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Introduction

Let G be a reductive complex algebraic group. We consider on the base
field C of complex numbers. Let X be an affine G-variety with a G-fixed base
point x,€ X and Q be a G-module. We denote by Vecg(X,Q) the set of algebraic
G-vector bundles over X whose fiber at x, is Q and by VECy(X,Q) the set of
G-isomorphism classes in Vecg(X,0). The set VEC4(X,Q) has the distinguished
element represented by the product bundle ®,:=Xx Q. We denote by [E] the
isomorphism class of Ee€ Vecg(X,Q).

The study of VEC4X,Q) is especially interesting when X is a G-module P

(see e.g. [2]). In this case we take the origin as the G-fixed base point. When
G is trivial, the Serre conjecture, which was proved by Quillen and Suslin
independently, implies that VEC4(P,Q)={x} (the trivial set consisting of the
distinguished element) for any P and Q. However, only few facts are known when
G is non-trivial. One approach is to require that the quotient space P//G be of
small dimension. It is easy to see that VEC4(P,Q)={*} if dimP//G=0. But,
VECg4P,Q) is not trival in genéral. Schwarz [11] (see [S] for the details) has
shown that if dimP//Q=1, VEC4P,Q) has a structure of finite dimensional
vector group and it can be non-trivial. Later, many other families of non-trivial
examples have been produced by Knop [4], Masuda-Petrie [9] and Masuda-
Moser-Petrie [7] when P has a higher dimensional quotient. However it remains
open to classify elements in VEC4(P,Q) when dim P //G>2.
If dimP//G>1, there is a non-zero point xe P whose orbit is closed. The
closure of the orbit of the line spanned by x is an affine cone with G-action whose
quotient is one dimensional (but not necessarily isomorphic to affine line). Masuda-
Moser-Petrie [8] noticed that elements of VECy(P,Q) can be often distinguished
by restricting to the cone. This led them to the notion of weighted G-cones with
smooth one dimensional quotient (see §1). Note that a G-module with one
dimensional quotient is an example of a weighted G-cone with smooth one
dimensional quotient.
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In this paper, we extend the main results of Schwarz [11] to the case that
the base space X is a weighted G-cone with smooth one dimensional quotient, i.e.
we prove

Theorem. Let X be a weighted G-cone with smooth one dimensional quotient
and H be a principal isotropy group of X. Let Q, Q, and Q, be G-modules.
(1) VEC4(X,Q)=(C? +) (C? as a vector group under addition) for some
non-negative integer p. Moreover, there is a G-vector bundle u:B —
X x VEC4(X,Q) such that p~ (X x [E])=E for every Ee€ Vecg(X,Q).
(2) Whitney sum induces an epimorphism of vector groups

WS:VECG(X,0,) x VECG(X,Q,) > VEC((X,0, @ Q).

If Hom(Q,,Q0,)"={0}, then WS is an isomorphism.
(3) LetE,E;eVecy(X,Q). Then E\®E,=E;®0, where [E;]:=[E]+[E,].
(4) The stabilization map

Stab: VECy(X,0) —» VEC4(X,0® Q)
[E]— [E®O,]

is an isomorphism.

Schwarz [11] (or Kraft-Schwarz [5]) proved the theorem above when X is a
G-module with one dimensional quotient and basically we follow his argument.
However our argument is considerably simplified and made elementary at several
points. The key fact to enable it is Equivariant Nakayama Lemma, which implies
that VEC4(X,Q)=VEC,Y,Q) if Y is a closed G-subvariety of X containing all
closed orbits in X. We take Y to be the minimal one among those
G-subvarieties. Such Y is called the closed orbit closure of X and denoted by X,
(cf. [1]). Itturnsout that X, is also a weighted G-cone with smooth one dimensional
quotient. The advantage of taking X, is that the generic fiber F of the quotient
mapn,: X, — X, //G=Aisaclosed orbit. This fact makes the proofs much simpler.

The organization of this paper is as follows. We define a closed orbit closure
in §1 and a weighted G-cone with smooth one dimensional quotient in §2 and discuss
their properties. In §3, we show that every G-vector bundle over X, is trivial
when restricted to X,—n;!(0). This reduces VEC4(X,,Q) to the double coset of
the group of transition functions. In order to deform the double coset to a
calculable form, we prove the decomposition property for Mor(F,GLQ)° (the group
of G-equivariant morphisms from F to GLQ) and the approximation property for
the semisimple part of Mor(F,GLQ)® in §§4 and 5. These properties are established
in [5] in full generality, but thanks to the fact that F is a closed orbit, it suffices
to prove them in a special case and we give them rather elementary proofs in
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that case. The main theorem above is proved in §§6 and 7. In §8, we make an
explicit computation of the dimension of VEC(X, Q) for an example treated in [8].

I wish to thank Professor L. Moser-Jauslin and Professor T. Petrie for
encouraging comments on this paper. I thank Professor Y. Tsushima for his help
concerning the automorphism group of GL,. Finally, I heartily thank Professor
Mikiya Masuda for giving precious advices throughout this paper.

1. Closed orbit closure

Let G be a reductive algebraic group and Z be an affine G-variety (reduced
but not necessarily irreducible). We denote by ((Z) the ring of regular functions
on Z and by O(Z)¢ the G-invariant subring of O(Z). The algebraic quotient space
of Z by G, denoted by Z//G, is defined to be Spec O(Z)®. The algebraic quotient
map n:Z — Z//G is defined to be the morphism corresponding to the inclusion
0Z)° s 0Z).

DerFiNITION ([1]). The minimal closed G-subvariety of Z containing all
closed orbits of Z is called the closed orbit closure of Z and denoted by Z,.

ReMark. If Z//G is irreducible, then it follows from Luna’s slice theorem
[6] that there exist a maximal open dense subset U < Z // G and a reductive subgroup
H < G such that the isotropy groups of points of closed orbits in n~}(U) are all
conjugate to H and nl,,_lw,:n“(U) — U is a G-fiber bundle. The group H is the
minimal one among isotropy groups of points of closed orbits in Z up to
conjugation. The group H is called a principal isotropy group of Z and U is
called the principal stratum of Z//G. We call the fiber over U the generic fiber
of m. One sees that Z,=G-(n~ {(U))Y. In fact, it is clear that Z, > G- (n~ {(U))".
Since m maps a G-closed set to a closed set ([3, p.96]), n(G-(n‘i(U))“) o
(G- (n~(U))=U=2Z//G. This means that G-(z~(U)¥ contains all closed
orbits. Hence Z,=G-(n" (U)". Note that a principal isotropy group of Z, is
also H up to conjugation.

Lemma 1.1. The closed orbit closure Z, satisfies the following properties:

(1) The restriction map O(Z)¢ — O(Z,)® is an isomorphism.

(2) If Z//G is irreducible, then the generic fiber of nl,:Z,—Z,//G=Z//G
is isomorphic to G|H where H is a principal isotropy group of Z.

Proof. (1) The injectivity follows from the fact that Z, contains all closed
orbits of Z and the surjectivity follows from the fact that Z, is closed and G is
reductive.

(2) Let (n|z,)”'(¢) be the generic fiber and U be the principal stratum of
Z//G. Since generic fibers are isomorphic to each other, we may think (e U. The
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fiber n~!(¢) contains a unique closed orbit Gz such that the isotropy group of
zeZ is H and n~Y(§)={7€Z|Gz'3z}. 1t is clear that (n|, ) '()=n""()NZ,
contains Gz. We show that (n|;)”'()=Gz. From the remark above, Z,=
G-(n"(U))!. Hence

dim (nl,,)~ () =dim Z, —dim Z.,// G
—dim G- (" (U) —dim Z// G
=dimG-(z~ (&) +dim U—dimZ// G
—dim G- (" (&)™

Let z’en™'(¢) and z'¢Gz. Since dim Gz’'zdim Gz, the dimension of the isotropy
group of z' is strictly smaller than that of H. Thus (n~ (&) =(Gz)¥ and
dim(nl,) ') = dimG-( '(®)" = dimGz While, if Ze(rly) 'Y then
dim (nl,,)~'(9)zdim Gz. This means that (n],)”'(8)=Gz = G/H. 0

The next lemma is the key fact used in this paper.

Equivariant Nakayama Lemma ([1]). Let Z be an affine G-variety, W < Z be
a closed G-subvariety and let E and E' be G-vector bundles over Z.
(1) Every G-vector bundle homomorphism ®: E|y — E'|y extends to a G-vector
bundle homomorphism ®:E — E'.
(2) If W contains all closed orbits of Z and ® is an isomorphism, then the
extension ® is also an isomorphism.

Corollary 1.2. The restriction map VECy(Z,0) = VEC4(Z.,,Q) is injective for
any G-module Q.

2. Weighted G-cone with smooth one dimensional quotient

Let X be a G x C*-affine variety. The C*-action defines a (integer-valued)
grading on O(X), i.e. we say that fe O(X) has degree r iff

fAx)=2"f(x) for all AeC* and xeX.

DEerFINITION ([8]). An affine G x C*-variety X is called a weighted G-cone with
smooth one dimensional quotient if it satisfies the following conditions:

(1) ®(X)¢ =C and O(X) is positively graded with respect to the C*-action.

(2) O(X)°=C[{] where te O(X)® is homogeneous.

REMARK. A G-module admits the C*-action defined by scalar multiplication,
which satisfies condition (1). Since a G-module whose quotient is one dimensional
satisfies condition (2) (see [5, I1]), it is an example of a weighted G-cone with smooth
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one dimensional quotient.

From now on X will denote a weighted G-cone with smooth one dimensional
quotient unless otherwise stated. Condition (2) means that X // G is isomorphic to
the affine line 4 =SpecC[f]. Through an isomorphism between X//G and A4 the
quotient map n: X — X//G = A4 is nothing but the function 7. Let d:=deg¢>0.
Note that the C*-action on X induces a C*-action on X//G = 4 which is d-th
power scalar multiplication. It follows from condition (1) that X has a unique
closed C*-ordit, in fact, a G x C*-fixed point (see [8, 2.1]), which we denote by x,,.

Lemma 2.1. For any xe X such that t(x)#0, lim,_,,Ax=x, where le C*.

Proof. Since X has a unique closed C*-orbit {x,}, one easily sees that
C*x=C*xu{x,}. This implies that x, equals to lim, ,Ax or lim,, Ax. If
xo=1lim,_,  Ax, then

1(xo)= t(}i_p;/lx) = }Lngo HAx)= }Lrl;ldt(x),

Since d>0 and #(x)#0, the identity above cannot hold. Hence x,=Ilim,_ 4Ax.
O

We consider the closed orbit closure X, of X (as an affine G-variety). Let H
be a principal isotropy group of X and x€ X —n, be a point whose isotropy group is
H. Then X,=(Gx C¥)x, in particular X,, is a G x C*-variety. In fact, X, is also
a weighted G-cone with smooth one dimensional quotient because condition (1) is
obviously satisfied and condition (2) follows from Lemma 1.1 (1). We abbreviate
the quotient map nly_: X, = X,//G= A by n,. Let F=n; (1), which is a generic
fiber. For affine G-varieties (or schemes) Y and Z, we denote by Mor(Y,Z) the
set of morphisms from Y to Z. With this understood

Lemma 2.2.

(1) F~G/H.

(2) For any G-module V, Mor(X,, V)¢ is a free O(X,)°-module of rank
dim VH. Moreover the restriction map Mor (X, V)¢ = Mor (F, V)¢ = V¥ is surjective.

Proof. The first statement follows from Lemma 1.1 (2) and the second one
is proved in [8, 2.3]. O

3. Triviality over the principal stratum

In this section, we show that every G-vector bundle over X, is trivial when
restricted to X=X, —n;'(0). We identify X, //G with A so that the induced
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C*-action on X, //G=A is d-th power scalar multiplication. The group of d-th
roots of unity, denoted by T, acts trivially on A, so the generic fiber F=n_'(1)
is invariant under the T-action. Let B=SpecC[s] where t=s". We define a
I'-action on B by scalar multiplication. Then B/I'=A. We denote by
B*"F the quotient of Bx F by I" where yeT acts on Bx F by (b,f) — (by,y ' f), and
define a G-action on B+"F by g-[b,f]1=[b,gf] for geG. There is a G-morphism
B+"F — X, mapping [b,f] to bf where be B:=B—{0} is identified with C* so
that bf makes sense. This can be extended to a G-map ¢: Bx'F — X, by defining
(P([Oaﬂ)=x0-

Lemma 3.1. The map ¢:Bx"F— X, is a G-morphism which restricts to an
isomorphism from Bs"F to X,,.

Proof. Since ¢|zrp is a morphism, to see that ¢ is a morphism from B+'F,
it suffices to show that the image of p*: O(X,)) - O(B*"F)=(0O(B)® O(F))" is contained
in (O(B)®CO(F))'. This is equivalent to showing that lim,_, o(¢*h)([b,f]) exists for
any he0(X,). From Lemma 2.1 we have

lim(o*h)([b, /)= lim k(b )= h(lim b /) = h(xo).

Hence ¢ is a morphism from B*'F to X,

Clearly @|j.rp:B+¥"F - X, is a bijective morphism. Note that X,, consists of
one G x C*-orbit, so X, is normal at every point. Therefore ¢|z.rf is an isomorphism
by Richardson’s lemma (see [3, p.106]). O

Let Ee Vecg(X,,,0) and E be the pull-back of E by the map Bx F — B+'F 5 X,
Then E is a G x I'-vector bundle over Bx F.

Lemma 3.2. E is isomorphic to the trivial bundle Bx FxQ — BxF as a
G-vector bundle.

Proof. We identify F with G/H and set Eq:=Elg, (. Then E is isomorphic
to Gx"E, and E, is isomorphic to a trivial H-vector bundle since the base space is a
trivial H-module (cf. [2, 2.1]). Let ®:Bx{eH}x Q =~ E, be an H-vector bundle
isomorphism over Bx {eH}. It induces a G-vector bundle isomorphism & over
BxG/H
®:BxG/HxQ— E =~ G+E,
(b.gH,q)—gPbeHg™'q. O

Set M :=Mor(F,GLQ)°. We define an action of yeI" on M by
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(ym))=m(y~'f) for me M and feF
and on M(B):=Mor(B,M) by

(yu(b)=y(u(by)) for pe M(B) and beB.

Theorem 3.3. Let X be a weighted G-cone with smooth one dimensional quotient
and Q be a G-module.

(1) For every EeVecy(X,,,Q), Elx,, is isomorphic to a trivial G-vector bundle.

(2) The restriction map VEC4(X,Q) —» VECy(X,,Q) is bijective.

Proof. (1) Let E be the same as in Lemma 3.2. By Lemma 3.2, we may
assume £E=B x Fx Q as a G-vector bundle. Since Elx_, is isomorphic to the quotient
of Elj.r by the I'-action, we investigate the I'-action on E|;,,=BxFx Q.

The action of yeI" on E=Bx Fx Q can be expressed as

BxFxQ—BxFxQ
(b.1,9)— (By,y ™" £, (B BY)9)
with #,e M(B). One easily verifies that
h,,=yhh, for y,yerl.

Hence elements A, := ﬁy_ ! satisfy the 1-cocycle condition h,,.=h,(yh,) and give rise
to an element of a group cohomology set H'(I',M(B)). Since H(I',M(B))={*}
from [5, IV 5.6], there exists ¢ € M(B) such that hli=¢ " '(y¢) for all yeI". Then
the map

Elijxp=BxFxQ—->BxFxQ
(.1, 9)— b,/ (96N )9

is a G x I'-equivariant vector bundle isomorphism, the I'-action on Q at the target
being trivial. This shows that E|;_ is isomorphic to a trivial G-vector bundle.

(2) By Corollary 1.2 it suffices to prove the surjectivity. Let E€ Vecg(X,, Q). It
is trivial over X, by the above (1) and there is an open neighborhood U of 0e A4
such that E is trivial over n; (U) ([2, 6.2]). Let ¥ be a transition function of E with
respect to trivializations over X,; and n;'(U). It can be viewed as an equivariant
vector bundle automorphism of the trivial bundle over n;(U)n X, with fiber
Q. Let X:=X—n"'0). As is easily seen, 1~ '(U)n X is an affine G-variety and
n;(U)n X, is its closed G-subvariety containing all colsed G-orbits of =~ (U)n X;
so Y extends to an equivariant vector bundle automorphism ¥ over n~'(U)n X by
Equivariant Nakayama Lemma. Let E be the G-vector bundle over X obtained
from . Clearly E restricts to E, proving the surjectivity. [J
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ReMark. The statement (1) in Theorem 3.3 holds for X (instead of X))
since the restriction map VEC4(X, Q) = VEC(X,, Q) is injective by Corollary 1.2.

By virtue of Theorem 3.3 (2) we may take X,, as the base space instead of X.
We set

—{0)(=SpecC[1,t"']), A=SpecC[tlo, A=SpecC(y)

where C[{], denotes the localized ring at 0, i.e. Clde= {10/ g1 (1).g()e C[1],£(0)
# 0} and C(f) the quotient field of C[f]. Note that A is the schematic intersection
And.

Theorem 3.4.

VECH(X.,Q) = DP:=BANBA)/ B(A),
where P(Z):=Mor (Z x 4X.,,GLQ)® for an A-scheme Z.

Proof. This is a direct result from Theorem 3.3 (1). Let Ee Vecg(X,,Q).
There exist an open neighborhood U of 0ed =~ X,//G and a trivialization
Yo Elpiuy = g Y(U) x Q as remarked in the proof of Theorem 3.3 (2). By Theorem
3.3 (1) _there is a trivialization y: El, = X,;x Q. Then yoy; ! defines an element

e P(d) by
Vovpl(xg=(xax)q) for xeX,nnz(U), geQ.

Take another open neighborhood V of 0 A4 together with a trivialization v, over

n;'(V) and another trivialization y' over X, Then y'oy; ' defines an element
o e‘B(A) We also have ae‘B(A) and ae‘B(,Z) defined by ¥/ oy~ ! and yyoyy?,
respectively. Then & =aad and this proves the theorem. []

Since the morphism ¢:B+'F— X,, is an isomorphism over 4 from Lemma
3.1, it induces the following isomorphisms:

0 BA) SMBT  and ¢, B(A) > MBF
where §= Spec C(s). Thus we obtain an isomorphism

D% = BANKA) / BA) S MEBT\MBY | 9 B,

In the following sections we analyze the latter double coset.
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4. The decomposition property
Decompose
0= ®LmW, as H-modules
where W, are mutually non-isomorphic irreducible H-modules and n; is the
multiplicity of W;. Then since F =~ G/ H, we have
M=Mor(F,GLQ)¢ ~ GL(Q)¥ ~ ﬁ GL,.
i=1

Note that M(B) has a natural grading induced from O(B). We define
M(B), = {iue M(B)| u=1+O(s")}
M(B); := M(B)" n M(B),
where I denotes the constant map to the unit element of M. We set
B=SpecC[[s]], B=SpecC((s)

where C[[s]] denotes the ring of formal power series and C((s)) the ring of finite
Laurent series. We define M(B), and M(B)] etc. similarly to M(B), and M(B)'. The
main purpose of this section is to prove

Theorem 4.1. (The decomposition property).
MBF =MBIM®BS  and  MBYF = MBI M(BY..

First, we show that M has the decomposition property if we forget the I'-action,
ie.

Proposition 4.2. M(B)=M@BM®B), and  M(B)= MBM(B),.

Proof. Since M(B)=M-M(B),, it suffices to show that M(B)=M(B)M(B).
Furthermore since M is isomorphic to the product of general linear groups, it is
sufficient to prove the proposition when M=GL,. We prove that

GL,(B)=GL,(B\GL,(B)

by induction on n. Note that an element of GL,,(E) (resp. GL,(B), GL,(B)) is an
invertible matrix whose entries are in C((s)) (resp. C[[s,s~ 1], CL[s1]).

The above identity is clear for n=1. Suppose n>2. Take A(s)=(a;{s))
€ GL,,(E) where a;(s)e C((s)). By permuting the columns, we may assume that a,(s)
is a non-zero finite Laurent series whose order at 0 is the smallest among entries
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in the first row. Multiplying the first column by an appropriate element of
C[[s]] and adding it to j-th column, we can make a, (s)=0 for j>1. This procedure
is done by operating GL,(B) from the right hand side.

By operating GL,(B) from the left hand side, we can make the order of a;(s)
(2<j<n) at 0 as large as we want without changing a;(s) (2<i,j<n). In fact,
this can be done by multiplying the first row by an appropriate element of C[s,s ']
and adding it to j-th row. Applying the induction hypothesis to the matrix
A, 1(5):=(a;(5)2<i j<n there exist B,_,(5)eGL,_(B) and C,,_l(s)eGL,,_,(ﬁ) such
that

An— l(s) = Bn— 1(S)Cn— l(s)'
Define a column vector c(s) by
os) =B, 1(Na;1 ()2 <<

From the above observation, we may assume that each entry of ¢(s) belongs to
C[[s1]. Let r be the order of a,,(s) at 0 and set

s7"ay ()

) e GL,(B).
ds)  Coy(9)

g 0 .
B(s):= <“° >e GL(B), Cls) :=<
0 Bn—l(s)
Then one sees A(s)=B(s)C(s).
The identity M(B)= M(B)M(B), can be proved in a similar way. []

Proof of Theorem 4.1. For any A (;M(lé)r there exist A e M(B) and 4 € M(B),
such that 4 = A4 by Proposition 4.2. Define a map 4:T" — M(B) by A(y)=A"'(yA)
for yeI'. Clearly A satisfies the 1-cocycle condition. Since A is I'-invariant,

Ay)=A"'(@A)=A(A)" e M(B)n M(B), = M(B),.

Thus, 4 defines an element of H'(I',M(B),). Since H(T,M(B),)={*} ([5, IV 6.3]),
there exists AeM(B), such that A(y)=A"'(y4). Thus, AA~'eM(B) and
AAe M(B)\. Hence A=(AA™'\AA)e M(B) M(B)].

The identity M(B) = M(B)" M(B)} can be proved in a similar way. []

Finally we make an observation on the I'-action on M, which will be used
in the next section. Take a point f, € F whose isotropy group is H. Evaluation at
fo gives an isomorphism

¥ : M =Mor (F,GLQ)® - GL(Q)".

Recall that the action of yeT” on M is given by m - moy~'. Since the I'-action

on F is G-equivariant and the isotropy group of f, is H, y~'f,=gf, with some
element g in the normalizer of H in G. Therefore we have
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(rm)(fo)=mly ™ 'fo) =m(g fo) = p(g)m( fo)p(g) ~*

where p:G — GLQ is the homomorphism (i.e. rational representation) associated
with Q. This shows that the action of y on M corresponds to the conjugation
by p(g)e GLQ on GL(Q)? through the above isomorphism ¥. Note that the
conjugation by p(g)? is the identity since y?=1.

Remember the decomposition Q = @ n;W; as H-modules. If g= 1 ie.
Q = nW for some irreducible H-module W, then M = GL,.

Lemma 4.3. Suppose Q ~nW as H-modules. Then the action of yel on
M =~ GL,, is equivalent to the conjugation by a diagonal matrix of GL, with elements
of d-th roots of unity.

Proof. We choose f,eF and fix the isomorphism W:M =Mor(F,GLQ)°
— GL(Q)¥ and geG such that y~'f,=gf, for a generator yeI'. Furthermore,
we fix an H-equivariant isomorphism ¢:Q —nW and identify GL(Q)? with
GL(mnW)? = GL, through the isomorphism ¢. The y-action on GL(nW)#
corresponds to the conjugation by p(g):=¢p(g)¢ '€ GL(nW). Hence the y-action
is an automorphism of GL(nW)¥ =~ GL, which fixes the center of GL,. It is known
that Aut(GL,)/Int(GL,) =~ Z/2Z (n>2) and the non-trivial element is represented
by 1e Aut(GL,) where 1(4)='A"" for Ae GL, (cf. [10, p.298]). However, 1 is not
identity on the center of GL,, thus the y-action on GL, is an inner automorphism
of GL,. Hence we may think of g(g) as an element of GL,. .

Since the conjugation by j(g)? is the identity, j(g)’ is a scalar matrix. Hence
there is Se GL, such that Sp(g)S~' is diagonal and the i-th diagonal entry of
Sp(g)S ! is written as Ao, where A; is a d-th root of unity and « is a complex
number independent of i. The conjugation by pg(g) is equivalent to that by
diag(,,-+-,2,) so the lemma has been proved. []

5. The approximation property

Let M’ be the commutator subgroup of M, which is the semisimple part of
M and isomorphic to IT;SL,. Note that M’ is invariant under the I'-action. In
this section we prove the approximation property for M’ and deduce a few
consequences from it.

Theorem 5.1. (The approximation property).
M'B=M'BM'(B  for all r21.

The interaction between Lie groups and Lie algebras is necessary to prove
the theorem above. Let m and m’ be the Lie algebras of M and M’
respectively. Then m=Mor (F,EndQ)¢ ~ End(Q)" = @®gl,,and m’ = @;l,. Note
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that m’ is [-invariant. The key result to prove Theorem 5.1 is

Lemma 5.2. Let r>1 and let Ae ' such that sAem'(B)Y. Then there exists
g(s)e M'(B), such that g(s)=I+s"A+0(s"*?).

We take this lemma for granted for a while and prove Theorem 5.1.

Proof of Theorem 5.1. It suffices to show that for any g(s)e M'(B), r>1,
there exists g(s)e M'(B)Y such that g(s)"!g(s)e M'(B),,. Write g(s)=I+s4
+0(™*") eM'(Bf. Then Aem’ and s’Aem’(B)". Hence, the theorem follows
from Lemma 5.2. [

Proof of Lemma 5.2. Let y be a generator of I. We may reduce to the
case where m'=m|@---@®m;, m;=sl, for each i and ymj=mj,--,ym;_;=m;,
ym;=m). Thus y" preserves each m;. We consider two cases.

Case (1) [=1.

In this case, m' =~ sl, and M’ =~ SL,. In the following we identify m’ with
sl, and M’ with SL,. There is a standard decomposition sl,=t,®u* ®u~ where
t, is the maximal toral subalgebra of sl, consisting of diagonal matrices with trace
zero and u™* (resp. u~) is the nilpotent subalgebra of sl, consisting of upper (resp.
lower) triangular matrices with zero diagonal entries. By Lemma 4.3 we may
assume that the induced action of yeI' on m’ is conjugation by a diagonal
matrix. Hence the T-action on t, is trivial and u* are I'-invariant.

Given Aesl, such that 5’4 is I'-invariant, we decompose A=A +A4,+A4_
where Ayet,, A, eu”, A_eu”. Since

exp(s’A,)exp(s’A_)=I+5(A, +A_)+ O ) e SL(B)],

we may reduce to the case where Aet,. Furthermore, we may reduce to the case
where m’'=sl, and A4 et, since t, is isomorphic to a direct sum of t, < sl,.

1 0
Let A=a<0 1)etz, where a is a scalar. By Lemma 4.3 we may assume

that the action of y on sl, is the conjugation by a diagonal 2 x2 matrix with
diagonal entries 4, and 1, where A; are d-th roots of unity. From the I'-invariance
of s"A, we have d|r. Set

0_(01) a_<oo) a_<10>
Vo) * \uo)S TP \o-1)

Then g, and g, are nilpotent, [¢,,6,] =03 and the y-actions on them are:

yo1=MAz 0y, yo,=A7 40, yo3=0;
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If r#d or the y-actions on ¢, and o, are not trivial (i.e. 1, #4,), then there are
positive integers a, b such that s°%,, s’¢, are I'-invariant and [s¢,,s%0,]=5"05
since /=1 and d|r. Hence

g(s) = exp(as®a)exp(sPa Jexp(— as®c, Jexp(—sba,)

is in SLy(B)} and g(s)=I+asc;+O(s"*"), so it is the desired element. If r=d
and the y-actions on ¢, and o, are trivial, then one can easily check that

g(s):=exp(—as'o,)exp(as’a,)exp(a2)exp(— as"sJexp(— o)

is the desired element.

Case (2) [>2.

In this case, d =kl for some positive integer k and each m; = sl, is stable under the
action of I':={y"|j=0,1,--,k—1}. Let A=A4,®-- DA, where A;em,xsl,
Since s"A is T-invariant, s"4, is [M-invariant. It follows from Case (1) that we
can find g,(s)e SL,(B)}' such that g,(s)=1+54,+0("*"). Then g(s)=II'_,gs),
where g, ,(s)=(yg)(s) for 1<i<[—1, is the desired element. []

Denote the canonical map M —- M /M’ by t. Since M x=II{_,GL, and
M ~TI7_SL,, M/M' = (C*? and 7 is viewed as the determinant map on each
factor GL,. Let Z be the center of M. Then Z is isomorphic to (C*)? and the
map t restricted to Z induces an isomorphism of the Lie algebras. Note that Z
is invariant under the T-action. We define m(B)l :=m(B)f nm(B), where m(B),
={pem(B)|u=0(s")}. Similar definition applies to m’ and m /.

Proposition 5.3. For r>1, there is a commutative diagram of split exact
sequences

0 - m@BF - mBF > (m/mYBF > 0

! ! !

T*

1 - M'BF - MBI - (M/M)Bf - 1

where T induces ty and t,, and the vertical maps are isomorphisms induced from
exponential maps, Moreover M(B)f = M'(B)F Z(B)!.

Proof. Exactness of the upper sequence, commutativity of the diagram and
isomorphisms of exponential maps are clear. The existence of a splitting map of
1, follows from the fact that the canonical map m — m/m’ = C?is an isomorphism
on the Lie algebra 3 of the center Z. This implies that t, also has a splitting
and 7, is an isomorphism on 3(B)Y. Since 3(B)f =~ Z(B)F via the exponential map,
it follows that 7, is an isomorphism on Z(BF. Thus exactness of the lower
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sequence and the last statement follow. [J
Lemma 5.4. M(B);=MB\M®B) for all r>1.

Proof. From Proposition 5.3, M(B)f = M'(B)'Z(B)} for r>1. Since M’ has
the approximation property, we reduce to the case where M=Z =~ (C*2

Let Z=(zy(s), -, z(s)) € Z(B)] where z(s)=1+Z;Z}a;s'+O(s") (a;eC) for
1<i<q. Define Z=(Z,(s),--,Z,(s)) by Z{s)=1+ZXj a5’ for 1<i<q. Since the
action of yeI’ on M =~ GL(Q)" is a conjugation by an element of GLQ, the
[-action preserves the grading of Z(B) = M(B). Hence feZ(B)Y and 7!
eZBr. O

Lemma 5.5. For r>1, M(B)\ and M(B)\M(B)I are both normal subgroups of
M(B)E.

Proof. It is easy to see that M(B)! is normal, so we prove that M(B)\M(B)] is
normal. From Proposition 5.3, M(B\=M'(B)XZ(B)Y. On the other hand
M(B\M (B} > M'(B);M'(B)F = M'(B); by Theorem 5.1. Since Z(B)! is the center
of M(B)Y and M'(B)} is contained in M(B)\M(B)., it follows that M(B)XM(B)' is
a normal subgroup of M(B).. O

6. Moduli of vector bundles

In this section we analyze the set VEC4(X, Q) = VEC4(X,, Q) using the results in
the previous sections, in particular we prove the Theorem (1) in the introduction.

Let €(4):=Mor(X,,EndQ)°. It is a free ©(4)-module of rank dim End(Q)?
=dimm by Lemma 22 (2). Note that the map ¢:B+F— X, induces an
O(A)-module homomorphism ¢, : E(4) - m(B)".

Proposition 6.1. Let {A;} (1<i<dimm) be a homogeneous basis of €(A) over
O(A) and let A::= A;| re m=Mor (F,EndQ)°. Write deg A;=k;d+a; where 0<a;<d.
Then

(1) {s"A;} is an O(A)-module basis of m(B)".

() @yd;=1"(s"4).

Hence ¢@,:€(A) - m(B)' is an injection of free O(A)-modules and is of full rank.

Proof. (1) The set {A;} is a basis of m over C by Lemma 2.2 (2). Since
s"A;e m(B)" if and only if r=a; mod d, any element of m(B)" is a linear combination
of s%A; over ((A). Suppose that Z;f(1)s*4;=0 for f(f)e O(A), where we may
assume f{(tf) are homogeneous. Then Xf(1)4;=0 by evaluating the identity at
s=1. Since the set {4;} is a basis of m, f(1)=0 for all i and hence f{(f) are
identically O since they are homogeneous.
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(2) For beB, feF, we have
(s A)BNS) = Abf) =bIF 4 Af) =b™ T A f) = (s ANBNS)-
This proves that ¢z4;=t*(s"A4;) on B and bence on B by continuity. []
Let G(A):=Mor (4 x X,,EndQ). Since
E(A) = O(A)® o O(X ) @End Q)%(= O(A)® 60E(A)),

it inherits a grading from O(X,). Let G(A), be the ideal of ©(A) generated by
homogeneous elements of degree >r. Note that B(4)=Mor (4 x ,X,,GLQ)C is a
subset of ©(A) and set P(A),:={AePA)|A—IeC(d),). Then we have a
commutative diagram

PA), > MBY

exp T T exp
€(d), - mBy

P4
where the vertical maps are isomorphisms incuced from the exponential map EndQ
- GLQ.
Lemma 6.2.

(1) For any sufficiently larger r we have (p*‘B(ﬁ),=M(l§),r, in particular
@ 4 B(A); > M(B),.

2) M(B)ip,B(A), > M'(B).

Proof. (1) Since E(A)=0(A)®HEA) and mB) =O(A)® ey @m(B), it
follows from Proposition 6.1 that ¢,E(4), =m(B)] for any sufficiently large r. This
together with the above diagram proves (1).

(2) It follows from (1) that M(B){p ,B(4), > M(B)M(B)F for a sufficiently

large r. On the other hand M'(B)Y=M'(B);M'(B)} for any r>1 by Theorem
5.1. Hence (2) follows. []

Remember that
VECH(X,0) = DB =BA\B(A)/ BA).
Proposition 6.3. The canonical map
DR =B(A\BA)/ BA) > BA\BA) / BA) =DP

is a bijection.
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Proof. The injectivity is easy. We show the surjectivity. Remember that
~ . ~ Py o ~ ~.
DB =BA\PB(A) / BA) > MB\MBY | ¢ B(A).

Since M has the decomposition property (Theorem 4.1), the latter is isomorphic to
M(B)" n MBY\M(B)}/ ¢ ,B(A) M(B)] = M(B\M(B); / 0 ,B(A),.

Similarly, DB =~ M(B)\\M(B)} / (p*‘B(/i)l. Thus the canonical inclusion DB ¢ DP
reduces to an inclusion

C MBN\MBY /¢ B(A), 5 MEB;\MBY; /¢ ), )
Here M(B)]=M(B){M(B)] for all r>1 by Lemma 5.4 and ¢ ,B(4); > M(B) for a
sufficiently large » by Lemma 6.2 (1). This implies the surjectivity. []

Proposition 6.4.
DB = (M/M)B) /7,0, B(A),
= (m/m)B)/ 1,0,€(d),

~ (C?,+) (CP? as a vector group under addition).

Proof. It follows from the proof of Proposition 6.3 that
DB = MB\M(B) / 9 B(A),.
For a sufficiently large r, this double coset is isomorphic to
M(B\M(B)]/ M(B); ¢ ,B(4),  (by 62 (1))
= MBM(B\M(B){/ ¢, B(A),  (by 5.5)
= M(B);/ M(B{M(B)[ ¢ ,B(A);  (by 5.5)
= MB)] | M(B){ 0 ,B(A), (by 6.2 (1)
= (M(BY;/ M'(B))/ [(M(B)i¢ ,B(A),)/ M'(B]]  (by 6.2 (2)
= (M MXBY /1,0, B(A);.

In the last isomorphism we use Proposition 5.3 and the fact that 7, is nothing
but the determinant map on each factor so that t, is trivial on M(B)}.

Since the exponential map induces an isomorphism (m /m’)(l?)f;(M / M'XB)Y
and T and ¢ commute with the exponential maps, we have

(M M'YBY /7,0, B(A), = (m/m'YB)] / ty0,&(A),.
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The latter set has a natural vector group structure induced from (m/m’)(B)} and
it is finite dimensional by Proposition 6.1, thus it is isomorphic to C? for some p. []

The reader will find that the former part of the Theorem (1) in the introduction
will follow from Theorems 3.3 (2), 3.4 and Propositions 6.3, 6.4.
Here is a formula to compute the dimension p in Proposition 6.4.

Theorem 6.5. Let B; (1 <i<gq) be homogeneous elements of €(A), which project
to a basis of m /| m’ and have minimal degrees possible. Thenp=ZX?_ [(deg B,—1)/d].

REMARK. We note that n,=1 for all i (see §4 for n,) if and only if m'=0,
and in this case g=dimm. The condition that n,=1 for all i is called in [7] that
Q is multiplicity free with respect to H.

Proof. Write deg B;=k;d+b; where 0<b;<d. Then s*B; (where B;= B;|pem)
are elements of m(B)| which project to a basis of (m/m')(B)} over ((4). Since
the B; have minimal degrees possible, the set

{’j_ l(sbiBg)e m(B.)Il- li=1,-q, j=1,- "ki}
projects to a C-basis of (m/m')B)]/1,0,€(A),. This shows that p=37_k,
=X[(degB;—1)/d]. O

Finally we complete the proof of the Theorem (1) in the introduction, i.e. we
prove

Theorem 6.6. There is a G-vector bundle pu:B — X x VECHX,Q) such that
for every Ee Vecg(X,Q) the G-vector bundle p='(X x [E]) is an element of Vecy (X, Q)
isomorphic to E.

Proof. Remember that 3(B)Y = (m/m')B)} via 1, (see Proposition 5.3 and its
proof). Let C; (1<i<p) be elements of 3(B)] which project to a C-basis of
(m/m)B), | t,0,8(A),. We identify VEC4(X,,, Q) with C? by these generators. By
Lemma 6.2 (1) there is a positive integer » such that ¢*‘B(Z),=M(ﬁ),r‘ We fix
such an r and define

exp,zi=1+z422/24 -+ /(r—1)
Let c=(cy, --,¢,)eC? and C.:=X[_,¢;C;. Then
exp,C.e Z(B)Y = M(B)\ = M(B)".

We consider the element ¢ 'exp,C, e Mor (A x ,X,,GLQ)®. As observed in the
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proof of Theorem 3.3 (2) the element extends to an element of Mor (Z x X,GLQ)¢
which we denote by &,

Let B.:={be B|det(exp, C,)(b)#0} and A4.:=B./T. For all ceC? A, is an
open subset of A containing the origin. We set X,:=A4.x ,X. We glue 2 trivial
G-vector bundles (with fibre Q) over W:=XxC? and W :={(x,c)e Xx C?|xe X,}
via the following transition function

YU~ - GLQ
(x,€) > & ().
It is easy to see that the G-vector bundle over X x C? defined by W has the
required property. []

7. The structure of VEC4(X,Q)

In this section, we complete the proof of the theorem in the introduction, i.e.
we prove

Theorem 7.1. Let Q, Q, and Q, be G-modules.

(1) Whitney sum induces an epimorphism of vector groups:
WS: VEC4(X,0Q,) x VECG(X,Q,) > VEC4(X, 0, D Q,).

If Hom (Q,,0,)"={0}, then WS is an isomorphism.
(2) Let E\,E;eVece(X,Q). Then E\®E, =~ E;®0, where [E;]:=[E,]+[E,].
(3) The stabilization map

Stab: VEC4(X,Q) = VEC4(X,0D Q)
[E]—[E®O,]

is an isomorphism.

Proof. (1) Letm;=Mor(F,EndQ,)° for i= 1,2 and rit=Mor(F,End(Q, ® Q,))°.
The additive structures of (m; / m;)(B)} and (it / iv’)(B)%, which induce the vector group
structures on VEC4(X,Q,) and VEC4X,0,®Q,), come from the ones of EndQ;
and End(Q,®Q,), respectively. While, the Whitney-sum map WS comes from
the natural homomorphism EndQ, x EndQ, — End(Q,®Q,). Hence, WS is a
homomorphism of vector groups.

Since the natural map m, /m)| x m,/m, - /' is surjective and m;/m; x 3,
etc., the induced map (m, /m,)(B)} x (m, /m,)B)L — (/i) B)] is also surjecitve.
Thus, WS is an epimorphism.

If Hom (Q,,Q,)" ={0}, then the natural map m, x m, — tit is an isomorphism,
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which implies that WS is an isomorphism.

(2) Let m=Mor(F,EndQ)¢ and th=Mor(F,End(Q®Q))°. Let 4,,4,em(B)}
be elements which represent [E;1,[E,]€ VEC4X,Q) respectively. Every element
AeMor(B,End(Q,®Q,)") can be expressed as

A A B
A= < ) 12) where  A4;;€ Mor (B,Hom(Q;, 0)").
Ay Az

Using this expression for Q,=0,=0, one sees that

A, 0 A+ A4
A3=( ! ) and A’3=( 1Az O)
0 4, 0 0
represent [E,J®[E,] and ([E,]1+[E,])®O, respectively. Since 7:1it —» i/’ is
the trace map on each factor of W =~ End(Q®Q)” =~ ®gl,,+,, We have

74(A43)=14(A4%). This means that [E,]®[E,]=([E,]+[E,])®O,.
(3) The stabilization map is induced from

End(Q) - End(0® Q)

This induces an isomorphism m /m’ 5 /. Infact, the inverse is induced from
End(Q@® Q) — End(Q)

A B
< )HA+D.
C D

This implies that the map Stab is an isomorphism. []

RemARk. Besides Whitney sum there are some bundle operations such as
tensor product and exterior power. One can see that tensor product induces a
(not necessarily surjective) homomorphism of vector groups:

VEC4(X,0,) x VEC4(X,Q,) » VECG(X,0,® Q5).

If Q,=C™ (the trivial G-module of dimension m), then VEC(X,Q,)={*} and the
above map is nothing but m-fold Whitney sum; so it is an isomorphism in this
case. One can also see that i-fold tensor or exterior product induces a (not
necessarily surjective) homomorphism:

®': VEC4(X,0) » VEC(X,®'Q),  N:VECgX,0)— VEC(X,N'Q).
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8. Example

We give an example of a non-tirvial moduli of G-vector bundles over a
weighted G-cone with smooth one dimensional quotient. This example was first
treated by [8] (see also [9]).

Let G be a dihedral group D,=Z/2ZXZ/nZ. Let © and A be generators
of Z/2Z and Z/nZ, respectively. For a positive integer m we denote by V,, the
2-dimensional G-module defined by

t(a,b)=(b,a) Na,b)=(A"a,.~"b)

where (a,b) e V,,(=C?) and A is identified with exp(2n,/ —1/n). Note that V,,=V,,,,
and if m<n, V,,= V,_,; so we may assume 2m<n.
Let X be a G-invariant affine cone defined by

Xz:{{CC’CC_I)E VilceC, ("=1} n:even
{(ab,c)eV,xClab=c* a"=b"=c"}  n:odd.

Then

Clx,y]/(x"?—y"?) n:even

@(X)Z{C [x,,2]/ (xy— 2%, x"—y", y" —2") n:odd

and O(X)®=C[] where

e Xy n:.even
z  n:odd.

Henece X is a weighted G-cone with smooth one dimensional quotient.

Theorem 8.1. Let G=D,, 2m<n and X be as above. Then VEC4X,V,,) = C?
where

(min{m—l,n/Z—m—l} n:even#2m
p= -0 n=2m
(\ min{2m—1,n—2m—1} n:odd.

Proof. We apply Theorem 6.5. The principal isotropy group H of X is
Z/2Z (the second factor of G=Z/nZXZ/2Z) and V,, is multiplicity free with
respect to H. Hence it suffices to see the homogeneous generators of
Mor(X,EndV, )¢ as an O(X)°-module as remarked after Theorem 6.5. Since
dim End(V,,) =2, the module Mor (X,EndV,,)¢ is of rank 2 (hence g=2 in Theorem
6.5). It is not hard to see that the generators are given by
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0 n—2m
( s Y ) n<4m
X" 0

10
A= nd A,=
1 (O 1) a 2 ’ (yo x2m)

m g n=>4m.

\

Since deg 4, =0 and deg A, =min{2m,n—2m}, B; and B, in Theorem 6.5 are t4,
and A, if n#2m, and t4, and ¢4, if n=2m. Noting that degz=2 or 1 according
as n is even or odd, one sees that the theorem follows from Theorem 6.5. []

REMARK. Let VECG(X,V,,;C):={[E]e VEC4(X,V,) | [E®O(] is trivial}. It

is isomorphic to a C-vector group and its dimension is computed in [8], which agrees
with that of VEC4(X,V,) Thus, VECy(X,V,)=VECHX,V,;C), ie. E®O is
isomorphic to a trivial bundle for any Ee Vecy(X,V,,).
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