
Ohsawa, T. and Tarama, D.
Osaka J. Math.
47 (2010), 731–737

A REMARK ON THE EMBEDDING THEOREM ASSOCIATED
TO COMPLEX CONNECTIONS OF MIXED TYPE

TAKEO OHSAWA and DAISUKE TARAMA

(Received April 1, 2009)

Abstract
Let M be a compact complex manifold and let (L, H ) be a holomorphic Hermit-

ian line bundle overM such that the curvature form ofh is nondegenerate and splits
into the difference2C � 2� of two semipositive forms2C and 2� whose null
spaces define mutually transverse holomorphic foliationsF� and FC, respectively.
Then Lm admits, for sufficiently largem 2 N, C1 sections whose ratio embedsM
into CP N holomorphically (resp. antiholomorphically) alongFC (resp. alongF�).

Introduction

In the theory of complex manifolds, geometric structures defined by the subbundles
of tangent bundles are basic in analyzing submanifolds and holomorphic maps. Foli-
ations is one of such structures.

In [6], and embedding theorem was established for those manifolds equipped with
two mutually transverse holomorphic foliations. Namely, it was proved that, given a
compact complex manifoldM with holomorphic foliationsFC and F� such that the
tangent bundle ofM is the direct sum of those ofFC andF�, M is embeddable intoCP N by a C1 map in such a way that the map is holomorphic alongFC and anti-
holomorphic alongF�, if M admits a holomorphic line bundleL whose curvature form
is everywhere nondegenerate and splits into the differenceof two semipositive forms
say2C and2�, in such a way that2C (resp.2�) is definite alongFC (resp.F�)
and zero alongF� (resp.FC).

Example of such quadruples (M,FC,F�, L) arose naturally in the study of bundle-
valued �-cohomology groups on complex tori (cf. [5]). For other examples, see Sec-
tion 3 below.

In such a situation, it was proved that there existm2 N andC1 sectionss0,: : : ,sN

of KC 
 K� 
 Lm such that the ratio (s0 W � � � W sN) gives such and embedding, where
K� denote the canonical bundles ofF� and K� the complex conjugate ofK�.

In view of this result, a natural question is whether or not, under the same situ-
ation as above, one can embedM similarly by Lm. A significance of this question lies
in the fact that the method of [6] consisting in applying anL2 estimate for the twisted�-operator does not work any more. The purpose of the present note is to overcome
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this difficulty by establishing an analogue of Serre’s vanishing theorem for algebraic
cohomology groups on projective algebraic varieties. For the statement of our vanish-
ing theorem and the resulting embedding theorem, see Section 1. The proofs of these
results will be given in Section 2.

1. Preliminaries and results

Let M be a compact complex manifold of dimensionn and let T M denote the
tangent bundle ofM. We shall say that a foliationF on M is holomorphic if the
tangent bundleTF of F is a holomorphic subbundle ofT M. We shall say thatM is
holomorphically woven ifM is endowed with two holomorphic foliations sayFC and
F� whose tangent bundlesTF� � T M satisfy TFCCTF� D T M and TFC\TF� Df0g � M.

Typical examples of holomorphically woven manifolds are naturally induced from
orthogonal decompositions of the tangent bundles of complex tori, with respect to con-
stant nondegenerate indefinite (1, 1)-forms (cf. [5]).

Let L ! M be a holomorphic line bundle equipped with aC1 fiber metrich. Let
T0,1C (resp.T1,0� ) denote the antiholomorphic (resp. holomorphic) tangent bundle ofFC
(resp.F�), and let F p,q(L) (D F p,q(M, L)) be the set ofC1 sections overM of the
bundle L 
∧p(T0,1C )� 
∧q(T1,0� )�, where (� )� denote the duals.

Then we define the differential operators

�C W F p,q(L)! F pC1,q(L)

and

��,h W F p,q(L)! F p,qC1(L)

as the leafwise complex exterior differentiations for theL-valued forms, of type (0, 1)
(resp. (1, 0)) with respect toFC (resp.F� and h).

We put L� D �C C ��,h. Then L� maps the space
⊕

p,q F p,q(L) to itself. We shall

say that (L, h) is F�-integrable if L�2 D 0.
Clearly L�2D 0 holds if and only if the curvature form ofh splits into the sum of a

section of(T0,1C )�
(T0,1C )� say2C and that of (T1,0� )�
(T1,0� )� say2�. Here(T0,1C )�

(T0,1C )� and (T1,0� )�
 (T1,0� )� are naturally identified with subbundles of

∧2(T M
C)�
and ( � ) denote the complex conjugates.

Theorem 1.1. Let (M, F�) be a compact holomorphically woven manifold and
let (L, h) be a Hermitian holomorphic line bundle over M which isF�-integrable.
Suppose that the curvature form2C C 2� of h, where2� are as above, satisfies2CjFC > 0 and 2�jF� < 0. Then there exists m0 2 N such that one can find, for
any integer m� m0, C1 sections s0, : : : , sN of Lm satisfying L�sk D 0 (0� k � N)



EMBEDDING THEOREM ASSOCIATED TO COMPLEX CONNECTIONS 733

such that the ratio(s0 W � � � W sN) embeds M intoCP N . Here Lm is equipped with the
fiber metric hm.

The proof of this assertion is based on the following vanishing theorem withL2

norm estimates.

Theorem 1.2. Let (M, F�) and (L, h) be as inTheorem 1.1,and let g be any
C1 Hermitian metric on M. Then there exist m1 2 N and C> 0 such thar, for any
integer m� m1 and for anyv 2 Ker L� \⊕pCqDr F p,q(Lm) with r � 1, one can find

u 2⊕pCqDr�1 F p,q(Lm) satisfying L�u D v and mkuk2 � Ckvk2. Here k � k denotes the

L2 norm with respect to hm and g.

2. Solving the L�-equation

Admitting the validity of Theorem 1.2, the proof of Theorem 1.1 is carried over
similarly as in the case ofKC 
 K� 
 Lm in [6, §3. Proof of Theorem 0.1], so that
we shall dispense with this part.

Proof of Theorem 1.2. Letv 2⊕pCqDr F p,q(Lm) \ Ker L� (r � 1), wherem will
be specified later.

Let U � M be a local coordinate neighbourhood with a holomorphic coordinate
(zC, z�) W U ! Dn, whereD D f� 2 C j j� j < 1g, such thatT0,1C jU D Ker dz� and
T1,0� jU D Ker dzC hold. We choosez� in such a way that they are holomorphic on a
neighbourhood of the closure ofU in M. We putzC D (z1, : : : , zs), z� D (zsC1, : : : , zn)
and vjU D ∑I , J vI J dzI 
 dzJ . We note thatjI j C jJj D r and the components of
multi-indices I (resp. J) are contained inf1, : : : , sg (resp.fsC 1, : : : , ng).

Since L�v D 0, we have

(�C C ��,h)
∑

I , J

vI J (dz1 ^ � � � ^ dzs ^ dzI )
 (dzsC1 ^ � � � ^ dzn ^ dzJ) D 0.

Here �C and ��,h are defined leafwise with respect toF� as before.
On the other hand, with respect to this extension of the mixedcomplex exterior

derivative L� D �CC ��,h, the leafwise application on Nakano’s identity yields similarly
as in [6, §2] an estimate

(2.1) mk�k2� � kL��k2� C kL���k2�
for compactly supportedC1 Lm-valued differential forms� on U of the form

� D ∑

jI jCjJjDr

�I J (dz1 ^ � � � ^ dzs
 dzI )
 (dzsC1 ^ � � � ^ dzn ^ dzJ) (r � 1).
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Here L�� denotes the adjoint ofL� and theL2 norms k � k� are defined with respect to
hm and2C�2�. We have used the assumptions that2CjFC > 0 and2�jF� to iden-
tify 2C �2� with a Hermitian metric onU and exploited the fact that the canonical
bundles ofF� are trivial onU . (For the computation, see (2.2)–(2.10) in [6].)

SinceU is equivalent to the product of the polydiscDs in the zC-coordinate and
the polydiscDn�s in the z�-coordinate, by a standard argument as in [4] and [1] we
obtain from (2.1), that there exists a smooth,Lm-valued formu on U satisfying L�u DvjU and mkuk2� � C0kvjUk2�, where

C0 D supU jdz1 ^ � � � ^ dzsj2jdzsC1 ^ � � � ^ dznj2
infU jdz1 ^ � � � ^ dzsj2jdzsC1 ^ � � � ^ dznj2 .

Here the length of the forms is measured with respect to2C �2�.
SinceM is compact, there exist finitely many such coordinate neighbourhoods, say

Ui (i D 1, 2,: : : , k) such thatM D ⋃k
iD1 ui . Let f�i gk

iD1 be a C1 partition of unity
subordinate tofUi g. Since the given metricg is equivalent to2C �2�, there exists a
constantC1 > 0 such that

C�1
1 k�k2� � k�k2 � C1k�k2�

hold for all � 2 F p,q(Lm), where the normk � k is with respect tohm and g.
Hence there exists a constantC2 > 0 such that, for anyi and m 2 N, one can find

ui 2⊕pCqDr�1 F p,q(Ui , LmjUi ) satisfying

(2.2) L�ui D vjUi

and

(2.3) mkui k2 � C2kvk2.

We put

u1 D k
∑

iD1

�i ui ,

where�i ui are defined to be zero outsideUi . Then, since
∑ �i L�ui D∑ �i vjUi D v,

we have

L�u1 D v C k
∑

iD1

L��i ^ ui ,

where the wedge product ofL��i and ui is defined in the obvious manner.
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In view of (2.3) we have

(2.4)

kv � L�u1k
�
∥

∥

∥

∥

∥

k
∑

iD1

L��i ^ ui

∥

∥

∥

∥

∥

� k sup
i

(

sup
Ui

j L��i j � kui k
)

� k

√

C2

m

(

sup
i

sup
Ui

j L��i j
)kvk.

Hence one can findm1 2 N and C < 4m1 such that ifm � m1,

(2.5) 4mku1k2 � Ckvk2
and

(2.6) kv � L�u1k � 1

2
kvk

hold for v.
We put v0 D v, v1 D v � L�u1, and defineu� 2 ⊕pCqDr�1 F p,q(Lm) and v� 2

⊕

pCqDr F p,q(Lm) inductively for a fixedm� m1 and for� D 2, 3,: : : by requiring

4mku�k2 � Ckv��1k2,(2.7)

kv��1 � L�u�k � 1

2
kv��1k(2.8)

and

(2.9) v� D v��1 � L�u�.

Then, by lettingu1 D∑1�D1u� we haveL�u1 D v andmku1k2 � Ckvk2. Replac-

ing u1 by the solution ofL�u D v satisfying u ? Ker L�, we obtain a required smooth
solution for L�u D v.

REMARK . Similarly as above, given any holomorphic vector bundleE! M, one
can solve theL�-equations for theE 
 Lm-valued forms for sufficiently largem. A
more refined successive approximation has already been usedin [7] to prove a similar
embedding theorem for “singly” complex-foliated manifolds.

3. Application

Theorem 1.1 implies the existence of nonzero sections of sufficiently high tensor
powers of the product of a semipositive line bundle and a seminegative line bundle
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which are holomorphic (resp. antiholomorphic) along the positively curved (resp. nega-
tively curved) directions, on certain fiber spaces. Such examples are described below.

Let X j ( j D 1, 2) be two compact complex manifolds equipped with positive line

bundlesL j ! X j . Let QX1
��! X1 be the universal covering ofX1, let � be a homo-

morphism from the group of covering transformations of� , say 0, to the group of
biholomorphic automorphisms ofX2, and let M be the quotient space of the productQX1 � X2 by the equivalence relation

(x, y) � (
x, �(
 )y) (x 2 QX1, y 2 X2 and 
 2 0).

Then M is a flat fiber bundle overX1 with fiber X2, and carries two mutually trans-
verse holomorphic foliationsF1 and F2 such that the leaves ofF1 are the images ofQX1 � fyg (y 2 X2) in M and those ofF2 are the fibers of the bundlef W M ! X1.

If L2 is invatiant under the action of�(0), which is always the case isX2 is sim-
ply connected, thenL2 naturally induces a semipositive line bundle sayOL2 over M.

It is obvious that the foliationsF1 and F2 ans the line bundlesf �L1 
 OL�1
2 and

f �L�1
1 
 OL2 both satisfy the assumptions of Theorem 1.1, up to the roles of F1 andF2.
It might be an intringuing question to describe a relation between the two embed-

dings with respect toLm and L�m in the situation of Theorem 1.1.

REMARK . Classification results are known for holomorphic foliations on some
complex manifolds. For the case of ruled surfaces, see [3]. Holomorphic foliations
of codimention one on complex tori are classified by Ghys [2].
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