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Abstract
We study theory of curves in the complex hyperbola and shomt #pecial
motions of curves are linked with the Burgers hierarchy, auhilso leads to a
Hamiltonian formulation of the hierarchy and to the diffiece Burgers equation via
their discretization.

1. Introduction

It is widely recognized that a lot of differential equatioims soliton theory arise
from differential geometry especially theory of curves arfaces ([1, 2, 3]). For ex-
ample surfaces in the Euclidean 3-space with constant imeg@aussian or non-zero
mean curvature are described by the sine or sinh Gordon iequedspectively and
proper affine spheres are described by the Tzitzéica equatiowe refer to theory
of curves, the curvature of curves in the Euclidean 2-spacéves according to the
mKdV equation under special motions. Pinkall ([4]) showbdttthe space of closed
centroaffine curves in the centroaffine plane possessesusahaymplectic structure
and the centroaffine curvature evolves according to the Kdwagon when the flow
is generated by a Hamiltonian given by the total centroaffinevature. Chou and
Qu ([5, 6]) showed that many soliton equations arise fromcisppenotions of plane
or space curves. Moreover, Hoffmann and Kutz ([7]) showed $ip@cial motions of
curves in the complex 1 or 2-space or the complex projeciive Whose curvature
evolves according to the mKdV or KdV equation can be diszegtiby use of cross
ratios.

In this paper we study theory of curves in the complex hyperlvehich are de-
termined by a certain curvature up to some symmetry. We shallv that special mo-
tions of curves are linked with the Burgers hierarchy, whizm be formulated as a
Hamiltonian system and also leads to the difference Burgersation ([8]) via their
discretization.
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2. Curves in the complex hyperbola

The complex hyperbol& is the subset of the complex 2-pla@® given by
C={(z,w) e C?| zw = 1}.

In this paper we call an immersion from an interdalto C a curve inC. We put
y =(z, w) for a curve inC. Since

we haveZ, w’ # 0. Since

Y )= _o%
det(y,)- 2Z 70,

y andy’ are linearly independent oves.
By a direct calculation, we have

(2.1) y" =%y + /=1y,
where
!
T=—, K=-— —1T—.
T
Changingy to 7 = (@2?, a~w®) with «, g € C*, we have
P’ = (B)?P + V=L
Hencek is invariant under the change. We callthe curvature ofy.
REMARK 2.1. When a curvey is given from an arclength parametrized curve
7 in the Euclidean 2-spacB? identified with the complex plan€ by y = (¢, e 7),
thenk coincides with the curvature of,i.e., y” = +/—1«7’ holds.
The fundamental theorem for curves @is stated as follows:
Proposition 2.2. For any functionk: | — C, there exists a curver = (z, w) in

C with curvaturex. If y = (Z, w): | — C is another curve with curvature, there
exist constantsy, 8 € C* such thatz = az?.
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REMARK 2.3. As in the theory of curves in the Euclidean 2-space, secyrin
C with curvaturex can be given explicitly:

y=@z%Y z= exp(/ exp (—J—_lf K ds) ds).

A curve y in C with zero curvature is given by = («€’s, a~te #%) with o, g € C*.

3. Motions of curves and the Burgers hierarchy

A motion of a curve inC is given by a mapy = y(s, t) from the product of
intervals| and J to C, wheret € J is considered to be a time parameter and |
is a parameter of a curve with fixed time. The time evolutionyofs given by

(3.1) =AYy +Rys,
wherei, u: 1 x J - C. Since gw); =0, we haver =0 from (3.1). Hence we have
(3.2) V= KYs-
Differentiating (3.2) bys and using (2.1), we have
(3.3) Yis = T2y + (s + V= Lep)ys.

Proposition 3.1. The above time evolution exists if and onlyrif# O and
(3.4) T = Tls + TsiL.

Proof. We have only to calculate the integrability conditio

Vsst = Viss-

From (2.1) and (3.3), we have

Yest = (rre + v/ =Let? )y + (tPu + vV =Lig + V=l ps — k%p)ys,
Viss = (2rTspt + 202 s + V=L T? W)y + (t21 + pss + V' —Ticspt + 20/ —Lic pis — k2 11)ys.

Comparing the coefficients gf and ys in the right-hand sides, we have (3.4) and

(3.5 =1kt = s+ —Licpus + +/ —1kspt.
Since
(3.6) Kk = —+/—1(log t)s,

(3.5) is also derived from (3.4). ]
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Note that (3.5) can be written as
Kkt = QUs,
where Q = (—/—1Ds + k +ksD3') is the recursion operator of the Burgers equation:
Kt = —\/—_]J(SS+ 2KKs.
Moreover, it is not so hard to see by induction ore N that
(3.7) D" s = (—\/Tl)”DTSnT.
Then we have the following:
Theorem 3.2. The curvature of a curve in C associated to the time evolution
%= (D" s)ys (e N)
evolves according to the Burgers hierarchy
(3.8) Kkt = Q ks.

In particular, « and = are related by the Cole-Hopf transformati¢8.6) and = evolves
according to the equation

(3.9) 7 = (—v/—=1)"DI*z.
REMARK 3.3. From (3.4), log evolves according to the equation:

(3.10) (logt); = ps + p(log t)s.
When u = +/—1k, (3.10) becomes the potential Burgers equation:

(log 7); = (log 7)ss + (log 7)2.
When 1 =logt, (3.10) becomes the equation:

(log 7); = (log 7)s + (log 7)(log 7)s,

whose solutions are given explicitly:

logr +1 =¢p(s+t(logt + 1)),

where g is an arbitrary function.



MOTIONS OF CURVES 1061

REMARK 3.4. We can reduce a curve in C to a curvep in C* by putting
p=2z Thent plays a role of the curvature g. If p: | — C* is another curve with
curvaturet, there exists a constaat € C* such thatp = «p. The time evolution of
y reduces to that op:

pt = (tp)p,

which satisfies (3.4).

4. A formulation as a Hamiltonian system

In this section, we give a formal Hamiltonian system desegbthe motion of
closed curves in the complex hyperbdagiven in Theorem 3.2.

We denote byM the space of all closed curves @ that is, the set of all curves
y: St — C, where

St=R/27Z={zeC ||zl = 1}.

From (3.2), the tangent space 6f at y can be identified with the séjy’ | u: St —
C}. We note that any tangent vectory’ with x: St — R comes from an action of
diffeomorphism group of the unit circle Dif§}) by

¢-y=yoep (peDiff(Sh), y e M).
Indeed, ife; is a curve in DiffSY) such that

0
Pt = U=

= identity ,
%o y o 3s

d
dt
we have

at (- y)=ny'.

t=0

We define a 2-fornw on M as follows:
o(u1y’, p2y’) = |m/51 pazltl?ds  (u1, p2: St — C).

By a direct calculation, we can verify that is closed, hence it defines a ‘symplectic
structure’ onM. Forn € N we define a function onM by

(—x/il)“’l /

St

Hn(y) = " Vrds (y e M).

Then we have the following:
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Theorem 4.1. The Hamiltonian vector field Xfor H,, with respect taw is given by
(Xn)y = (D@ %)y (v € M).
Hence H is the Hamiltonian of the motion of curves in C associatech &.8).

Proof. For a one-parameter family( -, t) € M such thaty; = uys, we have

TGN |y B IR
gt = =57 [ oo ds

 awn-1
= CEU [ oo+ 03 Hom ds

e [ 12T (05 o)D) ds
(by Proposition 3.1)
- OV [ (v @pmen - @3y os
= |m/sl(—J?1)“(Dgr)mds.
On the other hand,
(D9 ey ays) = 1m [ (D510 syl ds
=Im /Sl(—x/—_l)“(DQr)mds
by (3.7). O
REMARK 4.2. The symplectic structure on M comes from a flat K&hler struc-

ture. In fact, M has a natural complex structuieM > uy’ +— /—=1uy’' € TM, and
w is the fundamental 2-form of a Hermitian metticdefined by

h(uay', nay’) = 2/31 pafizlt|? ds,

For a vector fielduys along a pathy(-,t) of M with the velocity vectory; = nys,
we set

Viy, (iys) = (it + (log 7)e i)ys.

Then, one can verify thaV is the Levi-Civita connection foh and (M, h) is flat as
a Riemannian manifold.
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5. Discretization

The Burgers equation can be discretized in terms of solitwory ([8]). For a
function f(x), the advanced and the central difference operators and A, are de-
fined by

f(x + Ax) — f(X) A F(X) = f(x+Ax/2) — f(x—Ax/Z).

A+ = )
xF(X) AX AX

Using these operators, we discretize (3.9) as

_[(=V=1)"AM(s, ) (n=2m—1, meN),
Ant(s, 1) = {(_JTl)”A+SAQr(s, t) (n=2m, meN).

By settingti j = t(iAs, jAt) (i € Z, j € N), we have a more explicit equation:

m

( \/_)nAt Z( l)m+k< >Ti+k,j (n =2m— 1),

(AS)””'
Ti,j+1 — Ti,j = m+1
(—+v/—=1)"At n+1
As —_ Z (-1 )m+k+1 ek Ti+k,j (N=2m).
If we put
o= (_l)m(—\/—l)nAt G = (~1)K n+1
(As)mt m+k/’
we have
-1
(L+coa)Ti,j+& D CeTiskj + chmk i (h=2m-1),
_ k=—m k=1
(5-1) Ti,j+1 = 1 m+l
(1 —coa)ti,j —« Z CkTi+k,j — O Z CkTi+k,j (N=2m).
k=—m k=1

The difference Cole-Hopf transformation given by

R /—T|+1J

Ti,j
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leads to the difference Burgers hierarchy:

(5.2) Kij+1 = K0 AL
where

p o LtCoxta Yot G TV =T, j) + @ S O T s (V=i 1)~
T Coor +ar Y oy Ck ]_[:(:_ol(\/—_ll(i Hj)ta Ziz,m o [T (V—=Tki )L

whenn=2m -1, and

1—coor — o Yot e [T (V/=Tkiat 1) — & S pcim O TT e (V=T )

A' = m+ _ —
D 1o — o S e TS V=T ) + o Y Ok [T (V= Tiar )2

whenn =2m.
A discrete curve inC is a mapy, = (z, w;) (i € Z) from integersZ to C such
that 34 # yi+1. The discrete curvature is given by

Ki = _mlog(Zi+2/Zi+1) — _\/_—J-Iog(U)i+2/’LUi+l).
Iog(zi+l/zi) |0g(wi+1/wi)

We define the discrete time evolution of a discrete curve€ iby

m
z; [[ @)™ (n=2m-1),
k=—m

(5.3) Zij+1= m+1
Zj | l_[ (Zi+k,j)7cw (n = 2m).

k=—m

The right-hand side is determined independently of a chofdganch of log because the
sum of the exponenig« is equal to zero. We can easily verify thaty = 109(z+1,;/z,;)
of a curve evolving according to (5.3) satisfies (5.1), thgrere have the following:

Theorem 5.1. The discrete curvature of a discrete curve in C associatethé
discrete time evolutiof5.3) evolves according to the difference Burgers hierar(hy),
while 7; j evolves according to the difference equati@inl).

REMARK 5.2. It is obvious to see that the discrete time evolutioB)(keeps the
periodicity of curves inC.
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