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Abstract
In this paper we show that the Reeb distribution on a spherical space form which

admits a 3-Sasakian structure minimizes the corrected energy. Analogously for the
characteristic distribution of the normal complex contactstructure on the complex
projective spaceCP2m+1 induced via the Hopf fibrationS1 ,! S4m+3 ! CP2m+1. This
last result is a consequence of a more general result on the corrected energy of
the characteristic distribution of a compact twistor spaceover a quaternionic-Kähler
manifold with positive scalar curvature (equipped with a normal complex contact
metric structure).

1. Introduction

Let (M, g) be a compact Riemannian manifold. The question of to measure how
far from being parallel a unit vector field, has been studied by several authors and in
many different contexts. In [4] Chacon, Naveira and Weston,extending this question,
defined the energyE(V) of a k-dimensional distributionV on M and studied the first
and the second variation of the energy. Gil-Medrano, Gonzalez-Davila and Vanhecke
[8] studiedk-dimensional distributions as harmonic maps between the Riemannian man-
ifold (M, g) and the Grassmann bundle (G(k, M), gs), wheregs is the induced Sasaki
metric. The (quaternionic) Hopf distributionS3 ,! S4m+3 ! HPm, that is, the Reeb
distribution of the natural 3-Sasakian structure onS4m+3, is an instable critical point [4].
Then, Chacon and Naveira [5] defined a corrected energyD(V) of a k-dimensional dis-
tribution and proved, by using a result of [6], that the Hopf distribution is a minimum
of D(V) in the set of all integrable 3-dimensional distributions on S4m+3. In [8] the au-
thors proved that the Reeb distribution of a 3-Sasakian manifold (M, �i , �i , g) defines
a harmonic map between the Riemannian manifold (M, g) and the Grassmann bundle
(G(3, M), gs).

Since the result of minimality of the corrected energy for the Hopf distribution
was a single application of the corrected energy, Blair and Turgut Vanli [2] consid-
ered the question of extending this result for the Reeb distribution of an arbitrary com-
pact 3-Sasakian manifold and for the characteristic distribution of a compact normal
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complex contact manifold. Unfortunately, their demonstrations don’t prove the results
enunciated in Theorems 1, 2 of [2], more precisely they proveonly that for the Reeb
distribution of a compact 3-Sasakian manifold holds the equality in Theorem 1 of [5]
(Theorem A in our Section 2), similarly for a compact normal complex contact metric
manifold. So, the result related to the Hopf distribution isthe only result which gives
a minimum for the corrected energy.

In this paper, as a consequence of a more general result (Theorem 3.1), we show,
by using a direct method, that the Reeb distribution on a spherical space form which
admits a 3-Sasakian structure minimizes the corrected energy in the set of all integrable
3-dimensional distributions. In particular, we get that for the natural 3-Sasakian struc-
tures on the sphereS4m+3, on the real projective spaceRP4m+3 and on the lens spaces
L4m+3, the Reeb distribution is a minimum ofD(V). Moreover, as a consequence of
Theorem 4.1, we show that the characteristic distribution of a compact twistor space
over a quaternionic-Kähler manifold with positive scalar curvature (equipped with a IK
normal complex contact metric structure) is a minimum for the corrected energy in
the set of all integrable 2-dimensional distributionsV with curvature K (V) � 4. In
particular, the characteristic distribution of the natural complex contact metric struc-
ture on the complex projective spaceCP2m+1 induced via the Hopf fibrationS1 ,!
S4m+3 ! CP2m+1, is a minimum for the corrected energy in the set of all integrable
2-dimensional distributions.

2. Energy of Distributions

Let (M, g) be a compact oriented Riemannian manifold of dimensionn with a
k-dimensional distributionV and letH be the orthogonal complementary distribution
of dimensionn� k. Let fE1, : : : , Eng be a positive orthonormal local frame such thatfE1, : : : , Ekg spanV and fEk+1, : : : , Eng spanH. We assume the following index
convention:a, b = 1,: : : , n; i , j = 1,: : : , k; �, � = k + 1,: : : , n. The second fundamental
form of the distributionV in the direction ofE� and the second fundamental form of
the distributionH in the direction ofEi are defined, respectively, by the coefficients

h�i j = g(rEi E j , E�) and hi�� = g(rE� E� , Ei ).

The mean curvature vectors~HV and ~HH are defined by

~HV =
1

k

X
�
 X

i

h�i i
!

E�, ~HH =
1

n� k

X
i

 X
� hi��

!
Ei .

The vector fieldsEi (i = 1, 2,:::,k) are calledH-conformalif they are conformal vector
fields for horizontal ones, that is,

(LEi g)(X, Y) = fi g(X, Y), 8X, Y 2 H,
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whereLZ denotes the Lie derivative andfi is a function onM. Killing vector fields
are H-conformal with f = 0. If G(k, M) denotes the Grassmann bundle of oriented
k-planes in the tangent spaces ofM, then the distributionV gives a section� : M !
G(k, M) of the Grassmann bundle and may be considered as a global smooth section
of the tensor bundle

Vk(M), also denoted by� . It can be expressed locally as� =
E1 ^ � � � ^ Ek. The energy of the distributionV is then defined as the energy of the
corresponding unit section� , where G(k, M) is considered with the induced Sasaki
metric from

Vk(M) (see [8], [4], [14]):

E(V) =
n

2
vol(M) +

1

2

Z
M
kr�k2vg,

where the norm of the covariant derivative of the unit section � is given by:

kr�k2 =
X
� krE��k2 =

X
i , j ,�(h

�
i j )

2 +
X
i ,�,�(h

i��)2.

We note thatkr�k = kr�?k and henceE(V) = E(H). If V is defined by a unit vector
field, then the energy ofV is the energy studied by Wood [20]. Wiegmink [19] defined
the total bendingof a unit vector fieldU as

B(U ) =
1

(n� 1) vol(Sn)

Z
M
krUk2vg.

So, to study the possible minima of the total bendingB(U ) is the same as to study
the possible minima of the energy. Chacon and Naveira [5] introduced the corrected
energy of a distributionV as

D(V) =
Z

M
(k�k2 + (n� k)(n� k� 2)k~HHk2 + k2k~HVk2)vg.

This corrected energy is not an extension of the corrected total bending defined in [3].
The main results of Chacon and Naveira [5] are the following theorems.

Theorem A. If V is integrable, then

D(V) � Z
M

 X
i ,� K (Ei , E�)

!
vg,(2.1)

where K(Ei , E�) is the sectional curvature of the plane spanned by Ei 2 V and E� 2 H.

Moreover (see [5], p.103), the equality in (2.1) holds if and only if V is totally geo-
desic andE1, : : : , Ek areH-conformal.



618 D. PERRONE

Theorem B. Among the integrable distributions of dimension3 of S4m+3, the
(quaternionic) Hopf distribution S3 ,! S4m+3! HPm minimizes the corrected energy.

3. Corrected energy and 3-Sasakian manifolds

We start recalling some basic definitions and properties about contact metric man-
ifolds and 3-Sasakian manifolds (for further details and informations, we refer to [1]).
A contact manifoldis a (2n+1)-dimensional manifoldM equipped with a global 1-form� such that� ^ (d�)n 6= 0 everywhere onM. Given a contact form�, there exists a
unique vector field� , called thecharacteristic vector fieldor theReeb vector field, sat-
isfying �(� ) = 1 andd�(� , � ) = 0. A Riemannian metricg is said to be an associated
metric if there exists a tensor field� of type (1, 1) such that

� = g(� , � ), d� = g( � , � � ), �2 = �I + � 
 � .

In this case (�, g), or (�, g, � , �), is called acontact metric structureand M a contact
metric manifold. If the almost complex structureJ on M � R defined by

J

�
X, f

d

dt

�
=

��X � f � , �(X)
d

dt

�

is integrable,M is said to beSasakian. If � is a Killing vector field, or equivalently if
the tensorL�� vanishes,M is said to be K-contact. A Sasakian manifold is K-contact,
moreover we have

(3.1) r� = �� and K (� , E) = 1,

whereE 2 ker� is a unit vector field andK (� , E) denotes the sectional curvature along
the plane section containingE and � . An almost contact metric structureis defined by
a tensor field� of type (1, 1), a vector field� , a 1-form� and a metricg satisfying

�(� ) = 1, �2 = �I + � 
 � , g(� � , � � ) = g� � 
 �.

Note that these conditions imply�(� ) = 0, � Æ � = 0 and� = g( � , � ). Of course, a
contact metric structure is an almost contact metric structure.

An almost contact metric3-structureis defined as three almost contact metric struc-
tures (g, �i , �i , �i ), i = 1, 2, 3, such that

(3.2) �i� j � �i 
 � j = �k = �� j�i + � j 
 �i , �i � j = �k, �i� j = �k,

for cyclic permutation (i , j , k) of (1, 2, 3). In this caseM has to be of dimension
4m + 3 for a non-negative integerm. A contact metric3-structure is defined as three
contact metric structures (g, �i , �i , �i ), satisfying (3.2). In such case the 3-dimensional
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distribution � determined by the tri-vector� = �1 ^ �2 ^ �3 is called theReeb distribu-
tion or the characteristic distribution. If each contact metric structure (g, �i , �i , �i ) is
Sasakian, then the contact metric 3-structure is called a 3-Sasakian structureand the
manifold is called a 3-Sasakian manifold.

Now, we suppose thatM is a compact 3-Sasakian manifold of dimension 4m + 3.
Using (3.1)1 and (3.2), we get

r� j �i = ��i � j = ��k and [�i , � j ] = 2�k.

Thus, the Reeb distribution� is integrable and totally geodesic (i.e.,h�i j = 0). More-
over, the Reeb vector fields�i (i = 1, 2, 3) are Killing, and using (3.1)2, we obtain
readily

P
i ,� K (�i , E�) = 12m. On the other hand (see [5], p.103) the equality in (2.1)

holds if and only if the distributionV is totally geodesic and the vector fieldsEi are
H-conformal. Consequently, in our case, we get (see also the proof of Theorem 1
in [2]):

(3.3) D(� ) =
Z

M

X
i ,� K (�i , E�)vg = 12m vol(M).

Let V be an arbitrary integrable 3-dimensional distribution onM. Suppose thatV
is expressed locally by the tri-vectorV = E1^E2^E3, wherefE1, E2, E3, E4, : : : , Eng,
n = 4m + 3, is a positive orthonormal local frame. We show that the scalar

K (V) := K (E1, E2) + K (E1, E3) + K (E2, E3),

that we callthe curvature of the distributionV, depends only on the distribution, that
is, is invariant under adapted orthonormal frame changes. In dimension 3, 2K (V) is
exactly the scalar curvature of the Riemannian manifold. Weconsider in generalm �
0, and denote the dual basis offEi g and the curvature 2-forms respectively by

f#1, : : : , #ng and �ab(X, Y) = g(R(X, Y)Ea, Eb),

where R is the curvature tensor with the convention signR(X, Y) = [rX, rY]�r[X,Y] .
Consider the followingn-form

� :=
X

�2C3,�2C3̄

�(� )�(� )�� (1)� (4)#� (2) ^ #� (3) ^ #� (5) ^ � � � ^ #� (n),

whereC3 denotes the group of permutations off1, 2, 3g, C3̄ denotes the group of per-
mutations off4, 5,: : : , ng, and �(� ) denotes the signature of the permutation� . Such
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n-form is invariant under adapted orthonormal frame changesand satisfies ([5], p.102,
formula (13))

�(E1, : : : , En) = �2(4m� 1)!
X
i ,� K (Ei , E�).(3.4)

Moreover, X
i ,� K (Ei , E�) =

X
i ,� R(Ei , E�, Ei , E�)

=
X
i ,a

R(Ei , Ea, Ei , Ea)�X
i , j

R(Ei , E j , Ei , E j )

=
X

i

Ric(Ei , Ei )� 2
X
i< j

K (Ei , E j )

=
X

i

Ric(Ei , Ei )� 2K (V).

Since, any 3-Sasakian manifold is Einstein (Kashiwada [11]) with scalar curvaturer =
(4m + 2)(4m + 3), the above formula gives

X
i ,� K (Ei , E�) = 3(4m + 2)� 2K (V).(3.5)

From (3.4) and (3.5), we deduce thatK (V) is invariant under adapted orthonormal
frame changes. If we assumeK (V) � 3, from (3.3), (3.5) and Theorem A we obtain

D(V) � Z
M

 X
i ,� K (Ei , E�)

!
vg � 12m vol(M) = D(� ),(3.6)

where the equality holds if and only ifK (V) = 3, V is totally geodesic andE1, E2, E3

areH-conformal. Besides, we recall that Kashiwada [12] proved the remarkable result
that every contact metric 3-structure is 3-Sasakian (see also [17] for a direct proof of
such result in dimension three). Thus, we get the following

Theorem 3.1. Let M be a compact3-contact metric manifold. Then, among the
integrable3-dimensional distributionsV of M with curvature K(V) � 3, the Reeb dis-
tribution � minimizes the corrected energyD(V). Moreover, D(V) = D(� ) if and only
if V is totally geodesic, E1, E2, E3 are H-conformal and K(V) = 3.

Now, we give an interesting application of Theorem 3.1. Eachcompact Riemann-
ian manifold of constant sectional curvature +1, dimM = 4m + 3, is a spherical space
form (S4m+3=0, g), where0 is a finite group ofO(4m + 4) in which only the iden-
tity has +1 as an eigenvalue, andg is the metric on the quotient space induced by
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the canonical metricg0 on S4m+3. If (�i , �i , �i , g0) is the standard 3-Sasakian struc-
ture on S4m+3, the spherical space formsS4m+3=0 which admit a 3-Sasakian structure
are defined by the groups0 that leave invariant each of the three Sasakian structures
(�i , �i , �i ). Of course, on such spacesK (V) = 3 for any 3-dimensional distribution.
Then, Theorem 3.1 implies the following

Theorem 3.2. Let M be a spherical space form which admits a3-Sasakian struc-
ture. Then, among the integrable3-dimensional distributions of M, the Reeb distribu-
tion � minimizes the corrected energy.

Since a 3-Sasakian manifold is Einstein, then a 3-Sasakian manifold of dimension three
is of constant sectional curvature +1. Therefore, we get that: for a compact3-contact
metric manifold of dimension three, the Reeb distribution minimizes the corrected
energy.

EXAMPLES. For spherical space forms of dimension 3, Sasaki [18] classified
completely the groups0 that leave invariant each of three Sasakian structures. More
precisely, the groups0 are all finite subgroups of Clifford translations onS3 and are
equivalent to either one of
(a) 0 = fI g;
(b) 0 = f�I g;
(c) 0 is the cyclic group of orderq > 2 generated by

�
A 0
0 A

�
, where A =

0
BB�

cos
2�
q
�sin

2�
q

sin
2�
q

cos
2�
q

1
CCA;

(d) 0 is a group of Clifford translations corresponding to a binary dihedral group or
the binary polyhedral groups of the regular tetrahedronT�, octahedronO� or icosa-
hedron I �.
In dimension 4m+ 3> 3, examples of spherical space forms which admit a 3-Sasakian
structure are given byM = S4m+3=0r ,

0r = 0 � � � � � 0 (r = m + 1 factors),

where0 is any one of the groups classified in (a)–(d). In particular,the sphereS4m+3,
the real projective spaceRP4m+3 and the lens spacesL4m+3 = S4m+3=0r , where0 is of
type (c), admit a 3-Sasakian structure. Therefore, in all these cases the Reeb distribu-
tion minimizes the corrected energy and so, Theorem 3.2 extends Theorem B.
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REMARK 3.1. LetM be a 3-Sasakian manifold. IfM has constant�i -holomorphic
sectional curvaturec (for a fixed i = 1, 2, 3), thenc = +1 and henceM has constant
sectional curvature +1. In fact a Sasakian manifold of constant�-holomorphic sectional
curvaturec is �-Einstein ([1], p.113) and it is Einstein if and only ifc = +1.

4. The case of complex contact metric manifolds

We now consider the case of the characteristic distributionof a complex contact
metric manifold. We start recalling some basic definitions and properties about com-
plex contact metric manifolds and refer to [1] and [15] for further details and information
on such spaces. Acomplex contact manifoldis a complex manifoldM of complex
dimension 2m + 1 together with an open coveringfUg by coordinate neighborhoods
such that
a) on eachU , there is a holomorphic 1-form� with � ^ (d�)m 6= 0 everywhere;
b) if U \ U 0 6= ;, there is a non-vanishing holomorphic functionf such that� 0 = f � .
The complex contact form determines a non-integrable (horizontal) distributionH0 by
the equation� = 0. A complex contact structure, that we denote byf�g, is given by
a global 1-form if and only if the first Chern class vanishes. Let (M, f�g) be a com-
plex contact manifold. The local contact form� is u � i v to within a non-vanishing
complex-valued function multiple. Thusv = u Æ J since� is holomorphic, whereJ is
complex structure onM. Locally we can define a vector fieldU satisfying the con-
ditions: (du)(U , X) = 0 for all X 2 H0, u(U ) = 1 and v(U ) = 0. Then, we have a
global distributionV0 locally defined by the bi-vectorU ^ V , where V = �JU, with
T M = V0�H0. V0 is called thecharacteristic distributionor the vertical distribution.
The characteristic distribution is usually assumed integrable because for all known ex-
amples this condition is satisfied.

Let (M, J, f�g) be a complex contact manifold. A Hermitian metricg is called an
associated metricif:
1) on eachU , there exist tensor fieldsG and H = G J of type (1, 1) such that

H2 = G2 = �I + u
U + v 
 V , G J = �JG, GU = 0, g(G X, Y) = �g(X, GY);

u(X) = g(U , X), (du)(X, Y) = g(X, GY) + (� ^ v)(X, Y), (dv)(X, Y) = g(X, HY) �
(� ^ u)(X, Y), where� (X) = g(rXU , V);
2) on U \ U 0 6=, we have

u0 = au� bv, v0 = bu + av, G0 = aG� bH, H 0 = bG + aH,

wherea, b are functions onU \ U 0 with a2 + b2 = 1.
In such case (J, f�g, g), or (u, v,U , V , G, H , g), is called complex contact metric struc-
ture andM a complex contact metric manifold. Foreman in his thesis (cf. [1], p.192)
proved that each complex contact manifold has a complex contact metric structure. If
X 2H0p is a unit vector field, the plane inTpM spanned byX and X0 = aG X+bH X,
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a, b 2 R, a2 + b2 = 1, is calledG H-plane and its sectional curvature theG H-sectional
curvature. A complex contact metric manifoldM is said to benormal if ([15], [1]):

S(X, Y) = T(X, Y) = 0, 8X, Y 2 H0 and S(U , X) = T(V , X) = 0, 8X,(4.1)

where S, T are (1, 2) tensors defined by

S(X, Y) = [G, G](X, Y) + 2g(X, GY)U � 2g(X, HY)V + 2v(Y)H X � 2v(X)HY

+ � (GY)H X � � (G X)HY + � (X)G HY� � (Y)G H X,

T(X, Y) = [H , H ](X, Y) + 2g(X, GY)U + 2g(X, HY)V + 2u(Y)G X� 2u(X)GY

+ � (H X)GY� � (HY)G X + � (X)G HY� � (Y)G H X.

One consequence of normality is that all the sectional curvatures of plane sections
spanned by a vector inV0 and a vector inH0 are equal to +1. Thus, iffE�g is an
orthonormal basis of the horizontal distributionH0, we have

(4.2)
4mX
�=1

(K (U , E�) + K (V , E�)) = 8m.

Consequences of normality are also

rXU = �G X + � (X)V , rXV = �H X � � (X)U .

Thus,

(LU g)(X, Y) = g(�G X + � (X)V , Y) + g(X, �GY + � (Y)V) = 0, 8X, Y 2 H0,

similarly for V , that is, U , V areH0-Killing vector fields. Moreover,

g(rUU , X) = g(rV V , X) = g(rU V , X) = g(rVU , X) = 0, 8X 2 H0,

that is, V0 is totally geodesic. Consequently, as in the 3-Sasakian case, using (4.1)
we get

D(V0) =
Z

M

X
� (K (U , E�) + K (V , E�))vg = 8m vol(M).(4.3)

This result was also obtained in [2], more precisely (4.3) isthe corrected statement
of Theorem 2 of [2]. Of course, (4.3) does not imply, in general, that V0 minimizes
the corrected energy. However, in special cases this property is true. We note that the
Ricci curvatures Ric(U , U ) and Ric(V , V), are given by

(4.4) Ric(U , U ) = Ric(V , V) =
4mX
�=1

K (V , E�) + K (U , V) = 4m + K (V0),
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wherefE�g is an orthonormal basis of the horizontal distributionH0. Now, let V be a
2-dimensional integrable distribution onM and letH be the orthogonal complementary
distribution of dimension 4m. Let fV1, V2, W1, : : : , W4mg be a positive orthonormal local
frame such thatfV1, V2g spanV and fW1, : : : , W4mg spanH. Using Theorem A, we get

D(V) � Z
M

4mX
�=1

(K (V1, W�) + K (V2, W�))vg.(4.5)

Suppose that the complex contact metric manifoldM is Einstein, then (4.4) gives that
the Ricci tensor is given by

Ric = (4m + K (V0))g,

and K (V0) is a constant. Consequently

(4.6)

4mX
�=1

(K (V1, W�) + K (V2, W�)) =
4mX
�=1

(R(V1, W�, V1, W�) + R(V2, W�, V2, W�))

= Ric(V1, V1) + Ric(V2, V2)� 2K (V1, V2)

= 8m + 2(K (V0)� K (V)).

Moreover (see [5], p.103), the equality in (4.5) holds if and only if V is totally geo-
desic andV1, V2 are H-conformal. Therefore, using (4.3), (4.5) and (4.6), we obtain
the following

Theorem 4.1. Let M be a compact Einstein normal complex contact metric man-
ifold. Then, among the integrable2-dimensional distributionsV of M with curvature
K (V) � K (V0), the characteristic distributionV0 minimizes the corrected energyD(V).
Moreover, D(V) = D(V0) if and only if V is totally geodesic, V1, V2 are H-conformal
and K(V) = K (V0).

There exist interesting examples of Einstein normal complex contact metric man-
ifolds. We recall that a complex contact metric manifoldM is said to be IK-normal,
that is, in the sense of Ishihara-Konishi [10], if the tensors S and T vanish. Of course
an IK-normal complex contact metric structure is a normal complex contact metric
structure in the sense of (4.1). Ishihara and Konishi in the same paper proved that
a such manifold is Kähler-Einstein with first Chern classc1(M) > 0. Then, Foreman
([7], Theorem 6.1 and Proposition 6.3) proved thatM is isometric to a twistor space
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of a quaternionic-Kähler manifold (of positive scalar curvature), moreover the curvature
tensor ofM satisfies

(4.7) R(X, Y)U = �u(Y)X + u(X)Y � v(Y)J X + v(X)JY� 2g(J X, Y)V .

Then,

K (V0) = g(R(U , V)U , V) = 4 and Ric = (4m + 1)g.(4.8)

Conversely, Foreman [7], using a result of Ishihara-Konishi [9], proved that every
twistor spaceZ of a quaternionic-Kähler manifold with positive scalar curvature has
an IK-normal complex contact metric structure satisfying (4.7). Now, letZ be a com-
pact complex (2m+ 1)-dimensional manifold with a complex contact structure. LeBrun
[16] proved that ifZ admits a Kähler-Einstein metric of positive scalar curvature, then
it is the twistor space of a quaternionic-Kähler manifold with positive scalar curvature.
Consequently, using the above results, we get that:a compact Kähler-Einstein mani-
fold Z of positive scalar curvature, dimCZ = 2m+1, with a complex contact structure,
admits an Einstein normal complex contact metric structurewith scalar curvature r=
2(2m + 1)(4m + 1). Another way to build twistor spaces that admit an Einstein nor-
mal complex contact metric structure is the following. If̄M is a 3-Sasakian mani-
fold and one of the Reeb vector fields�i , say �1, is regular, then the orbit spaceM =
M̄=�1 admits an IK-normal complex contact metric structure whichis Kähler-Einstein
of positive scalar curvature (see [9]). Thus,M is isometric to a twistor space of a
quaternionic-Kähler manifold with positive scalar curvature. So, the class of twistor
spaces of a quaternionic-Kähler manifold with positive scalar curvature is a class of
Einstein normal complex contact metric manifolds satisfying (4.8). Then, from Theo-
rem 4.1 we get

Theorem 4.2. Let Z be a compact twistor space of a quaternionic-Kähler man-
ifold with positive scalar curvature(equipped with an IK-normal complex contact met-
ric structure). Then, among the2-dimensional integrable distributionsV on Z with
curvature K(V) � 4, the characteristic distributionV0 minimizes the corrected energy.

A particular case of the previous examples is the odd-dimensional complex pro-
jective spaceCP2m+1 equipped with the standard Fubini-Study metricg of constant
holomorphic sectional curvature +4. In fact,CP2m+1 is the twistor space of the
quaternionic-Kähler manifoldQP2m+1. Ishihara and Konishi [9] proved thatCP2m+1

admits a normal complex contact metric structure (J, f�g, g) closely related to the stan-
dard Sasakian 3-structure on the sphereS4m+3. More precisely this structure is induced
via the Hopf fibrationS1 ,! S4m+3 ! CP2m+1. Let V be a 2-dimensional integrable
distribution onCP2m+1, locally defined by the bi-vectorV1 ^ V2. In such case, since
CP2m+1 has constant holomorphic sectional curvaturec = +4, the sectional curvature
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K (V) satisfies (see, for example, [13] p.167)

K (V) = 1 + 3 cos� (V) � 4,

where cos� (V) = jg(V1, J V2)j, and K (V) = 4 if and only if V2 = �J V1. Then, from
Theorem 4.2 we get

Corollary 4.1. Among the2-dimensional integrable distributionsV on CP2m+1,
the characteristic distributionV0 of the normal complex contact metric structure induced
via the Hopf fibration S1 ,! S4m+3! CP2m+1 minimizes the corrected energy. More-
over, if V is locally defined by the bi-vector V1^ V2, thenD(V) = D(V0) iff V is totally
geodesic, V2 = �J V1 and V1, V2 are H-conformal.

REMARK 4.1. We note that ifM is a compact normal complex contact metric
manifold satisfying one of the following conditions:
a) M has constant holomorphic sectional curvaturec,
b) M has constantG H-sectional curvature +1 andK (V0) = 4,
then it is holomorphically isometric to the complex projective spaceCP2m+1 with the
Fubini-Study metric of constant holomorphic sectional curvature +4. In fact, if we
assume a), Proposition 5.7 of [15] gives that the manifold isKähler andc = +4. More-
over, if we assume b), Theorem 5.8 (first part) of [15] gives that M is a Kähler man-
ifold of constant holomorphic sectional curvature +4. On the other hand, a compact
Kähler manifold of positive holomorphic sectional curvature is necessarily simply con-
nected (see, for example [13] p.171). Therefore, in both cases, we get thatM is holo-
morphically isometric toCP2m+1 with the Fubini-Study metric of constant holomorphic
sectional curvature +4.
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