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Abstract
We study the isentropic compressible Navier-Stokes egustiwith radially
symmetric data and non-negative initial density in an aamndomain. We prove
the global existence of strong solutions for apy> 1. Moreover, we obtain the
uniform in time L*-boundedness of the density ahid-boundedness of the velocity,
improving therefore the corresponding result in [2], whéne conditiony > 2 is
required to guarantee the existence.

1. Introduction

The Navier-Stokes equations with external forces for trenti®pic motion of a
compressible viscous gas in Eulerian coordinates read:

(1.2) ot +div(pu) =0,
(1.2) (pu) +diviouu)+Vp—puAu—A+u)Vdivu=pf in Q x (0, c0).

Here 2 is a domain inR" (n > 2), p andu denote the unknown density and velocity,
respectively,p = p(p) = Ap” (A> 0, y > 1) is the pressureyx and A are the constant
viscosity coefficients satisfying the usual physical regientsy > 0, 2u +nix > 0.

In this paper, we are interested in spherically symmetramst solutions to spherical-
ly symmetric initial boundary value problems. Thus, we d¢desthat the domaii®2 and
the external forcef are given by

Q={xeR"|a<|xl <b}, f(x,t):=1f(x], t)%
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for some constants, b with 0 < a < b, and the initial and boundary conditions are
imposed as follows:

(1.3) (0, Wlt=0 = (0o, Uo) in £,

(14) Ulsq = 0, t>0,

where

(1.5) po() = po(Ix) = 0 mduam:mwmﬁTfm X € Q.

A spherically symmetric solution to (1.1)—(1.4) is of therfo
(1.6) p(x, 1) = p(r, 1), u(x, t) = u(r, t)rf.
Hence the spherically symmetric solutigm (1)(r, t) should satisfy the following system:

(L.7) ot (U + (- D2 =0,

(1.8) (ou) + (ou?) +(n — 1)pTu2 -+ 2u)(ur +(n— 1)?) +pr=pf,re(ahb)

with initial and boundary conditions:
(1.9) u(a, t) =u(b, t) =0,
(1.10) p(r, 0) =po(r), u(r, 0)=uo(r),

where f = f(r) is assumed to be independent of time for simplicity.

The spherically symmetric Cauchy and initial boundary ggltoblems for the system
(1.1), (1.2) have been studied by a number of mathematidmatie last decades. Global
spherically symmetric solutions of the compressible isgit Navier-Stokes equations
for the Cauchy problem was obtained by Jiang and Zhang [7ddigry > 1 provided that
initial data are spherically symmetric. For isothermal #owoff [5] proved the global
existence of spherically symmetric weak solutions foriahitdensity in theBV space,
while Jiang and Zhang [8] obtained the same result to the IGapmblem wherpg is in
the Orlicz spacé.y (R?).

For the initial boundary value problem (1.7)—(1.10), Weig§l2] constructed a
radially symmetric strong solutionp(u) in (0, 1) x Bg in the casea = 0 and 1<
y < 1+ 1/(n — 1), such that|p( -, t)llLe@s — o0 ast — 1, whereBgr := {X €
R", |x| < R}. Higuchi [4] and Matsumura [9] proved that a global solutianthe
problem (1.7)—(1.10) exists fase(r) > 0 in [a, b] and converges exponentially to the
corresponding stationary solution as time tends to infiniMery recently, Choe and
Kim [2] showed the global existence of strong solutions te tiroblem (1.7)—(1.10)
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under the technical restrictiopn > 2 and the compatibility condition
(1.11) —pAug — (h + )V div U + V(ApY) = py'%d

for some radially symmetrig € L2(2), and moreover, their a priori estimates of the
solutions depend on the time.

The aim of this paper is to drop the technical conditipr> 2 in [2], and more-
over, to give the uniform in timeL>-upper bounds of the density aridi'-bounds of
the velocity.

Our main result in this paper reads:

Theorem 1.1. Let pg € H?, V,og/z € L* up € D n D2 Assume thaipo, Uo)
satisfies the natural compatibility conditiofd.11) for somey > 1. Then there exists
a global unique strong solutiofp, u) satisfying

(1.12) OStlJpT(||,0(' )z + V7 2(-, H)lle + (-, Hllnz) < C(T),
sup (||\/5Ut( 5 Ollez + U+, Yllpznp2)
(1.13) =

.
+fo (hu(-, O+ lu(- t)||2Ds> dt < C(T).

Moreover there holds
(1.14) o(-, Ol +IVU(-, )iz =C, ¥Vt =0,
where C is a positive constant independent .of t

REMARK 1.1. Recently, Cho and Kim [1] proved the existence of lodabrgy
solutions when Xk y < 2, and thus our paper also improves the result in [1].

By the arguments in [2], we easily see that to prove the glabastence and
uniqueness in Theorem 1.1, it suffices to derive the a pritimates (1.12) and (1.13).
Therefore, in Section 2 we only prove (1.12) and (1.13) to giete the proof of the
existence and uniqueness. In Section 3, we prove the unifiortime estimate (1.14).

As the end of this section, we introduce the notation usedutjitout the paper.
LP(2) and HM(2) denote the standard Lebesgue and Sobolev spacé€s with the
norms|| - |.r and | - ||ym, respectively. We will frequently use the following abhigev
tions:

LP:=LP(R), HT:=H™), |-l:=1"lL.

For a detailed study of homogeneous Sobolev spdes Dé‘z and DX, we refer to
the reference [3].
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2. Global existence of strong solutions fory > 1

To begin with, we first recall the following standard (enérggtimates which can
be obtained by integrating (1.1) and multiplying (1.2) byin L?((0, t) x Q):

(2.1) / p(x, 1) dx = / po(X) dx,
and

Lemma 2.1.

/Q Epuz *Plo) —p fo 1® dfs] dx+ fo t fQ [1(VU)? + (0 + w)(div u)?] dx

2.2) . r
- / [Epoucz)‘*f)(po)—m /0 f(s)ds}dx, vt > 0.
Here ﬁ(p)={(pA"{](Z_l))py' ey

The following Lemmas 2.2—-2.4 are shown in [2], the proof ofiahhis therefore
omitted here.

Lemma 2.2 ([2]).

(2.3) suplip( -, tllLe < Cy(T),
o<t<T

where G is a positive constant depending possibly on T

Lemma 2.3 ([2]).

]
(2.4) OSUP(HU(',t)||Lx+||U(',t)||Dg)+/0 (Iv/Au (- OIZ+ G-, ]IZ2) dt < Co(T)

<t<T

where G:= (A +2u) divu — p(p) is called the effective viscous flux

Lemma 2.4 ([2]).

]
@5  sup|Vp(-. )]+ / (IVU(-, O + 1u(- , )]2,) dt < Co(T),
o<t<T 0

]
(2:6) sup (AU, Ol + UG- Bllo2) +/0 (U=, D12y +1G(-, DIFz) dt < Co(T),

<t<T
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In what follows, we shall use the following Sobolev ineqtie$ for radially sym-
metric functions defined if2:

(2.7) lollite < Cliplinz, I fliee < Cllfllz, (Ul < ClIVull.
In the following lemma we give a upper-bound of the densitsdignt.

Lemma 2.5.

(2.8) /|pr/2(x, t)[*dx < Co(T), te]o, TI.
Q
Proof. Multiplying (1.1) byp”/?~%, we obtain
v/2 2 e 2 2 g =
(2.9) @)} +u-Vpre+ —pr“divu=0.
Y

Applying 9/0x; to (2.9), we arrive at
2.10 /2y 4 Vo'2+u.V(o’/? +2 r/2y di +2 Y/2 =0
(2.10) ")t + Uy - Ve +u - V(p" )y ;(p )x; divu P vy =0.

Now, multiplying the above equation by d(/?)y,]%(0?/?)y;, integrating then oveg2
and summing ovelj, we deduce that

1 d

1 2 .
< ||Vu||Loo/ |V/0y/2|4dX+<Z+—)|ld|VU||Lw/ |V or/2|* dx
Q
2

2.11) S Ko SO DR CENLE

1 2
< (nwnw ¥ (— + —>||diVU||Lv°) / V0724 dx
4 vy Q

1
2 1P I IV GV e s,

where we have used the following fact:

2 , )
;/g;p ,\+2 Zp(p)x,[(pV )12 dx > 0.
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Recalling that by virtue of the Sobolev inequality,
(2.12) IVGllLe < ClIGllne,

we apply the Gronwall inequality to (2.11) and use (2.6) tdaob (2.8). This com-
pletes the proof. ]

Next, we derive bounds of higher derivatives mfand u.

Lemma 2.6.
T
(2.13) OSUQ(IIp(~  Ollkz + loe(- 5 llke) +/0 Ju( -, t)l13s dt < Co(T).
<t<

REMARK 2.1. In [2], the estimate (2.13) is proved under the techmiestriction
y > 2. Here we will use (2.8) to show that it still holds for apy> 1.

Proof. Applying V2 to (1.1) and multiplying byV2p in L?(R2), and then integrat-
ing by parts, we get

d
el VZ Zd
dt/9| pl°dx

< C/ |Vul [V2p|? + |V2Ul [Vp| [V?p| + p| V2 div ul [VZp] dx
Q

(2.14) ) ) ) )
=C IIVUIIH1IIVPIIH1+/ p(IV=G| +1V°p(p)))IV-p| dX
Q

< CUIVUllulIVollZs + IIV2GIIIVZpll + V2ol + IV pllL= IV ol V20 )
< C(IVpl%: +IGI32),
whence, an application of the Gronwall inequality and the ok (2.6) give

(2.15) sup lo(-, linz = C(T).

O<t=

On the other hand, the estimate gf follows immediately from the continuity equa-
tion (1.1) and (2.15).
Finally, by virtue of

4A(y — 1)

V2p(p) = P'(0)VZp + p"(p)(V)* = p'(0)VZp + (Vp?/?)?

and

(A +2u)V2 divu = V2G + V2p(p),
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the estimates (2.6), (2.8) and (2.15) imply

T
(2.16) [ e ot < com

0
which completes the proof. ]

Now, having had the a priori estimates Lemma 2.1-2.6, we odow the same
procedure as in [2] to obtain the existence and uniquenegtobél radially symmetric
strong solutions. Thus, we have proved Theorem 1.1.

3. Uniform in time boundedness

In this section we will prove the uniform in time boundedne$she density and
velocity. First, we use and adapt the techniques develoge8ttaskraba and Zlotnik
[10] to obtain uniform upper bounds of the density.

We define the mean value

. — 1 b
(U)) = m/; w(r)dr

and the operator
r
lw(r) ::/ wE)dg, 1Yw:=lw—(lw) for welL(a b)
a

and denoteDiw := wy + uwy. It is easy to see that
(3.1) I Pwllcg < Cllwlr for any w e LY(<Q).

We will use the following lemma on uniform boundedness ofudohs to an or-
dinary differential equation, the proof of which can be fdun [10].

Lemma 3.1 ([10]). Let the function y be a solution to the Cauchy problem

dy _

db
H‘Q(VHH on R*, y(0)=yo

with ge C(R), and y,b e W30, T) for all T > 0. If g(c0) = —oo and Kty) —b(ty) <
No + Ni(t2 — t3) for all 0 <t; < t, with some >0 and N > 0, then

y(t) <Y :=¥(Yo, 9, No, N1) < +co on [0, +o0].

(More precisely ¥ := maxypo, ¢} + No, where¢ is such that ¢) < —Ny, for ¢ > ¢.)
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Now, we are able to prove theain resultof this section:

Theorem 3.2. Let f € L*®(R2), then there exists a positive constant C independent
of t, such that

lo(-, OllLe <C, Vt>0.

Proof. Following calculations similar to those in [10], wasdy get (see Sec-
tion 4):

(3.2) Di(M(p) + Bo) = —p(p) + By + By,

where

n—1
M) =+ 20)Inp,  Bo = 10 (pu), 81::|<1>(pf— r puZ),

B, = <pu2 +plo) — G+ 2) 1u>.

By Lemma 2.1 and (3.1), we have

1/2 1/2
IBollc) < lloulle: < lloll2llv/pull = lleollCllv/ull < C,
n—1

IBullcg < llofll:+ lou?r < C,

|Bz| = C +Cjdivull,

which imply

t2

( Bl||c(§) +|By])dt < C +C(ty — ty).
t

Now, if we transfer the equation (3.2) to the form in Lagramycoordinates, and take

t
y = M(p) g::—p(“m), o) 1= [ (81 B)(e) d — Bo(t)

in Lemma 3.1, then we obtain the uniform upper boundedness! @f) by applying
Lemma 3.1. Consequently, the uniform boundednesp @llows immediately.  [J

REMARK 3.1. If b = co (the exterior domain), we can decomposg do) =
U la+i,a+i+1), and repeat the above process in each unit inteaal (a+i +1)

to obtain
lo(:, llLx(+i,avi+ry <C, VYt >0,

whereC is independent of andt. Hence, Theorem 3.2 also holds for the chseoo.
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Next, we derive uniform in time bounds of the velocity. In tterivation of these
bounds, we will make use of the following uniform Gronwalhima [11]:

Lemma 3.3 (Uniform Gronwall lemma). Let g, h, y be three positive locally integr-
able functions onty, +00) such that Y is locally integrable on(tp, +o0), and satisfy

dy
4 +h for t>t,
=9y or t=>to

t+1 t+1

t+1
g(s)ds =< &, / h(s) ds < a, y(s)ds<az for t=>to,
t t

where a, ay, ag, are positive constantsThen
y(t +1) < (a2 + &) explu), Vvt > to.

By virtue of (2.1), (2.2) and the assumption dn we easily find that

d

a/g[%puz"' f’(p)_ﬁ’/(;y f(&) dé;':| dx+/ﬂ[l‘b(vu)2+()L+pb)(divu)2] dx <0,

Integrating the above estimates overt(+ 1) yields
t+1
(3.3) / [L(Vu)® + (n + pw)(divu)’)] dx dt< C, Vt > 0.
t Q

The uniform boundedness of the velocity reads:

Theorem 3.4. Let f € L*(Q), then there exists a positive constant C independent
of t, such that

(3.4) fuC-, t)llw: =C, vt =0.

Proof. A direct calculation shows that

. n—-1 X
Au=Vdivu=(u + u) —,
r o r

and thus (1.2) can be rewritten as

pU+pu-Vu—(A+2u)Vdivu+Vvp=pf.
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Multiplying this equation byu;, integrating by parts ovef2 and using Young's
inequality, we infer that

d L+2 1

&/ T“(divu)zdx+§f pU2 dx

(3.5) « ¢

5/ pfzdx+/ p|u|2|Vu|2dx+/ p(p) div u; dx.
Q Q Q

Using the continuity equation (1.1), we obtain in the samexmea as in [2] that
/ p(p) div u; dx
Q
= E/ pdivu dx+/(div(pu) +(y — 1)pdivu) divu dx
dt Jg Q
= i/ pdivu dx—/ pu-Vvdivudx+(y —1)/ p(div u)? dx
dt Q Q Q

_d . 4y -3 2 4
(3.6) ——/ pdlvudx+mf p~ divu dx

/p(Gz—pz)dX— /pu VG dx

(A+2M)2 A+2u

d 4y — 3 9
dt/ (p(p)dlvu 2(A+2u)(2y—1)p(p))dx

-1
+ g [ P0G = P dx— o [ po)u- VG dx

A+2u

Substituting (3.6) into (3.5), we have
(3.7)

d u . 4y —3 1
a/ﬂ[)mz N(dlvu)Z_p(p)dlvu+2(k+23;)(2y_ )pz(p)} dx+§/ pu? dx
< ‘/S;,szd )L+2 / p(p)u - VG dx+ (A 2 )2/ p(,O)(GZ— p (,O))dX

+/ plul?|Vul? dx.
Q

For simplicity, we denote

(3.8)  y(t):= /Q [(,\ +2u)(div u)® — 2p(p) div u + % pz(p)] dx.

Now, we estimate each term on the right-hand side of (3.7kalleg | divu| = |Vu||,
and using the identity

VG=pu+pu-Vu—pf
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and the obvious inequality

4y — 3
(A +2u)(2y - 1)

4y —3
v 2u)2y = 1)) P(o)

(A +2u) p*(p)

2y
y

7 : g(div u)? < (A + 2u)(div u)®> — 2p(p) div u +

< (A +2u+1)(divu)® + (1 +

we derive that

/ pIU|Vul? dx < llpll=[[ullf~ I Vul?
Q

3.9)
< Cy?
p)G?dx < | p(p)ll oo/ 2+ 2u) divu — p(p))? dx
10 /qu PO [ (6+2) p(o))
<c+cCy,
1 y=1/2
A+2M/Qp(p)u-ve dx < Clpll=Y21/pull - VG|
< C(llput + llpu - Vul + o £ 1)
(3.11)

1
<C+:= f puZ dx + C|[Vu||?
4 Ja
1 2
<C+Cy+— [ pufdx.
4 Jao
Substitution of (3.9)—(3.11) into (3.7) results in
dy 2
(3.12) gi [ ey dx <Cy?+Cy+C.
Q

Recalling the definition ofy(t), we use Theorem 3.2 and (3.3) to conclude
t+1
(3.13) y(s)ds < C,
t

which, by applying the uniform Gronwall lemma to (3.12), esv(3.4). ]

REMARK 3.2. From (3.4), (3.8), (3.12), it is easy to see that

t+1
(3.14) / (puZ +|VGP)dx dt<C, Vt=>D0.
t Q
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4. Proof of (3.2)

This section is devoted to the proof of (3.2).
We apply the operator™ to equation (1.8) and obtain

| (pDyt) — (h + 200! <1>((ur +N= 1u) ) F10(p) = 10 1),

It is easy to compute that

(1><< n—l))_ n—1 <n—1>
| u + u =u + u—{——uj,
r ; r r

1V (pr) = p—(p),
E(,ot+u,o,)+ur +n_lu:0,
o
which yield
@.1) |<1>(thu)+DtM<p)+(x+2m<”r‘1u>+p—<p>:l%f).

On the other hand, it is easy to compute that

Dtl (pu) = I (pu); + pu?,
[(pDru) = 1 (put + put) = 1((pU): — pru + puty)
n —

= 1 (pu) + 1 ((puz)r # 0 1pu2) = 1 (U + U2 + | (” = 1pu2),

which imply

n_

1 0
u< .
o)

De (1 (pu)) = (I (pu))t,

4.2) Dl (pu) = | (pDyt) — | (

Using (4.2) and noting that
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we deduce that
Di1 P (pu) = Dyl (pu) — Di(l (pu))

=1(pDeu) — | (nr;lpu2> — (I (pu))t

n—-1
:I<1)(,thu)—I(l)( . pu2>

(4.3)

+(1 (D)) —<l (” -

=18 (pDru) — | ”)(n — lpu2> +<| [thu — r_ Lo - (pU)tD
= 18(pDyu) — |<1>(” - 1pu2) +(pu?)

Summing up (4.1) and (4.3) gives 3.2.

This completes the proof. ]
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