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Abstract
There are natural actions of the braid groBpon BJ, the n-fold product of the
braid groupBy, called the Hurwitz action. We first study the roots of celizeas
in the braid groups. By using the structure of the roots, wevide a criterion for
the Hurwitz orbit to be finite and give an upper bound of thes diar a finite orbit
inn=2 orm=3 case.

1. Introduction

Let S, be the degre@ symmetric group andB, be the braid group oh-strands,
defined by the presentation

0= (o | 70 =0 2122
oiojo; = ojoioj, |i —j| =1

The pure braid groug?, is defined as the kernel of the natural projectionB,, —
S, defined byo; — (i,1 + 1). For a braidg = oi‘flaiz --- € By, the exponent sum of
p is defined by the integeg; + e, + --- and denoted by(B).

A braid systenof degree mandlength nis, by definition, an element of thefold
product of the braid grouB,. The Hurwitz actionis an action ofB, on the set of
length n, degreem braid systemsBl, defined by

(1315 .321 CEE /3n) * 0 = (ﬁl! ,32, e .Bi—li ,Bi—&-l! ﬂiﬂi+ll ,3i+2, CCE IBH)

where we denotg % 6 i1 by .

Diagrammatically, the definition of the Hurwitz action ca@ bnderstood by Fig. 1.
More generally, we can define the action of the braid gr@&jpon the n-fold product
of groups or racks in a similar way [3].

For a braid systens, we denote the orbit of under the Hurwitz action by - B,
and call it theHurwitz orbit The main object studied in this paper is finite Hurwitz
orbit. Although the definition of the Hurwitz action is singpla computation of a
Hurwitz orbit is not easy. Some interesting calculations Hurwitz orbits for Artin
groups are done in [8]. We study the structure of a finite Htrwairbit for general
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Fig. 1. Diagrammatic description of the Hurwitz action.

braid systems, and provide an upper bound of finite Hurwitzitoior length 2 or
degree 3 braid systems.

To study finite Hurwitz orbit, we first study the roots of cetlizers of braids.
We denote byZ(B) the centralizer of am-braid 8. The following results use the
structure theorem of centralizers in [7], which is based fwn ¢lassification of surface
automorphisms due to Thurston [5].

Theorem 1. Letw, B € By and supposer € Z(8°) for some s> 0.
1. If B is periodig thena € Z(g™(M-1),
If B is pseudo-Anosothena € Z(B).
3. If B is reducible thena € Z(BM-").

n

This result is interesting in its own right. This theorem liep, for two n-braids
a and g, if ™ and M commute for some non-zero integét, then o™ and g™
always commute.

Now we return to consider finite Hurwitz orbit. To state ousuks, we introduce a
notion of a reducible braid system. We say a lengtbraid systemS = (81,82, ...,6n)
is reducibleif there exists a non-trivial partition [ J of the set{1, 2,..., n} such
that gig; = gjpi for all i €1, j € J. For a reducible braid systeid, let us define
S = (Biys Bips - - - Biy), whereip € 1, iy <ipyr andS” = (Bj,, Bij,, - - -+ Bj,), Where
Ip€Jsdp < prr-

As is easily checked, if a reducible braid syst&ivhas finite Hurwitz orbit, then
Hurwitz orbits of S’ and §” are also finite, and the inequality

#S - By) < (T)#(S’- B) - #(S” - Bas)

holds. So in this paper we mainly focus on irreducible braistesms. Our main results
are the following.

Theorem 2 (Finiteness theorem for length 2 braid systemd)et S be a degree
m, length two braid system having finite Hurwitz orbit.
1. If m =3, then#(S - By) <6.
2. Ifm=>4 then#S-By) <2-(m—1)L



FINITE HURWITZ ORBITS 615

Theorem 3 (Finiteness theorem for degree 3 braid systemkgt S be a degree
3, length n braid system having finite Hurwitz orbit.
1. Ifn=2,then#S-B, <6.
2. Ifn>3,then#S- B, <27-nl.
3. If n>5, thenS is reducible.

2. Roots of centralizers

2.1. Structure of the centralizers of braids. In this subsection we briefly re-
view the results of [7], the structure of the centralizersaobraid. The braid group
B, is naturally identified with the relative mapping class gradCG(D,, dD,) of the
n-punctured disd,, which is the group of isotopy classes of homeomorphism®of
which fixesd D, pointwise [1].

From the Nielsen—Thurston theory, each element of the lgwidp B, is classified
into the following three typesperiodic reducible and pseudo-Anosoaccording to its
dynamical property. See [5] for details of Nielsen—Thunstbeory. In this paper we
treat the trivial element oB,, as a periodic braid.

A periodic braidis a braid some of whose powers belong to the center of the brai
group, which is an infinite cyclic group generated by the sgud the Garside element

A% = (0102 on_1)(01 - on_2) - -+ (0102)(01)} 2.
It is classically known [4] that each periodicbraid is conjugate to either
(0102 - - - o)™

or
(0102 - - - op_101)"

for some integem. This implies that then-th or (n — 1)-st powers of a periodic braid

always belong to the center &,.

The centralizer of a periodic braid is simple, in some spemaae. From the above
facts, we can write a periodig-braid as

y 0102+ - on1)*y
or
y o102 -+ on_107)*y.

In the former case, ik and n are coprime, then the centralizet(8) is an infinite
cyclic group generated by (o107 ---0n_1)y. Similarly, in the latter case, ik and
n—1 are coprime, then the centraliz€(g) is an infinite cyclic group generated by
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vy Yo10% - --on_101)y [7, Proposition 3.3]. Ifk andn (or n — 1) are not coprime,
then the centralizer of periodic braids are isomorphic te kmaid group of annulus
[7, Corollary 3.6].

A pseudo-Anosov brait a braid which is represented by a pseudo-Anosov homeo-
morphism. A pseudo-Anosov homeomorphismis a homeomorphism which has the
two invariant measured foliationsF€, 1), (FY, 1) called thestable and unstable fo-
liation and the real numbek > 1 called thedilatation. They satisfy the condition
f(F® 1®) = (F%, a7p®) and f(FY, ut) = (F4, anl).

The centralizerZ(g) of a pseudo-Anosov brai@ is also simple. The centralizer
Z(B) is isomorphic to the rank two free abelian group generatedrie pseudo-Anosov
element and one periodic element, both of which preserventraiant foliations ofg
[7, Proposition 4.1]. In particular, all braids if(8) are irreducible.

A reducible braidis a braid which preserves a non-empty essential submergfol
of Dy. In this paper we adapt the convention that every reducitd@bs non-periodic.
By taking an appropriate conjugation, each reducible bgaidan be converted to the
following simple form, called asstandard form

RegardC as a set of essential circles. A collection of essentiallesr€ is called
a standard curve systetif C satisfies the following two conditions.

1. The center of each circle il lies on x-axis.
2. For any two distinct circle€ andC’ in C, C does not enclos€’.

By taking an appropriate conjugation, we can always asstwateat reducible braid
B preserves a standard curve systenThe braidg acts on the sef as a permutation of
circles. Let us denote the orbit decompositiorCdby C = C;UC,U---U(C;, whereC; =
{Ci,1,....Cir}. We choose the numberir@ ; so thatg(C; ;) = Ci j;+1 (modulor;) holds.

Let us denote the number of punctures in the ci€lg, which is independent of
j, by ¢i. Then the orbit decomposition defines the weighted pantiticof an integer
N, N: N ==¢Cyry +Cofp + - -+ + Cylk.

In this situation, we can write the reducible bragidas a composition of two parts.
The first part is thetubular braid which is a braiding of tubes corresponding to the
permutation of the circles. Each tube contains some numtfeparallel strands (pos-
sibly one) which are not braided inside the tube. The othet igathe interior braids
Bi,j, which are braids inside the tube sending the ciClg_; to C; ;. We denote the
braid obtained by regarding each tube of the tubular braidrees strand byBey and
call it the exterior braid The interior braidss; ; and the exterior braig., are chosen
so that they are non-reducible.

Using the above notions, we denote the reducible bpais

B =PBexdPr1P P12P -+ DB Prrn

and call such a form of the braid tretandard form See Fig. 2.
We can make a reducible braid in standard form much simpletakiyng a further
conjugation so that the following hold.
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/Bewt

n:14=3-2+4-1+4-1
B = Bewt(Br,1 ® Pi2 ® B21 D B51)n
Fig. 2. Standard form of reducible braids.

1. Each interior braids; ; is a trivial braid unless = 1.
2. fi1 and gj 1 are non-conjugate unlegs 1 = B 1.

After this modification, we denote the non-trivial interibraids g 17 simply by
Bri;- Now the whole braid8 is written as

B=PBext By @1®-- - ®L1BP @ - PPy P1D--- @ L.

ri—1 rg—1

We denote this special standard form of a reducible braid by

B = Bext- (B, B2y - - - Big)n-

and call it thenormal form
Let B = Bext- (Bry» P2ps - - -» Bimp)n be a normal form of a reducible braid which
preserves a standard curve systémiThen the centralizer of is described as follows.
Every « € Z(B) preserve<, hence« is written as a standard form. In particular,
the exterior parirey Of @ also induces the permutation of circles@n We sayaey; is
consistent WithBey: if aex(Ci k) = Cj then g = ;) holds. LetZo(Bex) be a subgroup
of Z(Bex) defined by

Zo(Bex) = {otext € Z(Bex) | dtext is consistent withBeyy .

Then Z(B) is described by the following split exact sequence [7, Tapp1.1].
1 Z(By) x Z(B) x -+ % Z(Ba) = Z(B) = Zo(Bexd — 1.
The mapi is defined by

i(oz[ll,a[z],...,a[k])z 1-(()([1] D Do b ---D o GB"'EBO([k])n
N — e’ —

ry Mk
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and the mapj is defined by
J(otext (1,19 - -+ ® Ak )n) = Aext
The splittings of the above exact sequence is given by
S(ctex) = dex{(1® -+ @ L.
Therefore, for eaclw € Z(8), we can writex as

O = Olext* ((X%rl @a%fz @ ,..@a%rk>n.

2.2. Proof of Theorem 1. Now we are ready to prove Theorem 1.

Proof of Theorem 1. The assertion 1 is immediate because foerimdic braid
B € By, M or g™ belongs toZ(By). The proof of the assertion 2 is also easy.
Supposef is pseudo-Anosov and leEs, FY and A be the stable, unstable measured
foliation and the dilatation ofs. Since« belongs to the center of the pseudo-Anosov
braid g%, whose invariant measured foliations are alg® and F“, « also preserves
both 75 and FY. Now the braidafa~'8! preserves the measured foliatio&§ and
FY has the dilatation 1. This implies that the braiga—'8~! is periodic. Since the
exponent sum otxBa1ptis zero, we conclude thatfa1p~t = 1. Therefore we
obtaina € Z(B).

Now we proceed to the most difficult case, reducible case.d&ingj a conjugate
of B, we may assumg is a normal form

B = Bext- (Bray» Br21r - - - Bidn

wheren: m=c;-r; +--- + ¢ - rg is an associated weighted partition wf Let us

define integersy by a = (m—1)!/r;. Since the exterior part g8 ' is a pure braid

(M- 50 M1 s written as a normal form

—1)! _ p(m-1)
B = B (B B B B e

ry Mk

wheren* is a weighted partition defined by

nf:m=c¢-1+---+¢c -1+ 4+c-14+---+0c-1.

r Ik

Let o € Z(B%). Thena € Z(B™ V"), From the normal form of(™ s « can
be written as a standard form

o= dexts (1,1 D 012D -+ - B ot )ne -
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Since the interior braids;,; are irreduciblec;-braid ande; ; € Z(ﬂ["’i“]'s), from the
assertion 1 and 2 we obtain ; € ,B[Ci‘]'(c‘_l).
Now observe that; /¢ - (¢ —1) = (m—1)!/rici(c1— 1) is an integer. Therefore we

conclude thaty; j € Z(,B[ei“]). By the same argument, we also obtaig; € Z(ﬂgﬂ_l)’).

If aex is Nt consistent withB{ ", then there exist pairs, k) and (j,1) such that
aext(C[i,k]) = C[“] but (ﬂ(m_l)!)iyk = ,3[?] % ﬂ[aji] = (ﬂ(m_l)!)“ holds. On the other hand,
a € Z(BM-D') implies thataey is consistent with8h 'S, Therefore gM-1ts), | =

"= Ay = (B™9); holds.

It is known that the root of a braid is unique up to conjugacy [Bherefore the
above equality means th#f| and ﬂﬁ‘j are conjugate. Sincg™ ' is a normal form,
we conclude thalB[ai“'] = ﬂﬁj], which is a contradiction. Thus we conclude thal: €

Zo(BS "), sow e Z(BMIN. -

We remark that our valuen(— 1)! for reducible braids case is not optimal. Only the
properties of the numbem(— 1)! we used in the proof is that the numlagyc; - (¢ — 1) =
(m—=21)!/rici(c; — 1) is an integer and th (Tt_l)! is a pure braid. By considering these
two properties more carefully, we can easily decrease ouevin — 1)!. We give the
smallest value for smath for later use.

Proposition 1. Let o, B € By, and supposex € Z(8%) for some s> 0 and B
is reducible.
1. If m=3,thena € Z(B) and Z(B) is a free abelian group of rank two.
2. If m=4,thena € Z(B%) for some s< 3.

Proof. If m = 3, then we may assume that by taking an appropriate conjugate
the reducible braigs can be written byg = o7°(cX @ 1)z.1 Thus the centralizer of
B is the free abelian group of rank two generateddfy1l & 1), 1) and 161 & 1)2.1).
Thus if « € Z(B3) for somes > 1, thena € Z(B) holds.

The proof ofm = 4 case is also a direct calculation of the centralizers. Binta
an appropriate conjugation, we may assume that the kfaiths one of the follow-
ing forms.

1. B= Ulp(af ® 01).2)

2. B =0P(Bint ® 1)3,1) Where in; € Ba.

3. B= ﬂexl(alp ®le l)(2,1,1)-

In the first case we obtaia € Z(82). In the second and the third caseg Z(B?) or
a € Z(B3) holds. O]

3. Some computations of Hurwitz actions

Now we begin our study of the Hurwitz action. In this sectioer @o some cal-
culations, which will be used later. For two braid systefhs= (81, ..., fn) andS’ =
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(By, - -, B},) having the same degree and length, we Sayand S’ are conjugate if
Bl = a g for some braide and alli = 1,2,...,n. Then there is a one-to-one cor-
respondence between two Hurwitz orbBs B, and S’ - B, if two braid systemsS and
&S’ are conjugate. So we try to take a conjugate of braid systenthat computations
are easier.

Since the pure braid grou®, has finite indexn! in B,, to classify the finite
orbits of B, it is sufficient to consider the orbits of pure braid groBp. Fori =
1,2,...,n—1, letc be the pure braid defined by

G =(o;" 07 1)0{(0i-1 -+ - 01)

and F,_1 be a subgroup of, generated byc,, C, ..., Ch1}. It is known thatF, 1
is a free group of ranki — 1 and there exists a split exact sequence

l1-F1—>Ph—=Pr1— 1
Hence the pure braid group, can be described as a semi-direct products of free groups,
Pn = Pn—llx Fn_]_: F]_IX F2I><---l>< Fn_]_.

See [1] for details. Thus, to classify or estimate the sizéirofe Hurwitz orbit, it
is sufficient to consider thé&,, actions.
Now we compute some actions of elementFgf

Lemma 1. LetS = (B1, B2, - - -, Bn) be a length n braid system.
1. For all k and i,

K ' k(g g K
S. Cik — (Igiﬂlﬂwﬂ ’ Igéﬁwlﬂl) (B1Bi+1) L

—k k k
ﬂi(ﬂwrlﬂl) (B1Bi+1) ,ﬁi(ilfurl) :ﬂi+21 el ﬂn)
2. Forj>2,

K (ﬂ—lc)—kck (ﬂ—lc)—kck
S'(C1C2"'Cj)k:(;|(_:,,321 """8]'+11 ,,BJ'+2,...,,3n)

where C= 162+« Bj+1.
3. Let A(i'j) = (O‘i Oj41°"" (Tj)(O’i(Ti+1 () O'jfl) () (aioi+1)(oi). Then

S : AZP]) = (ﬂl! 132: ey ﬂi—la icpv ey :Bjcpi ﬂj+l! IR | ﬂn)
where C= gifi+1--- Bj.

Proof. Direct computation. ]
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4. Partial Coxeter element

In this section, we provide a finiteness and infinitenesgrioih of Hurwitz orbits for
general degree and length by using the notion of (partiale@r element. The partial
Coxeter element argument provides a strong restrictioth®ffiniteness of Hurwitz orbit
and gives evidence that finite Hurwitz orbits with non-contative entries are rare.

DerINITION 1. For a braid systen$ = (81, ..., 1) € Bl and strictly increasing
sequence of integers = {1 <i; <i; <--- <ix < m}, we defineC,(S), the partial
Coxeter elementf S by C,(S) = Bi,8i, - - - Bi.- For the sequence = {1,2,3,..., m},
we call C,(S) the (full) Coxeter elementf S and denote it byC(S).

From the definition of the Hurwitz action, the full CoxetererlentC(S) is in-
variant under the Hurwitz action, so it is an invariant of therwitz orbit. On the other
hand, the partial Coxeter eleme@t(S) might dramatically change by the Hurwitz ac-
tion. Even the Nielsen—Thurston types might change. Now rbami and the know-
ledge of the centralizers provide the following criteriohfimiteness.

Theorem 4 (Partial Coxeter element criterion)LetS = (B1,f2,...,0n) be a braid
system of degree ntength n having the finite Hurwitz orbi - B, and | = {1 <i; <
i, <.-- <ix =n} be a strictly increasing sequence of integers of length X
1. If C(S) is pseudo-Anosovhen gi,, Bi,, - . ., Bi, are irreducible and commutative.
2. If C,(S) is reducible theng;,, Bi,, ..., Bi, preserves the same essenfisdubmanifold.
Especially they are not pseudo-Anosov.

3. If Cyy2,..jy is periodic thenS - (C1C2 - -+ ¢j_1)" = S for somel <r < m!.

Proof. First we prove 1 and 2. By considering the action of pprapriate braid,
there is a braid systed’ in the Hurwitz orbit ofS, which is written asS” = (8i,,8i,,---»
Bixs Biy1s - - - )- From the assertion 3 of Lemma 1,

2p P p p
S Ay =B B B By )

wherec = C,(S). SinceS - B, is finite, g, € Z(cP) for some p > 0. This means all
of g, are irreducible and commutative ¢ is pseudo-Anosov, and all o, preserve
the same 1-submanifold & is reducible.

Next we prove 3. LelC = 18, --- B; be the partial Coxeter element agdbe a
period of C. From the assertion 2 of Lemma 1,

P L(B'C)PCP (Br'cy~Pce
S'(C]_CZ'--CJ',:L)p:(f, 21 ,...,Ile ,,Bj+1,...,,3n).
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Since S - By is finite, we can find O< p satisfyingS - (ci¢z - - - ¢j_1)? = S. Then

S (CiCa -+ ¢j_)P = (B, peer ﬂ}ﬁfic)?pq, Bists -1 Bn)
= (1311 132! ﬂSl s ,Bn)

Thus all of 85, B3,..., Bj belong to the centralizer 01'8(1C)F’q. From Theorem 1, there
existss < m! such that all of,, Bs, ..., Bj € Z((B1C™1)%). Therefore, we conclude
that S - (C1Cz- -~ Cj—1)" = S for some O<r < ml. O

These result imply that each entry of a braid system withdifitirwitz orbit must
satisfy the following conditions.
e |If its full Coxeter element is pseudo-Anosov, then all of éstries must be com-
mutative.
e If its full Coxeter element is reducible, then all of its eafr must not be pseudo-
Anosov and preserve the same 1-submanitold

Using this condition, sometimes we can easily check whetherHurwitz orbit is
finite or not.

ExXAMPLE 1. Now we give some examples.
1. LetS = (01,0%,01). Each entry ofS is reducible and the full Coxeter element is
also reducible. Howevery; ando, do not preserve the same essential 1-submanifolds,
so we conclude thaf has infinite Hurwitz orbit.
2. LetS = (01,01,01,01,02). Itis easily checked that braid systemas,6>), (01,01,02)
and ©1,01,01,02) have finite Hurwitz orbits. However, the Hurwitz orbit &fis infinite
because the full Coxeter element is pseudo-Anosovohus reducible.

As these examples suggest, a braid system might have infiiteitz orbit even
if its entries have simple relations.

5. Classification of finite Hurwitz orbits

Now we begin a classification of finite Hurwitz orbits.
5.1. Length two braid systems. First of all, we prove Theorem 2.

Proof of Theorem 2. From the assertion 1 of Lemma B, (Bz)afp =

(B2 g2y holds. Since the Hurwitz orbit of is finite, 1, f2 € Z((8182)P)
for somep > 0. From Theorem 1p < max{(m—1)!, m}, so the conclusion holds.[]

As in the remark after Theorem 1, this upper bound is not sli@rgeneralm.
For m = 3, 4, we give an accurate upper bound.
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Corollary 1. LetS be a degree mlength2 braid system having finite Hurwitz orbit.
1. Ifm=3,#S-B,) <6
2. Ifm=4, #S-By) <8.

The above upper bounds are exactott(o?0,)-By) = 6 and #(61,0203)- By) = 8.
We remark that there is no universal bound foB#(@.) - B, if we do not fix the de-
greem. Form > 4, the size of the Hurwitz orbit of the braid system,(o,03- - -om-1)
is 2m.

5.2. Normal form of periodic 3-braids. Next we study degree 3 braid systems,
where difficulties due to the fadBs is not abelian arise.

Recall that the centralizer of a 3-bra@lis abelian unles$ is central inBz. Our
classification result relies on this special featureBaf In this subsection, we briefly
summarize the dual Garside structureBafand the left normal forms and prepare some
lemmas which will be used. See [2] for details.

Let a1 = 01, @3 = 02, &1,3 = 0, 0102 and § = ay 23 3 = A381,3 = 31,38 2-
Using the braidSa; », a2 3, &1,3}, the braid groupBs; is presented by

Bs = (a1,2, @3, @1,3 | @1,082,3 = @,381,3 = a1,381,2)

Each 3-braid8 € Bz has the one of the following unique word representabig),
called the (left-greedy) normal form.
8maflzaf23a£33af42 ---alk,
N(B) = |sMarasmafbars - - - alk,
8May a8 g8+ AL
where p; is a positive integer. In the normal form, the integaris called thesupre-

mumof B and denoted by sugj. We defined(B), the depthof g, by d(B) = k.

Lemma 2. For a periodic 3-braid g, if d(B) # 0, d(B) + sup@) = 2 (mod 3)

Proof. Letp be a periodic 3-braid and = sup@), d = d(8). We only prove
s =0 (mod 3) case. Other cases are similar. Assume dh#t2 (mod 3). Then by
taking a conjugation by, we can assume that the normal form @fis either

8% apy---aly or
N(B) = { ' '

35 4P P
§¥ar,---ap,.
In either case, the normal form @ is given by

N ('36) _ 18s' (aflz . a;ds) (a]'_)’lz ... a;da) - (af’lz . a;dg) or
5% (ary - - - af,d; ") (afy- - azp,d; ) (arse - aby).
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Therefore, is not periodic. [l

Now we prove the key lemma which plays an important role inviprg our finite-
ness results for degree 3 braid systems.

Lemma 3. Let o be a periodic3-braid whose period i8. Then forg, y € Bs,
not all of By, g%y, ﬂ“zy are periodic unless eitheg or y belongs to Z«).

Proof. Assume that botj andy do not belong toZ(«). By considering a con-
jugate of the braid system, we can assume that §P and the normal form of/ is
written as

N(y) = 8%f%al%---aP,.

Since bothy and 8 do not commute withx = §P, we obtaind(y) # 0 andd(B) # O.
Now let us denote the normal form ¢f by

_ b, d

N(B) =48"---q).
Then for some distincg, f € {1,2,3, the normal forms of**" andg*'* are given by
f
N ") =4 a, N(B° ")=6"--a],
Now the normal forms of8**y and %'y are written as
e f
N(B*y) = 8°H9. .. agfrplals -afk, N(B* y) = 8°79.. ag 3af12a1 5o alk.

Thus, supg®y) +d(8*y) =b+g-+q-+k—1 and supg®' y)+d(8’ y) = b+ g+
q + k. By Lemma 2, we conclude that not both pf'y and ﬂ‘sfy are periodic. [

5.3. Exponent sum restriction. In this subsection, we study the exponent sum
of the entries of braid systems having finite Hurwitz orbite \@bserve the following
simple, but crucial lemma about degree 3 braid systems gdunite Hurwitz orbits.

Lemma 4. LetS = (By,...,H8) be a degree3 braid system having finite Hurwitz
orbit and assume that all of; are not central in B. If e(8,) +e(8i,) +- - +e(Bi,) #
£2,3 (mod 6)for somel <i; <i;<---<ix =1 (1 <k <), then all of its entryp;
are mutually commutative.

Proof. With no loss of generality, we can assume t{gt) +e(B,)+- - - +e(Bx) #
+2, 3 (mod 6). First we show that, commutes withBy.1. Let C = B182 -+ Br_1.

Using the result of Eilenberg [4] alluded to above and thedtlyesis on the ex-
ponent sum, the partial Coxeter elemehs, - - - B« = CpBx is non-periodic or central
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in Bs. Thus gk belongs toZ(C). Similarly, by considering the partial Coxeter element
of S-akz we obtain that,Blﬁ3k+1 also belongs taZ(C).

First we consider the cage is periodic. Since we have assumed tj#atis non-
central, soC is also non-central. This implieZ(C) is an infinite cyclic group gener-
ated by an element having non-zero exponent sum. Thus wdudeng, = ﬂfk“, S0
Bk and Bx.1 commute.

If C is pseudo-Anosov, theﬁglﬂ,fk“ has the dilatation 1 and zero exponent sum,
hencef 10 = 1.

Finally, if C is reducible, thergx,1 andC preserve the same essential submanifold
becausegy and C preserve the same essential submanifold. By this implies that
Bks1 also belongs taZ(C). Thus, Bk and kL1 commute.

For eachi < k < j, there exists a braid € By x B, x C By such thatS - o =
(B1y -+ By Bis Bjy - - -+ B). So from the above argumeng; commutes withp;.
Therefore all entries o8 commute. O

This lemma imposes a strong restriction on the exponent gomdulo 6) for non-
commutative braid systems having finite Hurwitz orbit.

Proposition 2. There are no irreducible braid systems with degB&dength > 5
having finite Hurwitz orbit.

Proof. For a braid syster§ = (81, B2, ..., A), having the length > 5, we can
always find a sequence of integers<li; <i, <--- <ix <I| (L < k <1) such that
eBi,) + --- + eBi,) # £2,3 (mod 6). By Lemma 4, this implies all entries 6&f
commute, saS is reducible. O

This proves the assertion 3 of Theorem 3.

5.4. Degree 3, length 3 braid system.Let S = (81, B2, B3) be a length 3, de-
gree 3 irreducible braid system having finite Hurwitz ortWe denote the full Coxeter
elementp; 8,83 by C. As is described in Section 3, we consider the action of tin ra
two free groupF = F, generated by; = o? andc; = o; ‘o501.

To treat degree 3 braid systems, it is convenient to congigerquotient group
B; = Bs/(A?) because the centraliz&l(g) of a non-trivial elementf4] € B} is a cyclic
group. Fore,pB € Bz, we denote byr = 8 if « and 8 defines the same elements B).

5.4.1. Orbit graphs. The Hurwitz orbitS - F is described by an oriented, la-
beled graphG, which we call theorbit graph of S. The set of vertices o5 consists
of the set of orbitsS - F. Two verticesS and S’ are connected by an edge oriented
from S to S’ labeled by 1 (resp. 2) i§-¢c; =8 (resp.S-c, = §’). We will classify
the orbit graphs of irreducible braid systems of the degrem@® the length 3.
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Fig. 3. Forbidden graphs.

A simple vertexof G is defined as a verte¥ such thatS-c = S holds for some
i =1,2. Ani-path is an edge path ofs having the same labél (i = 1, 2). An
alternate pathis an edge-path whose labels alternate. We call a clogedh of length
3 atriangle. A triangle isspecialif all vertices of the triangle are non-simple.

First of all, we study the fundamental properties of orbiamrs.

Lemma 5. LetS = (B1,82,83) be an irreducible braid system having finite Hurwitz
orbit. Then the orbit graph G af has the following properties.
1. Every closed i-path in G has the length at m8stand the length2 closed i-path
and length3 closed i-path does not occur simultaneously.
2. Every alternate path of length2 must be a loop.
3. There exist no subgraphs of the folifal)—(F4)

Proof. The assertion 1 follows from Proposition 1, and treegfon 2 follows from
the assertion 3 of Theorem 4. If there exists a subgraph dbthe (F1), then there exists
a vertexS’' = (B1, B2, B3) such thatS’-(c;cz) = S’ holds. However this implieg;, 8, and
B3 commute, hence it contradicts the assumption &ias irreducible. The non-existence
of the other subgraphs (F2), (F3) and (F4) are proved by thdasiway. ]

We remark that the orbit grapd has a closed 1-path of the length 2 (resp. of
the length 3) only ife(B1) + e(B2) = 3 (Mmod 6) (respe(B1) + €(B2) = £2 (mod 6)).
Similarly, G has a closed 2-path of the length 2 (resp. of the length 3) ibréys;) +
e(B3) = 3 (mod 6) (respe(Bi) + e(B3) = £2 (mod 6)).

To extract further restrictions of the orbit graph, we cdesithe exponent sums.
For an irreducible braid system having finite Hurwitz orlfiipm Lemma 4, all possi-
bilities of the exponent sum modulo 6 are the following.

(£2, +£1, +1) - (a)
) (#1, £2, £1) -+ (b)
(e(B1), e(B2), &(B3)) = (1,41, £2) -~ (0)

(0, £2, £2), (2, 0,£2), (£2, £2, 0), (£1, £1, £1) ---(d)

We call a braid system whose exponent sum is a pattern (a) &-(@&riodic sys-
tem Similarly, we call a braid system whose exponent sum is #&epatb), (c) and
(d), (2,3)periodic system(3, 2)}periodic systemand (3, 3)periodic systentespectively.
Now we study each case separately.
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Fig. 4. Orbit graphs of (2, 2)-periodic systems.
5.4.2. (2, 2)-periodic systems.

Lemma 6. Let S be a (2, 2)periodic system having finite Hurwitz orbit. Then
S’ (c1¢2)° = & holds for all S’ € S-F. That is every alternate path of length must
be a loop.

Proof. LetS’ = (B1, B2, B3). Then its Coxeter element is a periodic braid with
period 3 andpBy, Bz € Z((B253)%). Therefore by Lemma 5 - (c;¢,)° = S. O

Proposition 3. For a (2, 2)periodic systemS having finite Hurwitz orbit the
orbit graph G is either(A) or (B) in Fig. 4 Both (A) and (B) are realized as the
orbit graph of a braid system.

Proof. The orbit graphs of (2,2)-periodic systems have ramg¢iles. By Lemma 5
and 6, if there are simple vertices &, we obtain the graph (A). Similarly, if there
are no simple vertices G, then by Lemma 5 and 6, we obtain the graph (B). The
graph (A) appears as the orbit graph of the braid systefn d;, o), and the graph
(B) appears as the orbit graph of the braid systenwy, o1, 02). []

5.4.3. (2,3)- and (3, 2)- periodic systems.Next we consider (2, 3)- and (3, 2)-
periodic systems. For simplicity, we consider (2, 3)-peidosystems. The orbit graphs
of (3, 2)-periodic systems are the same except that the fate @ndc, are interchanged.

Lemma 7. LetS = (B1, B2, B3) be an irreducible(2, 3)periodic system having
finite Hurwitz orbit. Then
1. §- (C1C2)2 ;é S.
2. S.(c1cp)? is a simple vertex if and only if is a simple vertex.

Proof. SinceS’ is a (2, 3)-periodic system, its Coxeter eleménts periodic with
period 3 andgy, s € Z((B2B3)2). Thus,S - (c1¢2)? = (BS', BS°, BS). S0 S - (c1c2)? is
a simple vertex if and only ifS is a simple vertex. IfS =S -(c1¢,)?, then gy, B, and
B3 commute, hence it contradicts the assumption thas irreducible. O
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Fig. 5. Orbit graphs of (2, 3)-periodic systems.

Proposition 4. If S is a (2, 3)periodic system having finite Hurwitz orbithen
the orbit graph G is eithel(C) or (D) in Fig. 5 Both (C) and (D) are realized as an
orbit graph.

Proof. First we consider the case tHathas a special triangle. Lep{, B2, B3)

be a vertex of a special triangle. Thefyf, (51 2 B1 and ﬂéﬂflﬁ?)zﬂl are periodic.
From Lemma 3, this implies that eithgp or ,31 belongs toZ(B3B1). Sincep; and B3
do not commute, we conclude that belongs toZ(B381).

Since B3B8, is a periodic braid with period 3, by taking an conjugationtiod braid
system, we may assume that = 381 = 6*1. Then the orbit graph of the braid sys-
tem (81, 8%1, 6%1p1) is the graph (C). The graph (C) is realized as the orbit grafph
the braid systemot, o107, 01).

Next we assume thaB has no special triangles. Then by Lemma 5 and 7, the
graph must be the form (D). The graph (D) is realized as thé griaph of the braid
system &1, o2, 02). O]

5.4.4. (3, 3)-periodic systems. Finally, we consider the orbit graph of (3, 3)-
periodic systems.

Lemma 8. LetS=(B1,pB2,B3) be a(3,3)periodic system having finite Hurwitz orbit.

1. (&(Br), e(B2), &(B3)) = (£1, £1,+1) (mod 6)
2. S-(c1c)® is a simple vertex if and only i is a simple vertex.

Proof. Assume that the exponent sum satisfies
(e(B1), &(B2), &(B3)) = (0, £2, £2), (£2, 0,+2), (£2, £2,0) (mod 6).

Then, the Coxeter elemef@ of S is periodic with period 3, ang,, B3 € Z((8253)3).
So by Lemma 1S - (¢1¢)° = S holds.

First of all, we show that the orbit graphs of such (3, 3)-péic systems have no
special triangles. Assume that there exists a specialgigalabeled by 2. LetS =
(B1, B2, B3) be a vertex of a special triangle. Then as in the proof of &sitjpn 4, we



FINITE HURWITZ ORBITS 629

(E")

T
’ bl

a

Fig. 6. Orbit graphs of (3, 3)-periodic systems.

may assume tha$ = (B, §*1, s*1;%) by taking a conjugation of the braid system.
Let T be a triangle formed by the vertices, S-c; and S - cf. Suppose thafl is

special. Thengy(518;Y), P9 ) (s=1pL) and g0 (s+1p-1) are periodic, so by
Lemma 3,p; or §*181 commutes withp 8%, This implies 8 and § commute. If

T is non-special, the*™ or g™ commutes withs=1g;L. Using the fact that
B18*1 is a periodic braid with period 3, in either case, we obtaiat tfy commutes
with 8. This contradicts the assumption th&tis irreducible. The non-existence of
special triangles labeled by 1 is similar.

Then it is impossible to construct an orbit gragh which satisfies all required
properties
1. G satisfies the condition in Lemma 5. In particular, all closeghaths inG have
the length 3 or 1i(= 1, 2).
2. G has no special triangles.
3. S-(c1c)® = S holds for all vertexS in G.
So irreducible braid systems having such exponent sumsotdmave finite Hurwitz
orbit. This proves 1.

Now, the Coxeter elemer@@ of S is periodic with period 2 ané(82) +e(B3) = +2
(mod 6). Thus,S - (c1¢2)® = (BS, BS, BS) holds. SoS is a simple vertex if and only
if S-(c1c0)2 is a simple vertex. O

Proposition 5. If Sis a(3,3)periodic system having finite Hurwitz orpthen the
orbit graph G is the form(E) in Fig. 6. The graph(E) is realized as an orbit graph.

Proof. If there exists a special triangle in the orbit gratiten as in the proof
Lemma 8, eitherB, or Bz is periodic. However, we have shown that &ig,) =
e(B3) = £1 (mod 6) in Lemma 8, this is impossible. Thus, the orbit grdgls no
special triangles.

So by Lemma 5, the orbit graph must have a subgraph of the f&fnir( Fig. 6.
Non-existence of special triangles implies that eithesr a’' (resp.b or b') is a simple
vertex. Ifa andb are simple, then we obtain a graph (E). The graph (E) is redlas
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the orbit graph of the braid systerr; (o>, 01). The other cases cannot occur, because
it violates the condition in the assertion 2 of Lemma 8. [l

Now we have classified all orbit graphs of degree 3, lengthr&dircible braid
systems. Summarizing, we obtain the following result.

Proposition 6. Let S be an irreducible braid system of degr8elength 3 which
has finite Hurwitz orbit. Ther#(S - Bg) < 162

Proof. From our list of the orbit graphs, 8¢ F) < 9 holds for all irreducible
braid system of degree 3, length 3 having finite Hurwitz orince P; = F; x F, =
(ag3) x F, #(S - P3) < #(S - (az,3)) -9 holds. Now #§ - (a2 3)) < 3, so we conclude that
#(S-B3g) <[Bs: P3]-3-9=162. ]

5.5. Completion of proof. Now we complete the proof of Theorem 3. The last
step is to study length 4 braid systems.

Proposition 7. Let S be a degree3, length 4 irreducible braid system having
finite Hurwitz orbit. Ther#(S - Bs) < 648

Proof. From Lemma 4, the possibility of the exponent sum ntodufor irredu-
cible length 4 braid systems having finite Hurwitz orbit is £, ¢, ¢), ¢ = £1. Let
S = (B1, B2, B3, Bs). We may assume thats and 8, do not commute hencgzf, is
periodic. Moreover, sincefq, B2, B3) is a (3, 3)-periodic system, so by the orbit graph
(E) in Fig. 6, we may also assume th&t and 8, commute. In particularg, 8, is non-
periodic, andB18, does not commute withB384. Assume that the all partial Coxeter
elementsC1 23 of S, S-02 and S - o4 are periodic. That isp128s, ﬂ1ﬂ2ﬂ§ﬁ3ﬂ“) and

BB are periodic. Then, by Lemma 3, eithgs or 18, commute withS3fs,
which is a contradiction. Hence we may assume b3 is non-periodic, s@1, f2
and B3 commute.

We consider inBj. Let us putg; = BP, B, = B9, B3 = B" and B, = y. Since
S is irreducible,y does not commute witl. Therefore, all of8.y, B3y, B2B3y are
periodic. Then the exponent sum argument shows that theindseare 3, 3, 2 respect-
ively. Thus we have an equalityd{y)® = (8" y)® = (89*"y)? = 1. From this equal-
ity, we obtain g'yB" = yB9y. Similar argument forg; and B3 provide an equality
B"yB" = yBPy, hence we concludgP = g9. Similarly, by considering3; and 8., we
obtain g% = B". Hence the equality; = B, = B3 holds.

Let G be a subgroup oBj generated bysP and y. Then the mapr: B; — G
defined byz([o1]) = BP and z([02]) = ¥ is a surjective homomorphism. Now the
map t induces a surjection between Hurwitz orbitg,(o1, 01, 02) - P4 and S - Py.
Thus, we conclude that &(- B,) < 4! #(01, 01, 01, 02) - P4. A direct calculation shows
#(o1, 01, 01, 02) - P4 = 27, hence we conclude &( B;) < 648. ]
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REMARK 1. We remark that the upper bound 648 is achieved by the byaid s
tem (o1, A%01, A%y, A%0y). The above proof implies that the orbit graph of an irre-
ducible braid system of degree 3, length 4 with respect toHbewitz P4-action is
obtained as a quotient of the orbit graph ef,(o1, 01, 02). Since the possibilities of
such graphs are finite, we can classify the whole patterndqefotbit graphs forP,-
action. This implies, theoretically we can list all the pbgiies of the orbit graphs of
finite Hurwitz orbits.

Proof of the assertion 2 of Theorem 3. The assertion 1 and alerady proved.
Since we have already studied the irreducible case, we oy o consider the re-
ducible case. LetS = (81, ..., Bn) be a reducible system having finite Hurwitz orbit
andl uJ =1{1,2,...,n} be the partition appeared in the definition of a reducibleesys

Assume thaig; and Bi; do not commute. Then we may assume thate I. Now
for j € J, B; commutes with boti8;, and ;.. Now g and g does not commute implies
that Z(B;) N Z(Bi') = Z(Bs), so Bj € Z(Bs) for all j € J. Thus, we have one of
1. All the gi commute with each other.

2. There existy <iz<---<ix (2<k=<4) such that the braid system(, Bi,, ..., Bi,) IS
irreducible braid system having finite Hurwitz orbit, afide Z(Bs) for j ¢ {i1,iz,...,ix}.

For the first case, we get&( B,) < n!. In the second case, we use the inequality
of the size of finite Hurwitz orbit for reducible systems wentiened at Section 1. By
Proposition 6 and 7, we get &( B,) < 27-n!. O
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