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Abstract
The first step in the fundamental Clifford theoretic approach to general block

theory of finite groups reduces to:H is a subgroup of the finite groupG and
e is a central idempotent ofH such thate(ge) = 0 for all g 2 G � H. Then
TrG

H (e) is a central idempotent ofG and induction fromH to G, IndG
H , is part of

a Morita equivalence between the categories ofe-modules and ofTrG
H (e)-modules.

Let W be an indecomposablee-module, so thatV = IndG
H (W) is an indecomposable

TrG
H (e)-module. We present results that relate the Green correspondents ofW and V

via induction and restriction.

1. Introduction and results

Our notation and terminology are standard and tend to follow[1] and [5]. All
rings have identities and are Noetherian and all modules over a ring are unitary and
finitely generated left modules.

Let R be a ring. ThenR-mod will denote the abelian category of leftR-modules.
Let U and V be left R-modules. ThenU jV in R-mod signifies thatU is isomorphic to
a direct summand ofV in R-mod. Also if R has the unique decomposition property
(cf. [1, p. 37]), thenU is a component ofV if U is indecomposable inR-mod and
U jV.

In this paper,G denotes a finite group,p is a prime integer and let (O, K , k =
O=J(O)) be a p-modular system that is “large enough” for all subgroups ofG (i.e.,
O is a complete discrete valuation ring,k = O=J(O) is an algebraically closed field
of characteristicp and the field of fractionsK of O is of characteristic zero and is a
splitting field for all subgroups ofG).

Let A be a finitely generatedO-algebra. ThenA has the unique decomposition
property by the Krull-Schmidt theorem ([1, I, Theorem 11.4]or [5, Theorem 4.4]).
Also the natural ring epimorphism —:O ! O=J(O) = k induces anO-algebra epi-
morphism —:A! A=(J(O)A) = A.

2000 Mathematics Subject Classification. 20C20.



558 M.E. HARRIS

The author is grateful for the comments of the referee, especially his suggestions
for Proposition 5 and Question 6.

Let H < G and lete be an idempotent ofZ(OH ). We shall need an extension of
[2, Remark 1.3]:

Lemma 1. Let g2 G. The following six conditions are equivalent:
(i) e(k(HgH))e = (0);
(ii) e(ge) = (0);
(iii) e(k(HgH))

N
kH V = (0) for all modulesV of (kH)e-mod;

(iv) e(O(HgH))e = (0);
(v) e(ge) = 0; and
(vi) e

�
O(HgH)

N
OH V

�
= (0); for all modules V of(OH )e-mod.

Proof. From [2, Remark 1.3] we conclude that (iv), (v) and (vi) are equivalent
and (i), (ii) and (iii) are equivalent. Clearly (vi) implies(i). Assume (i) and note that
e(O(HgH)e) is O-free ande(O(HgH))e = (0). Thus (iv) holds and we are done.

Let V be an indecomposableOG-module with vertexP and OP-sourceX. Let
K be a subgroup ofG such thatNG(P) � K. Thus the Green correspondentGrG

K (V)
of V in OK -mod also has vertexP and OP-sourceX. Let L be a subgroup ofK
such thatP � L.

Lemma 2. Let U be an indecomposable direct summand of ResG
K (V) in OK-mod

such that ResKL (U ) has a component W inOL-mod with vertex P. Then U�= GrG
K (V)

in OK-mod.

Proof. Assume thatU is not isomorphic toGrG
K (V) in OK -mod. Then, as in [1,

III, Lemma 5.3], there is anx 2 G � K and a subgroupA � K \ (Px) such that
A is a vertex ofU. Since WjResKL (U ) in OL-mod, [1, III, Lemma 4.1] implies that
there is ay 2 K such thatW is L \ (Ay)-projective. But then there is az 2 L such
that Pz � L \ (Ay). Here Ay � K \ (P(xy)), so that Pz = L \ (Ay) = P(xy). Thus
xyz�1 2 NG(P) � K and x 2 K. This contradiction establishes the lemma.

The following two propositions are the main results of this paper. For the re-
mainder of this paper, we assume thate(ge) = 0 for all g 2 G � H. Hence E =
TrG

H (e) is an idempotent inZ(OG) and the functorsIndG
H : (OH )e-mod! (OG)E-mod

and e ResGH : (OG)E-mod! (OH )e-mod demonstrate a Morita equivalence between
(OH )e-mod and (OG)E-mod as is well-known (cf. [4, Case 1], [5, Theorem 9.9] or
[2, Proposition 1.2]).

Let W be an indecomposable (OH )e-module with vertexP and OP-source X.
Then V = IndG

H (W) is an indecomposable (OG)E-module andP is a vertex ofV and
X is anOP-source ofV (cf. [1, III,Corollary 4.7]). HereP � NH (P) � NG(P).
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Let b 2 Bl((OH )e) be such thatbW = W. Then TrG
H (b) = B 2 Bl((OG)E) and

BV = V. Also b ResGH (V) �= W in OH -mod andb(gb) = 0 for all g 2 G� H.
Under these conditions, we have the Green correspondentsGrG

NG(P)(V) and

Gr H
NH (P)(W) of V in ONG(P)-mod and ofW in ONH (P)-mod, resp., where both in-

decomposable modulesGrG
NG(P)(V) andGr H

NH (P)(W) haveP as a vertex andOP-sourceX.

Proposition 3. Let eP be the unique block ofONH (P) such that ePGr H
NH (P)(W) =

Gr H
NH (P)(W). Then

(a) eP(xeP) = 0 for all x 2 NG(P)� NH (P), EP = TrNG(P)
NH (P)(eP) is a block ofONG(P)

and the conclusions of[6, Theorem 1]and [2, Theorem 1.6]hold.
(b) EP GrG

NG(P)(V) = GrG
NG(P)(V), IndNG(P)

NH (P)

�
Gr H

NH (P)(W)
� �= GrG

NG(P)(V) in ONG(P)-mod

and eP ResNG(P)
NH (P)

�
GrG

NG(P)(V)
� �= Gr H

NH (P)(W) in ONH (P)-mod; and

(c) exactly one component of ResNG(P)
NH (P)

�
GrG

NG(P)(V)
�

in ONH (P)-mod is isomorphic to

Gr H
NH (P)(W).

Proof. From [1, III, Theorem 7.8], we conclude thatBrP(e)eP = eP. Let x 2
NG(P)� NH (P). TheneP(xeP) = ePBrP(e)(xBrP(e))(xeP) = ePBrP(e)(xBrP(e))(xeP) =
ePBrP(e(xe))xeP = 0. We conclude from Lemma 1 thateP(xeP) = 0 for all x 2 NG(P)�
NH (P). Then (a) follows from [2, Proposition 1.2]. HereWjIndH

NH (P)

�
Gr H

NH (P)(W)
�

in
OH -mod. Thus

V �= IndG
H (W)jIndG

NH (P)

�
Gr H

NH (P)(W)
�

in OG-mod. SinceIndG
NH (P)

�
Gr H

NH (P)(W)
� �= IndG

NG(P)

�
IndNG(P)

NH (P)

�
Gr H

NH (P)(W)
��

in OG-

mod andIndNG(P)
NH (P)

�
Gr H

NH (P)(W)
�

is indecomposable inONG(P)-mod with vertexP and
OP-sourceX by [2, Theorem 1.6 (c)], we conclude from [1, III, Theorem 5.6(iii)]
thatGrG

NG(P)(V) �= IndNG(P)
NH (P)

�
Gr H

NH (P)(W)
�

in ONG(P)-mod. But then [2, Proposition 1.2]
completes our proof of (b).

Clearly

ResNG(P)
NH (P)

�
GrG

NG(P)(V)
�

= eP ResNG(P)
NH (P)

�
GrG

NG(P)(V)
�� (1� eP) ResNG(P)

NH (P)

�
GrG

NG(P)(V)
�

in ONH (P)-mod. LetU be a component of (1�eP)ResNG(P)
NH (P)

�
GrG

NG(P)(V)
�

in ONH (P)-

mod such thatU �= Gr H
NH (P)(W) in ONH (P)-mod. Let e�P be the unique block of

Z(ONH (P)) such thate�PU = U . Since e�P(1 � eP) = e�P, we haveePe�P = 0. This
contradiction completes our proof of Proposition 3.

For our next result, we shall investigate a more general situation than in Propo-
sition 3. Consequently we assume thatK is a subgroup ofG such thatNG(P) � K.
Then NH (P) � K \ H � H , GrG

K (V) is an indecomposableOK -module with vertexP
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andOP-sourceX andGr H
K\H (W) is an indecomposableO(K \H )-module with vertex

P andOP-sourceX.

Proposition 4. (a) Let U be a component of ResH
K\H (W) such that IndKK\H (U )

has a component with vertex P. Then U�= Gr H
K\H (W) in O(K \ H )-mod;

(b) in an indecomposable decomposition of IndK
K\H

�
Gr H

K\H (W)
�

in OK-mod, exactly

one component has P as a vertex and it is isomorphic toGrG
K (V) in OK-mod and all

of the remaining components have a proper subgroup of P as a vertex;
(c) let Y be a component of ResG

K (V) such that ResKK\H (Y) has a component with
vertex P. Then Y�= GrG

K (V) in OK-mod; and
(d) in an indecomposable decomposition of ResK

K\H

�
GrG

K (V)
�

in O(K \ H )-mod, ex-

actly one component is isomorphic toGr H
K\H (W).

Proof. For (a), assume thatU ≇ Gr H
K\H (W) in O(K \ H )-mod. Then [1, III,

Lemma 5.3] implies that there is anx 2 H � (K \ H ) and a vertexA of U such
that A � (K \ H ) \ (Px). Let Y be a component ofIndK

K\H (U ) with P as a vertex.
Then, asIndK

K\H (U ) is A-projective, there is ak 2 K such thatPk � A. But then
Pk = A = Px and soxk�1 2 NG(P) � K. This contradiction establishes (a).

For (b), [1, III, Lemma 5.4] yields:

(1.1) IndH
K\H

�
Gr H

K\H (W)
� �= W �

 M
i2I

Ui

!
in OH -mod

where I is a finite set and for eachi 2 I , Ui is an indecomposableOH -module having
a proper subgroup ofP as a vertex.

Thus:

(1.2) IndG
K\H

�
Gr H

K\H (W)
� �= V �

 M
i2I

IndG
H (Ui )

!
in OG-mod.

Clearly IndG
K\H

�
Gr H

K\H (W)
� �= IndG

K

�
IndK

K\H

�
Gr H

K\H (W)
��

in OG-mod and all

components ofIndK
K\H

�
Gr H

K\H (W)
�

are P-projective. Let T be a component of

IndK
K\H

�
Gr H

K\H (W)
�

in OK -mod such thatV jIndG
K (T) in OK -mod. Then P must

be a vertex of T and T �= GrG
K (V) in OK -mod. Let T1 be a component of

IndK
K\H

�
Gr H

K\H (W)
�

with P as a vertex and such that (T � T1)jIndK
K\H

�
Gr H

K\H (W)
�

in (OK )-mod. ThenIndG
K (T1) has a component withP as a vertex by [1, III, Corol-

lary 4.7]. Thus (1.1) and (1.2) imply thatV jIndG
K (T1) and (1.1) and (1.2) yield a con-

tradiction. Thus (b) is proved.
Clearly (c) follows from Lemma 2.
For (d), note that

Gr H
K\H (W)jResHK\H (W)jResHK\H

�
ResGH (V)

�
= ResKK\H

�
ResGK (V)

�
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in O(K \ H )-mod. Thus ResGK (V) has a componentT in OK -mod such that
Gr H

K\H (W)jResKK\H (T) in O(K \ H )-mod. Now (c) implies thatT �= GrG
K (V) in OK -

mod and soGr H
K\H (W)jResKK\H

�
GrG

K (V)
�

in O(K \ H )-mod.
Let r be the number of components in an indecomposable decomposition of

ResKK\H (GrG
K (V)) in O(K \ H )-mod that are isomorphic toGr H

K\H (W). Thus there are
at leastr components in an indecomposable decomposition ofResKNH (P)(GrG

K (V)) that

are isomorphic toGr K\H
NH (P)(Gr H

K\H (W)) �= Gr H
NH (P)(W) in ONH (P)-mod. But

ResKNH (P)

�
GrG

K (V)
�

= ResNG(P)
NH (P)

�
ResKNG(P)

�
GrG

K (V)
��

in ONH (P)-mod and

ResKNG(P)

�
GrG

K (V)
� �= GrG

NG(P)(V)�
 M

i2I

Ui

!

in ONG(P)-mod where I is a finite set and ifi 2 I , then Ui is an indecomposable
ONG(P)-module with a vertexAi � NG(P)\ Pxi for somexi 2 K �NG(P). Let i 2 I
be such thatResNG(P)

NH (P)(Ui ) has a component isomorphic toGr H
NH (P)(W) in ONH (P)-mod.

Then there is ay 2 NG(P) such thatPy � Ai by [1, III, Lemma 4.6]. ThusPy = P �
Ai = Pxi and soxi 2 NG(P). This contradiction implies thatResNG(P)

NH (P)

�L
i2I Ui

�
does

not have a component isomorphic toGr H
NH (P)(W) in ONH (P)-mod. Since, Proposi-

tion 3 (c) asserts that exactly one component ofResNG(P)
NH (P)

�
GrG

NG(P)(V)
�

is isomorphic to

Gr H
NH (P)(W) in ONH (P)-mod, r = 1 and our proof of Proposition 4 is complete.

We conclude with a discussion of the Brauer block induction (cf. [3, Chapter 5,
Section 3]) in the context of Proposition 4 as suggested by the referee. So we assume
the context of Proposition 4. Thusb 2 Bl((OH )e), b(gb) = 0 for all g 2 G� H , bW =
W, B = TrH

G(b) 2 Bl((OG)E), V = IndH
G(W) and BW = W. HerebG is defined and

bG = B by [3, Chapter 5, Theorem 3.1 (ii)] and [2, Proposition 1.7].
Let BK be the block idempotent ofOK such thatBK GrG

K (V) = GrG
K (V), let BP

be the block idempotent ofONG(P) such thatBP GrG
NG(P)(V) = GrG

NG(P)(V), let bK\H

be the block idempotent ofO(K \ H ) such thatb(K\H ) Gr H
(K\H )(W) = Gr H

(K\H )(W) and

let bP be the block idempotent ofONH (P) such thatbP Gr H
NH (P)(W) = Gr H

NH (P)(W).
Clearly

NK (P) = NG(P), NH (P) = N(K\H )(P), Gr K
NK (P)(GrG

K (V)) �= GrG
NG(P)(V)

in ONG(P)-mod andGr K\H
NH (P)

�
Gr H

K\H (W)
� �= Gr H

NH (P)(W) in ONH (P)-mod. From [3,

Chapter 5, Theorem 3.12], we conclude that (bP)K\H is defined and (bP)(K\H ) = b(K\H )

and that (BP)K is defined and (BP)K = BK . Also from [3, Chapter 5, Theorem 3.1 (ii)],
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[2, Proposition 1.7] and Proposition 3 (a), we deduce that (bP)NG(P) is defined and
(bP)NG(P) = BP.

Here (BP)K = BK = ((bP)NG(P))K and so [3, Chapter 5, Lemma 3.4] implies that
(bP)K = BK . Since (bP)(K\H ) is defined and (bP)(K\H ) = b(K\H ), the same lemma
forces ((bP)(K\H ))K = BK = (b(K\H ))K . This is the proof given by the referee of:

Proposition 5. As in Proposition 4and with the notation above, (bK\H )K is de-
fined and(bK\H )K = BK .

Finally a question:

QUESTION 6. In the situation of Proposition 5, isb(K\H )(x(b(K\H ))) = 0 for all
x 2 K � (K \ H )?
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