p* (see hypothesi$i(f); (iv)). So we can
find t € [0, 1) such that

(3.54)

Invoking the interpolation inequality (see, for example,astski—Papageorgiou
[18, p.905]), we have
lug lle < lug 1 g 11

(3.55) .
< Mg|luy || for some Mg>0, all n>1, (see (3.53)).

In casep = N, hencep* = oo, we replacep* in (3.54) and (3.55) byp where
p > r is large enough.
From (3.45) withh = uf € Wi'P(Q) and (3.46) we have

(3.56) [IDuy I} —[ f(z, u)uf dz< Mg for some Mg >0, all n>1.
{un >Uo}
HypothesisH( ), (iii) implies that
f(z, uj (2)uy @ = (L + Juy D)

(3.57)
fora.a. zeQ, all n>1 and some ¢cg > 0.

We use (3.57) in (3.56) and we obtain

(3.59) DUy 15 < cr(1+ lluy 2117)
' <cg(l+ luf(@|") for some c7,cg>0, all n>1

(see (3.55)). Suppose thti! || — co asn — co. We set

+
un

, forall n>1.
[lunll

Yn =
Then|yn|| = 1 for all n > 1, and so we may assume that

(3.59) Yo—y in WMP(Q) and y, >y in L(Q) as n— oco.
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From (3.58) we have

Cg
lug Pt

Cs
3.60 Dyn|IP < +
(3.60) 1Dyallp = 1o

The condition onu (see hypothesi#i(f), (iv)) is equivalent to saying thatr < p.
So, if in (3.60) we pass to the limit as — oo, then ||Dy||, = 0 (see (3.59)), hence
y=oacR.

If « =0, theny, — 0 in Wnl’p(Q) asn — oo, a contradiction to the fact that
lynll = 1 for all n > 1.

If @ > 0 (recall thaty > 0), thenu(z) — oo for a.a.z€ @, asn — oco. From
(3.43) and (3.46) we have

F(z, ut)

{un >Uo} ” Un+ ” P

1
(3.61) dz< M10(1+ —) for some Mypp>0, all n>1.

lua fIP

From hypothesi#i(f); (iv), we know that giveny > 0, we can findM;; = M1(y) > 0
such that

F(z, x) -

(3.62) T

y >0 foraa. zeQ, all x> M.

Returning to (3.61) and using (3.62), we have

F(z, u®
/ % dz
(ui>up) Ilun [P

F(z, uf F(z, ut
:/ # Z+/ (+ n)
(Ut >uol Nfuf =My U [P (i =uohnui <Mqrp lUn [|P
M
Z/ Y¥a(2)P dz— — = for some Mi;;>0, all n=1.
{un >Uo}N{ur >Mus} lus ||P

Sinceu;(z) — oo for a.a.z€ 2 asn — oo, we have

Xiui =uo)niut =My (D) = xa(2) foraa. zeQ,

hence

(3.63) lim inf F@ )

dz> yaP|Q|n.
=00 Jiutoug  [lun [P
Becausey > 0 was arbitrary, from (3.63) we infer that

. F(z ut
(3.64) I|m/ @dzﬂroo.
N> Jiugsue)  [lUn 1P
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Comparing (3.61) and (3.64), we reach a contradiction. Pmves that{u}}n>1 C
WqP() is bounded, which combined with (3.46) implies tHak}n=1 C Wa'P(Q) is
bounded. Hence we may assume that

(3.65) Up—u in WP(Q) and u,—u in L(Q) as n— oo.
If in (3.45) we chooséh = u,—u € Wnl’p(SZ) and then pass to the limit as— oo, then
nIi_r)r;o(A(un), Uup—u) =0 (see (3.65))
hence
Up — U in Wnl*p(SZ) as n— oo (see Proposition 5),

therefore@” satisfies the C-condition. This proves Claim 1.
Claim 2. @ (§) > —o0 as& — +o0, £ €R.
We may assume thdt € R, & > |Ug|w- Then
7€) = Zerial — [ 1z wuodz— [ (Fz 6 Fz ) dz
—/3/ ubdz— p /(ép—ug)dz (see (3.38)),
Q PJae

hence@i(g) — —o0 asé — +oo (see hypothesisi(f); (iv)). This proves Claim 2.
Then (3.42) and Claims 1 and 2 permit the use of Theorem 1 (ihentain pass
theorem), which yieldgl € Wnl’p(Q) such that

(3.66) 7 (uo) <7 < @h(0)
and
(3.67) @)@ =o.

From (3.66) it follows thatll # up. From (3.67) we see that
(3.68) A(Q) + B10IP720 = Ng(0)

where
Npu)(-)=Th(-,u(-)) forall ueW-P(Q).

Acting on (3.68) with (lp — 0)™ € Wa'P(Q) and using (3.38), as before we show that
0 > ug. Hence (3.68) becomes

A0) = N(0),



726 S. Azicovicl, N.S. RAPAGEORGIOU AND V. STAICU

where N(u)(-) = f(-,u(-)) for all u e Wnl‘p(sz), hencel € intC,, 0 > ug, 0 # U
and ( is a solution of (1.5) (see [27]).
In a similar fashion, using this time the Caratheodory fiorct

T2 %) = {f(z, X) + B|x|P2x if X < wvo(2),
- f(z, vo(2) + Blvo(2)|P?v0(2) if X = wo(2)

we obtain a second nontrivial smooth negative solutioa —intCy, v < vy, D # vo.
O

Next we will produce extremal nontrivial smooth solutionfs amnstant sign (i.e.,
the smallest positive and the biggest negative solutiohg)do this, we will need the
following lemma from Aizicovici—Papageorgiou—Staicu .[2]

Lemma 15. If hypothesedH(f)y (i), (i), (iii) hold, then
(@) If y1, y» € WHP(Q) are upper solutions for probler(l.5), then y= min{y; y,} €
WLP(Q) is an upper solutiontoo;
(b) If wy,w; € WHP(Q) are lower solutions for problentl.5), thenw = max{wy w,} €
WHP(R) is a lower solution too.

Using this lattice-type structure of the sets of upper aneklosolutions of problem
(1.5), we can produce extremal nontrivial smooth solutiohgonstant sign.

Proposition 16. If hypothese#d(f); hold, then problem(1.5) has a smallest posi-
tive solution u. € int C,. and a biggest negative solutian € —intC,.

Proof. Letu e intC, be the lower solution produced in Proposition 11. We first
show that problem (1.5) has a smallest solution bigger thafo this end let

Sy={ueCi:u=u, uis a solution of (1.5).

From Proposition 13 we see th&} # . We show thatS, is downward directed, i.e.,
if uyuz € Sy, then there existsi € Sy such thatu < min{uy uy}.

By virtue of Lemma 15 (a)il = min{u Uy} € Wnl’p(SZ)ﬁC(ﬁ) is an upper solution
for problem (1.5). Fore € (0, 1) we introduce the following Caratheodory function

(3.69) f(z, X) + exP1 if u(2 < x < 1(2),

f(z, u@) +eu@P* if x=u@,
fe(z, x) = {
f(z G(2) + el(x)P if G(2) < x.

We setF:(z x) = [o fi(z s)ds and consider theC!-functional &7 : Wa'P(Q) — R
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defined by
P(u) = —;||Du||g + Ep||u||g —/ Fo(z,u(2)dz forall ueWHP(Q).
Q

The functionalp$, is coercive (see (3.69)) and sequentially weakly lower sentinuous.
So, we can findlp € [u, 0] such that

(3.70) @ (Gg) = inf{@% (u): u € [u, d]}.
For anyy € [u, 0], let
o4+(t) = ¢ (ty + (1 —t)lg), te€][0,1].

From (3.70) we have
0=<¢,(0),

hence
(3.71) 0= (A(lip), y — lg) + & /Q Gg’l(y— Uo) dz—/Q fj(z, Go)(y — Up) dz

Let h e W2 P(€), 5 > 0 and consider

u(2) if ze {0+ dh <u},
y(2) = {Uo(z) +8h(z) if ze{u<iy+sh <},
i(z) if ze{d<0+ sh}.

Evidently y € [u, 0]. Using thisy in (3.71) and reasoning as in the proof of Propos-
ition 13, we obtain

(3.72) OS/QHDGOHP‘z(DGO, Dh)gn dz—i—s/Qljg_lh olz—/Q f¢(z Go)h dz

Sinceh € Wnl’p(SZ) is arbitrary, from (3.72) we infer that
A(lio) + €05 = Ne(To) where N.(u)(-) = f(-,0o(-)) for all he WLP(Q),
hence
A(Ug) = N(lp) (sincelp € [u, 0], see (3.69)),
therefore

—Aplp(2) = f(z,00(2)) a.e.in £, % =0 on dQ (see (3.17)).
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We conclude thatly € int C, (by nonlinear regularity theory, see [24]) and it solves
problem (1.5). Thereforejp € Sy, lp < U = min{ug,uy} which proves thatS, is down-
ward directed.

LetC C Sy be achain (i.e., a totally (linearly) ordered subsefgf. From Dunford—-
Schwartz [14, p. 336]), we have

neN

We may assume thdtip}n>1 is decreasing (see for example, Heikkila—Lakshmikantham
[21, pa5]). So,

(3.73) A(up) = N(up) and u<u,<u; forall n>1.
From (3.73) it follows thafup}n>1 € Wnl'p(sz) is bounded. Hence, we may assume that
uh—u in WXP(Q) and u,— U in L(Q) as n— co.

From (3.73) we have
(A(up), up — U’y = / f(z,u))(Uup —u)dz— 0 as n— oo,
Q

hence

(3.74) Uy —u in WYP(Q) as n— oo (see Proposition 5).

Passing to the limit as — oo in (3.73) and using (3.74), we obtain
A(U) = N(U)

hence
u =infC e S,.

Invoking the Kuratowski—Zorn lemma, we infer th&, has a minimal element,.
Since S, is downward directed, we conclude that is the smallest element d,.
Now, let e, — Ot asn — oo with ¢, € (0, 1] for all n > 1 and setu,, = &ny,
for n > 1. From Proposition 11 we know that for eveny> 1, u, € intC, is a lower
solution for problem (1.5). From the first part of the prodffdllows that the setS,,

has a smallest elemenf € intC,. We have
(3.75) AU") = Nu") with u? <ul forall n>1,
hence{u?}n>1 C Wnl'p(Q) is bounded. Therefore, we may assume that

(376) U’ Su, in WAP(Q) and u? —>u, in LY(Q) as n— oo



SUPERLINEAR p-LAPLACIAN NEUMANN PROBLEMS 729

As before, acting on (3.75) with! —u, € Wnl"’(sz), passing to the limit a® — oo
and using (3.76) and Proposition 5, we obtalh— u. in Wnl’p(Q) asn — oo. So, if
in (3.75) we pass to the limit as — oo, then A(u,) = N(uy), henceu, € C, is a
solution of (1.5).

We show thatu; # 0. Supposeu; = 0 and sety, = ull/[lul|l, n = 1. Then
Iynll = 1 for all n > 1, and so we may assume that

Yo=Yy in WMP(Q) and y,—vy in LP(Q) as n— cc.

From (3.75) we have

N(u?)

(3.77) A(yn) = junp

for all n=> 1.

By virtue of hypotheses$i(f); (iii), (iv), we have
(3.78) |f(z, X)| <co|x|P! foraa ze, all 0<x<|ullsx with co> 0.

From (3.78) it follows that{N(u?)/[|u?[|P~Y}4=1 € LP(Q) is bounded and so we may
assume that

N(UQ) w

(3.79) ||uQ||P—1_)h in LP(Q) as n— oo.

As before, acting on (3.77) witl, —y € Wnl'p(sz), passing to the limit as — oo and
using Proposition 5, we obtain

(3.80) Yo=Yy in WIP(Q) as n— oo, andso |y| = 1.

Note thatu?(z) — 0 a.e. inQ asn — oco. Then, using hypothesisl(f); (v) and rea-
soning as in the proof of Proposition 14 of Aizicovici—Papagyiou—Staicu [1], we
show that

(3.81) h=7ayPt with n<#7<n.

So, if in (3.77) we pass to the limit as— oo and we use (3.79), (3.80) and (3.81),
we obtain

Aly) =7yP?t, y=0, y#0,
hence

dy

—0pY(2) = 1(@Y(2P ae. in o

=0 on 4R, y>0,y#0,
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a contradiction, sincg must be nodal. This proves that < C, \ {0}. We have

. d
—Apus(2) = f(z,ur(2)) ae.in Q, % =0 on aQ

hence

Apui(2) Scui(2Pt ae.in Q@ (see (3.78)),

therefore

uy €intCy (see Vazquez [31]).

Note that if x is another positive solution of (1.5), thene intC, (cf. [31]), so for
large n, it follows thatu, < x and consequently] < x. As a result,u; < X, sou;
is the smallest positive solution of (1.5).

In a similar fashion, working on the negative half-axis, aming the upper so-
lution v € —intC, (see Proposition 13) and Lemma 15 (b), we produce the biggest
negative solutiorv_ € —int C, for problem (1.5). ]

4. A nodal solution

In this section, using the extremal nontrivial smooth canstsign solutions ob-
tained in Proposition 16, we will produce a nodal solutionur Qtrategy is to intro-
duce suitable truncations of the nonlinearity{at, u,}, and then obtain a solution of
(1.5) in [v_,uy], distinct fromv_, u,. Evidently, if we show that this solution is non-
trivial, then it must be nodal. To show the nontriviality dfig solution, we rely on
Proposition 7 and Theorem 3.

To produce a nodal solution we need to strengthen the hygistioa f (z, -) near
zero (seeH(f)1 (v)). So, the new hypotheses dit, z) are the following:

H(f)2: The function f: @ x R — R satisfies conditions (i), (ii), (iii), (iv) and (vi) of
H(f)., and
(v) there existn > A; and n; € L*°(Q2), such that

.. f(z, x i f(z, x .
n < liminf (2, X) <limsup (2, X) <n1(2) uniformly for a.a. ze Q;
x>0 [X[P2X g [X[P2X

In other words, assumptiontd(f), (i), (i), (iii), (iv), (vi) are the same adHd(f);1
®, (i), (i), (iv), (vi), respectively, while H(f), (v) is stronger tharH(f)1 (v).

Theorem 17. If hypothesesH(f), hold, then problem(1.5) has at least five
nontrivial smooth solutions i € intC,, ug <0, Uup #0, & —ug€intC,, vy, 0 €
—intCy, d <o, vo# D, vo—£&_ €intC,, and % € C() \ {0} nodal.
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Proof. Letu, €intC, andv_ € —intC, be the two extremal nontrivial smooth
constant sign solutions of (1.5) obtained in Proposition 1€t g > 0 as in hypothesis
H(f), (vi) and introduce the following Caratheodory functions:

0 if x<0,
(4.1) Pz, x) = {f(z, X) + BxP-1 if 0<x<u,(2),
f(z, up (@) + Bus@Pt if u (2 = x,

f(z v-(2) + Bl-@IP?v_(2) if x=v (2,
(4.2) ff(z, x) = {f(z, X) + B|x|P2x if v_(2) <x<0,
0 if 0<x,
f(z v (2)+Blv-@IP?v-(2) if x=v (2,
(4.3) ff(z, x) = {f(z, X) 4+ B|x|P2x if v_(2) <X <uy(2),
f(z, ui(2) + Bu (2P if ui(z) =x.

Let FL(zx) = [ ff(z,5)dsand Ff(z,x) = [ f#(z,5)ds. We define theC!-functionals
o, ¢ WaP(Q) > R by

1 o
PL(u) = —p||Du||S + %||u||g —/Q Ff(z, u@)dz for all ueWP(Q)
and
5B 1 p, P p = 1p
@’ (u) = 6||Du||p+—p||u||p— QF (z,u(z2)dz for all ue W;P(Q).

In what follows
I, =[0,u;] = {ue WHP(Q): 0 <u(z2) <u,(2) ae. inQ},
| =[v,0]={ueWP(Q): v (2 <u( <0 ae. inQ},
| =[v_,uy] = {ue WHP(Q): v_(2) <u(2) <u,(2) ae. inQ}.
Claim 1. (a) The critical points of@f are in | (specifically in{0O, u.}).

(b) The critical points ofp? are in I_ (specifically in{v_, 0}).
(c) The critical points ofp? are in I.

We do the proof for (c), the proofs of (a) and (b) being simil&o, letu €
WiP(Q) be a critical point of¢f. Then

(4.4) A(u) + BlulP%u = Ng(u) where Ng(y)(-) = f2(-,y(+)) VyeWHP(Q).
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On (4.4) we act with { — u,)* € W2P(Q). Then

(AU), U—u)") + B ulPu(u —uy)* dz

fu>uy}

= [ f(z u)U—us)dz+ B u? Hu—uy)dz
{u>uy}

{u>u.}

(4.5)

(see (4.3)). Sincei, € intC, is a solution of problem (1.5), we have

(4.6) (AU, U —u)t) = — / f(z u)(Uu—uy)dz

{u>u.}

Adding (4.5) and (4.6), we obtain
/ (IDu[P~2Du - | Du, |P?Du.., Du — Du, ) dz
{u>u,}

+ B (JulP?u—uy [P?uy)(u—uy)dz=0
{u>u.}
hence|{u > u;}|y = 0, i.e., u < u,. Similarly, acting on (4.4) withy_ — u)*™ €
WaP(Q), we show thatr_ <u, i.e.,uel.
In a similar fashion, using this time (4.1), (4.2), and thérexality ofu,, v_ we
show that the critical points aﬁﬁ are in {u,, 0} and the critical points of? are in
{v_, 0}. This proves Claim 1.

Claim 2. u, andv_ are local minimizers of?.

Note that¢! is coercive and sequentially weakly lower semicontinuo8s, we
can find 0y € WEP(Q) such that

¢h (o) = inf{@(y): y € WHP(Q)).

By virtue of hypothesisH(f), (v) we can find; € (A1, n) and§ € (0, M), wherer €
(0, ming uy) (recall thatu, € intC.) such that

f(z,x) > nxPt foraa zeQ, all xel0,34],
hence

n+A

Ff(z,x) > .

xP foraa. zeQ, al xe]l0,S/].
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Therefore, if& € [0, §], then

. n
ol (&) < ——;spmm <0,

hence
¢ (00) <0=¢L(0), ie., Go#0.

From Claim 1 (a) we know thally = u,. Thereforeu, is the unique global minimizer
of 3”. Sinceu, € intC, (see Proposition 16) an@’|c, = ¢|c., it follows thatu,
is a local C1(2)-minimizer of ¢#. Invoking Proposition 6, we conclude that is a
local Wi P(2)-minimizer of ¢#.

Similarly, working this time with¢?, we show thatr_ € —intC, is a local mini-
mizer of ¢#. This proves Claim 2.

Without any loss of generality, we may assume h&t_) < ¢#(u,). Moreover, be-
cause of Claim 2, arguing as in the proof of Proposition 29 izigdvici—Papageorgiou—
Staicu [1], we can fingbhg € (0, 1) small such that

(4.7) ¢ (v-) < 9P (us) < (@°(U): llu—us ]| = po} = lo.

Note thatg? is coercive (see (4.3)). So, it satisfies the PS-conditiohis Tact and
((4.7) enable us to apply Theorem 1 (the mountain pass thgosmd obtainx, €
WEP(Q) such that

(4.8) ¢P(v2) < ¢P(uy) < fio < 9P (%)
and
(4.9) ©@") (x0) = 0.

From (4.8) it follows thatxy ¢ {v_, u,}. From (4.9) and Claim 1 (c), we haveg € |.
Then, from (4.9) and the extremality of andu, we infer that if xg # 0, thenxg €
CY(Q) (by nonlinear regularity, cf. Lieberman [24]) is a nodaluion of (1.5). Hence
our goal next is to show the nontriviality of. From the Mountain Pass theorem (see
Theorem 1) we have

(4.10) 9’ (x0) = inf_max @’ (v (®)),
where
I ={y e C([—1, 1], Wy P(Q)): y(-1) = v_, y(1) = ui}.

Hence, if we can produce a pajh € I' such thatg?(y.(t)) < 0 for all t € [-1, 1],
then @#(xo) < 0 = ¢#(0) (see (4.10)) and sry # 0. Therefore we focus on producing
such a pathy, € T.
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To this end, letS = Wqa'P(22) N 9BL" equipped with thewn P(2)-topology and
S = CY(Q) N 3B} equipped with theCl()-topology. (Recall tha®B’ = {x €
LP(2): Ixllp = 1}).

It is clear thatS is dense inS for the Wnl’p(Q)—topoIogy. We consider the follow-
ing sets of paths

T'o = {y0 € C([-1, 1], 9): yo(—1) = —lo, yo(1) = Go}

and
I'§ = {yo € C([-1, 1], &): yo(—1) = —lo, yo(1) = Uo}.

Evidently, T'§ is densel'y for the C([—1, 1], S) -topology. Recall that by virtue of
hypothesisH(f), (v), we can find;; € (A1, n) and g € (0, mp) where

mo = min{min Uy, min|v_|}
Q Q
such that

f(z, x) >
x| P=2x

fora.a. ze @, all |x| <o,

hence

(4.11) Ifﬁ(z, X) > #Mpﬁ fora.a. zeQ, all |x] <4y (see (4.3)).

From the density of"'§ in I'y and Proposition 7, we can fingy € I' such that
(4.12) [IDyo®)lIp <A1 +e forall te[-1,1], with &e (0,7~ A1)

Note that the seto([—1, 1]) € C}(2) is compact and recall thatv_, uy €intC, (see
Proposition 16). Therefore we can figde (0, 1) small such that

(4.13) |Eu(@)| <8 forall zeQ and Eue[v_,uy] forall uep(-1,1).

Hence, for allu € yp([—1, 1]) we have

. Ep Ep . .
Gy = = [Dul8 + 25 jupe —/ Bz Eu) dz
(4.14) P P @

| =26 R
= 6 1+8) FT) < U.

So if we setjy := Eyp, theny is a continuous path iranl'p(Q), which connects-£g

and £0p, and we have

(4.15) ¢Pl; <0 (see (4.14)).
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Next, we infer from Claim 1 and the proof of Claim 2 that theyontitical points
of ¢ are 0 andu,, and@” (u,) < 0. It also follows thatk %, = {0}, ¢ has no critical
+

¢
values in &, 0), wherea = ¢ (u;) = inf ¢/, and ¢”)1(a) = {u,}. Moreover, since
@ﬁ is coercive, it satisfies the PS-condition. So, we can applgofem 3 (the second
deformation theorem) witla = ¢/ (u;) andb = 0, and obtain a homotoply: [0, 1] x

((@5)°\ (0}) — (¢1)° such that

(4.16) h(1, (@)°\ {0})) = {uy)

and

(4.17) oL(h(t,u)) < @4 (u) forall te[0,1], all ue (¢)+)° \ {0}

We setj ., (t) = h(t,£0o) for all t € [0,1]. Thenj, is continuous angr_.(0) = h(0,0) =

£0o (sinceh is a homotopy) . (1) = u, (see (4.15), (4.16)). Moreover, due to (4.15),
(4.17), we have

Ly, <o.
Note that
P 1 P P p =B
¢ (u) = —|IDuflg + =[lullp— [ F"(z, u)dz
p p Q

1 ~ .
= Slulp + %nuns - /Q[Fﬂ(z, u) + Bz —u)] dz

By virtue of hypothesidH(f), (vi), 0 is a global minimizer ok — F(z,x)+ (8/p)|x|P
on [£, &.] and so, [, F#(z, —u~) dz > 0. Hence

R 1 B . X
¢P(u) < = Dull® + = ul’B —/ Fl(z, u)ydz= ¢ (u),
p p Q
and so
(4.18) ¢fl;, <O.

In a similar fashion, we produce another continuous pgathin Wnl’p(sz) which con-
nectsv_ and —£(y such that

(4.19) ¢fl;_ <o.

We concatenate the patlis, yo andy, to produce a pathy, € I such that (see (4.15),
(4.18), (4.19))

(»Z'Bly* <0,
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hencexp # 0.
Thereforex, € C1(Q) is a nodal solution for the problem (1.5). O

5. The semilinear case

In this section, by strengthening the conditions on the ineaity f (z,-) and using
Morse theory, we can improve the conclusion of Theorem 17 aondyze a second
nodal solution in the case whem= 2 in (1.5). See also Dancer—Du [13].

The problem under consideration is the following

(5.1) —Au(2 = f(z,u(2) in <, %:o on 9Q.

The new hypotheses of(z, x) are the following:
H(f)s: The functionf: @ xR — R is such that:
(i) for everyx € R, z— f(z, x) is measurable;
(i) for almost all ze ©, x — f(z x) is C* and f(z, 0) = 0;
(i) for almost all ze€  and allx € R we have

|fi(z,X)| <a@ +clx|"2% 2<r <2,

wherea € L>*(Q2), andc > 0;
(iv) if F(z,x)= [y f(z s)ds, then

F(z, x)

|X|—=00 X2

= +o00, uniformly for a.a. ze Q

and there existg € ((r —2) max1, N/2}, 2*) such that

lim inf f(z, X)x — 2F(z, x)

|00 [x]»

> 0, uniformly for a.a. ze Q;
(v) there exist an integem > 1 and functionsy, n; € L*(2), such thati, < n(2)

a.e. in, Am #n, 11(2) < Amy1 a.€. iNQ, n1 # Ame1 and

f(z, x)

X

n(z) < fu(z,0)= IimO <nm(2), uniformly for a.a. z € Q;
X—>

(vi) there existt. <0 < &, andf > 0 such that
f(z,6,))<—-0<0<6=<1(z,&) foraa. zeqQ.

REMARK. HypothesesH(f)s (i), (iii) imply that for every & > 0, we can find
B = B(§) > 0 such that for a.az € €2, the functionx — f(z, X) + X is nondecreasing

on [-£, &].
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ExampLE. The following function satisfiesi( f); (as before, for the sake of sim-
plicity we drop thez-dependence:

cx — £]x|" 2 it |x| <1,

f(x) =
) x(ln|x|+%)—9x+ﬂ if x| >1

withr >2,c€ (AmyAms1), M>1,E>¢c, B=c+0—-&6—-1/2,c=&(r—1)+3/2-06,
0 > 3/2.

Theorem 18. If hypothesed(f); hold, then problem(5.1) has at least six non-
trivial smooth solutions ¢4 0 € intC,, 0—ug € intC,,&, —ug € intC,, vg,0 € —intC,,
vo— D eintCy, vo—& €intCy, and X, Yo € C(), both nodal.

Proof. From Theorem 17 we already have five nontrivial smaatlationsug, 0 €
intC+, Up < U, ug 75 a, &, —Ug € intC+, Vo, U € —intC+, v < vg, Vo ;é v, v—§& €
intC,, andxo € C}() \ {0} nodal.

Let £ = maxX{||(]|s, |D]lc}. We know that we can fingg = B(£) > 0 such that for
a.a.z € Q, the functionx — f(z, x) + gx is nondecreasing on-g, £]. Then

—A(0 = uo)(2) + B(U — Uo)(2)
= f(z,0(2)) + BU(2) — f(z, up(2)) — Bug(2) > 0 a.e.in L,

hence { — ug) € intC.,. (see Vazquez [31]). Similarly, we show theg— v € intC,.
Consider the functionap? introduced in the proof of Theorem 17. Note that hy-

pothesesH (f)3 (i), (ii), (iii) imply that ¢# € C>O(H(R)). Also recall thatxy € C1(S)

is a critical point of@# of mountain pass type (see the proof of Theorem 17). Hence,

from Li—Li—Liu [23] (see also Mawhin—-Willem [25, p.195]), wieave

(5.2) Ck(9P, x0) = 8k1Z for all k> 0.

Also, we know thatu, €intC,, v_ € —intC, are local minimizers ofy? (see Claim 2
in the proof of Theorem 17). Hence

(5.3) Cu(@”, uy) = Ck(@?, v_) = 8k oZ for all k> 0.

Note that@? is C? in a neighborhood ofi = 0, and by virtue of hypothesibi(f)s

(v) and the unique continuation property= 0 is a nondegenerate critical point ¢f
with Morse indexdn = dim@™, E(%) (E(%) being the eigenspace for the eigenvalue
Ai). Then

(5.4) Ck(@”?, 0) = 8kq,2z forall k=0,
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(see, for example, Mawhin—Willem [25, p. 188]).
Finally, recalling thatp? is coercive (hence bounded below), directly from the def-
inition of critical groups at infinity, we have

(5.5) Ck(¢f, 00) = 8k oZ for all k> 0.

Suppose that0, v_, uy, Xo} are the only critical points of?. Then from (5.2), (5.3),
(5.4), (5.5) and the Poincaré—Hopf formula (see (2.5)), aeeh

2(-1)° + (D' + (=1)* = (-1)°,

hence ¢1)% = 0, a contradiction.

This means that)’ has one more critical poinyg ¢ {0, v_, Uy, Xo}. Note that
Yo € CX() \ {0} (regularity theory) and is a nodal solution of (5.1) (seei@ld in
the proof of Theorem 17). ]
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