Perrone, D.
Osaka J. Math.
45 (2008), 615-627

CORRECTED ENERGY OF THE REEB DISTRIBUTION
OF A 3-SASAKIAN MANIFOLD

DomMENICO PERRONE

(Received February 22, 2007, revised May 22, 2007)

Abstract

In this paper we show that the Reeb distribution on a sphesace form which
admits a 3-Sasakian structure minimizes the correctedggneknalogously for the
characteristic distribution of the normal complex contattucture on the complex
projective spac& P?™?! induced via the Hopf fibratiors* «— S*™3 — CP2™1, This
last result is a consequence of a more general result on ttrected energy of
the characteristic distribution of a compact twistor spacer a quaternionic-Kéhler
manifold with positive scalar curvature (equipped with amal complex contact
metric structure).

1. Introduction

Let (M, g) be a compact Riemannian manifold. The question of to meakaw
far from being parallel a unit vector field, has been studigdséveral authors and in
many different contexts. In [4] Chacon, Naveira and Wesextending this question,
defined the energy¥ (V) of a k-dimensional distribution’ on M and studied the first
and the second variation of the energy. Gil-Medrano, GomzBkyvila and Vanhecke
[8] studiedk-dimensional distributions as harmonic maps between teenRnnian man-
ifold (M, g) and the Grassmann bundI&(k, M), gs), wheregs is the induced Sasaki
metric. The (quaternionic) Hopf distributiof® — S*™3 — HP™, that is, the Reeb
distribution of the natural 3-Sasakian structureS#i*3, is an instable critical point [4].
Then, Chacon and Naveira [5] defined a corrected en®x@y) of a k-dimensional dis-
tribution and proved, by using a result of [6], that the Hofstidbution is a minimum
of D(V) in the set of all integrable 3-dimensional distributions $™3. In [8] the au-
thors proved that the Reeb distribution of a 3-Sasakian foldn(M, #;, &, g) defines
a harmonic map between the Riemannian manifdiy §¢) and the Grassmann bundle
(G(3, M), gs).

Since the result of minimality of the corrected energy foe tHopf distribution
was a single application of the corrected energy, Blair andydt Vanli [2] consid-
ered the question of extending this result for the Reebildigton of an arbitrary com-
pact 3-Sasakian manifold and for the characteristic thstion of a compact normal
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complex contact manifold. Unfortunately, their demortistrzs don't prove the results
enunciated in Theorems 1, 2 of [2], more precisely they pronty that for the Reeb
distribution of a compact 3-Sasakian manifold holds theadityuin Theorem 1 of [5]

(Theorem A in our Section 2), similarly for a compact normamplex contact metric
manifold. So, the result related to the Hopf distributiorthe only result which gives
a minimum for the corrected energy.

In this paper, as a consequence of a more general resultr@rhed.1), we show,
by using a direct method, that the Reeb distribution on a rigddespace form which
admits a 3-Sasakian structure minimizes the correctedygnerthe set of all integrable
3-dimensional distributions. In particular, we get that foe natural 3-Sasakian struc-
tures on the spher&™3, on the real projective spad®@P*™? and on the lens spaces
L4™3 the Reeb distribution is a minimum @ (V). Moreover, as a consequence of
Theorem 4.1, we show that the characteristic distributibra @ompact twistor space
over a quaternionic-Kahler manifold with positive scalanature (equipped with a IK
normal complex contact metric structure) is a minimum foe ttorrected energy in
the set of all integrable 2-dimensional distributiobswith curvature K(V) < 4. In
particular, the characteristic distribution of the natutcamplex contact metric struc-
ture on the complex projective spa@P?™! induced via the Hopf fibratior§' —
s'm3 . CP?™! is a minimum for the corrected energy in the set of all iregbdg
2-dimensional distributions.

2. Energy of Distributions

Let (M, g) be a compact oriented Riemannian manifold of dimengiowith a
k-dimensional distributiony and let’H be the orthogonal complementary distribution
of dimensionn — k. Let {Eq,..., E,} be a positive orthonormal local frame such that
{E1,..., Ex} spanV and {Ex+1, ..., En} span’H. We assume the following index
convention:a,b=1,...,n;i,j=1,...,k; o, 8=k+1,...,n. The second fundamental
form of the distributionV in the direction ofE, and the second fundamental form of
the distribution’ in the direction ofE; are defined, respectively, by the coefficients

h = 9(Ve Ej, E,) and hi, = g(Ve, Ep, Ei).

The mean curvature vectots,, and Hy, are defined by

ﬁV:% <Zhﬁ)Ea’ HH:nikZ(ZhL‘O‘)Ei'
o I I o

The vector fieldsE; (i =1, 2,...,k) are called”-conformalif they are conformal vector
fields for horizontal ones, that is,

(EEi g)(X, Y) = fi g(X1 Y); VX, Y e Hy
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where £z denotes the Lie derivative anf] is a function onM. Killing vector fields
are H-conformal with f = 0. If G(k, M) denotes the Grassmann bundle of oriented
k-planes in the tangent spaces Mf, then the distribution) gives a sectionr: M —
G(k, M) of the Grassmann bundle and may be considered as a globallssection

of the tensor bundlq’\k(M), also denoted byr. It can be expressed locally as=

Ei1 A .-+ A Ex. The energy of the distributioly is then defined as the energy of the
corresponding unit sectionr, where G(k, M) is considered with the induced Sasaki
metric from AX(M) (see [8], [4], [14]):

n 1
&)= Svolw) + 5 [ 1901,
2 2 /v
where the norm of the covariant derivative of the unit sectiois given by:

Vo= IVe,ol2 =Y (h2)2+ Y (hy)2

i, ia,B
We note that|Vo | = ||[Vo*| and hence£(V) = E(H). If V is defined by a unit vector

field, then the energy of is the energy studied by Wood [20]. Wiegmink [19] defined
the total bendingof a unit vector fieldU as

_ 1
BU) = =5 voiss [ IV

So, to study the possible minima of the total bendifig)) is the same as to study
the possible minima of the energy. Chacon and Naveira [3bdhiced the corrected
energy of a distribution’ as

D(V) = /M(nan2 +(n— KN — Kk — 2)[Hy 1> + K2 Hy [1?)vg.

This corrected energy is not an extension of the corrected bending defined in [3].
The main results of Chacon and Naveira [5] are the followimgotems.

Theorem A. If V is integrable then

(2.1) D) > /M <Z K(Ei, Ea)>vg,

where K(Ej, E,) is the sectional curvature of the plane spanned bye®’ and E, € H.

Moreover (see [5], p.103), the equality in (2.1) holds if amdyoif V is totally geo-
desic andEy, . .., Ex are H-conformal.
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Theorem B. Among the integrable distributions of dimensi@nof S'™3, the
(quaternioni¢ Hopf distribution § < S*™3 _ HP™ minimizes the corrected energy

3. Corrected energy and 3-Sasakian manifolds

We start recalling some basic definitions and propertiesiabontact metric man-
ifolds and 3-Sasakian manifolds (for further details anibrimations, we refer to [1]).
A contact manifolds a (2+1)-dimensional manifoldM equipped with a global 1-form
n such thaty A (dn)" # O everywhere orM. Given a contact forny, there exists a
unique vector fields, called thecharacteristic vector fieldr the Reeb vector fieldsat-
isfying n(¢) =1 anddn(&, -) =0. A Riemannian metrig is said to be an associated
metric if there exists a tensor fielgl of type (1, 1) such that

n:g(S!')l dn:g(':d)')v ¢2=—|+'7®§-

In this case A, 9), or (n, 0, &, ¢), is called acontact metric structur@and M a contact
metric manifold If the almost complex structurd on M x R defined by

J(X, f%) = <¢x — fg, n(X)%)

is integrable,M is said to beSasakian If £ is a Killing vector field, or equivalently if
the tensorl:¢ vanishes,M is said to be K-contact. A Sasakian manifold is K-contact,
moreover we have

(3.1) VeE=—¢ and K(& E)=1,

where E € kern is a unit vector field an&K (¢, E) denotes the sectional curvature along
the plane section containing and&. An almost contact metric structuris defined by
a tensor fieldp of type (1, 1), a vector field, a 1-formn and a metricg satisfying

nE)=1, ¢*=—-1+n®%& 9o ,¢-)=g-n®n.

Note that these conditions imply(§) =0, no¢ =0 andn =g(-, &). Of course, a
contact metric structure is an almost contact metric stnect

An almost contact metri@-structureis defined as three almost contact metric struc-
tures @, i, &, ¢i), 1 =1, 2, 3, such that

(32) ¢I¢j — & ®77J =@k = _¢j¢i +§;—'J X ni, ¢|$1 =&, nld)J =k,

for cyclic permutation i( j, k) of (1, 2, 3). In this caseM has to be of dimension
4m + 3 for a non-negative integan. A contact metric3-structureis defined as three
contact metric structuregy(ni, &, ¢i), satisfying (3.2). In such case the 3-dimensional
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distribution ¢ determined by the tri-vectoy = & A & A &3 is called theReeb distribu-
tion or the characteristic distribution If each contact metric structure,(n;, &, ¢i) is
Sasakian, then the contact metric 3-structure is calledSasakian structurend the
manifold is called a Sasakian manifold

Now, we suppose thatl is a compact 3-Sasakian manifold of dimension 43.
Using (3.1) and (3.2), we get

Ve & = —¢i&j = & and [, §j] = 2.

Thus, the Reeb distributios is integrable and totally geodesic (i.ehﬁ =0). More-
over, the Reeb vector fieldg (i = 1, 2, 3) are Killing, and using (3.4) we obtain
readily > ; , K(&, Ey) = 12m. On the other hand (see [5], p.103) the equality in (2.1)
holds if and only if the distributior is totally geodesic and the vector field#s are
‘H-conformal. Consequently, in our case, we get (see also tbef mf Theorem 1

in [2]):

(3.3) D) = /M Z K (&, E4)vg = 12mvoI(M).

Let V be an arbitrary integrable 3-dimensional distribution dn Suppose thaV
is expressed locally by the tri-vectdt = E; A Ex A E3, Where{E, Ey, Es, Eg4,..., En},
n=4m+ 3, is a positive orthonormal local frame. We show that thalasc

K(V) := K(E1, E2) + K(E1, E3) + K(E2, E3),

that we callthe curvature of the distributio®?, depends only on the distribution, that
is, is invariant under adapted orthonormal frame changasdirmension 3, K (V) is
exactly the scalar curvature of the Riemannian manifold. ddesider in generamn >

0, and denote the dual basis {;} and the curvature 2-forms respectively by

(..., 9" and Qap(X,Y)=g(R(X, Y)Ea, Ep),

where R is the curvature tensor with the convention siB(X, Y) = [Vx, Vy] — V[xv;.
Consider the followingn-form

Q= Z E(G)E(T)Q(,(l)r@)ﬁa(z) APTOAGO AL AT,

oelz,tely

where &3 denotes the group of permutations {df, 2, 3, €3 denotes the group of per-
mutations of{4, 5,..., n}, ande(o) denotes the signature of the permutation Such
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n-form is invariant under adapted orthonormal frame charayek satisfies ([5], p.102,
formula (13))

(3.4) Q(Ey, ..., En) = —2(4m— 1)1 Y " K(Ei, E.).

Moreover,

Y K(Ei,E)=) R(E,Ey Ei, E)
=Y R(Ei, Ea Ei, Ea) — Y _R(E;, Ej, Ei, E))
i,a i

=) "Ric(Ei, E) - 2) K(E;, E))

i<]j

= Z RiC(Ei, E|) — 2K (V)

Since, any 3-Sasakian manifold is Einstein (Kashiwada)[®ifh scalar curvature =
(4m + 2)(4m + 3), the above formula gives

(3.5) > K(Ei, Ey) = 3(4m+2) — 2K (V).

i,

From (3.4) and (3.5), we deduce thKt()V) is invariant under adapted orthonormal
frame changes. If we assunke(V) < 3, from (3.3), (3.5) and Theorem A we obtain

(3.6) D) = f (Z K(E, Ea)>vg > 12mvol(M) = D(§),
M i,a

where the equality holds if and only K(V) =3, V is totally geodesic and;, E,, E3
are H-conformal. Besides, we recall that Kashiwada [12] proves remarkable result
that every contact metric 3-structure is 3-Sasakian (see [dl7] for a direct proof of
such result in dimension three). Thus, we get the following

Theorem 3.1. Let M be a compacB-contact metric manifold Then among the
integrable 3-dimensional distributiond’ of M with curvature K)) < 3, the Reeb dis-
tribution & minimizes the corrected enerd@y(V). Moreover D(V) = D(¢) if and only
if V is totally geodesic E;, E,, E3 are H-conformal and KV) = 3.

Now, we give an interesting application of Theorem 3.1. Eescimpact Riemann-
ian manifold of constant sectional curvature +1, ¥Mn¥ 4m+ 3, is a spherical space
form (S*™3/T, g), whereT is a finite group ofO(4m + 4) in which only the iden-
tity has +1 as an eigenvalue, amdis the metric on the quotient space induced by
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the canonical metrigy on S*™3. If (ni, ¢, &, Qo) is the standard 3-Sasakian struc-
ture on S*™3, the spherical space forn®™3/I" which admit a 3-Sasakian structure
are defined by the groups that leave invariant each of the three Sasakian structures
(ni, @i, &). Of course, on such spacés(V) = 3 for any 3-dimensional distribution.
Then, Theorem 3.1 implies the following

Theorem 3.2. Let M be a spherical space form which admit8-&asakian struc-
ture. Then among the integrabl@&-dimensional distributions of Mthe Reeb distribu-
tion & minimizes the corrected energy

Since a 3-Sasakian manifold is Einstein, then a 3-Sasakamifold of dimension three
is of constant sectional curvature +1. Therefore, we gdt tfta a compact3-contact
metric manifold of dimension threehe Reeb distribution minimizes the corrected
energy

ExAMPLES. For spherical space forms of dimension 3, Sasaki [18] ifleds
completely the group§” that leave invariant each of three Sasakian structures. More
precisely, the group$ are all finite subgroups of Clifford translations @1 and are
equivalent to either one of

(@ r'={l}
(b) T'={£l};
(c) T is the cyclic group of ordeg > 2 generated by
2 .2
A 0 cos— —sin—
<0 A)' where A= o or |
sin— cos—
q q

(d) T is a group of Clifford translations corresponding to a byndihedral group or
the binary polyhedral groups of the regular tetrahedicn octahedronO* or icosa-
hedron| *.

In dimension 4n+3 > 3, examples of spherical space forms which admit a 3-Sasakia
structure are given b = S*™3/T,

I=Fx---xT (r=m+1 factors),

whereT is any one of the groups classified in (a)—(d). In particulag sphereS*™3,
the real projective spacRP*™?2 and the lens spacds*™3 = S*™3/T whereTl is of
type (c), admit a 3-Sasakian structure. Therefore, in @s¢hcases the Reeb distribu-
tion minimizes the corrected energy and so, Theorem 3.2hdstdheorem B.



622 D. PERRONE

REMARK 3.1. LetM be a 3-Sasakian manifold. M has constanp;-holomorphic
sectional curvature (for a fixedi = 1, 2, 3), thenc = +1 and henceM has constant
sectional curvature +1. In fact a Sasakian manifold of aomtgt-holomorphic sectional
curvaturec is n-Einstein ([1], p.113) and it is Einstein if and only éf= +1.

4. The case of complex contact metric manifolds

We now consider the case of the characteristic distributibm complex contact
metric manifold. We start recalling some basic definitiomsl groperties about com-
plex contact metric manifolds and refer to [1] and [15] forther details and information
on such spaces. A&omplex contact manifolis a complex manifoldM of complex
dimension 2 + 1 together with an open covering/} by coordinate neighborhoods
such that
a) on eachl/, there is a holomorphic 1-forré with 6 A (d6)™ # O everywhere;

b) if UnU" #@, there is a non-vanishing holomorphic functidnsuch that’ = f6.
The complex contact form determines a non-integrable Zbatal) distributionHy by
the equatior® = 0. A complex contact structure, that we denote {By, is given by
a global 1-form if and only if the first Chern class vanishest (M, {#}) be a com-
plex contact manifold. The local contact forénis u — iv to within a non-vanishing
complex-valued function multiple. Thus=uo J sinceé is holomorphic, where] is
complex structure orM. Locally we can define a vector field satisfying the con-
ditions: @u)(U, X) =0 for all X € Hp, u(U) =1 andv(U) = 0. Then, we have a
global distributionVy locally defined by the bi-vecto A V, whereV = —JU, with
TM =V ® Ho. Vp is called thecharacteristic distributionor the vertical distribution
The characteristic distribution is usually assumed irgbyr because for all known ex-
amples this condition is satisfied.

Let (M, J, {#}) be a complex contact manifold. A Hermitian metgds called an
associated metridf:

1) on eachl/, there exist tensor field& and H = GJ of type (1, 1) such that

H2=G?=—-1+u®U+v®V, GJ=-JG, GU=0, g(GX, Y)=-g(X, GY);

u(xX) = g(u, X), (du)(X,Y) =g(X, GY) + (o A v)(X,Y), (dv)(X,Y)=g(X, HY) —
(o AUu)(X,Y), whereo(X) = g(VxU, V);
2) onUNU #, we have

U=au—bv, v=but+tav, G =aG-bH, H =bG+aH,

wherea, b are functions ori/ N’ with a? +b? = 1.

In such case ], {#},9), or (u,v,U,V,G, H,Qq), is called complex contact metric struc-
ture andM a complex contact metric manifold=oreman in his thesis (cf. [1], p.192)
proved that each complex contact manifold has a complexacomhetric structure. If
X € Hop is a unit vector field, the plane ifi,M spanned byX and X’ =aGX+bH X,
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a,beR, a®+b?=1, is calledG H-plane and its sectional curvature tfeH -sectional
curvature A complex contact metric manifoli1 is said to benormal if ([15], [1]):

(4.1) (X, Y)=T(X,Y)=0, VX,Y eHo and SU, X)=T(V, X)=0, VX,
where S, T are (1, 2) tensors defined by
(X, Y) =[G, G](X, Y) +29(X, GY)U — 2g(X, HY)V + 20(Y)HX — 2v(X)HY
+0(GY)HX — o(GX)HY +o(X)GHY — o (Y)GHX,
T(X, Y) =[H, H](X, Y) +29(X, GY)U + 2g(X, HY)V + 2u(Y)G X — 2u(X)GY
+a(HX)GY — o (HY)GX+a(X)GHY — o (Y)GH X.

One consequence of normality is that all the sectional ¢urga of plane sections
spanned by a vector iy and a vector inHy are equal to +1. Thus, ifE,} is an
orthonormal basis of the horizontal distributi@ty, we have

4m
(4.2) > (K(U, Eq) +K(V, E,)) = 8m.

=1
Consequences of normality are also
VxU = =GX+0o(X)V, VxV=—HX—o(X)U.
Thus,
(Lug)(X, Y) = g(=GX+a(X)V, Y)+g(X, —GY +o(Y)V)=0, VX, Y € Ho,
similarly for V, that is, U, V are Hy-Killing vector fields. Moreover,
9(VuU, X) =g(VWwV, X) =g(VuV, X) =g(VwU, X) =0, VX € Hy,

that is, V; is totally geodesic. Consequently, as in the 3-Sasakiam, casing (4.1)
we get

(4.3) Do) :/ 3K, EL) +K(V, Ed))vg = 8mvol(M).
M o

This result was also obtained in [2], more precisely (4.3Yhie corrected statement
of Theorem 2 of [2]. Of course, (4.3) does not imply, in gehethat Vy minimizes
the corrected energy. However, in special cases this psopetrue. We note that the
Ricci curvatures Ridf, U) and Ricl/, V), are given by

4m
(4.4) RicU, U) = Ric(V, V) = Y K(V, E,) + K(U, V) = 4m+ K V),
a=1
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where{E,} is an orthonormal basis of the horizontal distributibig. Now, let)V be a
2-dimensional integrable distribution dfl and letH be the orthogonal complementary
distribution of dimension #. Let {Vi, Vo, Wy, ..., Wy} be a positive orthonormal local
frame such thatVi, Vo} spanV and {W,..., Wy} spanH. Using Theorem A, we get

am
(4.5) DO) = [ YKV W) + K (2, W
a=1

Suppose that the complex contact metric manifMdis Einstein, then (4.4) gives that
the Ricci tensor is given by

Ric = (4m + K(Vo))g,

and K (V) is a constant. Consequently

am 4m
D (K (V1 W) + K (Va, Wa)) = Y (R(VL, Wa, Vi, Wa) + R(V2, Wa, Vo, W)
a=1 =1

(4.6)
= Ric(V1, V1) + Ric(Va, Vo) — 2K (V1, Vo)

= 8m+ 2(K (Vo) — K(V)).

Moreover (see [5], p.103), the equality in (4.5) holds if amdyaif V is totally geo-
desic andVy, V, are H-conformal. Therefore, using (4.3), (4.5) and (4.6), weaobt
the following

Theorem 4.1. Let M be a compact Einstein normal complex contact metric-man
ifold. Then among the integrabl@-dimensional distributiond’ of M with curvature
K(V) < K(V), the characteristic distributio’; minimizes the corrected enerd@¥()).
Moreover D(V) = D(Vy) if and only if V is totally geodesic Vi, V, are H-conformal
and K(V) = K(V).

There exist interesting examples of Einstein normal comglentact metric man-
ifolds. We recall that a complex contact metric manifditl is said to be IK-normal,
that is, in the sense of Ishihara-Konishi [10], if the tessBrand T vanish. Of course
an IK-normal complex contact metric structure is a normamptex contact metric
structure in the sense of (4.1). Ishihara and Konishi in tames paper proved that
a such manifold is Kéhler-Einstein with first Chern clag¢M) > 0. Then, Foreman
([7], Theorem 6.1 and Proposition 6.3) proved tihtis isometric to a twistor space
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of a quaternionic-Kahler manifold (of positive scalar aitrwe), moreover the curvature
tensor of M satisfies

4.7) R(X, Y)U = —u(Y)X +u(X)Y —ov(Y)IX +v(X)JY — 2g(I X, Y)V.
Then,
(4.8) KWo) =g(RU, V)U,V)=4 and Ric=(4n+1)g.

Conversely, Foreman [7], using a result of Ishihara-Koni§j, proved that every
twistor spaceZ of a quaternionic-K&hler manifold with positive scalar vature has
an IK-normal complex contact metric structure satisfyidgrj. Now, letZ be a com-
pact complex (&h+ 1)-dimensional manifold with a complex contact structuke@Brun
[16] proved that ifZ admits a K&hler-Einstein metric of positive scalar curvatithen
it is the twistor space of a quaternionic-Kéhler manifoldhmpositive scalar curvature.
Consequently, using the above results, we get tlaatompact Kahler-Einstein mani-
fold Z of positive scalar curvatutedime Z = 2m+1, with a complex contact structure
admits an Einstein normal complex contact metric structwih scalar curvature r=
2(2m + 1)(4m + 1). Another way to build twistor spaces that admit an Einsteor-
mal complex contact metric structure is the following. Nf is a 3-Sasakian mani-
fold and one of the Reeb vector fielgs sayé,, is regular, then the orbit spadd =
M/él admits an IK-normal complex contact metric structure whighKahler-Einstein
of positive scalar curvature (see [9]). Thub] is isometric to a twistor space of a
quaternionic-Kahler manifold with positive scalar cuva. So, the class of twistor
spaces of a quaternionic-Kéhler manifold with positivelaca@urvature is a class of
Einstein normal complex contact metric manifolds satigfy(4.8). Then, from Theo-
rem 4.1 we get

Theorem 4.2. Let Z be a compact twistor space of a quaternionic-Kahler man-
ifold with positive scalar curvaturéequipped with an IK-normal complex contact met-
ric structure. Then among the2-dimensional integrable distribution¥ on Z with
curvature K(V) < 4, the characteristic distribution/y minimizes the corrected energy

A particular case of the previous examples is the odd-dilneat complex pro-
jective spaceCP?™1! equipped with the standard Fubini-Study metgcof constant
holomorphic sectional curvature +4. In facf;P?™! is the twistor space of the
quaternionic-K&hler manifoldP?™?*, Ishihara and Konishi [9] proved thatP2m*!
admits a normal complex contact metric structude{f}, g) closely related to the stan-
dard Sasakian 3-structure on the sphst&*3. More precisely this structure is induced
via the Hopf fibrationSt < S*™3 . CP2™1 |Let V be a 2-dimensional integrable
distribution onCP?™1, locally defined by the bi-vecto¥; A V,. In such case, since
CP?™1 has constant holomorphic sectional curvatare +4, the sectional curvature
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K (V) satisfies (see, for example, [13] p.167)
K(V)=1+3co (V) <4,

where cog (V) = |g(V1, JVo)|, and K(V) = 4 if and only if V, = +JV;. Then, from
Theorem 4.2 we get

Corollary 4.1. Among the2-dimensional integrable distributiony on CP?™?,
the characteristic distribution/y of the normal complex contact metric structure induced
via the Hopf fibration §< S*™3 . CP?™1 minimizes the corrected energ\ore-
over if V is locally defined by the bi-vector; A Vs, thenD(V) = D(Vy) iff V is totally
geodesic V, = +JV; and 4, V, are H-conformal

REMARK 4.1. We note that ifM is a compact normal complex contact metric
manifold satisfying one of the following conditions:
a) M has constant holomorphic sectional curvatare
b) M has constanG H-sectional curvature +1 ank (1) = 4,
then it is holomorphically isometric to the complex projeetspaceCP2™?! with the
Fubini-Study metric of constant holomorphic sectionalvatmre +4. In fact, if we
assume a), Proposition 5.7 of [15] gives that the manifoldasler andc = +4. More-
over, if we assume b), Theorem 5.8 (first part) of [15] givest tdl is a Kéhler man-
ifold of constant holomorphic sectional curvature +4. O tither hand, a compact
Kahler manifold of positive holomorphic sectional curv&us necessarily simply con-
nected (see, for example [13] p.171). Therefore, in botlesase get thaM is holo-
morphically isometric taCP2™! with the Fubini-Study metric of constant holomorphic
sectional curvature +4.
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