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Abstract
The first step in the fundamental Clifford theoretic apptodc general block
theory of finite groups reduces toH is a subgroup of the finite grou@ and
e is a central idempotent oH such thate(®e) = 0 for all g € G — H. Then
Trﬁ(e) is a central idempotent o and induction fromH to G, IndS, is part of
a Morita equivalence between the categorieseafhodules and ofTré (e)-modules.
Let W be an indecomposabemodule, so thay/ = Indf (W) is an indecomposable

Tr (e)-module. We present results that relate the Green corregots of W and V
via induction and restriction.

1. Introduction and results

Our notation and terminology are standard and tend to follbjvand [5]. All
rings have identities and are Noetherian and all modules aveng are unitary and
finitely generated left modules.

Let R be a ring. ThenR-mod will denote the abelian category of lémodules.
Let U andV be left R-modules. TherJ |V in R-mod signifies that) is isomorphic to
a direct summand o¥ in R-mod. Also if R has the unique decomposition property
(cf. [1, p.37]), thenU is a component ol if U is indecomposable irR-mod and
U|Vv.

In this paper,G denotes a finite groupp is a prime integer and let], K, k =
0/J(0)) be a p-modular system that is “large enough” for all subgroupsGofi.e.,

O is a complete discrete valuation ring,= O/J(0O) is an algebraically closed field
of characteristicp and the field of fractiond< of O is of characteristic zero and is a
splitting field for all subgroups o).

Let A be a finitely generated-algebra. ThenA has the unique decomposition
property by the Krull-Schmidt theorem ([1, I, Theorem 11at] [5, Theorem 4.4]).
Also the natural ring epimorphism —& — 0/J(0O) = k induces anO-algebra epi-
morphism —:A — A/(J(O)A) = A.
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The author is grateful for the comments of the referee, éalhedis suggestions
for Proposition 5 and Question 6.

Let H < G and lete be an idempotent oZ(OH). We shall need an extension of
[2, Remark 1.3]:

Lemma 1. Let ge G. The following six conditions are equivalent
(i) &k(HgH))e= (0);
(i) (%) = (0);
(i) ek(HgH)) ®n V = (0) for all modulesV of (kH)e-mod
(iv) &(O(HgH))e = (0);
(v) e(®e) =0; and
(vi) &(O(HgH) Qo1 V) = (0); for all modules V off OH)e-mod

Proof. From [2, Remark 1.3] we conclude that (iv), (v) and) @e equivalent
and (i), (i) and (iii) are equivalent. Clearly (vi) implied). Assume (i) and note that
e(O(HgH)e) is O-free ande(O(HgH))e = (0). Thus (iv) holds and we are done.]

Let V be an indecomposabl@G-module with vertexP and OP-source X. Let
K be a subgroup o such thatNg(P) < K. Thus the Green correspondegrt (V)
of V in OK-mod also has vertel? and OP-source X. Let L be a subgroup oK
such thatP < L.

Lemma 2. Let U be an indecomposable direct summand ofﬁl{%\ﬁ in OK-mod
such that ReL%(U) has a component W iWL-mod with vertex P Then U= grE(V)
in OK-mod

Proof. Assume that) is not isomorphic t@rE(V) in OK-mod. Then, as in [1,
lll, Lemma 5.3], there is arx € G — K and a subgroupA < K N (PX) such that
A is a vertex ofU. SinceW|Re$f(U) in OL-mod, [1, lll, Lemma 4.1] implies that
there is ay € K such thatW is L N (AY)-projective. But then there is a€ L such
that PZ < L N (AY). Here AY < K N (P™), so thatPZ =L N (AY) = P®Y, Thus
xyz! e Ng(P) < K andx € K. This contradiction establishes the lemma. O

The following two propositions are the main results of thaper. For the re-
mainder of this paper, we assume tteffe) = O for all g € G — H. HenceE =
Tré (e) is an idempotent irZ(OG) and the functorsnd$: (OH)e-mod— (OG)E-mod
and e Reﬁ: (OG)E-mod — (OH)e-mod demonstrate a Morita equivalence between
(OH)e-mod and OG)E-mod as is well-known (cf. [4, Case 1], [5, Theorem 9.9] or
[2, Proposition 1.2]).

Let W be an indecomposableé®H)e-module with vertexP and OP-source X.
ThenV = Indﬁ(W) is an indecomposable)G)E-module andP is a vertex ofV and
X is an OP-source ofV (cf. [1, lll,Corollary 4.7]). HereP < Ny(P) < Ng(P).
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Let b € BI((OH)e) be such thattW = W. Then Trﬁ (b) = B € BI((OG)E) and
BV =V. Also b Re§ (V) = W in OH-mod andb(%b) =0 for allg € G — H.

Under these conditions, we have the Green correspond@rﬁé(P)(V) and
ngH(P)(W) of V in ONg(P)-mod and ofW in ONy(P)-mod, resp., where both in-
decomposable modul@ﬁG(P)(V) anerHH(P)(W) haveP as a vertex and P-sourceX.

Proposition 3. Let & be the unique block ad@Ny (P) such that engH(P)(W) =
Ry (W). Then
(@) ep(*ep) =0 for all x € Ng(P) — Ny(P), Ep =Tr\eF)(ep) is a block ofONg(P)
and the conclusions d6, Theorem 1]and [2, Theorem 1.6]hold.
(b) Ep Grie)(V) = Griieey(V), INdRg (@) (GrR, ey (W) = Gr§p)(V) in ONG(P)-mod
and & Req® ((E)) (G e (V) = Gy, (W) in ONy(P)-mod and
(c) exactly one component of F%‘g%;)) (grﬁG(P)(V)) in ONy(P)-mod is isomorphic to
ngH(P)(W)-

Proof. From [1, lll, Theorem 7.8], we conclude thBtp(e)ep = €. Let X €
NG(P) — Nu(P). Thenep(*ep) = €pBrp(e)(*Brp(€))(*ep) = €rBrp(e)(*Brp(e))(*ep) =
epBrp(e(*e))*ep = 0. We conclude from Lemma 1 thep(*ep) = 0 for all x € Ng(P)—
Nu(P). Then (a) follows from [2, Proposition 1.2]. Hel/|Indy, gy (Gr R, p)(W)) in
OH-mod. Thus

= Ind§ (W)/Ind, (p) (G K, ey (W)

in OG-mod. Sincelnd§, ) (Grk. (W) = Ind§_ e (INdNEE (G, ) (W) in OG-

mod andindy{E) (Grf, v (W) is indecomposable i@ Ng (P)-mod with vertexP and

OP-sourceX by [2, Theorem 1.6 (c)], we conclude from [1, lll, Theorem %ii§)]
thatgrﬁG(P)(V) = Ind Hﬁ((?) (ngH(P)(W)) in ONg(P)-mod. But then [2, Proposition 1.2]
completes our proof of (b).

Clearly

Rexe (B (0rRe(my(V)) = e ReSEE) (O (V)) @ (1 — ep) ReRE(E) (9r Ry (V)

in ON(P)-mod. Let/ be a component of (ep) ReqC () (GrSp) (V) in ONu(P)-
mod such that/ = ngH(P)(W) in ONy(P)-mod. Lete; be the unique block of
Z(ONu(P)) such thatepd = U. Since e;(1 — ep) = €5, we haveepe; = 0. This
contradiction completes our proof of Proposition 3. 0

For our next result, we shall investigate a more generakgdn than in Propo-
sition 3. Consequently we assume thétis a subgroup ofG such thatNg(P) < K.
ThenNy(P) < KNH <H, grE‘(V) is an indecomposabl®K -module with vertexP
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and OP-sourceX and QrEmH(W) is an indecomposabl®(K N H)-module with vertex
P and OP-sourceX.

Proposition 4. (a) Let U be a component of Rés, (W) such that Inc,,,,(U)
has a component with vertex. fhen U= Grli{ (W) in O(K N H)-mod
(b) in an indecomposable decomposition of ffng, (Grf (W) in OK-mod exactly
one component has P as a vertex and it is isomorphi@rﬁb(V) in OK-mod and all
of the remaining components have a proper subgroup of P astax/e
(c) let Y be a component of F{e(s/) such that Re§,,(Y) has a component with
vertex P Then Y= Gré(V) in OK-mod and
(d) in an indecomposable decomposition of Res§(Grg(V)) in O(K N H)-mod ex-
actly one component is isomorphic @)EQH(W).

Proof. For (a), assume that grEmH(W) in O(K N H)-mod. Then [1, I,
Lemma 5.3] implies that there is ane H — (K N H) and a vertexA of U such
that A < (K N H)N(P*). LetY be a component omdﬁﬂH(U) with P as a vertex.
Then, asindk,, (U) is A-projective, there is & € K such thatP* < A. But then
Pk = A= P* and soxk™! € Ng(P) < K. This contradiction establishes (a).

For (b), [1, lll, Lemma 5.4] yields:

(1.1) Ind . (GrR (W) = W e <@L{i> in OH-mod
iel
wherel is a finite set and for eache |, U4 is an indecomposabl®H-module having

a proper subgroup oP as a vertex.
Thus:

(1.2) INd§y (Gridny (W) =V @ <EB |ndﬁ(ui)> in  OG-mod.
iel

Clearly IndZ. (Grinn(W)) = Indg (Ind .y (Grnn(W))) in OG-mod and all
components ofindf ., (Grg -y (W)) are P-projective. LetT be a component of
Ind§  (Gridnn (W) in OK-mod such thatV|Indg(T) in OK-mod. ThenP must
be a vertex of T and T = grE(V) in OK-mod. LetT; be a component of
Ind§ - (Gridnn (W) with P as a vertex and such thal @ To)lInd§,y (GrKp (W)
in (OK)-mod. ThenInd$(T;) has a component witlP as a vertex by [1, Ill, Corol-
lary 4.7]. Thus (1.1) and (1.2) imply that|Ind§(T,) and (1.1) and (1.2) yield a con-
tradiction. Thus (b) is proved.

Clearly (c) follows from Lemma 2.

For (d), note that

Gr o (W) IRegnp (W)IRe 1 (Re§i (V) = Re oy (Reg (V)
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in O(K N H)-mod. Thus Reﬁ(V) has a componenT in OK-mod such that
grEmH(W)|Re§mH(T) in O(K N H)-mod. Now (c) implies thafl = QrE(V) in OK-
mod and sogr £ (W)[Res 4 (Grg (V) in O(K N H)-mod.

Let r be the number of components in an indecomposable decongposf
Res‘,ﬁmH(grE(V)) in O(K N H)-mod that are isomorphic tﬁrEmH(W). Thus there are
at leastr components in an indecomposable decompositiorResﬁH(P)(grE(V)) that
are isomorphic tagr | (%) (Gr iy (W)) = Gri. sy (W) in ONy(P)-mod. But

Re,,p) (G (V) = Reqyi () (Resi p) (GrR (V)

in ONy (P)-mod and

iel

Re, o) (GrE(V)) = 0oV & (@ui)

in ONg(P)-mod wherel is a finite set and ifi € I, thenl4 is an indecomposable
ONg(P)-module with a vertexA; < Ng(P)N P* for somex; € K — Ng(P). Leti €|
be such thaReq°{%)(¢4) has a component isomorphic @, (W) in ON (P)-mod.
Then there is & € Ng(P) such thatPY < A; by [1, lll, Lemma 4.6]. ThusPY =P <
A = P% and sox € Ng(P). This contradiction implies thaReq°(%) (D;., ¢4) does
not have a component isomorphic gnNH(P)(W) in ONy(P)-mod. Since, Proposi-

tion 3 (c) asserts that exactly one componenReéjﬁ((ﬁ) ngG(P)(V)) is isomorphic to

ngH(P)(W) in ONy(P)-mod, r =1 and our proof of Proposition 4 is complete. []

We conclude with a discussion of the Brauer block inductioh [3, Chapter 5,
Section 3]) in the context of Proposition 4 as suggested byré¢fieree. So we assume
the context of Proposition 4. Thuse BI(OH)e), b(®b) =0 for allge G—H, bW =
W, B =TryC(b) € BI((OG)E), V =Indy (W) and BW = W. HerebC is defined and
b® = B by [3, Chapter 5, Theorem 3.1 (ii)] and [2, Proposition 1.7].

Let Bk be the block idempotent abK such thatBx Gr (V) = Gré(V), let Bp
be the block idempotent aNg(P) such thatBp G, p)(V) = Gri, ey (V). let bxnn
be the block idempotent aP(K N H) such thatbnry Gr iy (W) = Gr (k1) (W) and
let bp be the block idempotent a@ Ny (P) such thatbp Gryj, ) (W) = Gr . ) (W).

Clearly

Nk (P) = Ng(P), Nu(P)=Nwknny(P),  Gri, ) Grk(V)) = Gri.m(V)
in ONg(P)-mod andGr b (Gridnn (W) = Gr{ py(W) in ONp(P)-mod. From [3,

Chapter 5, Theorem 3.12], we conclude tHat)¢™ is defined andifp)®"™ = bk )
and that Bp)K is defined andBp)K = Bk. Also from [3, Chapter 5, Theorem 3.1 (ii)],
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[2, Proposition 1.7] and Proposition 3 (a), we deduce ttat)¥e(?) is defined and
(bp)Ne(?) = Bp.

Here Bp)X = Bk = ((bp)Ne(P)K and so [3, Chapter 5, Lemma 3.4] implies that
(bp)X = Bk. Since bp)K™ is defined and k)K" = by, the same lemma
forces (bp)X"M)K = By = (bknny)K. This is the proof given by the referee of:

Proposition 5. As in Proposition 4and with the notation aboyegby~n)X is de-
fined and(bx~H)X = Bk.

Finally a question:

QUESTION 6. In the situation of Proposition 5, igknn)(*(bknr))) = 0 for all
xe K—(KNH)?
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