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Abstract

In this paper, we develop a moduli theory of transverse &iras given by cali-
brations on foliated manifolds, including transverse Gefdau structures. We show
that the moduli space of the transverse structures is a $nmoanifold of finite di-
mension under a cohomological assumption. We also provea Torelli type the-
orem. If the foliation is taut, we can construct a Riemannagtric on the set of
transverse Riemannian structures. This metric inducestardie on the moduli space
of the transverse structures given by a calibration. As asliegiion, we show the
moduli space of transverse Calabi—Yau structures is a Haffisthd smooth manifold
of finite dimension.

1. Introduction

Kodaira and Spencer introduced the deformation theory ofpaet complex mani-
folds [12]. They showed that there exists a deformation ohglex structures param-
eterized by a smooth finite dimensional space which is vetsaler a cohomological
assumption. Kuranishi proved a general theorem on theesxistof a versal deformation
space for any given complex structure, where the versalrighefiton space (Kuranishi
space) is given by an analytic space which is not necessarilyoth [13]. Bogomolov,
Tian and Todorov proved that the Kuranishi space of Calahi-3fructures is smooth by
using the Kodaira—Spencer—Kuranishi theory [1], [14] ab@][ Goto provided a defor-
mation theory of Calabi—Yau, hyperkahl&; and Spin(7) structures by a method which
is different from the deformation theory of complex manifol[10]. He considered these
structures as systems of closed differential forms (catlgibrations, and showed that
deformation spaces are smooth and moduli spaces becomé¢hsmanifolds under a co-
homological condition.

In the geometry of holomorphic foliations, the theory of atefiations was initiated
by Kodaira and Spencer. Duchamp—Kalka [4] and Gémez-MonsH@jved a weak ver-
sion of Kuranishi’'s theorem for deformations of transvirdelomorphic foliations on
compact manifolds. Girbau, Haefliger and Sundararamantrmtsd the Kuranishi space
of deformations of transversely holomorphic foliations @mmpact manifolds [8]. In a
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previous paper [18], we provided a deformation theory ohdxerse geometric struc-
tures other than transversely holomorphic structures. Wsidered transverse geometric
structures defined in terms of closed forms and called surded formdransverse cali-
brations The transverse calibrations include transverse Calabi—yperkahler, and
Spin(7) structures as examples. By modifying Goto’s defdiom theory, we obtained
the deformation theory of transverse calibrations. We fixddliation on a manifold and
deformed the transverse calibrations on it. One of the adgenof our approach was
that we could use the Hodge theory on a foliated manifold £8).a result, we obtained
a generalization of Moser’s theorem and a smooth deformafiace of transverse cali-
brations. El Kacimi-Alaoui, Guasp and Nicolau give a defation theory of transversely
homogeneous foliations defined by systems of 1-forms, warehnot transverse calibra-
tions [7].

In this paper, we discuss the moduli space of transverseratiins and provide
a criterion for the moduli space to be a Hausdorff and smoodimifold of finite di-
mension. If the foliation is taut, then we can construct anRienian metric on the set
of transverse Riemannian structures. This result is a génation of Ebin’s results
in Riemannian geometry to effect that there exists a Riemanmetric on the set of
Riemannian structures on a closed manifold [5]. The metricttee set of transverse
Riemannian structures induces a distance on the moduliesphdransverse calibra-
tions. As a result, the moduli space becomes Hausdorff.

Let M be a closed manifold of dimensiom ¢ q) and F a foliation onM of co-
dimensiong. The foliation F is defined by datdU;, fi, T, %;} consisting of an open
covering {U;}; of M, a g-dimensional transverse manifoltl, submersionsf;: U; —

T and diffeomorphismsy;j : fi(Ui NU;) — f;(U; NU;) for Ui NU; # @ satisfying
fi = yj o fi. A transverse structur@n (M, F) is a geometric structure ofi which
is invariant byy;. For example, a transverse Kéahler structure is defined by ldeKéa
structure onT preserved byy;. A foliation F is called transverse Kéahler if there
exists a transverse Kahler structure dv,(F). On a closed manifoldM with a trans-
verse Kahler foliationF, if the basic canonical line bundle is trivial, then therésexa
transverse Calabi—Yau structure o¥l ,(F) by applying the basic version of Yau’s the-
orem [6]. Remark that we can give alternative definitionsdoch transverse structures
in terms of basic sections of basic bundles owt, (F) (see Section 2). In particu-
lar, any transverse Calabi—Yau structure is characterimed pair of two closed basic
forms (see Definition 6.3).

We apply Goto’s method to transverse structures on a fdliatanifold (M, 7). Our
idea is to consider basic differential forms dd (F) instead of differential forms oM.
Let W be ag-dimensional vector space anfg® W* the space of skew-symmetric tensor
of the dual spac&Vv*. Then the groupG = GL(W) acts on diagonally the direct sum
@!:1/\“ W*. Let dy = (¢1,...,¢) be an element o@!zl/\p‘ W* andO (= Ap(W))
the G-orbit through @\ with an isotropy groupH, so O is the homogeneous space
G/H. On the foliated manifold M, F), we have a completely integrable distribution
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F of dimensionp and the quotient bundl® = TM/F over M. Let An(M, F) be a
fiber bundle J, .y Ao(Qx) and &x the setl'(M, Ap(M, F)) N @!:1 /\b of sections
of Ao(M, F) which are basic forms, wherd 5 denotes the space of baspg-forms
on M.

DerINITION 1.1. A system® of differential forms on M, F) is called atrans-
verse calibration associated with the orlgit if ® is an element o€» whose compo-
nents are closed as differential forms.

Let 9o(M, F) be the set of transverse calibrations associated @ittWe denote
by Diff(M, F) the group of diffeomorphisms preserving the foliatigh We define
Mo(M, F) to be the quotient ofiip(M, F) divided by the action of Dif(M, F):

Mo(M, F) = Mo(M, F)/Diffo(M, F)

where Diffy(M, F) denotes the identity component of Difl 7). The sethin(M, F)

is the moduli space of transverse calibrations associaidd @. We also give defin-
itions of an orbit® being elliptic (Definition 3.1), metrical (Definition 3.4)nd topo-
logical (Definition 3.6). We can consider the m&p Mo (M, F) — @, HE (M) which

is defined by corresponding to the basic de Rham cohomology clads.[ This map
P induces a map

P: Mo(M, F) - P HE (M)
i
since Diffy(M, F) acts trivially on the basic de Rham cohomology groups. Tl m

P is called aperiod map We assume thaM is a closed oriented manifold and is
a Riemannian foliation. Then we can show the local Torelietytheorem:

Theorem 1.2. If O is elliptic and topological then the period map P is locally
injective.

We can also prove
Theorem 1.3. We suppose thaF is taut. If an orbitO is elliptic, metrical and
topological then the moduli spac®in(M, F) is a Hausdorff and smooth manifold of

finite dimension.

We can regard a transverse Calabi—-Yau structure MnX) as a transverse cali-
bration associated with the orbidcy of Calabi—-Yau structures. Then we obtain

Theorem 1.4. The moduli space of transverse Calabi—Yau structure{Mn.F)
is a Hausdorff and smooth manifold of finite dimensioFifis taut.
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This paper is organized as follows. In Section 2, we prepamesdefinitions
and results in foliated geometry. In Section 3, we introdtre@msverse calibrations on
(M, F). Each transverse calibration induces a deformation cexapfhen we see that
the deformation complex is a subcomplex of the basic de Rhamplex. In Section 4,
we construct a Riemannian metric on the set of transversmdirian structures on
(M, F). In Section 5, we provide a sufficient condition for the mibdipace to be
a Hausdorff and smooth manifold (Theorem 5.6) and also st@mdcal Torelli type
theorem (Theorem 5.5). In the last section, as an applicatiorheorem 5.6, we prove
that the moduli space of transverse Calabi—Yau structune@vi ) is a Hausdorff and
smooth manifold (Theorem 6.5). We study some examples ofsvexrse Calabi—-Yau
structures and compute the dimension of their moduli spaces

2. Preparations on foliated geometry

In this section, we will give a brief review of some elemegtagsults in foliated
geometry. For much of this material, we refer to [6], [15] dad]. We assume that
is a closed manifold of dimensiorp(+ q) and F is a foliation onM of codimension
g. We denote byF a completely integrable distribution of dimensignassociated to
the foliation F.

2.1. Basic vector fields and basic forms. A vector fieldu € T'(T M) is foliated
if [u, v] € T(F) for any v € T'(F). We denote byl"(M, F) the set of foliated vector
fields on M, F). Let X(M, F) be the quotient space af(M, F) by I'(F):

XM, F) =T(M, F)/T(F).

We call an elementi of X(M, F) a basic vector fieldon (M, F).

A differential k-form ¢ € /\k on M is abasic formon (M, F) if the interior prod-
ucti,¢ and the Lie derivative_,¢ vanish for anyv € T'(F). Let /\"B be the set of basic
k-forms on M, F):

A

For a sectionu € T'(T M/F) and a basik-form ¢ € /\E, the interior produci,¢ and
the Lie derivativeL ¢ are defined by thek(— 1)-form ig¢ and thek-form Lg¢ for a
lift G e '(TM) of u, respectively. Ifu is a basic vector field, then¢ and Ly¢ are
basic forms.

We define doliated diffeomorphism fas a diffeomorphisnf of M preserving the
foliation F, i.e., f.(F) = F. We denote by Diff\M, F) the group of foliated diffeo-
morphisms:

i, =L,p=0, Vv e r(F)].

Diff(M, F) = { f € Diff(M) | f.(F) = F}.
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We can define an action of Diff{, F) on the space of basic form&5 by pull-back.
Foru € X(M, F), any lift G € T'(T M) of u induces a one parameter family of foliated
diffeomorphismsf;. Then the Lie derivativd_,¢ for ¢ € /\kB may be regarded as the
limit (d/dt) f,"¢|i=o by the one-parameter family;.

2.2. Basic bundles and basic sections.Let:: P — M be a principal fiber bun-
dle andw a connection form onP. The horizontal subbundléd is defined by the
subbundle Kew of the tangent bundld P. Then the derivative, restricted toH is
the isomorphism fromH to T M. Hence we have the subbundie= (;*(F) of H over
P. If F is integrable, therF induces the foliationF on P.

DEFINITION 2.1. A principal fiber bundleP is foliated if there exists a connec-
tion form w on P such that the bundlé is integrable. Moreover, if the form is
basic with respect to the induced foliatiof, then the bundleP is called basic

A vector bundler: E — M is calledfoliated (resp.basiqg if the associated prin-
cipal bundlePg is a foliated (resp. basic) bundle. In the caseE — M is a foliated
vector bundle, the bundl®z — M admits a foliationF on the total spacé: by the
definition. This foliationF induces a foliationFg on E. In addition, if E is basic then
there exists a connectiov of E whose connection form is basic. Such a connection
V is called abasic connectioron E.

DEFINITION 2.2. LetE be a basic vector bundle with a basic connecfionA
sections € I'(E) is calledbasicif V,s =0 for anyv € I'(F).

We denote byI'g(E) the set of basic sections &. Remark that for a basic bundle
E, the dual bundleE*, exterior powers/\k E* and symmetric covariant tensog§E*
are also basic bundles, whekdas non-negative integer. We consider a hermitian metric
h on E as the section of a basic bundle. Then we &lk basic Hermitian bundlef
the hermitian metrich is basic.

2.3. Riemannian foliations. Let Q be the normal bundl@ M/F andz: TM —
Q the natural projection. We define an actioni@f) on any sectiow € I'(Q) as follows:

L,u = x[0, v] € T(Q)

for any vector fieldv € I'(F) wheret € I'(T M) is a lift of u, i.e., a vector fieldu €
(T M) with 7 (0) = u. This action is independent of the choice of lifis I'(T M) of

u. Let g be a Riemannian metric oM. Then we have an orthogonal decomposition
TM = F! @y F and the isomorphisma: Q — F. Set a metricgg = o*gg: for the
induced metricge: on FL. Then the mapr: (Q, do) — (F*, gr1) is an isometry. Let
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VM Dpe the Levi-Civita connection with respect tp Then we introduce a connection
V on Q as follows:

L,u, v e I'(F),
@ Vol = {n(vau), v e P(FL)
for u € I'(Q), wheretd € I'(T M) is a lift of u. In general, the connection (1) is not
necessary basic.
A foliation F is Riemannian if the datgJ;, fi, T,y ;} satisfies thal is a Riemann-
ian manifold and eacly ; is an isometry. A Riemannian metrigis calledbundle like
if L,go = 0 for anyv € I'(F) where the tensok,gq € I'(S*Q*) is defined by

) (ngQ)(ua w) = v(gQ(u1 w)) — gQ(LvU, w) — gQ(U, L,w)

for u,w € I'(Q). It turns out thatF is a Riemannian foliation if and only if there exists
a bundle like Riemannian metrig on M. For a bundle like metriqg, the connection
V in (1) is basic. Henc&) is a basic vector bundle for a Riemannian foliatidn It

is easy to see that any basic section/p‘f Q* is a basick-form on M:

k k
/\B - FB(/\ Q*)'
The spacd g(Q) is nothing butX(M, F):
X(M, F) =Ts(Q).

So we also call an elemesstof I'g(Q) a basic vector field. Moreover, a basic vector
field s € I'g(Q) is identified with a foliated vector fieldis = o(s) € T'(F1) by the
isomorphismo. Therefore we have the following identification:

3 I's(Q) ~ {ue I'(FY) | [u, v] € I'(F), Yv € I'(F)}.

From now, we consider any basic section@fas a vector field oM under the identi-
fication of (3). Then a basic vector fielde I'g(Q) induces a one parameter family of
foliated diffeomorphismsf; since a vector fieldi e I'(F*) associates a one parameter
family of diffeomorphisms.

2.4. Transversely elliptic operators. Let E be a basic bundle of rani. A
linear mapD: I'g(E) — I'g(E) is called abasic differential operator of order if,
in local coordinatesxg, ..., Xp, Y1, ..., Yq) for which F is given by the equations
dy; = -+ =dyy = 0, D has the following expression:

glsl
D= S —
Z as(y) 0%tyy - -+ 3quq

Is|=I
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wheres = (s;, ..., &) € N9 and eachas is an N x N-matrix valued basic function.
We define the principal symbol db at z = (x, y) and the basic covectdr € Q; as
the linear mapr (D)(z, §): E; — E; given by

o(D)(z &)n) = D &+ & as(y)(n)

Is|=I

for any n € E;.

DerINITION 2.3. A basic differential operatoD is transversely elliptic if
a(D)(z, &) is an isomorphism for everg e M and & (# 0) € Qj}.

We suppose thakE is a Hermitian basic bundle with a hermitian metticand
| =2I". Then a quadratic fornrA(D)(z, £): E, — C is given by

A(D)(z, §)(n) = (-1) (¢(D)(z, £)(n), n).

DEFINITION 2.4. A basic differential operatoDd is strongly transversely elliptic
if A(D)(z, &) is positive definite for everg € M and every non-zerg € Qj.

Let {(EX, Dx)}k=0.1... q be a family of Hermitian basic bundles and basic differen-
tial operators of order 1 with the differential complex
(4) c 2 rg(BY) 25 mg(BRHL) 25
where Dy: I'g(EX) — I'g(EX) for k =0, 1,...,q. We denote by the principal symbol
o (Dk)(z, &) of Dx. Then the complex (4) ifransversely elliptidf the symbol sequence
L E‘Q“%

- — E;, —

is exact for anyz and any non-zerg. Remark that the complex (4) is transversely
elliptic if and only if the basic operatdry = Dy Dx+ Dyx_1D;_, is strongly transversely
elliptic, where D is the formal adjoint operator. We have the Hodge theory far t
transversely elliptic complex (4) with the cohomologf(E*):

Proposition 2.5 ([6, Theorem 2.8.7]). (i) The kernelH of Ly is finite dimen-
sional and we have an orthogonal decomposition

I'g(E¥) = 1§ @ Im(Dy_1) & Im(Dy).

(i) The orthogonal projectiomg(EX) — H induces an isomorphism from KE*)
to HY.
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2.5. Transverse Riemannian structures. A Riemannian foliation is character-
ized by the following structure:

DEFINITION 2.6. A symmetric 2-tensof € I'(S?Q*) is atransverse Riemannian
structure on(M, F) if § is positive definite onQ andL,§ = 0 for anyv € I'(F) where
L,§ is defined by (2).

A bundle like metricg induces a transverse Riemannian structygeon (M, F).
Conversely, for a transverse Riemannian structiireve can take a bundle like metric
g such thatgo = §. Given a transverse Riemannian structgeg on (M, F), then the
complexificationQ ® C is a basic hermitian bundle, and ;;\)" Q*®C is. Hence from
Proposition 2.5 we have

Proposition 2.7 ([6, Theorem 3.2.5]). (i) The kernerH‘é of the basic Laplacian
dd* +d*d on /\kB is finite dimensional and we have an orthogonal decompasitio

/\kB = 1% @ Im(d) & Im(d").

(i) The orthogonal projection/\'é — H'g induces an isomorphism from the basic
de Rham cohomology $iM) to HX.

2.6. Transverse Kahler structures. We can associate an action B{F) to any
sectionJ € I'(End(Q)) as follows:

(LyJ)(u) = Lu(I(u)) — I(L,u)

for v e I'(F) andu € T'(Q). If J e I'(End(Q)) is a complex structure o), i.e. J? =
—ido, and satisfies that, J = 0 for anyv € I'(F), then a tensoN; € I'(®° Q* ® Q)
can be defined by

NJ(U, w) = [JU, Jw]Q — [U, w]Q — J[U, Jw]Q — J[JU, w]Q
for u, w € I'(Q), where [i, w]o denotes the bracket[d, w] for each lift G and w.

DEFINITION 2.8. A sectiond € T'(End(Q)) is atransverse complex structure on
(M, F) if Jis a complex structure o, i.e. J? = —idq, such thatL,J = 0 for any
vel(F)andN; = 0.

A foliation F is transversely holomorphic if and only if there exists ansneerse
complex structure onM, F). Thus we may regard a transverse complex structure as
a generalization of complex structures on complex marsfold transverse complex
structureJ on (M, F) give rises to the decompositiohs ® C = @, ,_, Ag° in the
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same manner as complex geometry. We denoteHfy(M) the ¢, s)-basic Dolbeault
cohomology group. We provide the following remark about thiegrability condition
of transverse complex structure.

REMARK 2.9. LetJ be a complex structure d® such thatL,J = 0 for anyv €
I'(F). ThenJ is a transverse complex structure, Ny = 0, if and only ifd(/\lB'O) C

2% A5 which is equivalent tal(AYY) € Ag*® A%% whered denotes the ex-
terior derivative.

DEFINITION 2.10. A pair of sectionsg J) € I'(S?Q*) x I'(End(Q)) is a trans-
verse Kahler structure oM, F) if § is a transverse Riemannian structure ahds a
transverse complex structure ol (F) satisfying

g(-,J-) is ad-closed form

g(Ju, Jw) = g(u, w)
for u, w € T(Q).

A transversely Kahler foliatioF is defined by datg¢U;, fi, T, % ;} with a Kahler
manifold T and local diffeomorphisms; ; preserving the Kahler structure. We remark
that there exists a transverse Kahler structure dnX) if and only if F is a transverse
Kahler foliation. Given a transverse Kahler structugg J{), then /\'g ® C and /\rE;S
are all basic hermitian bundles. Then Proposition 2.5 iespthat each basic Dolbeault
cohomology groupHg (M) is finite dimensional. Moreover, the basic de Rham—Hodge
decomposition holds:

Proposition 2.11 ([6, Theorem 3.4.6]). Let F be a transverse Kéhler foliation
on M. Then there exists an isomorphism

HE(M, ©) = @5 Hg(M).

r+s=k
3. Transverse calibrations

3.1. Orbits in vector spaces. Let W be a vector space of dimensiap We
denote byp the representation d& = GL(W) on the spac@!zl/\p‘ W* where each
AP W* is the space of skew-symmetric tensor of degpgeof the dual spacen*.
We fix an elemen®w = (¢1,..., @) € @::1 /AP W* and denote byH the isotropy
group of dw:

H =(geG|pgdw = du).
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The G-orbit space® = |{pg@w € Bi_, A® W* | g € G} through dy, is regarded as
the homogeneous spak/H. We denote byA»(W) the G-orbit spaceO:

geG}.

For an elementdy € An(W), the tangent spac&y, Ao(W) is given by

Eeg}

whereg is the Lie algebra ofc and p is the differential representation gf We also
define vector spaceEgo(W) and EéO(W) by
v E W}

ae/\kW*,UGW}

|
Ao(W) = {pgfbw cAN w
i=1

l .
EL. (W) = {ﬁgcpo cPN w
i=1

I . —
ES, (W) = {ivcbo: (i) e A" W
i=1

|
i +k—1
EX, (W) = {a niboe @ AT W
i=1

for integersk > 2, respectively. Then we have a complex
(fa0) 0— EJ (W) 5 E3 (W) 5 E2 (W) &5 -
for a formu € W*,

DEFINITION 3.1. An orbit O is elliptic if the complex f4,) is exact for any
nonzero elementi € W* at EéD(W) and EéO(W).

We give some examples of elliptic orbits. Now we assume Wais even dimen-
sional, that isq = 2n.

EXAMPLE 3.2. The set of all symplectic forms oW is an orbit spac&symp,

which is isomorphic to the quotient space Gi(R)/Sp(2, R). For any ®g € Osymp,
the complex £q,) is

0—>/\1W*ﬁ>/\zw*ﬂ>/\aw*ﬁ>---

for any elementu € W*. Thus the orbitOsym, is elliptic.
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EXAMPLE 3.3. A non-zero complexi-form Q € A" ® C is called an SK(C)
structure on Wif the form Q satisfies that

W ® C = Kere 2 @ Kere 2.

where Keg Q2 denotes the spacew e W® C |i,Q2 = 0}. We remark that an SI(C)
structure2 induces a complex structur&, on W defined by

®) Jo(v) = —+/=1v for v e Kere L2,
AV T \V=1v  for veKerg .

ThenQ is an f, 0)-form with respect to the complex structulg. Let Os, be the set
of SL,(C) structures orW. Then it turns out thas_ is an orbit space such that

OsL = GL(2n, R)/SL(n, C).

For any @ € Og|, the complex fs,) iS
-1,0 ,0 -1, , -1,2
0_)/\nl W*ﬁ)/\n W*@/\n llw*ﬂ)/\nlw*@/\nl W*ﬂ).

for any u € W*. Here we regard the elementas an element of\*°w* & A% w*
such thatt = u. So this orbitOg, is elliptic.

DEFINITION 3.4. An orbit O is metrical if the isotropy groupH is a subgroup
of the orthonormal groug>(W) with respect to a metrigy, on W.

The above two example@symp and Og. are not metrical. However, we may have
an example of an elliptic and metrical orbit:

EXAMPLE 3.5. A pair Q, w)e A\g®C @ /\2B is called aCalabi—Yau structure
on W if © is an Sly(C) structure ando is a symplectic structure oW/ such that

Qro=0Aw=0,
Q/\S_chna)n,

w(-, Jo-) s positive definite

wherec, = (1/n!)(-1)"-1/2(2//—1)". Let Ocy be the set of Calabi-Yau structures
on W. Then Oc¢y is an elliptic orbit such that

Ocy = GL(2n, R)/SU(N)

([10, Proposition 4.9]). Thus the orbfdcy is metrical.
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3.2. Transverse calibrations in foliated manifolds. Let M be a closed mani-
fold of dimensionp + g and 7 a Riemannian foliation oM of codimensiong. We
consider the completely integrable distributibnassociated toF and the quotient bun-
dle Q = TM/F over M. For eachx € M, we identify Qx with W = RY. Then, as in
Section 3.1, we have an orbip(Qx) = Ap(W) at x € M for an orbit O. Note that
the orbit A0(Qx) C @, A" Q; does not depend on the choice of the identification
h: Qx ~ W. Then we can defin&/H-bundle A»(M, F) by

AoM, F) = [ Ao(Q) = M.

xeM

Since Ao(M, F) € @; A" Q*, we can consider the Lie derivative and the exterior
derivative for any section afln(M, F) as a differential form. We denote I8, (M, F)
the space of sections odp(M, F) which are basic forms:

Eo(M, F) = I(AoM, AN NP A" Q5.

Let Ker® be a spacdv € TM |i,® = 0} for ® € Eo(M, F).

DEFINITION 3.6. A section® € £»(M, F) is calleda transverse calibration as-
sociated with the orbitO if @ is a closed form such that Kér = F.

We denote by, (M, F) the space of transverse calibrations associated @ith
The group DiffM, F) acts onftn(M, F) by pull-back. Given a transverse calibration
® € Mo(M, F), we can consider the vector spa(E{sx(Qx) at each poinx € M, and
define vector bundles

Es(M, F) = (] E,(Q) > M

xeM

for integersk > 0. Each bundleEg(M,]-') is a basic bundle since its associated principal
bundle is that of the normal bundi@*. It follows that a sectior, ® € I'(EQ(M, F)) is
basic if and only ifv € I'(Q) is a basic section since Kér = F andL,,(i,®) =i,,®

for any w € I'(F). Hence we have

|
Te(ES(M, F)) = {ivep e /\""l Q*
i=1

v e FB(Q)},

|
Ie(E3(M, F)) = {m cPN @
i=1

§e FB(End(Q))}-

We introduce the graded vector spadeg(M, F) = @, EX(M, F). For simplicity, we
shall denote byEX and E the spacesEX (M, F) and Eq(M, F), respectively.
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Proposition 3.7. The module I'g(E) is a differential graded module in

D (P, g*“) with respect to the derivativegd where @ is the exterior deriva-
tive d restricted to the space of the basic forms.

Proof. We prove thatlza € I'g(EX) for all a € I'g(EX1). To show this, it is
sufficient to prove thatlgi,® € I'g(E?') for any element,® e I'g(EP), sincel's(E) is
generated by"g(E®). The basic vector field induces a one-parameter transformation
{ ft} such that eacHf, is an element of Diffl, 7). Then it follows fromd® = 0 that

d
di,® =L, &= —f’®
dt b,

The right hand sided/dt) f;* ®|;—o is contained in the tangent space &(M, F) at
@ since f*® is in £o(M, F). Recall that the tangent space & (M, F) at @ is the
spacel'g(EY). This implies thatdi,® = (d/dt) f* ®|—o € T'g(E?). O]

Thus we obtain a complex
(fe) 0— I'g(EY% o, I'e(EY N I's(E?) &

whered, = dg|gi for eachi. The complex fs) is a subcomplex of the basic de Rham
complex:

0— > T(EY) —* 5 Mg(EY) —2 5 Ig(E2) —2 ...

R

N N A
We denote byHK(54) the cohomology groups of the complexs|:
H¥(#6) = {o € I's(E) | deer = 0}/{d1 € T's(E¥) | B € Ta(EX 1)},
Then we can obtain a map
pl: HY(2e) - @D HE (M)
i
for eachk > 0.

DEFINITION 3.8. A section® € £o(M, F) is topological if p} and p3 are in-
jective. An orbit O is topological if any ® € £»(M, F) is topological.

REMARK 3.9. If O is an elliptic orbit, then the complexi{) is transverse el-
liptic at I'g(E') and I'g(E?), and the operatora\f = di_1d; , + did, are strongly
transversely elliptic fok = 1, 2.
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4. Riemannian metrics on the set of transverse Riemannian stctures

We assume thaM is a closed oriented manifold of dimensiom (= p + q) and
F is a Riemannian foliation of codimensian Let M(M, F) be the set of transverse
Riemannian structures orMi, 7). We denote byS?Q* the bundle of symmetric co-
variant 2-tensors oiQ.

4.1. Completions of M(M, F) and Diff(M, F). At first, we may regard
M(M, F) as a Fréchet manifold which is an open subset of the Frécbates
I's(S°Q*). Now we consider the completioRS(S?Q*) of I'(S*Q*) with respect to
the Sobolev norny| , ||s. This spacel’S(S?Q*) is a Banach space (in fact, a Hilbert
space), and™S(S*Q*) c CKI'(S?Q*) for s > k + m/2. From now, we assume that
s> 1+ m/2. We define

ry($°Q") = rs(s*Q") N C're(s* Q)

where CI'g(S?Q*) denotes the sdiu € CI'(S°Q*) | L,u =0, Yv € I'(F)}. Then the
vector spacel“g(SZQ*) is a closed subspace oF(S?Q*), so it is a Banach space. We
introduce the set

MM, F) = (§ € T3(S*Q*) | §: positive definitg.

Then the setM$(M, F) is an open subset of the Banach sp@$gS*Q*), and so a
Banach manifold.

Secondly, we study the properties of the set DMff(F). In [19], Omori shows that
Diff( M, F) is an ILB-Lie group with the mode{I"(M, F), ['S(M, F), s> 1}. Then we
may obtain a Banach manifold DifM, F) with the modell’$(M, F) for eachs > 1.
The group DiffM, F) acts onM(M, F) by pull-back. This action naturally extends
that of Difff*1(M, F) on MS(M, F). Then we prove that

Proposition 4.1. The action ofDiffST}(M, F) on M3(M, F) is continuous.

Proof. Let M(M) be the set of Riemannian metrics &h. The group Diff(M)
acts onM(M) by pull-back. We use the fact that the action of Difff on M(M) can
be extended to continuous one of Biff(M) on I'S(S*T*M), which is proved by Ebin
in [5]. Let A denote the extended action, that is, the continuous map

(6) A: DiffS*Y(M) x I'S(SPT*M) — I'S(ST*M).

Now the inclusions Diff"}(M, F) c DiffS*(M) and I'§(S?Q*) C I'S(S’T*M) are con-
tinuous. Hence we have a continuous map

Diff S*3(M, F) x T3(S?Q*) — I'S(S’T*M)
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by restricting the mapA to DiffS*1(M, ) and I'3(S?Q*). The image of this map is
in I'3(S*Q*) and the topology of"§(S*Q*) coincides with the relative topology as a
subspace of'$(S’T*M). Hence we obtain a continuous map

A: Diff S*Y(M, F) x I'§(S?Q*) — I'§(SQ%).

This map A induces the continuous action of Dift(M, F) on MS(M, F). This fin-
ishes the proof. []

For any elementd € F;(SZQ*), we define a map
Ag: DiffSTH(M, F) — I'§(S°Q%)
by As(-) = A(-, ®). Then we have the

Proposition 4.2. If ® is a smooth element df3(S?Q*), then Ay: Diff S*{(M, F) —
I'$(S?Q*) is a smooth map.

Proof. The mapA given by (6) induces the smooth map
Ay : DIffS*Y(M) — T(ST*M)

for a smooth elemen® € I'(S?T*M) (cf. [5, p.18]). Since any smooth elemedt of
I's(S?°Q*) can be regarded as smooth oneIdfS*T*M), the mapA¢ is smooth for
any elementd € I'g(S°Q*). By restricting,&d, to DiffSt1(M, F), we consider the map

olpit=-2u. 72 DIffSH(M, F) — I(ST*M).

Then this mapA¢|Diﬂs+1(M’f) is smooth since Diff"*(M, F) is a Banach submanifold
of DiffS*}(M). The image ofA¢|Diﬁs+1(Mﬂ is in ['g(S?Q*) which is a Banach sub-
space of['S(S*T*M). Thus we can get a smooth map

(7) Aslpifrs 1w, ) : DIff (M, F) — Ts(S°Q).
The smooth map (7) is nothing but the még, which completes the proof. [

4.2. Riemannian structures onMg(M, F). We assume the > 1+ m/2. We
recall that M (M, F) is a Banach manifold whose tangent space is identified with
I'$(S*Q*). Each elemeny € M§(M, F) induces a metri¢ , ), on S°Q* and a trans-
verse volume formu, on (M, F). For elementsy and g of I'§(S°Q*) (= T, M), we
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obtain the basig-form («, 8), 1, on (M, F). To integrate this form, we need a vol-
ume form along the foliation. Fix a bundle like metgcon (M, F). Then acharac-
teristic form x~ is defined by

xF(Xa, ..., Xp) = det@(Xi, )i j)

for X; € I'(T M), where{e;} -1, p is an orthonormal basis df with respect tog.
Now we define the Riemannian structure (,, gn M3(M, F) as follows.

(a, /3))/ = /l:/l(a, ﬂ)yﬂy NXF

for any a, B € T'§(S?Q*). The bilinear form (, ) is positive definite and smooth for
y € M3(M, F). However, for anys > 0 the spacd §(S*Q*) is not complete under
(, ). We denote the inner product (, py (, )3. We can find a unique affine con-
nectionV.on Mg(M, F) by a similar argument in p.19 of [5]. Then the connection
V associates an isomorphism

S
D%: J3($°Q") > P S Q" ® $Q°
i=0
where J3(S?Q*) is a basic jet bundle ([6, Theorem 2.3.6]). Reore M$(M, F), we
have the positive definite bilinear form @®;_, S Q* ® S?Q* induced by (, J. Hence,
under the isomorphisrd®, we obtain a positive definite bilinear form (3 dn I3 (s*Q*)
(= T, M%(M, F)). Then the spac&$(S°Q*) is complete under (,S)for eachy €
(M, F) (cf. [5, p. 21]). Thus we obtain the Riemannian metric ¢,o0 Mg (M, F).

4.3. Diffs*}(M, F)-invariant Riemannian structures. Let Diff§™(M, F) be the
identity component of Diff*}(M, F). In previous section, we construct a Riemannian
structure (, § on MZ(M, F). In general, the structure (°)s not Difff)*l(M, F)-
invariant. We will show that this structure (¥ Js Diffé*l(M, F)-invariant if F is a
taut foliation.

DEFINITION 4.3. A foliation F is calledtaut if there exists a Riemannian metric
g on M such that each leaf of is a minimal submanifold of NI, g).

In this case, the Poincare duality holds on basic de Rhamneology groups, i.e.,
if F is taut then there exists a non-degenerate pairid§(M) ® Ha~ (M) — R in-
duced by the integraf,, & A B A xz for « € Ay andp e AL ([15, Corollary 7.58]).
It implies that

(8) /Mda/\xfzo
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for any« € A% We can prove

Proposition 4.4. If F is taut then the Riemannian structuge )s is Diffé“(M,]—")-
invariant.

Proof. At first, we check that (,%)is Diff$™*(M, F)-invariant. For any¢ e
DiffSt*(M, F) and n € A}, we have

9) ¢ n = n+ K(dn) +dK(n) = n 4+ dK(n)

where K is the homotopy operator associated¢tc Diffg“(M, F). Remark that the
form K(n) is basic for any basic formy € /\?3. It follows from (8) and (9) that

/(¢*U)Axf=/(n+dK(n))/\Xf
M M

=/ NN XF-
M

It gives rise that
@0 8B, = [ 008 Bloyiory A 1
= /l;/l (]5*((0{, ﬂ)yﬂy) NXF
= / (Olv ﬂ)y“y NXF
M
= (a, /3)?,

Hence¢ preserves the structure (9 pn ME(M, F).
Secondly, we consider the metric (5 for s > 0. The connectionV in Sub-
section 4.2 satisfies

(10) ¢*(VxY) = Voex¢™Y

for vector fieldsX, Y € TM$(M, F) since (, § is Diff§*(M, F)-invariant. Equa-
tion (10) gives rise to

¢*ODS=DSO¢*.

Thus the action ofp commutes with the isomorphisids. By the definition of (, 9,
the metric (,  is Diff§t*(M, F)-invariant since (, 9is Diff§™(M, F)-invariant. Hence
we finish the proof. []
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5. Moduli spaces of transverse calibrations

In this section, we provide a sufficiently condition for a mbdspaceMo(M, F)
of transverse calibrations to be a Hausdorff and smooth faldniMoreover, we show
a local Torelli type theorem for transverse calibrationse #$sume that the manifold
M is closed oriented and is a Riemannian foliation.

5.1. Local coordinates ofMinp(M,F). Let ® be an element ofip(M, F). We
suppose that) is an elliptic orbit andp is injective. We consider a formal power
seriesa(t) in t:

a(t) = agt + %ath + %agﬁ' + .-+ e I'g(End@Q))[[t]]

where eaclhyy is a basic section of En@)). Then we obtain a formal power series
eV = expa(t) € M's(GL(Q))[t]]

Let H'(#») be A}-harmonic elementsa € I's(Eg) | Ala = 0} where A} is the op-
eratordp di + djd;. From Theorem 4.2 in [18], for an elemept, ® € H'(ts) there
exists a smooth formeo ® € Mp(M, F). Hence we have a map

i HY(to) — Mo(M, F)
Pay® = peay @

wheree®® s the value of thee®® att = 1. We denote byr the projection:
Mo(M, F) = Mo(M, F) = Mo (M, F)/Diffo(M, F)
and consider the composition map
k =mok: HY(te) = Mo(M, F).
The mapkx maps the origin ofH(fie) to the class of® in My (M, F).

Proposition 5.1. If p}: H(te) — @, HE (M) is injective then there exists an
open neighborhood S of the origin Hi'(te) such thatc|s: S— Mo (M, F) is injective.

Proof. We define a map: Mo (M, F)— @, HY (M) by P(®) =[®] e D, HY (M)
for any ® € M (M, F) and consider the composition

Pox: H(te) > @ HY (M).
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Then the differential ofPox at the origin is given by the map®. Since p! is injective,
there exists a small neighbourho®Ic H(44) of the origin such that the restriction
Pok|s: S— @, HY (M) is injective. Hencex|s: S— Mo (M, F) is also injective. []

Let £° be the selCI'(Ay(M, F)) N IS, AE). Then Diff**(M, F) acts on
the set&® by the pull-back. If we give a vector field € I‘%“(Q) and the diffeo-
morphism f; € Diffg“(M, F) associated by. Then, for p=® € &%, there exists a
sectionb; € I'g(End(Q)) such that

(11) fpe® = pgp @

since the se€s is Diffé*l(M,]-')—invariant. For ad-closed elemenp. ®, we can choose
£ such thatpp, @ is in H(to):

Lemma 5.2. If pa® is an element of)ip(M, F) with ||al|s < € for sufficiently
small e > 0, then there exists a €-vector fields € I'g(Q) satisfying pp, ® € H(fo).

Proof. We assume that a vector figjde FSB“(Q) and the diffeomorphisnt; €
Diff5*(M, F) are given as in (11) fopea® € Mo(M, F). It is sufficient to show that
there exists a vector field satisfying

(12) A5 B, @ = 0.

Note thatpp, ® = pgp. ® — D —Zkzz(l/k!)ﬁgscb and fS pa® = pa® + L pa® +--- =
® + po® + di: @ + W(E, a) where W(g, a) is the higher order term with respect 4o
anda. Therefore we obtain

(13) pb. @ = pa® + dis® + W(§, a)

where W(¢, a) is defined by the higher teridV(¢, a) — Zkzz(l/k!)ﬁ'gp. We remark
that W(&, a) is an element ofE} and satisfies

(14) [W(&2, @) — W(&1, @)ls < €ll&2 — &1llst1

for sufficiently small&;, &, a and a positive constart < 1 (see [10, Lemma 3.3)).
We choose a vector fielél such that the harmonic part of® € ES vanishes. Then it
follows from equation (13) thadly op, ® = O is equivalent to

(15) i ®+ Gy da‘,éaCI>+Gﬁd3‘W(E,a)=O
whereG:; is Green’s operator of the complei(). Now we can také; € I'g(Q) satisfying

e, ® = —0 G, pa .
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Inductively, we defing € I'g(Q) for k > 2 as follows
g ® = —G; dypa® — G dy W (k-1, ).
From the estimatd&x|ls+1 = Cllig, ®|ls+1 for a constantC, it follows that

&k — &kllst1 < ClW(Ek+1, @) — W(Ek, a)lls.

By taking a sufficiently smalk < 1 in (14), we have

k1 — Eklls+1 < €llék — Ek-1lls+1-

Therefore the sequendéy}x converges uniformly to a vector fieli, FE“(Q) with
respect to the nornj - ||s;1. It turns out thaté,, satisfies equation (15). Hendg, is
in FSB”(Q) and satisfies (12). This completes the proof. ]

From this Lemma 5.2, we immediately show the following prsifion.

Proposition 5.3. There exists an open neighborhood Wf 7 (®) in M (M, F)
such thatk|s,: Sp — Ug is surjective for a small open neighbourhood & S of the
origin in H(f).

Proof. If we define an open neighbourhobd, of 7 (®) by
Uo = 7({pe® € Mo(M, F) | l|alls < €})

for a small constan¢ as in Lemma 5.2, then for any.=® € Uy, there exists an elem-
ent pp, ® € H(44) such thatic (op, @) = pea®. Hencex is surjective. ]

5.2. Distance onfino(M, F). We assume that the orb@ is elliptic and topo-
logical. We construct a distance on the moduli spéée (M, F).

Proposition 5.4. We suppose thaF is taut. If the orbitO is metrical then there
exists a distance ot (M, F).

Proof. SinceQO is metrical, for eachd € £° there exists a metrige on Q. The
metric go induces anL2-metric on the tangent spada&S C I'S(@; AL). Hence we
obtain a Riemannian metric ( § pn £° which is Diffg“(M,]-‘)-invariant by using the
same argument in Proposition 4.4. Th#Rg,(M, F) = H N Te&S admits a distance
given by the Riemannian structure 6f. Now we define a functior: (M, F) x
Mo(M, F) = R by

d(@(®), 7(P)) = geDiilf’flI(M - d(f*®, g*®’)
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for @, ' € Mo(M, F), wherer is the projectionip(M, F) — Mo(M, F). We
remark thatd (s (@), 7 (®")) = inftepitrom, 7) d(®, f*d).
We shall see thatl is a distance oMin(M, F). The triangle inequality holds:

d(7(®), 7 (®")) = ifrg d(f*o, g*@”)
<inf (d(f*®, @) +d(@', g"®"))
= intd(f*®, @) +inf d(®', g"")
= d(7(®), 7(2) + d(z ('), 7(2")).

To show the positivity ofl, we suppose that(r (), 7 (®')) =0 for &, ' € Mp(M, F),
that is, inffeDiﬁO(M,;)&(cb, f*®")=0. Then there exists a sequeride} ey of Diff o(M,F)
such that

d(®, ff®) -0, (j - o0).
This implies that
(16) [®— @'z >0, (j - o0)
sinced is locally equivalent to the 2-metric induced byge. It follows from (16) that

17) [® — fj*q>’]—>o€@H§i(M), (j — o)

where [ — f*®'] is the basic cohomology class df — f*®’. Since Difp(M, F) acts
trivially on the basic cohomology groupig' (M), the cohomology classd — fj*cb’]
is [®] — [®’], and independent ofi. Hence, it follows from (17) that®] — [®’]
must be zero, so we obtairb] = [®'] € P HE’;‘(M). We may assume that(®’)
is included in an open sdilg given as in Proposition 5.3. Remark that the period
map P|y, restricted toUg is injective sinceP o ks, : So — @; HEY (M) is inject-
ive and«k|s,: Sy — Uy is isomorphic (see Propositions 5.1 and 5.3). Now we have
P(z(®)) = [®] = [?'] = P(=(®'). Hencen () = 7 (D) € Mn(M, F). Thusd is a
distance orip(M, F). O]

5.3. Main theorems. We recall that the period map
|
P: Mo(M, F) - P HE (M)
i=1

is induced by taking the basic de Rham cohomology clégs YWe can show the local
Torelli type theorem:
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Theorem 5.5. If O is elliptic and topological then the period map P is locally
injective.

Proof. It follows from Propositions 5.1 and 5.3 that a smakwo set ofitp(M, F)
is isomorphic to an open neighbourho8af origin in H(f) by the mapc: H(#e) —
Mo(M, F). Thus it is sufficient to show that the composition map «|s is injective
for a small open se6. However, as in the proof of Proposition 5.3, there existsnalk
open setS such thatP o «|g is injective, and the proof is finished. O

We prove the main theorem:

Theorem 5.6. We suppose thaf is taut. If O is metrical elliptic and topo-
logical, then the moduli spac®tn(M, F) is a Hausdorff and smooth manifold.

Proof. If O is elliptic and topological, Propositions 5.1 and 5.3 iraplithat the
moduli spaceMin(M, F) admits local coordinates given by the open neighbourhood
of the origin in H(t). The dimension dint*(ts) is not independent o in a con-
nected component aip(M, F) by Proposition 5.1 in [18]. Thu$iio(M, F) is a
manifold. In addition, ifO is metrical then9»(M, F) has a distance as in Propos-
ition 5.4. HenceMip(M, F) is Hausdorff. O

6. The moduli space of transverse Calabi—Yau structures

In this section, we will show the moduli space of transvers¢alli—-Yau structures
is a Hausdorff and smooth manifold (Theorem 6.5). We assumeM is a closed
oriented manifold andF is a Riemannian and taut foliation of codimensiam 2et F
denote the integrable distribution induced by the foliatis.

6.1. Transverse Sly(C) structures.

DEFINITION 6.1. A nowhere vanishing complexform Q € A" ® C is called a
transverseSL,(C) structure on(M, F) if Q is a basic form such that2 = 0 and

Q®C =Kerc Q/F & Kerc Q2/F
where Keg Q/F is the spacdv e Q® C |i,2 = 0}.

A transverse S}(C) structure2 induces a complex structuré&, on Q such that
Q is an f, 0)-basic form on M, F) (see Example 3.3). Then we can check that
do e A\3°@ AL for any 0 € A5° because ofdp) A 2 = 0. It follows from Re-
mark 2.9 thatl,, is a transverse complex structure dvi,(F). Hence , Jg) is a trans-
verse holomorphic foliation oM. Let s (M, F) be the space of transverse C)
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structures on M1, F). Any elementQ € Mg (M, F) induces a transverse calibration
associated with the orbiDs;, and converse is true. Thus, we can idenfifis (M, F)
with the setﬂﬁt@SL(M, F) of transverse calibrations associated with the ofbdf. We
recall that the orbit0g, is elliptic. For Q € Mg (M, F), the complex {) is

n—1,0 n,0 n-1,1 n,1 n-1,2
0> AL B AT AL AT AL S
Unfortunately, the maps
Pe: HY(te) — HE(M, ©),
P& : H2(2e) = Hg™(M, ©)

are not always injective fof2 € Mg (M, F). However, we obtain

Proposition 6.2. If (F, Ju) is a transverse Kahler foliatigrthen the elemer® e
Ms (M, F) is topological. Moreoverthe period map P is injective on a neighbour-
hood of the equivalent class 6f in s (M, F).

Proof. We suppose thae € Mg (M, F) satisfies &, Jg) is a transverse Kahler
foliation on M. By modifying the argument of Proposition 4.4 in [10], we aibt

H(te) = Hg “(M) @ Hg (M),

H2(za) = Hg (M) @ Hg™"*(M).
The mapspg, and p3 are injective by Proposition 2.11, €@ is topological. Moreover,
it follows from Propositions 5.1 and 5.3 that there existsopen neighbourhootl, €

MsL(M, F) of () such that the period maB|y,, restricted toUg, is injective. Hence
we finish the proof. O

6.2. Transverse Calabi-Yau structures. We say that a real 2-fornv € A? is
a transverse symplectic structure ¢, F) if » is a basic form on M, F) such that
dw =0 andw" # 0.

DEFINITION 6.3. A pair ,w) € A\g®C & /\é is called atransverse Calabi—
Yau structure on(M, F) if Q is a transverse S{(C) structure andw is a transverse
symplectic structure onM, F) such that

Qro=0Aw=0,
SZ/\Q:Cna)n,

o(-, Jo-) Is positive definite on Q

wherec, = (1/n!)(=1)"0-D/22/ /=1y,
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We denote byMicy(M, F) the set of transverse Calabi-Yau structures bh ).
Any structure @, w) € Mcy(M, F) is a transverse calibration associated with the
orbit Ocy.

Proposition 6.4. The orbit Ocy is metrical elliptic and topological.

Proof. It suffices to show thadcy is topological. Given a structur@ = (Q, w) €
Mcy(M, F), then, by repeating a similar argument of the computatibnatomology
groups ([10, Theorem 4.8]) to basic forms we obtain

H(t0) = HZ%(M) & Hi (M) & Py,

H2(t0) = Hg (M) ® Hg “(M) @ (H3" (M) & Hg*(M))=
where H5{(M) @ Hz'*(M))r andPg; denote the real part ofi3 (M) & H5*(M) and
the space of real harmonic and primitive basic (1, 1)-fornrespectively. We refer to

Section 3.4.7 in [6] for the Lefschetz decomposition theorer a transverse Kéahler
foliation. Hence the maps

pg: H'(fe) = HE(M, C) & H3(M),
p3: H%(fe) — HETH(M, C) @ H3(M)

are injective from Proposition 2.11 and the Lefschetz dguusition on basic differen-
tial forms. ]

We obtain the following results:

Theorem 6.5. The moduli spac&icy(M, F) is a Hausdorff and smooth manifold
of dimensiondimg (Hg °(M) & Hg (M) & P’z

Proof. It immediately follows from Theorem 5.6 and Propiosit 6.4 that
Mcy(M, F) is a Hausdorff and smooth manifold. The dimension9tity (M, F) is
dim H(te) sinceMcey (M, F) is locally diffeomorphic to an open subset Ef' (). In

the proof of Proposition 6.4, we showed that(ts) is equal toHy (M) @ HE (M) @
P55 Hence this ends the proof. O

6.3. Examples.

6.3.1. Linear foliations on tori. Let T?"*! pe the real toruR?"+1/z2"+1 of
dimension 2 + 1. We take a local coordinatey( ..., Xn, Y1, ..., Yn, t) on T2 then
a foliation F, ) is induced by the vector field

0 d
— A —— 2
&= Z i + ,U«l 2y, T
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for (A, ;) = (A1+.., Any U1,-.., n) € RP. The foliation F;,,,) is called alinear foliation
on T"*1. Note thatF ) is a taut foliation with respect to the standard flat metric
on T2+1 We definez, by complex functions

z =% + At + V=1 + pit)

fori =1,...,n, then ¢, ..., z,) is a transverse coordinate oMy, 7; ,)). Now
we define a pair@, o) of forms as

Q=dz A---Adz,

then it is easy to see tha®(w) is a transverse Calabi-Yau structure arf(*, Foum)-
We start to compute the dimension of the moduli spakey (T2, 7 ,)). The
vector spacéf?(T2*1) is generated by wedge productg, A - - ‘Adz AdZ A A

Z,, and thus we obtain
dime~ HP9(T2+1y = (n) (n)
C T'lp ( ) p q

dimg Pyg = dime Pyt = n? — 1

It follows that

from HYYT21) = P3' + Cw. The moduli spaceéicy (T2, F; ) is a smooth
manifold of dimension dim(H5 %(T?"*Y) @ HE " X(T?+Y) @ Pg) by Theorem 6.5.
Hence we can see that

dim Mey (T, Fo) = 2(1+n?) +n? -1 =3n? + 1.

We refer to [18] for deformations of transverse .8C) and Calabi-Yau structures on
(T2n+l, _7_-()\#))'

6.3.2. Null-Sasakian structures.

DEFINITION 6.6. A (20 + 1)-dimensional Riemannian manifoldM( g) is a
Sasakian manifoldf the metric cone ¢(M), §) = (R-o x M, dr? 4+ r2g) is Kéahler.

Under the identificatiorM with {r = 1} ¢ C(M), we can obtain a vector field
and a 1-formn over M defined by

(2

o n() =96, )

M
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where J is the complex structure orC(M), §). Then the vector field: is a Killing
vector field such that each integral curve is geodesic. Ehiusduces a taut foliation
F: on M. The vector field¢ and the foliationF; are called aReeb fieldand aReeb
foliation, respectively. The 1-formy satisfies thaty(¢) = 1 anddn € /\é. We may
consider the distributiorD over M defined by Kem. Then D is the Z-dimensional
distribution satisfying the orthogonal decomposition

TM=Da&F:

where F¢ is the trivial line bundle generated [y We define a sectio® of End(T M)
by setting®|p = J|p and ®|r, = 0. The data{, n, ®, g) is called aSasakian struc-
ture on M. Under the identificatiorD with the quotient bundl&) = T M/F¢, the basic
form dn and the section induces a transverse Kahler structure &, (7). We de-
note by Rig, the transverse Ricci tensor of the transverse Riemanniaricngg = g|p.
Then the transverse Ricci formyg is defined by

pq(+, -) = Ricg(+, ).

The formpq is a basic closed (1, 1)-form o, F¢), and defines the basic cohomology
class po] € Hé*l(M). The basic class [(Pr)pg] is called thebasic first Chern class
and is denoted bgt(M).

DEFINITION 6.7. A Sasakian structuré ,(n, @, g) is anull-Sasakian structuren
M if c(M) = 0. We say thatN, &, n, ®, g) is anull-Sasakian manifoldf (&, n, @, g)
is a null-Sasakian structure avl.

The classc(M) is independent of the choice of a Sasakian structure whesb R
foliation is F¢. By the transverse version of Yau's theorem proved by El ika&éilaoui
[6], there exists a transverse Calabi-Yau struct@e«f) on a null-Sasakian manifold
(MY %‘7 r]l ¢7 g)‘

Let us start to compute the dimension of the moduli sgatg,/ (M, F¢) on a null-
Sasakian manifoldNl, &, n, @, g). We remark an important property of Sasakian struc-
tures that, on a compact Sasakian manifMd a k-form is harmonic if and only if it
is primitive and basic for K k < n ([2, Proposition 7.4.13]):

(18) HX(M, C) = P§

for1<k=<n.

On a null-Sasakian manifolt¥l of 5-dimension (the case of = 2), we will see that
dim My (M, F;) is given by the Betti number of. It is obvious that ding H3® =
dime H3? = 1 since is the basic holomorphic (2, 0)-form. We have a decompasitio

(19) PZ =P3°@ P e Py’ =HZ e Pl @ HOZ
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Equations (18) and (19) give rise to
(20) dime PL* = dimg P2 — 2 dime H3 =b% -2
whereb? is the second Betti number digyH?(M, C). It follows that
dime Hy'=dime Pyt +1=b% -1

from equation (20) and the basic Lefschetz decompositign' = P53 @ Cw. Thus
we obtain

(21) dime(H2%@ HAMY) =14+ b2 — 1= b2

We remark thatH3°@® H2* can be regarded as the tangent space of deformations of
transverse SK(C) structures on M, F¢) (cf. [18]). The moduli spacéicy(M, F) is

a smooth manifold of dimension dingHz (M) & Hg (M) @ Pg'). Hence equations
(20) and (21) yield

(22) dimMey (M, Fi) = 2b% + b? —2 = 302 — 2.

On a null-Sasakian manifoltl of 7-dimension (the case of = 3), we will find
the dimension of the deformation space of transversg(GL structures is given by
Betti numbers ofM. Now we consider the basic Hodge decompositions

P =P 0Py @ P O Py,
Pg =Pz @ Ppt.

Then it follows from (18) and dimP2° = dime¢ H3° = 1 that
(23) 2dim- P2t =0*—-2, 2dimPE°=b'

whereb? and b® are Betti numbers dijmH(M, C€) and dinyx H3(M, C), respectively.
By equation (23) and the basic Lefschetz decompositgrt = P53 '@ P %A w, we have

. 2,1_1 3 1 1_1 3 1
dime¢ HE ™ = 2(b 2)+ 2b = 2(b + b —2),
and
H 3,0 2,1 1 3 1 1 3 1
(24) dimc(Hg" @ Hg") =1+ E(b +b—-2)= Q(b + b?).

The vector spac#i3®@® H3* can be identified with the tangent space of deformations
of transverse SI(C) structures on M, 7:). We also have that

dime PA! = dime H3' -1
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by the relationHy* = P5'@® Cw. Hence the manifoldicy(M, F:) has the dimension
(25) dimMcy(M, Fr) = (b° + bY) + dime P53 = b® + bt 4 dime H' — 1.

6.3.3. Calabi-Yau orbifolds. The geometry of Riemannian foliations is related
to that of orbifolds, and so our method of transverse cdiiima is useful for geometric
structures on orbifolds. We will see this phenomenon on g@tasn We refer to [2] and
[11] for some facts of Sasakian links and the notation of fots, respectively.

DEFINITION 6.8. A singular real manifoldX of dimensionm is an orbifold if
singularities are locally isomorphic to quotient singitlas R™/G for finite subgroups
G c GL(m,R) such that each grou is small, that is, for any # 1 € G the subspace
V, C R™ fixed by y has codimension at least two.

We can also define a complex orbifold in a similar way. Any cawatpcomplex
orbifold X is a leaf space of a Riemannian and transversely holomofphétion F on
a smooth compact manifol (cf. [6, §4]). Therefore, we can regard geometric struc-
tures on an orbifoldX as transverse geometric structures on a smooth foliatedfatthn
(X, F).

DEFINITION 6.9. Let X be an orbifold of dimension2 A pair (2, ) is a
Calabi—-Yau structureon X if (2, w) is a Calabi—Yau structure on the non-singular set
of X in the sense of Definition 6.3, and wherevéris locally isomorphic toR?"/G,

(22, w) is the quotient of &G-invariant Calabi-Yau structure defined near ORff'. We
say that K, 2, w) is a Calabi-Yau orbifoldif (2, ») is a Calabi-Yau structure oK.

We denote bymtgr\"(’(X) the moduli space of Calabi-Yau structures #n then
mtg'$(X) is a smooth manifold by Theorem 6.5. Any Calabi—Yau striecton X cor-
responds to a transverse Calabi-Yau structure ¥nZ). Thus the moduli space
Mey(X, F) can be identified withZ8(X). We can easily compute the dimension
of Mcey(X, F) in a special case.

We consider theC*-action onC"+! defined by

(zo,...,z0) = (A"°20, ..., A""2Z,)

wherex e C* andw = (wo, . . ., wn) € (Z;)"1. Let C*(w) denote thisC*-action.

DEFINITION 6.10. Theweighted projective spac€ P(w) is defined as the quo-
tient (C"*1\ 0)/C*(w).

The weighted projective spacgP(w) is a complex orbifold. However, it is not
a Calabi-Yau orbifold. To obtain a Calabi—Yau orbifold, wensider hypersurfaces on



MobDuLlI OF TRANSVERSE CALABI-YAU STRUCTURES 411

CP(w). A weighted homogeneous polynomiél of degreed and weightw is defined
by a polynomial f € C[z, ..., z,] satisfying

f()\’wozo’ e )\’wnzn) — )\d f(ZO’ ey Zn)

for any » € C*. Given a weighted homogeneous polynomfalthen we can define the
subsetX; of CP(w) as the zero locus of in CP(w). Such a varietyX; is called
a weighted hypersurfacef degreed in CP(w). Let 7: C"*1\ 0 — CP(w) be the
natural projection. We denote b5 the punctured affine cone~1(X;), and define
Cx, as the completion o€5 in C"*1. A weighted hypersurfac&; is called quasi-
smoothif the coneCy, is smooth of dimensiom outside the origin 0. A quasi-smooth
weighted hypersurfac s has a complex orbifold structure induced by thatGaP(w).

If |w|—d =0, thenX; becomes a Calabi-Yau orbifold. In [20], Reid provided a dist
95 K3 surfaces, i.e., Calabi—Yau orbifolds of complex disien 2, given as weighted
hypersurfaces i€ P(wp, w1, wy, w3) (We refer to Appendix B in [2] for Reid’s list). In
the case of complex dimension 3, there exist more than 60@thgbes of Calabi—Yau
orbifolds in CP(wg, w1, wp, ws, wya) (cf. [3]).

Let Xt be a quasi-smooth weighted hypersurfaceGR(w) with |w| —d = 0.
Consider the unit spher§®*1 in C"*1, then the intersectioCyx, N S*"*! is a smooth
manifold of dimension 8 — 1. We denoteCy, N S*"*1 by L¢ and call it alink of f.
The link L¢ has a null-Sasakian structurg, ¢, ®, g) such thatX; is the leaf space
of the Reeb foliationF:. We shall compute the dimension 8ficy(L ¢, F¢), which
coincides that 0Dﬁ8$(xf). Note thatL ¢ is (n — 2)-connected.

If X is a K3 surface, then the link s is a 5-dimensional null-Sasakian manifold
with b?(L¢) = b?(X¢) — 1 (cf. [2, Section 10.3.2]). Applying equation (21) to thaeki
L ¢, then we obtain

dimc(H3%® Ha') = b2(L¢) (= b%(X¢) = 1).

We remark the spacéi3 (L) @ Ha (L) can be regarded as the tangent space of
deformations of SK(C) structures on the orbifolK;. Equation (22) implies that the
moduli spaceicy(L ¢, F:) has the dimension

dim9Mcy(L¢, Fe) = 30%(L¢) —2 (= 3b*(X¢) —5).

If Xt is a Calabi-Yau 3-fold, then the link¢ is a 7-dimensional null-Sasakian
manifold. It follows from equation (24) that

. 1
dime(Hg (L) & Hg(L1)) = 5b%(L1)
since L is 2-connected. Equation (25) implies that

dimMcy(L ¢, Fr) = b3(L¢) + dime Hy*(L¢) — 1.
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