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1. Introduction

A. Let 4 be a Radon measure on an infinite dimensional smooth manifold
E. Associated to p there are various additional structures on E. This is seen from
the example of Gaussian spaces where E is a separable Banach space inducing an
abstract Wiener space structure on F, from the example of path and loop spaces
on finite dimensional Riemannian manifolds with measures induced by Brownian
motions and Brownian bridges which are usefully analyzed using special “tangent
spaces” [ 18], from the notions of “differentiability” of measures leading to classes of
“admissible” vector fields describing the directions in which p can be differentiated
[4], and from very general considerations [11]. Here we describe a class of vector
fields determined by u and the differential structure of E which also have a claim
to be called “admissible” but are defined in terms of Dirichlet form theory rather
than differentiability of u. Finite or suitably bounded countable families of such
vector fields are shown to give rise to quasi-regular Dirichlet forms on E with their
associated diffusion processes, Markovian semigroups, and infinitesimal generators.

The ideas are valid for general separable metrizable manifolds but an adequately
rich class of differentiable “test” functions is needed. Such would be assured if E
were modeled on a space admitting smooth partitions of unity with bounded deriva-
tives. However this is not so for spaces of continuous paths (such as classical Wiener
space) and for such mapping spaces it is often convenient to use cylindrical functions.
On the other hand we wish to include such cases as iterated path spaces (paths on
path spaces) and other examples of spaces of maps into infinite dimensional mani-
folds. To do this we introduce in Section 2 the notion of a Caratheodory-Finsler
(C-F) manifold: a class of Finsler manifolds possessing a rich enough family of
“test” functions. Closed submanifolds of separable Banach spaces, with induced
Finsler structure are C-F manifolds, as is the space of continuous maps of a com-
pact metric space into a C-F manifold. In this way we are able to give a unified
treatment which covers and extends the existing results on path and loop spaces.
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We are also able to give a more detailed analysis of the structures involved, e.g. see
the final parts of Sections 3 and 4.

We go on to summarize our results in more detail. In particular Subsection C, D
which follow are summaries of what will be proved in Sections 4 and 3 respectively.

B. Suppose p is a finite measure and let D be a dense linear subspace of
L?(E, ) consisting of C! maps f : M — R. A Borel measurable vector field v on
E is D-admissible if
(i) feD,f=0p-ae implies d,f =0 p-a.e.,

(i) O.f € L3(E,p) for all f € D,
and
(iii) 8, with domain D, is a closable operator in L2(E, p).

Here 0,f : E — R is the Frechet derivative of f in the direction v, i.e., 8, f(o)
= df(v(0)), o € E.

If v satisfies (i) and (ii) and possesses a divergence, i.e., there exists divv in
L?(E, u) such that

/E 0.£(o)ulde) = ~ [ (o) divolo)u(do)

for all f € D, then v will be said to be strongly D-admissible. Strong admissibility
implies admissibility if D is an algebra.

C. Now let F be a closed submanifold (e.g. the manifold itself) of the mani-
fold of continuous maps of a compact metric space S into a C-F manifold M and
let A be a countable or finite family of D-admissible vector fields on E such that

| (@) utde) <

E e

for all f € D. Then the form (£, D) given by

£(.9) = [ 3 0,(@)0u0(c)u(do)

Eoea

for f,g € D, is closable in L?(E, 1) with closure a Dirichlet form. If in addition

(i) D is an algebra with pointwise multiplication

(i) if p € Cp°(R) with (0) = 0 then ¢ o f € D whenever f € D,

(iii) D contains all functions f of the form f(o) = ¢(o(s)) for some s € S and
p € Cy(M; R),

and

(iv) there exists ® € L?(E, ) such that for all ¢ € C}(M;R) and s € S
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S ldp(w(0)o)? < ldplP8%(s)  p-ae.
vEA

where ||dp|| is defined from the Finsler norm on M, then the closure (£, D(£))
is quasi-regular (in the sense of [2], [22]) and local so that there is an associated
diffusion process (£;):>0 on E which is conservative, has p as invariant measure and
has generator L where £(f,g) fE —Lf)gdu for all f € D(L),g € D(E). Note
that, intuitively, L = )  , —938,. This (£, D(£)) is in fact a special case of the
square field operator forms of Réckner and Schmuland [26].

D. The strongly D-admissible vector fields form a particularly nice class. For
example if v is strongly D-admissible and D is an algebra then fuv is strongly D-
admissible for every bounded f € D. Moreover if V is the space of all strongly
D-admissible v with

lolly = / o) B / | div (o) Pu(do) < oo

then (V,|| ||v) is a Banach space, where |v(o)|, is the Finsler norm on 7,E. One
consequence of this result is to have a simple way to go from nonanticipative vector
fields on path and loop spaces to a wide class of anticipative ones (cf. subsection
E.(c) below). We mention also that when F is a linear space the well admissible
elements (cf. [22] II. Def. 3.2) form a special subclass of strongly admissible vector
fields, i.e. constant valued ones in the flat case.

E. We conclude this introduction by pointing out some applications of the
above results to path spaces, of which the details will be discussed elsewhere, together
with further examples.

(a) Let M be a compact Riemannian mamfold take S = [0, 1], and for fixed
o € M choose p to be the law of a diffusion {X; : ¢ > 0} on M starting at zo
with generator (1/2)A + Z where A is the Laplace-Beltrami operator on M and Z
a smooth vector field. Let D be the space FC* of smooth cylmdrlcal functions on
E. Let V' be an affine connection on M whose adjoint V is a metric connection
for the Riemannian structure of M. There is then another vector field Z on M with

%Af +Zf= %trace%'df +Zf.

For y almost all paths o in E, we can define W2 () : To,M — Tyt M by the
covariant equation

5/

= (W2 (0)(00)) = —3Ric” (W2 (0)(w0)) + TZ(WE (o) (o)
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this is a “damped parallel translation”. Let H be the Cameron-Martin space
L21([0,1]; Tuo M) of paths with values in T, M. For h € H define a vector field v"
on E by

(o) = WE () (he).

It follows from [13], (essentially from Driver’s integration by parts formulae [6] in
the torsion skew-symmetric case), that v” is strongly D-admissible for each h € H.
Define X : E x H — TE by X(o,h) = v"(s). Then X(o0,-) : H — T,E is
continuous linear for u-a.e. o and so there is a “gradient operator” on D defined
by

(Vf(o),e)u = df(X(o,e)) allee H p—ae.c.

If A= {v% :j > 1} for {e;}32, an orthonormal base of H then (i) to (iv) of
Subsection C are satisfied and we obtain a diffusion on the space of paths on M,
generalizing the construction by Driver and Rdckner [7]. Indeed the form defined
by A can generally well be written

£(f,9) = /E (Vf(0), Vo(0)) 1t p(do).

Similarly the construction of a diffuson in the loop space by Albeverio, Leandre,
and Rockner [1] can be generalized this way.

REMARK. We could have used //; in place of th , i.e. parallel translation
rather than damped parallel translation, to get the corresponding results.

(b) For S,M,u and D as in (a), take the Levi-Civita connection of M. Let
AV be the space of vector fields on E of the form

ulo) = ) { [ ' Qu(0)dB.(0) + | t sy, osisa

where the Brownian motion {B; : ¢ > 0} is the martingale part of the stochastic
anti-development of our diffusion process while {Q, : 0 < s < 1}, {h,:0< s < 1}
are predictable process with values in the skew symmetric n x n-matrices and in R"
respectively, (n = dimM), such that

Wity = [ { [ r@i@utoras + [ hu(o)f as} utao) < o

These are adapted vector fields in the sense of Driver [7]. Then AV is a Hilbert space
with its obvious inner product (using uniqueness of the semi-martingale decomposi-
tion of such v). According to [7], each v € AV is strongly D-admissible. Applying



VECTOR FIELDS ON MAPPING SPACES 633

Doob’s inequality and Schwartz’s inequality respectively to the martingale part and
the finite variation part of such v, one can check that [ [v|2u(do) < C||v||%, some
constant C and all v € AV, this together with the norm estimate of Lemma 3.7
in [7] shows that AV is a closed subspace of V' of Subsection D. Now let A be a
finite or countable family of AV such that } . |[v]|4y < oo, then (i) to (iv) in
Subsection C are satisfied and we get diffusion processes driven by adapted vector
fields, though there is in general no “gradient operator” to be defined in this case.

RemARk. The vector fields in (a) actually are elements of AV, see [13].

(c) Using Subsection D above if v; € AV and f; € D for ¢ = 1 to n then
S, fivi is strongly D-admissible. We can therefore take limits in the space
(V,]] |lv) to obtain a wide class of anticipating vector fields which have diver-
gences, including the classes described by Nualart and Pardoux, by Leandre and by
Fang [14].

2. Caratheodory-Finsler manifolds

Throughout this section let M be a separable C! manifold modeled on a Banach
space and equipped with a given Finsler structure 7([3], [24]). (In what follows
we shall call such manifold a Finsler Manifold) TM := UzecpT,M denotes the
tangent bundle of M.

We write |v|, := 7(v) for v € T, M. T, M equipped with the norm |- |, is then a
Banach space. Let f be a C' map from M to another Finsler manifold N. We set

(2.1 [|df| := sup ||df (z)|| (T, m,7; () N)-
zeM

We write f € C}(M;N) if ||df|| < oo. In particular we write f € C1(M;N) if
[|df|| < 1. Recall that for a piecewise C! map o : [0,1] — M, the length I(c) of o
(w.r.t. 7) is defined by

2.2) I(0) := / 16(5) o (s)ds

where ¢ denotes the tangent vector of o. The corresponding metric das induced by
T is then defined by

(2.3) dum(z,y) :=inf{l(c) : 0 : [0,1] — M is piecewise C'and o (0) = z,0(1) = y}
(with the convention that inf ) = oo) for z,y € M. Note that djs is an admissible

metric on M, i.e. djs generates the original topology of M [3]. (Note also that we
allow the distance between two points to be infinite in our definition of distance.)
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For our purpose we introduce a pseudo metric pys (Carathéodory metric [5])
as follows

(2.4) pum(z,y) == sup{f(y) — f(z): f € C{(M; R)}.

DEFINITION 2.1. We say that M is a Caratheodory-Finsler manifold (C-F
manifold in short) (w.r.t. 7) if pps is an admissible metric on M and is complete.

Proposition 2.2.  Suppose that there exists a C-F manifold N and a closed
embedding map J € C}(M;N), then M is a C-F manifold.

Proof.  Let py be the Carathéodory metric on N. If we set djn)(z,y) =
pn(J(z), J(y)) for =,y € M, then d;y) is an admissible metric on M and is
complete. Let A = ||dJ||. If f € C}(N;R), then A" fo J € C}(M;R). Therefore
forz,y € M,

Ay (z,y) = sup{A T fo J(y) = A" fo J(2) : f € CH(NV; R)}
< sup{f(y) - f(z) : f € C1(M; R)} = pu(z,y).

Thus the proof is completed by showing that pys < djy. ]
The last assertion is proved in the next lemma.
Lemma 2.3. For any x,y € M we have

pm(z,y) < du(z, Y)-

Proof.  Without loss of generality we assume ds(z,y) < co. Then for € > 0
we can find a piecewise C* map o : [0,1] — M with o(0) = z,0(1) = y, such that
(o) < dm(z,y) + e Thus for any f € C{(M;R), we have

s~ 1) = [ Lre)ds= [ ae)ds

1
< / 16(5) o sy ds = 1(0) < dar(z,1) + <.
0

Hence pp(z,y) < dp(z,y) since € is arbitrary. O

ExampLE 2.4. (i) Let M be a separable Banach space with Finsler structure
given by the Banach norm. Then M is a C-F manifold.
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Proof. Leta,y € M, we set o(t) = z + t(y — =). Then one can easily check
that {(c) = ||z —y||g. Hence dps(z,y) < ||z —yl||g- On the other hand by the Hahn-
Banach Theorem we can find ¢ € M* such that |||y~ = 1 and p(y—z) = ||ly—z||£.
Hence pup(z,y) > ¢(y) — ¢(x) = ||z — y||g. Consequently taking Lemma 2.3 into
account we have

(i1) Let M be a finite dimensional complete Riemannian manifold and the
Finsler structure be given by the Riemannian metric. Then by Nash’s embedding
Theorem M is closely and isometrically embedded into a Euclidean space RY.
Hence by (i) and Proposition 2.2 M is a C-F manifold. See also Remark 2.5 below
in this connection.

(iii) It follows directly from Proposition 2.2 that any closed submanifold of a
C-F manifold is again a C-F manifolds.

REMARK 2.5. We are grateful to C.J. Atkin who kindly communicated to us
the following result.

(2.5) Suppose that the separable manifold Mis modelled on
' a Banach space with a separable dual, thendy; = ppy-

Thus according to Atkin’s result, any complete separable Finsler manifold mod-
eled on a C!' smooth Banach space, in particular any finite dimensional complete
Finsler manifold, or any complete separable Finsler manifold modeled on a Hilbert
space, is a C-F manifold.

Plenty of examples of infinite dimensional C-F manifolds come from mapping
spaces over a given manifold which we are going to discuss now. Let M be a C-F
manifold. Let S be a compact metric space. We set E' := C(S; M), all the continuous
mappings from S to M. Note that if S = [0, 1], then E is the path space over M. If
S = S, then E is the loop space over M. We give E the compact -open topology
[19], then E is separable because the compact-open topology on C(S;[0,1]%V) is
separable and M is homeomorphic to a Fs subset of [0, 1]™V. It is known that E is
a C' manifold modeled on a Banach space. In case that M is modeled on a Hilbert
space, the differential structure may be constructed by employing the exponential
maps between TM and M e.g. see [9]. In the general case the corresponding
differential structure requires a more delicate construction. For details we refer to
[25] and [20]. For o € E, the tangent vector space T, E can be identified with the
space of all continuous maps v : § — T'M such that v(s) € T, ;)M for all s € S.
A natural Finsler structure on E is given by

(2.6) [v]o :=sup |v(s)|o(s), Vo € E,v € T,E.
s€S
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One can easily check that T, E equipped with the norm | - |, is a Banach space.

Proposition 2.6. The mapping space E constructed above is a C-F manifold
with respect to the Finsler structure given by (2.6), as are all its closed submanifolds
with their induced Finsler structure.

Proof. Let pys be the Caratheodory metric on M. We define

2.7 pu(o,0’) = sup pm(a(s),d'(s)), Vo,0' € E.

s€
Clearly pys is a complete metric on E since so is pp; on M. Moreover, gy, generates
the topology of uniform convergence which coincides the compact-open topology
on E ([19]). Hence pys is admissible on E. For s € S and ¢ € C{(M; R), if we set
f(o) = ¢(o(s)) all o € E, then it follows from (2.6) that f € C{(E; R). Therefore
for 0,0’ € E

pr(0,0") = sup,cgsup{p(o'(s) — ¢(o(s))) : v € C1(M; R)}

(2.8)
< sup{f(d') = f(0) : f € Ci(E; R)} := pp(0,0’),
which together with Lemma 2.3 and Proposition 2.2 proves the proposition. O
REMARK 2.7. Proposition 2.6 allows us to conclude that submanifolds of

C([0,1]; M) such as the space of based loops can be covered by our treatment as will
be spaces of paths and loops on the Hilbert manifolds D of those diffeomorphisms
of a compact n-dimensional manifold in the Soblev class H®,s > (2/n) +1, e.g. see
[12], where D? is given a right invariant Riemannian metric.

The following result will be useful in the subsequent section.

Proposition 2.8. Let M be a C-F manifold. Then there exists a countable
Sfamily {f;i}jen C C1(M; R) such that for all z,y € M

(2.9) pm(z,y) = sup [£i(y) = fi(z)).

Proof. Let {z;};cn be a countable dense subset of M. For each pair (z;, Z.,)
we can find a sequence {fimn}nen C Ci(M;R) such that

pm (T, Tm) = Sl;llp[fl,m,n(mm) — fimn(z1)]-

Rearrange {f; mn} by {fj}jen. Then {f;};en is as desired. ]
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3. Admissible vector fields

Throughout this section let E := C(S; M) be the mapping space specified in
Proposition 2.6 or a closed submanifold of it. Let ¢ € F and v € T,E. For
f € CY(E;R) we shall write 8, f(c) := df(v(0)), the Fréchet derivative of f at o
along the direction v. If v is a tangent vector field on F, i.e., v(o) € T, E for all
o € E, then the notation 9, f(o) will stands for 9,(,)f(c). We shall say that f is a
cylindrical function, written by f € FC}(E), if

(31) f(O') :80(0'(81),0(32),'",U(Sn)),va S E’
for some subset (s, sz, +,8,) C S and some bounded ¢ € C}(M™; R) satisfying
Sup{,diw($1,w27 o 'awn)lL(T,M,R) : (mlaan U ,$n) € Mn} < 00, V1 < { S n,

where dip denotes the differential of ¢ with respect to the ith variable. Clearly
FCE(E) C CHE;R). Hence 9,f is well defined for a tangent vector field v on
FE and cylindrical function f. One can check that if f is given by (3.1), then
Ouf =Y 1, d'o(vy,), more precisely

3.2) O, f(o) = Zdigo(a(sl),a(SQ), <o, 0(8n))(vg,(0)),Vo € E

for all tangent vectors v. In particular, the evaluation of the right hand side of (3.2)
is independent of the expression (3.1) since so is the definition of 9, f.

We denote by B the Borel sets on E. A vector field v is said to be B-measurable
if 8, f is B-measurable for all f € C*(E;R).

From now on we assume that a finite measure p is given on (E,B). For no-
tational convenience, we shall use the same symbol f for the p-equivalence class
determined by a function f. With this convention FC} can be viewed as a sub-
space of L%(E,p) in such a way that if f,g € FC}, f = g p-ae., then f and g are
regarded as the same element of L?(E, u). Note that by (2.4), (2.7) and the proof
of Proposition 2.6 one can check that FC} separates the points of E, therefore by
monotone class argument FC} is dense in L?(E, p).

DEFINITION 3.1. Let D be a linear subspace of C}(E;R) N L?(E, u) such
that D is dense in L?(E, ). We say that a B-measurable tangent vector field v is
D-admissible, if the following three conditions are satisfied.

(i) feD,f=0pu-aeimplies 9,f =0 p-ae.
(i) O,f € L*(E, ) for all f € D.
(iii) 9, is a closable operator in L?(E, p).

REMARK 3.2. (i) Condition (i) and (ii) above ensure that 9, is a densely
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defined operator on L?(E, ). Hence the statement of condition (iii) above is mean-
ingful.

(i) Let v be a D-admissible vector field and v/ = v u-a.e. then v is again a
D-admissible vector field and 8, as a linear operator on L%(E, u1) coincides with
8,. In practice we shall deal with a vector field v which is defined on E\ N for some
p-null set N. In this case v is said to be D-admissible if there exists a D-admissible
vector field ¥ on E such that o = v on E'\ N. By the above reason 9, being a linear
operator does not depend on the particular choice of .

(iii) D may be interpreted as the space of test functions for tangent vector
fields on E. In the literature of path spaces and loop spaces over finite dimensional
Riemannian manifolds, most authors consider only the case that D = FC} (E). But
as a matter of fact one can also take D to be all the bounded functions in C{(E; R),
or even take D to be all the L?-integrable functions in C} (E; R). On the other hand
one can also take D to be smaller than FC} (E) for different purposes. For example
in case that M itself is a mapping space, then the space of all cylindrical functions
over cylindrical mappings might be a good candidate for D.

In what follows we fix a linear subspace D specified in Definition 3.1. Denote
by (-,-) the inner product of L?(E, u). Let v be a D-admissible vector field and let
9, with domain D(9,) be the closure of (8,,D) in L?(E, u). We set

gv(f,g) = (a_vf7 3_Ug), Vf,g€ D(B_U)

) D) = D@,).

Then (€, D(&,)) is a symmetric closed form on L?(E, u). In fact we have the fol-
lowing criterion for v to be D-admissible.

Proposition 3.3. A4 B-measurable vector field v is D-admissible if and only if
there is a symmetric closed form (€£,D(E)) on L?(E, ) such that D(€) D D and for
some constant C > 0,

(3.4) CTYEf, f) < 10uflF 2 < CE(S )
forall f €D.

Proof. Suppose that (3.4) holds. From the right hand side inequality of
(3.4) we see that 9, f is in L?(E, ) and the corresponding L2-norm is controlled
by CE(f, f). in particular if f = 0 p-a.e., then |8, f||2, < CE(f, f) = 0, which
implies 8,f = 0 p-a.e.. Thus 3.1 (i) and (ii) are satisfied. To verify 3.1 (iii) we
define £,(f, g) = (0uf,0vg) for f,g € D. Then (3.4) implies that the bilinear form
(€,,D) is closable in L2(E, ). Hence 8, is closable in L?(W, ), verifying 3.1 (iii).
Conversely suppose that v is D-admissible, then the symmetric closed form defined
by (3.3) satisfies (3.4) with constant 1. ]
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Proposition 3.4. Let v be a D-admissible vector field and ¢ be a real-valued
B-measurable function on E. Suppose that there exists a positive constant C such
that C~1 < |¢] < C, then &v is D-admissible.

Proof.  Clearly v satisfies 3.1 (i) and (ii). But by the assumption &v satisfies
also

CTHEU(f, ) < 0o fllT2(p,u) < CE(F, ), Vf €D

with (&,, D(&,)) being defined by (3.3). O

Below is a sufficient condition for v to be D-admissible.

Proposition 3.5.  Suppose that D is an algebra with pointwise multiplication.
Let v be a B-measurable vector field such that 0,f € L*(E,u) for all f € D and
there exists an element divv (called the divergence of v) in L*(E, ) satisfying

(3.5) / Oy fu(do) = —/ fdivou(do), VfeD.
E E
Then v is D-admissible.

Proof.  Let us define
(3.6) Oy f ==0,f — fdivu, VfeD.
One can check that (3.5) implies

3.7 (Ouf,9) = (f,0;9), VYf,g€D.

Thus f = 0 p-a.e. implies 9, f = 0 p-a.e. since D is dense in L%(E, u). Moreover,
(3.7) shows that the adjoint operator of 9, is densely defined in L?(E, u). Hence
Oy 1s closable.

In the remainder of this section we assume that D is an algebra. We shall say
that v is strongly D-admissible if v has a divergence divv specified by the above
proposition, with divv in L?(E, u) and 8, f € L?(E, p) for all f € D. O

Proposition 3.6. Let v be a strongly D-admissible vector field. Then for any
bounded element f € D, fv is again a strongly D-admissible vector field.

Proof. Let fv be as in the Proposition. We define

div (fv) = +0,f + fdivw.
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Then div (fv) € L?(E, p) and

/ Opugu(do) = — / gdiv (fv)u(do), Vg€ D.
E E

Hence the assertion follows by definition.
Let us denote by V all the strongly D-admissible vector fields v such that

(3.8) ol _/ (o) 2 u(dor) /|divv|2,u(da)<oo.

We assume that V' is not empty. ]

Theorem 3.7. V equipped with || - ||v is a Banach space.

Proof. It is easy to check (V|| - ||v) is a normed linear space. We need
only to check that V' is complete with respect to the norm || - ||y. To this end let
vp,n > 1, be a Cauchy sequence in (V,||-||v). By taking a subsequence if necessary,

we may assume that ||v, 41 —vn|ly < 27" for all n. Let C = u(E)'/2. By Schwartz’s
inequality we have fE [vnt1 — Vn|op(do) < C27™. Therefore

(3.9) [ 3 lonss = vl < oo
n=1

which implies
(3.10) Z |Un41(0) —vn(0)|le <00 p—ae. o€E.

Note that each tangent space T, E is a Banach space with respect to the norm
| - |o. Hence the following B-measurable vector field v is well defined.

v(0) =v1(0) + Yor 1 (Vnt1(0) — v (0)), if (3.10) is true,
v(o) =0, otherwise.

(3.11)

Moreover, by Fatou’s lemma one can easily check that

(3.12) lim /|vn(0) —v(0)|2u(do) = 0.
n—00

Similarly we can find a B-measurable function div v such that

(3.13) lim [ |divv,(o) — dive(o)|?u(do) = 0.

n— oo
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Now (3.12) implies that [}, |v(co)|2u(do) < oo and hence 8, f € L*(E, ) for f € D.
Moreover, we have

| /E 1By, f — By fliu(do)
< 17| /E [n(0) — 0(0)|ops(do) = 0 (n— o)
and
/ |f divv, — fdivo|u(do)
E
< ([ Putdo))H( [ 1ivon— divePu(@o)?t =0 (2= oo).

Consequently, since each divwv, is the divergence of v,, we see that v and divv
satisfy (3.5), i.e., divw is the divergence of v. This fact together with (3.12), (3.13)

imply that v € V and ||v, — v||y — 0. U

REMARK 3.8. If we use LP-norm instead of L2-norm in (3.9), then (V,|| - ||v)
is again a normed linear space. Similar to the above proof one can show that if V'
is not empty, then (V,]| - ||v) is a Banach space whenever p > 2.

We now assume that for each o € E there is a Hilbert space H (o) continuously
embedded in T,E. For example, each T, E an abstract Wiener space, or the case
that F is modeled on a Hilbert space and the Finsler structure is given by the
Hilbert norm. In the latter case we have H(0) = T,E. Assume that there exists a
B-measurable function ® > 1 such that |v|, < ®(0)|v|g () for all v € H(o).

Theorem 3.9. Let VH be all the strongly D-admissible vector fields v with
v(o) € H(c) almost all o and satisfying (3.8) and (3.14) below

G189 bl i= [ 100 @ (0)u(do) + [ |divePu(do) < oo,
E E

Assume that V H is not empty and define for vy,v, € VH,

(3.15) (vy,v9)ypy = / (v1,2) (o) @2 (o) u(do) + /(div v1)(div vg)pu(do).
E

Then V H equipped with (-, -)yu is a Hilbert space.

Proof. Clearly (VH,(:,-)vn) is a pre-Hilbert space. As in Theorem 3.6 we
can show that V H is complete with the norm || - ||v &. O
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In practice some spaces of vector fields are obtained as image of a Hilbert space
H under a linear map 7. In this case we may induce a Hilbert structure for those
vector fields which are in image of .

Proposition 3.10. Let H be a Hilbert space and T : H — V be a linear map
such that there exists a constant C satisfying

(3.16) |[Th||3 < C||h||%,Yh € H.
LetkerT = {h € H|Th = 0} and ker 7+ be the orthogonal space of ker T. Define

(3.17) V(rH) = {v € V|v = rh for some h € ker 71}
(3.18) (v1,v2)rr = (h1, ho)m
for vy = Thy,vy = Thy With hy,hy € ker 7+

Then V(TH) with inner product (-,-).g is a Hilbert space. In particular, if
7: H— V is a continuous injective linear map. Then V (rH) is isomorphic to H.

We omit the proof because it is an easy exercise.

ExampLE 3.11. Let H be a Hilbert space and 7 : H — V be a linear map,
such that there exists a ® € L?(E, p) satisfying

(3.19) |Th|le < ®(0)||h||lg, n-—ae., Yh e H.

Then
/ (2 u(do) < |21l a0, Vh € H.
If in addition

/ldiv (Th)|?u(do) < C||h||%, some constant C

then condition (3.16) is fulfilled and V(7H) specified by (3.17) is a Hilbert space.
In this case we define 7(c) : H — T, E by 7(0)h = Th(c). Assume in addition that
7(0o) is injective for y-a.e. o € E. Let

(3.20) H(o) ={v(o) € T,E| v(c) =Th(c) for some h € H}.

Then H(o) is isomorphic to H for u-a.e. o € E. Hence V(7 H) coincides with VH
specified in Theorem 3.9 (Note that we may always assume that ® in (3.19) is not
less than 1).
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4. Construction of diffusion processes

All the assumptions and notations are the same as in Proposition 2.6 and
Definition 3.1.

Lemma 4.1.  In the situation of Proposition 2.6 and Definition 3.1. Let A be
a countable or finite family of D-admissible vector fields. Suppose that

(4.1) /EZ |8, f|>1u(do) < 0o, Vf € D.

vEA

Then the symmetric form (£,D) defined by

42) E(f,9) = [E S 0,1)(@ug)uldo), Vf,g€D

veEA

is closable in L*(E, ) and the closure (€, D(£)) is a Dirichlet form on L*(E, p).

Proof.  For v € A we set £,(f,9) = [5(0yf)Byg)u(do).It follows from 3.1
(iii) that (&,,D) is closable in L?(E,p). Clearly £(f,g) = >, c4&v(f>9), hence
condition (4.1) and the denseness of D implies that (£, D) is closable (cf. e.g. [22] 1.
Prop. 3.7). The fact that the closure (£, D(E)) of (£, D) is a Dirichlet form follows
from the chain rule and e.g. [22] I. Prop. 4.10.

Let (£,D(E)) be the Dirichlet from constructed in the above lemma. By the
theory of Dirichlet forms there exists a unique self-adjoint operator L with domain
D(L) on L?(E, u) satisfying

D(L) € D(€)
and
(4.3) E(f,9) = (=Lf,9), Vf € D(L),g € D(E).

(L, D(L)) is called the generator of (£, D(£)). Intuitively we may think that L =
Y vev —0930,, which will rigorously hold e.g. in the case 8, f € D(39;) forallv € A
and Y 8:9, f converges in L?(E, ). 0

Theorem 4.2. In the situation of Lemma 4.1, suppose that in addition to (4.1)
the following three conditions are also fulfilled.
(i) IfeeC°(R),¢(0) =0, then po f € D forall f € D.
(ii) If f,g are bounded functions in D, then fg € D.
(iii) Do C D and there exists ® € L?(E, ) such that for all p € C}(M;R),s € S,
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(44) 3" 1de(o(s) wa(0) < [1dpl[02(0), p—a.e.
vEA

where ||dp|| is defined by (2.1) and

@s D= {€FCUE): [0) = p(o(s)

’ for all o € E, for some ¢ € C}(M;R) and some s € S}.
Then there exists a diffusion process ({):>0 on E associated with (€, D(£)). That
is, if (L, D(L)) is the generator of (€£,D(£)), then

(4.6) E.[f(&)] is an p-version of ™' f for allf € L*(E, u).

Moreover, (&)t is conservative and hence  is an invariant measure for et

REMARK 4.3. By IV Theorem 5.1 of [22] the existence of ({;)¢>0 satisfying
(4.6) always implies that (€, D(£)) is quasi-regular and (&;):>0 is properly associated
with (£, D(£)). The latter assertion, which extends Theorem 4.3.3 of [15] (see also
Theorem 4.2.3 of [16]) by relaxing the regularity of (£, D(£)), means that (4.6) is
automatically strenthened by

E.[f(&)] is an E-quasi-continuous p-version of el f
(4.6) for all f € L*(E, ).

The proof of the above theorem relies on the fact that F is a C-F manifold and
is split into several steps. Our strategy is to show that (£, D(£)) is a quasi-regular
Dirichlet form and is local, and hence the desired conclusion follows from [22] IV.
Th. 3.5 and V. Th. 1.11. We shall follow the argument of [26] §3 and [8] to check
the quasi-regularity of (£, D(£)). The experts may find that (£, D(£)) is in fact a
special case of [26] Th. 3.4. For later use we recall that a Dirichlet form (£, D(£))
is quasi-regular if (cf. [22] IV. Def. 3.1):

(Q.1) There exists an E-nest (Fj)r>n consisting of compact sets.

(Q.2) There exists an £;-dense subset of D(£) whose elements have £-quasi-continu-
ous p-versions.

(Q.3) There exists u, € D(E),n € N, having £-quasi-continuous y-version i,,n €
N and an E-exceptional set N C W such that {@,|n € N} separates the
points of W\ N.

See also [21], [23] and [27] for the notion of quasi-regularity in more general
contexts.

Let us set by I'(f,g) = >, cv (8 f)(8vg) for f,g € D. By (4.1) and the Cauchy-



VECTOR FIELDS ON MAPPING SPACES 645

Schwartz inequality I'(f,g) € L'(E, m). By (4.2) we have

4.7) E(f.g) = /E I'(f,q)u(do)

which implies that ' : D x D — L'(E, p1) is a continuous bilinear map with respect
to the product topology on D x D induced by the £;-norm (& (+,-) := E(-, )+ (-, *)r2)
on D. Therefore I" extends to a continuous bilinear map on D(€) x D(€) which we
shall denote again by I'. Clearly (4.7) holds for all f,g € D(E).

Lemma 44. For f, g € D(E), we have

L(fvg, fvg) <T(f,f)VI(g,9)
L(fAg fAg) <T(f, f)vT(g,9).

Proof.  One can easily check that if ¢ is a smooth function on R with ¢(0) = 0
and |¢'(z)] < 1, then

T(f, (gD <T(f,9)l, Vf,g€ D).

Hence the desired assertion follows from [26] Lemma 3.2. (See also [22] IV. Lemma

4.1) 0

Let pps be the Caratheodory metric on M and pps be its lift to E defined by
(2.7). We set

(4.8) p(o,0') = pm(o,0') A1,Vo,0’ € E.

The following lemma is crucial and the hypothesis that M is C-F plays an
important role in it.

Lemma 4.5. (i) p is a bounded complete metric on E and it generates the
original topology of E.
(ii) Leto' € E. Then p(-,0') € D(E) and

(4.9) F(p('val)’p('vgl)) < @2() H—a.e.
where ® is specified by (4.4)
Proof. (i) follows directly from the proof of Proposition 2.6. For proving

(ii) we take an odd and increasing function ¢ € Cy°(R) such that |¢| < 2,¢" <
1,¢” <0 on [0,00) and ¢(z) = = for x € [-1,1]. Let {f;}jen be a countable
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subset of C}(M; R) satisfying (2.9). Let {s;};cnv be a countable dense subset of S.
We set for o € E.

aij(0) = @(fi(o(s:)) — £ (0’ (53)),
pi(o) = sup @(fio(si)) = fi(o'(s:)) A 1.

By (2.9) we have p;(0) = pam(0(s;), 0'(si)) A 1. Therefore it follows from (2.7), (4.8)
and the denseness of {s;};cn that sup;c n pi(0) = p(o,0"). Clearly a;; € Dy C D(E)
and by (4.4) we have I'(a;;, a;;) < ®? p-ae.. If we define for fixed i,

bn(0o) = suplaij(o)|A1,n > 1,
j<n

then b, € D(€) and Lemma 4.4 yields ['(b,,b,) < ®? p-a.e for all n > 1. It in turn
implies that

sup &1 (bp, by) < 0.

n>1
Therefore by the Banach-Saks theorem there exists a subsequence b,,, whose averages
(1/h) Zﬁczl bn, := g converge strongly in the Hilbert space (D(£),&;). But b,
converges to p; pointwise. Therefore p; € D(£) and g; converges to p; in £;-norm.
Note that by Minkowski’s inequality we have I'(g;,g;) < ®2 p-a.e. for all [ > 1.
Since I': D(€) x D(€) — LY(E, u) is continuous and L!-convergence implies p-a.e.
convergence for a subsequence, I'(p;, p;) < ®? p-a.e.. We now define

h,(0) = sup p;(0), Vo € E.

i<n

Applying Lemma 4.4 again and repeating the above argument we see that p(-,0’) =
lim,, 00 by, € D(E) and (4.9) holds. ]

Lemma 4.6. (&£,D(E)) is a quasi-regular Dirichlet form.

Proof.  We need to show that (£, D(£)) satisfies (Q.1)—(Q.3). Let {o7};en be
a countable dense subset of E. Then it follows from Lemma 4.5 (i) that p(-,07) is
continuous and {p(-,07) : j € N} separates the points of E. Moreover, by Lemma
4.5 (ii) p(-,0%) is in D(€). Hence (Q.3) is fulfilled. Also (Q.2) is fulfilled because
D is dense in D(E). It remains to check (Q.1). To this end we set

o Sl
an : 151IJ1£np( ,07), VYn € N.

It follows from Lemma 4.5(ii) and Lemma 4.4 that a,, € D(€) and ['(an,a,) < ®2
p-a.e. for all n. Therefore repeating the argument used in Lemma 4.5 (ii) we see
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that there exists a subsequence a,, whose averages (1/1) Zic:l ar, = Y] converge
to zero pointwise and each Y; is continuous, hence by [MR 92, IIT 3.1] there exists
a subsequence Y;,,j € N, converging to zero quasi-uniformly. That is, there is an
E-nest (Fi)ren such that Y}, | O uniformly on each Fj,. We now fix k € N. Let
6 > 0 be arbitrary. We can choose N so that Y}, (o) < é for all 0 € Fi. Then

inf 7 <
o plo,07) <6, Yo € Fy,

or equivalently,
In _
Fyc | J{o € E: p(o,07) < 8}

j=1
Thus Fy, is totally bounded and consequently, since p is a complete admissible metric
on E, F} is compact, verifying (Q.1). ]
Lemma 4.7. Let Fy and F, be two closed subsets of E such that
(4.10) p(F1, Fy) :=inf{p(0,0’) : 0 € F1,0’' € F»} >0,

where p is defined by (4.8). Then there exist continuous functions f1, fo € D(E)
such that supp[fi1] Nsupp[fz] =0 and f1(c) =1 foro € F1, fo(0) =1 foro € Fs.

Proof.  Let @ = p(Fi, Fz). Let {07};cn be a countable dense subset of E.
Set

go = inf {p(07) 1 1< j <mplo?, Fy) = S}

Similar to the proof of the above lemma we see that g := lim, oo gn € D(E).
Clearly g(o) = 0 if p(o,1F1) > /3 and g(o) > «/3 if 0 € F;. We now define
fi = ((3/a)f) A 1. Define fy similarly with F» in place of F;. Then fi, fo are
desired. U

Lemma 4.8. (£,D(E)) is local.

Proof. Let I' be specified as in (4.7). By the chain rule it is easy to check that
for bounded g1, 92, f1 € D,

(4.11) I'(g1f1,92) = 010 (f1,92) + f1T' (g1, 92)-

Since I is a continuous map from D(€) x D(€) to L' (E, ), equation (4.11) extends
to all bounded g1,92,f1 € D(E). Let now g1,92 € D(E) such that supp[gi] N
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supp|g2] = 0 and supp|g1], supp|gz] compact. Without loss of generality we may
assume gj, g are bounded. Let f;, fo be specified by the above lemma with F; =
supp|gi1], F> = supp[gz]. Then applying (4.11) we see that

['(91,92) = T'(f191, f292) =0 p—ae.

Hence £(g1,92) = 0. 0

Proof of Theorem 4.2.  The existence of the diffusions (&;);>¢ satisfying (4.6)
follows from Lemmas 4.6, 4.8 and [22] V.Theorem 1.11. The last assertion of the
theorem follows from the fact that 1 € D(€) and £(1,1) = 1. O

Corollary 4.9. Let X : E x H — TE be measurable with, for u-almost all o,
X(o,-) : H— T, E continuous linear and satisfying | X (o,h)|s < ®(0)||h|lg where
H is a seperable Hilbert space and ® € L*(E, ). Suppose X (-,h) is D-admissible
forallh e H.

For f : E — R in C} define, for p-almost all o, V f(c) € H by (Vf(o),h)n =

df (X (0, h)). Set
Ex(f.0) = (f.q) = /E (V£(0), Vg(o))mu(do), Vf,g€D.

Then (Ex,D) is closable in L?(E,u) with closure (Ex,D(Ex)) a Dirichlet form.
If also conditions (i), (ii) of Theorem 4.2 hold then (£x,D(Ex)) is quasi-regular
and local, and in particular there is an associated diffusion as in the conclusion of
Theorem 4.2.

Proof. Let {e;} be an orthonormal base for H. Then

(V(0),Vg(@)m = D (Vf(0),e)(Vg(0),e:)

(4.12) - iavi f(0)dy,ig(0),

where v = X (-, e;). Now
IV£(@)ll = lldf o X(o. )|+ < |df|sP(0).

Therefore

(i) IVFfO)lla € L2(E, ) if f is C} and so in particular Ex is defined on D,
and

(i) & [5|8ui fIPu(do) = [5 IV f(0)|I3u(do) < oo, Vf € D.
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Thus the first part of the theorem holds by lemma 4.1. Moreover for any ¢ €
CHM;R) and s € S, if p; : E — M is ps(0) = o(s), then

D ldo(W'(0)s)* = Y (V(dops)(0), ek

7 7

= V(¢ 0 ps) (o)l
< ld(¢ 0 ps)(o)l52(0)
< |ldgl*@(o)

since ||dps|| = 1, each s € S. Thus the conditions of Theorem 4.2 for the form
(1.9~ [ S0uOuguido), fgeD
are met. But this form is just &, by (4.12). O

REMARK 4.10. Let now 7 be a linear map of H into the space of Borel
measurable vector fields on M, e.g., suppose 7(h)(c) = X(o,h) for X as in the
Corollary. Let f : M — R be such that ’derivatives’ df (7(h)) : M — R are defined
in some way and give a linear map

df ot : H— L°(M, u;R)
h — df (r(h)("))

where L0 refers to equivalence classes of measurable maps and we give it the topol-
ogy of convergence in measure. Then it is immediate from It6’s regularization
theorem [17] that there exists a ‘gradient’ vector field Vf € L°(M, u; H) satisfying

(Vf(o),hyg =df(r(h)(c)) all h € H, p-almost all o

if and only if df o 7 is continuous in the Sazonov topology of H. In particular if
df o 7 maps into L2(M, u, R) it has to be Hilbert-Schmidt for a gradient to exist.

Using this remark we can see that there is in general no gradient operator
associated to the Hilbert space AV of adapted vector fields described in §E(b) of
the introduction. Indeed take E to be classical Wiener space C([0,1];R™) with
u its Wiener measure. Let f : £ — R be evaluation of the first coodinate at
time 1. Consider the Hilbert space G of vector fields on E of the form v(o); =
fot as(o)dos, 0 <t <1, where as : E — L(R™;R") is adapted and

wm:é[ﬁwwwmw»
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Using the Hilbert-Schmidt norm on L(R™;R™). There G is just the space of square
integral martingales and the martingale representation theorem implies that the map
v — vy is an isometry p; of G onto L2(E, Fy, u; R™) for F; the o-algebra generated
by o — o(1). If follows that p; sends the closed subspace G of G consisting of those
v. for which a; (o) is skew symmetric onto any infinite dimensional closed subspace
of L?(E,Fy,u;R™). Composing p; with co-ordinate projections we obtain maps
p¥ : Gy — L?(E,F1,;i;R), k = 1 to n, not all of which can be Hilbert-Schmidt.
By symmetry p} is not Hilbert-Schmidt. However 8, f = pl(v), and Gy is a closed
subspace of AV.
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