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Abstract
We study theory of curves in the complex hyperbola and show that special

motions of curves are linked with the Burgers hierarchy, which also leads to a
Hamiltonian formulation of the hierarchy and to the difference Burgers equation via
their discretization.

1. Introduction

It is widely recognized that a lot of differential equationsin soliton theory arise
from differential geometry especially theory of curves or surfaces ([1, 2, 3]). For ex-
ample surfaces in the Euclidean 3-space with constant negative Gaussian or non-zero
mean curvature are described by the sine or sinh Gordon equation respectively and
proper affine spheres are described by the Tzitzéica equation. If we refer to theory
of curves, the curvature of curves in the Euclidean 2-space evolves according to the
mKdV equation under special motions. Pinkall ([4]) showed that the space of closed
centroaffine curves in the centroaffine plane possesses a natural symplectic structure
and the centroaffine curvature evolves according to the KdV equation when the flow
is generated by a Hamiltonian given by the total centroaffinecurvature. Chou and
Qu ([5, 6]) showed that many soliton equations arise from special motions of plane
or space curves. Moreover, Hoffmann and Kutz ([7]) showed that special motions of
curves in the complex 1 or 2-space or the complex projective line whose curvature
evolves according to the mKdV or KdV equation can be discretized by use of cross
ratios.

In this paper we study theory of curves in the complex hyperbola which are de-
termined by a certain curvature up to some symmetry. We shallshow that special mo-
tions of curves are linked with the Burgers hierarchy, whichcan be formulated as a
Hamiltonian system and also leads to the difference Burgersequation ([8]) via their
discretization.
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2. Curves in the complex hyperbola

The complex hyperbolaC is the subset of the complex 2-planeC2 given by

C = f(z, w) 2 C2 j zw = 1g.
In this paper we call an immersion from an intervalI to C a curve inC. We put
 = (z, w) for a curve inC. Since

z0
z

= �w0
w ,

we havez0, w0 6= 0. Since

det

� 

 0
�

= �2
z0
z
6= 0,


 and 
 0 are linearly independent overC.
By a direct calculation, we have

(2.1) 
 00 = � 2
 +
p�1�
 0,

where

� =
z0
z

, � = �p�1
� 0� .

Changing
 to 
̃ = (�z� , ��1w�) with �, � 2 C�, we have


̃ 00 = (�� )2
̃ +
p�1�
̃ 0.

Hence� is invariant under the change. We call� the curvature of
 .

REMARK 2.1. When a curve
 is given from an arclength parametrized curve
̂ in the Euclidean 2-spaceR2 identified with the complex planeC by 
 = (e
̂ , e�
̂ ),
then � coincides with the curvature of ˆ
 , i.e., 
̂ 00 =

p�1�
̂ 0 holds.

The fundamental theorem for curves inC is stated as follows:

Proposition 2.2. For any function� : I ! C, there exists a curve
 = (z, w) in
C with curvature�. If 
̃ = (z̃, w̃) : I ! C is another curve with curvature�, there
exist constants�, � 2 C� such thatz̃ = �z� .



MOTIONS OF CURVES 1059

REMARK 2.3. As in the theory of curves in the Euclidean 2-space, a curve 
 in
C with curvature� can be given explicitly:


 = (z, z�1), z = exp

�Z
exp

��p�1
Z � ds

�
ds

�
.

A curve 
 in C with zero curvature is given by
 = (�e�s, ��1e��s) with �, � 2 C�.

3. Motions of curves and the Burgers hierarchy

A motion of a curve inC is given by a map
 = 
 (s, t) from the product of
intervals I and J to C, where t 2 J is considered to be a time parameter ands 2 I
is a parameter of a curve with fixed time. The time evolution of
 is given by

(3.1) 
t = �
 +�
s,

where�, � : I � J ! C. Since (zw)t = 0, we have� = 0 from (3.1). Hence we have

(3.2) 
t = �
s.

Differentiating (3.2) bys and using (2.1), we have

(3.3) 
ts = � 2�
 + (�s +
p�1��)
s.

Proposition 3.1. The above time evolution exists if and only if� 6= 0 and

(3.4) �t = ��s + �s�.

Proof. We have only to calculate the integrability condition:


sst = 
tss.

From (2.1) and (3.3), we have


sst = (2��t +
p�1�� 2�)
 + (� 2� +

p�1�t +
p�1��s � �2�)
s,


tss = (2��s� + 2� 2�s +
p�1�� 2�)
 + (� 2� +�ss +

p�1�s� + 2
p�1��s � �2�)
s.

Comparing the coefficients of
 and 
s in the right-hand sides, we have (3.4) and

(3.5)
p�1�t = �ss +

p�1��s +
p�1�s�.

Since

(3.6) � = �p�1(log� )s,

(3.5) is also derived from (3.4).
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Note that (3.5) can be written as

�t = ��s,

where� = (�p�1Ds + � + �sD�1
s ) is the recursion operator of the Burgers equation:

�t = �p�1�ss + 2��s.

Moreover, it is not so hard to see by induction onn 2 N that

(3.7) D�1
s �n�1�s = (�p�1)n

Dn
s�� .

Then we have the following:

Theorem 3.2. The curvature of a curve in C associated to the time evolution:


t = (D�1
s �n�1�s)
s (n 2 N)

evolves according to the Burgers hierarchy:

(3.8) �t = �n�s.

In particular, � and � are related by the Cole-Hopf transformation(3.6) and � evolves
according to the equation:

(3.9) �t = (�p�1)nDn+1
s � .

REMARK 3.3. From (3.4), log� evolves according to the equation:

(3.10) (log� )t = �s +�(log � )s.

When� =
p�1�, (3.10) becomes the potential Burgers equation:

(log � )t = (log � )ss + (log � )2
s.

When� = log � , (3.10) becomes the equation:

(log � )t = (log � )s + (log � )(log � )s,

whose solutions are given explicitly:

log � + 1 = '(s + t(log � + 1)),

where' is an arbitrary function.
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REMARK 3.4. We can reduce a curve
 in C to a curve p in C� by putting
p = z. Then� plays a role of the curvature ofp. If p̃: I ! C� is another curve with
curvature� , there exists a constant� 2 C� such that p̃ = �p. The time evolution of
 reduces to that ofp:

pt = (��)p,

which satisfies (3.4).

4. A formulation as a Hamiltonian system

In this section, we give a formal Hamiltonian system describing the motion of
closed curves in the complex hyperbolaC given in Theorem 3.2.

We denote byM the space of all closed curves inC, that is, the set of all curves
 : S1 ! C, where

S1 = R=2�Z �= fz 2 C j jzj = 1g.
From (3.2), the tangent space ofM at 
 can be identified with the setf�
 0 j �: S1 !
Cg. We note that any tangent vector�
 0 with � : S1 ! R comes from an action of
diffeomorphism group of the unit circle Diff(S1) by

' � 
 = 
 Æ ' (' 2 Diff( S1), 
 2M).

Indeed, if't is a curve in Diff(S1) such that

'0 = identity ,
d

dt

����
t=0

't = � ��s
,

we have

d

dt

����
t=0

('t � 
 ) = �
 0.
We define a 2-form! on M as follows:

!(�1
 0, �2
 0) = Im
Z

S1
�1�2j� j2 ds (�1, �2 : S1 ! C).

By a direct calculation, we can verify that! is closed, hence it defines a ‘symplectic
structure’ onM. For n 2 N we define a function onM by

Hn(
 ) =
(�p�1)n�1

2

Z
S1
� (n�1)�̄ ds (
 2M).

Then we have the following:
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Theorem 4.1. The Hamiltonian vector field Xn for Hn with respect to! is given by

(Xn)
 = (D�1
s �n�1� 0)
 0 (
 2M).

Hence Hn is the Hamiltonian of the motion of curves in C associated with (3.8).

Proof. For a one-parameter family
 ( � , t) 2M such that
t = �
s, we have

d

dt
Hn(
 ) =

(�p�1)n�1

2

Z
S1

��t
f(Dn�1

s � )� g ds

=
(�p�1)n�1

2

Z
S1
f(Dn�1

s �t )� + (Dn�1
s � )�t g ds

=
(�p�1)n�1

2

Z
S1

[fDn
s (��)g� + (Dn�1

s � )Ds(��)] ds

(by Proposition 3.1)

=
(�p�1)n�1

2

Z
S1
f(�1)n(Dn

s� )��� (Dn
s� )��g ds

= Im
Z

S1
(�p�1)n(Dn

s� )�� ds.

On the other hand,

!((D�1
s �n�1�s)
s, �
s) = Im

Z
S1

(D�1
s �n�1�s)�j� j2 ds

= Im
Z

S1
(�p�1)n(Dn

s� )�� ds

by (3.7).

REMARK 4.2. The symplectic structure! on M comes from a flat Kähler struc-
ture. In fact,M has a natural complex structureTM 3 �
 0 7! p�1�
 0 2 TM, and! is the fundamental 2-form of a Hermitian metrich defined by

h(�1
 0, �2
 0) = 2
Z

S1
�1�2j� j2 ds.

For a vector field ˜�
s along a path
 ( � , t) of M with the velocity vector
t = �
s,
we set

r�
s(�̃
s) = (�̃t + (log � )t �̃)
s.

Then, one can verify thatr is the Levi-Civita connection forh and (M, h) is flat as
a Riemannian manifold.
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5. Discretization

The Burgers equation can be discretized in terms of soliton theory ([8]). For a
function f (x), the advanced and the central difference operators1+x and1x are de-
fined by

1+x f (x) =
f (x +1x)� f (x)1x

, 1x f (x) =
f (x +1x=2)� f (x �1x=2)1x

.

Using these operators, we discretize (3.9) as

1+t� (s, t) =

�
(�p�1)n1n+1

s � (s, t) (n = 2m� 1, m 2 N),
(�p�1)n1+s1n

s� (s, t) (n = 2m, m 2 N).

By setting�i , j = � (i1s, j1t) (i 2 Z, j 2 N), we have a more explicit equation:

�i , j +1� �i , j =

8>>>>><
>>>>>:

(�p�1)n1t

(1s)n+1

mX
k=�m

(�1)m+k

�
n + 1

m + k

��i +k, j (n = 2m� 1),

(�p�1)n1t

(1s)n+1

m+1X
k=�m

(�1)m+k+1

�
n + 1

m + k

��i +k, j (n = 2m).

If we put

� = (�1)m
(�p�1)n1t

(1s)n+1
, ck = (�1)jkj�n + 1

m + k

�
,

we have

(5.1) �i , j +1 =

8>>>>><
>>>>>:

(1 + c0�)�i , j + � �1X
k=�m

ck�i +k, j + � mX
k=1

ck�i +k, j (n = 2m� 1),

(1� c0�)�i , j � � �1X
k=�m

ck�i +k, j � � m+1X
k=1

ck�i +k, j (n = 2m).

The difference Cole-Hopf transformation given by

�i , j = �p�1
�i +1, j�i , j
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leads to the difference Burgers hierarchy:

(5.2) �i , j +1 = �i , j Ai , j ,

where

Ai , j =
1 + c0� + �Pm

k=1 ck
Qk

l=1(
p�1�i +l , j ) + �P�1

k=�m ck
Q0

l=�k+1(
p�1�i +l , j )�1

1 + c0� + �Pm
k=1 ck

Qk�1
l=0 (

p�1�i +l , j ) + �P1
k=�m ck

Q�1
l=�k(

p�1�i +l , j )�1

when n = 2m� 1, and

Ai , j =
1� c0� � �Pm+1

k=1 ck
Qk

l=1(
p�1�i +l , j )� �P�1

k=�m ck
Q0

l=�k+1(
p�1�i +l , j )�1

1� c0� � �Pm+1
k=1 ck

Qk�1
l=0 (

p�1�i +l , j ) + �P1
k=�m ck

Q�1
l=�k(

p�1�i +l , j )�1

when n = 2m.
A discrete curve inC is a map
i = (zi , wi ) (i 2 Z) from integersZ to C such

that 
i 6= 
i +1. The discrete curvature�i is given by

�i = �p�1
log(zi +2=zi +1)

log(zi +1=zi )
= �p�1

log(wi +2=wi +1)

log(wi +1=wi )
.

We define the discrete time evolution of a discrete curve inC by

(5.3) zi , j +1 =

8>>>>><
>>>>>:

zi , j

mY
k=�m

(zi +k, j )
ck� (n = 2m� 1),

zi , j

m+1Y
k=�m

(zi +k, j )
�ck� (n = 2m).

The right-hand side is determined independently of a choiceof branch of log because the
sum of the exponentsck� is equal to zero. We can easily verify that�i , j = log(zi +1, j =zi , j )
of a curve evolving according to (5.3) satisfies (5.1), thereby we have the following:

Theorem 5.1. The discrete curvature of a discrete curve in C associated tothe
discrete time evolution(5.3) evolves according to the difference Burgers hierarchy(5.2),
while �i , j evolves according to the difference equation(5.1).

REMARK 5.2. It is obvious to see that the discrete time evolution (5.3) keeps the
periodicity of curves inC.
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