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1. Introduction

The concept of “fractal” is fairly broad. A mathematical framework of fractals
were given by Hutchinson [5] (he call them strictly self-similar sets). His self-similar
set K is a compact subset of a complete metric space X, and invariant with respect
to a collection {F,,---, Fy} of contraction maps on X: that is, K= U F(K). One
way to obtain the physical properties of these media is to construct Brownian
motion on them. The study of diffusion processes on fractals was initiated by
Kusuoka [11], Goldstein [3], and Barlow-Perkins [1]. They constructed Brownian
motion on the Sierpinski gasket, and investigated it in detail. The Sierpinski
gasket is one of Hutchinson’s fractals of finitely ramified type (i.e., max;, #(F(K)
NF{K))<oo), which have been studied by many probabilists. Lindstrem [13]
introduced a class of finitely ramified fractals, containing the Sierpinski gasket,
called “Nested fractals”, and constructed Brownian motion on them. Kusuoka
[12] and Fukushima [2] studied these processes by using (regular local) Dirichlet
forms. Also, there are many works on nested fractals (for example see Shima
[15] and Kumagai [10]). Post critically finite (P.C.F. for short) self-similar sets,
a generalization of nested fractals, were introduced by Kigami [6], and he considered
Laplace operators and Dirichlet forms on them.

Hutchinson’s fractal (i.e., strictly self-similar set) K is associated with the
full-shift symbolic space, i.., there is a natural surjective map n: {1,---, N}V > K,
cf. Kigami [6]. In this paper, our object is a finitely ramified fractal which is
not associated with full-shift, but with a Markov sub-shift. Let C be a unite circle
in R? having the origin as its center, and a collection {F,,---, Fs} of 3-similitudes
with fixed points (1,0), (0,1), (—1,0), (0,—1), (0,0), respectively. There exists a
unique compact set K = R? such that K=u;_ F(K)uUC, cf. Hata [4], which we
call the Mandala (see Figure 1): this name is taken from the Buddhist magic
diagram. However, we will be exclusively concerned with the plain Mandala which
is a simplification of the Mandala, in order to avoid notational complications. The
Mandala and the plain Mandala are not included in Hutchinson’s framework.

We shall give a mathematical definition of the plain Mandala in Section 2. Our
method of constructing diffusion processes is a modification of Kigami’s method
for P.C.F. selfsimilar sets [6] (see also Kumagai [9]). The plain Mandala is
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Fig. 1.

denoted by K. We define a sequence {V,}n»o Of finite subsets of K such that
V.=UmsoVm is dense in K. In Section 3, we first define a difference operator
H,, on the space I(V,) of functions on V,, and then, we introduce a bilinear form
&™ on I(V,) using H,. Under some assumption (cited as Basic Assumption), it
is shown that, for each uel(V,), &™uu) is increasing in m. This limit bilinear
form on /[V_) is denoted by & Then, we show the domain of & is embedded
in L¥(K) relative to some measure, and finally we prove this embedded bilinear
form is a regular local Dirichlet form. Our bilinear form depends on several
parameters, and in order to obtain our assertion, we ought to restrain these
parameters (say, Condition A or Condition B). In Section 4, under Condition A,
we consider a measure u of Bernoulli type which is naturally associated with the
bilinear form & in a certain sense, and then we give an injective map from the
domain of & to L*K,pu), proving that this embedded bilinear form is a regular
local Dirichlet form on L*(K,u). In Section 5, under Condition B, we prove that
any function of the domain of the bilinear form defined in Section 3 is extended
to be a continuous function on the plain mandala K, and that this embedded
bilinear form is a regular local Dirichlet form on L*K,v), where v can be any
everywhere dense probability measure on K. Moreover, we see that the diffusion
process associated with the Dirichlet form on L*(K,v) is point recurrent, using the
argument established by Fukushima [2]. In Section 6, under Condition A, we
determine the spectral dimension of the diffusion process on the plain Mandala,



DIFFUSION PROCESSES ON MANDALA 889

which has been constructed in Section 4. In Section 7, we consider to what extent
the argument in Section 4 and Section 6 works if we take a more general measure
of Bernoulli type instead of the measure defined in Section 4.

ACKNOWLEDGEMENT

I am grateful to Professor T. Watanabe for patient teaching and encouragement,
and to Professor J. Kigami for instructive lectures and comments. My special
thanks to Professor T. Shima and Professor T. Kumagai for fruitful discussions
and advice.

2. Plain Mandala

In this section, we give a mathematical definition of the plain Mandala, and
explain the notation and the terminology. As will be seen in the sequel, the plain
Mandala is characterized as a kind of self-similar set associated with a Markov
sub-shift.

Let L be an (upper) unit semicircle in R? having the origin as its center. We
denote (—1,0), (1,0) by &,, &,, respectively. We give a collection {F,,F,,F3,F,} of
“contraction maps”. F, and F, are the mappings from R? to R? defined by

Fi(x)=%(x—€i)+éi for all xeR?, i=1,2.
F, and F, are the mappings from L to L defined by
1 .
Fi(x)z(p(E(w(x)_w(éi——z))+'/’(éi—2)> for all xeL, i=34,

where ¢:[0,7] = L is defined by ¢(0)=(cos,sinf), and y=¢ .
Then there exists a unique compact set K in R? such that K=F,(K)U Fy(K)UL,
(see Figure 2); cf. Hata [4].
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DerFINITION 2.1. The compact set K is said to be the plain Mandala.
We give an increasing sequence {V,}m>o Of finite sets which approximate
K. We start with Vo=V, ,={¢,,¢,}. For m>1, let

Vie=Yi=1,2F (V- )Y Vo
Vim=Vi-= 3,4Fi( Vim- 1)-

The set U, oV, is denoted by V. We see that V' is a countable dense
subset of K: ie, K=CIV,). We also define the subset V;, of V,, by

0=Vo» Vm=Vi=1F(Va-1)

which will be used often.

DerINITION 2.2, Let I,={1,2}, I,={3,4} and I=I,uUl, (s and b stand for
self-similar and bridge, respectively.)
(1) A=(a;j); jer is the structure matrix given by

_ )0, if iel, and jel,
Y 11, otherwise.

(ii) The collection W, (I, A) (W,, for short) of words of length m is defined by
W LA)={w, w,el™a,.,.. =1 forall k=1 m—1}.
(iii) The Makov sub-shift X(I,4) (X for short) is defined by
(LA ={w=w0,-€";a,, =1 for all n>1}.
(iv) For we W,,, m-complex K, is defined by

3 {Fw(K), if wel™,
CT\F L),  if we W\,

where F,=F, oF, 0--oF, .

REMARK. The collection of words W, is associated with V,, in a sense. Indeed,
VaDoew,FoVo) and Vi = U g mF (V) holds.

Proposition 2.3. There exists a surjective mapping n from X to K.

Proof. For each weX, the sequence {K,,,...,.}n>1 is decreasing in n, and the
diameter of K,,,...,, = 0. This implies N, K,,,...,, consists of a single point. Let

n be a mapping from X to K given by {n(w)} =N, ,K,,...,, Then we can verify
that = is surjective. [J



DIFFUSION PROCESSES ON MANDALA 891

ReMARK. In case of Hutchinson’s fractal, the “symbolic space” X coinsides
with IV. However, in case of the plain Mandala, ¥ is a proper subset of I".

For k=1 (resp. k=0), the subset U, nF,(L) of K (resp. L) is said to be the
k-th bridge (resp. the O-th bridge). For any m>k, an element w of W,, is said to
be in the k-th bridge if the set F (L) is included in the k-th bridge. It is obvious
that we W,, is in the k-th bridge if and only if welI*I" % For any xeV,, the
m-neighborhood N,(x) of x is defined by

N (x)={yeV,|Iwe W, such that F (V,)={x,y}}.

Then, #N,(x)=2 for xe V,\V;, while #N,(x) > oo as m — oo for xe V3.

3. Bilinear form & on (V)

Let [V) be the set of real-valued functions on at most countable set V. In
this section, we shall define a bilinear form & on (V). First of all, we give a
bilinear form &™ on KV,) for each approximating set V,. Then, under some
condition, we see that the bilinear form &™ converges as m — oo; we define & as
this limit form.

The difference operator D on [V,) is defined by

p=("' 1)
1 -1
Let ¢, ry, r,, 13, 1, be positive numbers (1#1), and let 7; equal tr; for i=1,2, and
equal r; for i=3,4.

DermviTION 3.1.  For each m > 1, a difference operator H,, on [(V,,) is defined by
t
3.1 H,= Y 7;""R,DR,+— Y i,''R,DR,,
weWm\IT - lweI;"

where R, is a mapping from [V,,) to [(V,) defined by R (u)=uoF, for all ue(V,),
and 7, =7, Fy, T, .

For any we W,, we see that

1’ lf Fw( VO) = {X,y},
-1, if x=yeF,(V,),
\ 0, otherwise.

(3-2) (R,DR,).y=

For any x,yeV,, if x and y are m-neighbors to each other, then there exists a
unique element o of W, such that F,(Vy)={x,y}. Let us denote the
(x,y)-component of H,, by ). By (3.2) we have

y
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ipt, if Jwe W,\IT such that F (Vo)={x,y},

7, Y, if 3wel™ such that F (Vo)={x,y},

)
(3’3) h;’; - -—1 t -—1 .f _
- Y it Y il if x=y,
weW, \IT t—1 wel?
xeF (Vo) xeFo(Vo)

0, otherwise.

Let u be a function defined on a set containing V,, (resp. V,,nL). We will write
Hmu (rCSp. HmIanLu) for Hm(ule) (resp' Hlean(uler\L))'

Let uel(V,) and n>m. Then for each xe V,\V,, there exists a unique we W,,
such that xe K,. We can see that

(3.4) Hu(x)=i,'H,_ (uoF)%), if wel™
(3.5 Hu(x)=75 ' Hy_ply, _t@o F )%, if oe W,\I",

where X=F, '(x)e V,_,.\Vo.

Let ue C(K;R). Then u is said to be a harmonic function if (Hu)ly,v,=0
for all n>1. Let ve C(L;R). Then v is said to be a bridge harmonic function if
(Hply ot npyv, =0 for all m>1. In the same way as Kigami [5], we can solve
the following Dirichlet problem.

Proposition 3.2. For each gel(V,), there exists a unique harmonic function u
such that ul,,=g. The same result holds for the bridge harmonic function.

Let m>1. An element u of C(K;R) is said to be an m-harmonic function if
the following two conditions are satisfied:

(i) uo F,, is a harmonic function for any well",

(ii) uo F, is a bridge harmonic function for any we W,\I;".
A harmonic function is called 0-harmonic function.

Corollary 3.3. Let m be a non-negative integer and gel(V,,). Then there exists
a unique m-harmonic function u such that uly_ =g.

We denote by #,, the set of all m-harmonic functions. Then 4, is increasing
in m. Indeed, from (3.4) and (3.5), it is easily shown that u is m-harmonic
if and only if

(3.6) H,u(x)=0 for all n>m and xe V,\V,.
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Thus, if m<m’, any m-harmonic function u is m’-harmonic.

DeriNITION 3.4. For m>1, &™:/(V,)xI(V,) = R is defined by
E™(u,v)=—"uH,v for u,velV,).

From (3.3), we have

1
EMwv)== Y, A (ulx)—u)ox)—2p)

2x.erm

= Y 7o {u(n(w3) —un(wh)}{u(n(w3) - on(wd)}

weWm\IT

+ o Y, 7y Hu(m(w3)) — u(n(wd)) } {o(n(w3)) — v(n(wd))}

t_lwelg“
where 3= 333..- and 4= 444...

For every u,vel(V,) and m>1, we denote &™(u|,, ,vly,) by ™(u,).

Lemma 3.5. Let uelV,).
(i) For any wel,

(3.7 {un(@3) —u(m(@d)}> < Y r, Y r Huln(wil)) — u(n(wid))}2.

iels iels
In particular, equality holds if ue #,,
(ii) For any we W,,

(3.8) {u(n(w3) — u(n(@d)}2 <. 1, Y ri Hu(n(wid)) — u(n(wid))} 2.

iely ielp

In particular, equality holds if ue #,,

893

Proof. For wel™ obviously n(w14)=mn(w23), n(w13) =n(w3), n(w24) = n(w4), so

u(n(w3)) —u(n(wd) = Y. {u(n(wid)) — u(r(wid))}.

iels

By Schwarz’ inequality, we have

2
[ . {uln(wi3) — u(n(wi4))}] < Yriyri Huln(i3) —u(n(wid)}.

iels iels iels

Thus we obtain the inequality (3.7). Equality holds in (3.7) if and only if
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1 Hu(r(id) — u(r(wid)} / rt =ri” {ulnwi) — u((wid)}
is independent of iel, ie.,
9 ri Hu(n(w3) —u(n(@14)} =r; *{u(n(@23)) — u(n(wd))}.

Let ¢3=n(14)=n(23). For any ue#,, u-F, is a harmonic function. Thus we
see that

0=H,(uoF,)E3)=1t""ry Yuo Fo(&)—uoFy(E))+17'ry (o Fu(€o)—uo Fo (&)

Noticing that F,(¢,)=m(w3) and F,(£,)=n(wd), F(¢;)=n(wl1d)=n(w23), we have
(3.9). To see the second assertion, let weW,. It is also obvious that
n(w34) = n(w43).

Using the same argument above, we obtain (3.8). Equality holds in (3.8) if and only if

(3.10) r3 Hu(n(w3)) — u(n(w34)} =r; {u(n(w43)) — u(n(wd))}.

For any ue#,, uoF, is a bridge harmonic function. Hence for ¢,=mn(w34)
=n(w43),

0=Hyly, 1o F)Ca)=r3 (o Fo(&y) —uo Fo€a)) +75 uo Fo8o)—uo Fou£s)),

which proves (3.10). [

Corollary 3.6. For any n>0 and any x,ye LNV, the following halds

(u(x) —u(y))* S( ) r.-) % ry Huln(n3) —uln(nd)}>.

ielp nely

Proof. Use Lemma 3.5 and the fact that (r;+r,)/r;>1 for iel, repeatedly.
We omit the details of the proof. []

So far, {r;},; and t are arbitrary positive numbers. For the sake of further
discussion, we need the folloing assumption.

Basic Assumption. Positive numbers {r;},.; and t satisfy
(B.A.1) ritr,=1, ry+rya=1,
(B.A.2) t>1.

Lemma 3.7. Suppose that (B.A.1) is satisfied. Then for any uelV ),
(3.11) E™ V(u,u) > E™(u,u).
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In particular, equality holds if u is an m-harmonic function.

Proof. Using Lemma 3.5, we have

EM )= Y TRty e Hu(n(wi3)) — u(n(wid))}?

weW, ielp

+ LY Y (o) — unl i)} > E"uw). O]

t— 1wel§" iels

By Lemma 3.7, £™(u,u) is increasing as m — o0, so here we can define the bilinear
form on (V) as follows.

DerFINITION 3.8. A bilinear form & on [V ) is given by
Sw,u)= lim &™(u,u) for all uelV,).
Dom(&)={uel(V)|&(uu)< o}

&(u,v)= lim 6™u,v) for all u,ve Dom(&).

By Lemma 3.7, we have the following proposition.

Proposition 3.9. Under Basic Assumption, the following holds
(3.12) Ums o m S Dom(8).

The proposition above plays an important role in proving the regularity
condition of the Dirichlet form in Secion 4 and Section 5. In the rest of this
section, we assume Basic Assumption.

In order to obtain the scaling property of the bilinear forms, we ought to
define the bilinear form restricted to a subset of K.

DEerFINITION 3.10.  For any subset K of K,

ERu,) =% Y ) —u(y))e(x) —u(y)

x,yeVmnK

= Y Fo {u(n(w3) —un(od)Ho(r(w3) - un(wd)}
weW \IT
Ko<cK

+ o Y, 7y Huln(w3)) — u(n(wd)} {o(r(w3)) — v(n(wd))},

t— 1 wel?,
Kow<K
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Dom(&g)={uel( Vw)l"lli_{roloé”g(u,u) <0}
€ u,v)= '31_130 EX(u,v) for all u,ve Dom(&k)-

REMARK. We also see that &B(u,v) is increasing as m — 00. Since &(u,u)
<&é(u,u) for uel(V,), we see that Dom(&) = Dom(&y).
We see the following Lemma in the same way as Kigami-Lapidus [8].

Lemma 3.11. (Scaling properties) Let u,ve Dom(&). Then uo F,e Dom(&) for
wel?, and uoF, e Dom(&;) for we W,\IT", and the following hold

(3.13) EWuoF,,voF,)=F, 8k (w,v)  for all wel].

(3.14) Er(uoF,,voF )=, 8k (wv)  for all we W,\I".

(3.15) éa(u,l))= Zfi— léa(qui, UOFi)+ Z Fj— léDL(uOI:j, v OF}-).
iels Jjelv

(3.16) Eu,v)= ) 7y 'E(uoFjvoF).

Jelv

For each xe V,,, we denote by Y7 the m-harmonic function with the boundary
condition 7|y, =1, where 1, denote the indicator function of {x}.

DEeriNITION 3.12. For m>0, let us define P,,: (V) — #,, by

(3.17) Pau= Y ulxym  for all uelV,).

xe€Vm

Noticing that u|, =(P,w)ly,.
By Lemma 3.7, we have the following Lemma.

Lemma 3.13. Let m>0 and uel(V,). Then

(3.18) E(Pu, P,u) < 8(u,u).

4. Dirichlet form-(I)

In this section and the subsequent sections, we always assume that Basic
Assumption is satisfied.
In this section, we see that there exists an invariant measure y,, on V,, with
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respect to the remdom walk associated with the conductance {h{}.., Under
Condition A, we can verify that y, weakly converges as m — oo. The measure
u of Bernoulli type, to which we referred in the introduction, is defined by this
limit measure. Then, we shall prove the bilinear form (&, Dom(&)) is regular local
Dirichlet form on L*(K,u). The same result holds for other measures of Bernoulli
type instead of u: see section 7.
Let P™ = {p™} v, be the transition probability of the random walk associated
with the conductance {h(}}, ., ie,
po i o
0, ifx=y,

where A=Y hiD=—h{P>0.

z#x

Proposition 4.1. For each m>0, the unique normalized invariant measure
Um With respect to P™ exists: ie.,

@4.1) (P™u,0) 2y = P™0) 2, s for all upel(V,).

More precisely, for all xeV,,

SRt YA

R R 2
4.2) P X) = —— =22 —= .
- t __
YA 2y ot Y !
y WeWm\IT — Lloery

Proof. We first note that the second equality in (4.2) follows from
(3.3). Suppose that u,, be a probability measure satisfying (4.1). Obviously, (4.1) is
equivalent to

P 1) =P un(x)  for all x,yeV,
Since H,, is symmetric and irreducible,

HnlX) _ 1)

hgm) h;m)

for all x,yeV,,.

Hence by the normality of u,, we have (4.2). This proves the uniqueness. It is
obvious the measure p,, in (4.2) satisfies (4.1). O

Let ®™ be the self-adjoint operator on /V,,) associated with £™(-, ) on
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L*(V, 1) for any u,v e Dom(&E™),
E™(u, )= — (O™, V)L w,.. uy

By the definition of &™,

EMu,)=— Y, hu()(x)

xeVm

(m)

h
== ), = u(y)o(x)pp(X).

ermIim(x)

Thus, 0% =h{)/p,(x) where 60 the (x,y)-conponent of ®™. Let t™ be the

exponential holding time of the Markov chain associated with ®™. Then from
Proposition 4.1, the average of ™ dose not depend on the starting point xe V,, of
the Markov chain. Indeed, we have

t
Ex[‘t("')]={—0¥§) —1={2 Z ;u—’l+2_2fa"1}—1.
weWm\IT" t—loety

In the following, we think of u,, as a measure on K. There exists a unique probability
measure p of Bernoulli type on K such that for any m >0, the follwing two conditions
are satisfied:

(i) Let kK be a non-negative integer satisfying k<m—1. For any w in the
k-th brige,

WK,)= <1 - %)(r 1 r)(rara)" ",

(ii) For any wel,

— m=—1
,u(Km)_(rer) T -
Condition A. rry=ryryiie, ry=r; or ry.

Throghout this section, we assume Condition A. Let c(r)=(ryr;) ' =(rsrs) ™"
Then we have

_ —ma—1 . m
3) u(K,)= {(1 —CNT L e W

cr)~ "yt ifoell

It is easy to show the following
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Lemma 4.2. For any measureable function f on K and any m>1, the following
hold

4.4) J foF;‘du=c(r)""r’;‘J fdu  for wel,
Ko K

4.5 J fo F,;’dy=c(r)"”r'a‘,"[ fdu  for we W, \I™.
Ko L

Proposition 4.3. Under Condition A, p,, converges weakly to p.

In order to prove Proposition 4.3, we need two lemmas.
Let r¥=r,, r¥=r,, r¥=r,, r¥=r;, and let 7* be tr} if iel, be r* otherwise.
Let H} be a difference operator on /(V,,) given by

4.6) H¥= Y 7 “R,DR,,.

weW

Then obviously Proposition 3.2 also holds if we substitute H,* for H,. For xeV,,
let Y™ be an m-harmonic function (with respect to {H}},,,) with the boundary
condition Yym=1,,.

Lemma 4.4. Let f be the bridge harmonic function with respect to {H}},.,
with the boundary condition f(£,)=0 and f(£,)=1. Then

@) J =",

The same result holds if the boundary condition is replaced by f(£,)=1 and f(¢,)=0.

Proof. Let So=u(L), s,=0, and let

Su= 3, SMNUK,), s,= 3, f(@3)u(K,).

m
welp wely

From the maximum principle, for any n>0,

s,,Sde,uSS,,.
L

For any wel}, we have

(4.3) MK p3)=rauKy), (K a)=r3u(Ky)s
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(4.9) S @38 = f(@43) =rs f(m(@3) +ro f((03)).

(4.8) and (4.9) imply the following recursion formulae,
Sn+1=(r3+12)Sy+ 73745
Sne1=T374S,+(r3+74)s,:

2
ry+ry rary

By an elementary calculation on the stochastic matrix 4 =< 5
rsty Tr3+r,

) , we have

lim,,ﬂwA"-f( ) Hence, S, and s, converge to 1S,=3u(L). O

[SICAENTE
N~ N

Lemma 4.5. Let x be an element of V,\V:. Then

(4.10) Hn(X) =f Jrdp.
K

Proof. Note that

[ = 5 | oo
K neWm JK,
xeFp(Vo)

because J"=0 an K, if x¢ F,(V,). Since xe V,,\V,, if xe F,(V,) for ne W, then
ne W,\I". By Lemma 4.2 and Lemma 4.4, we have

~ 1
Kn
Thus we have
o t ~
~ =2c(r)'"—f P
On the other hand,

m—1 t
4.11) Y r‘,;1+L1 Yit=Ytr*k ¥ rtd—tm Yy it
k=0

weW\IT t— lyerm welkIp -k t—1 weln

—gm t
et "= ) ——

=) 1—t 1 =1 t—1

Hence Propositon 4.1 gives
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1 -1 ~
e R W D) J o
t neWw,

new K
xeFy( Vo) xeF p( f’"o) "

Thus we have our assertion. [J

Proof of Proposition 4.3. Let u be a continuous function on K. Then

| X 4O < el ot V).

weVs$,

Proposition 4.1 gives

P A e W AR LI

weWp,\IT we["‘ xeVs, neWm\Im t elm
xeFy(Vo) xe. r,(i’o)
m—1 2t
— =—1 =—1 =—1
=3 2 To3..3 + ra44)+——zra
k=0ael¥ - lael"'

(m— k) times  (m—k) times

m! 2t t
=cry"{ Y 7k +r'5"")+ﬁt_"'} <cry"(t 'Vr, Vr4)"‘2(m+ﬁ).
K=0 - -

Noticing that (t”!'Vr;Vr)<1. Form (4.11), we see that 2 cevs ul(x)u,(x) converges
"to zero as m — c0. By Lemma 4.5, we have

Y uxp(x)=| Y ux)rdu,

xeVm\V3, KxeVm\V§,

Noticing that u(cl(u,,»oV5)=0, we see that

Y uxWm>u p—as.

xeVm\Vi,

Since |Z,ey,.vs, u(x)J™ < ||ull ., using Lebesgue’s convergence theorem, we have

Y upn(x) aJ udp.
xeVm\Vin K

Observe that jxudum=2xe,,§“ U (X) + Zsey, w3, U(X) hm(x), We have thus proved the
proposition. []

For xe K and me N, let us define the left edge b7 € V,, of an m-complex which
includes x by
() If xeV,, then by =x.
(ii) If xe K\V,, then there exists a unique we W,, such
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that xeK,, and we let b™=mn(w3).
We denote by b2 the left edge of K, ie., b2=¢,.

Lemma 4.6. Let u be a continuous function on K and m>0. Then
(4.12) f [u(b7) — u(x)| dx) < c(r) =" (u, 1)
K

Corollary 4.7. Let ue Dom(&). Then P,u converges in L*(K,p).
Let us denote by ¢ () the limit of P,u.

Proof. Let we W,, neN and Uy w)=F, (L)YNn(V+,\V.m). Since

Y Y Fr<2Y Fot =27 tdry,

xeUn(w) n€Wm+n oel}
xeFy,(Vo)
(4.11) gives
(4.13) tom+ l U @) S clr) "7 "

Let xe U, (w). By Corollary 3.6, we have

(4.14) (@(by)—u(x))* < ZI"r,,‘ H{u(n(wn3))— u(n(wnd)}>.

Thus

(4.15) UZ (D7) — U(X)* -4 ) < (1) ™" E T 10, ).
xeUn(w)

Letting n — oo, by Proposition 4.3
(4.16) J (t(B7) — ()| 1ldx) < c(r) ™" p 1y ).
Fu(L)
For any wel™ and h>1, let Ll =K,N(U,pp+nF,(L)). Then we also have
(4.17) j |(b3) — u(x)|> pldx) < c(r) ™" Ly (u, ).
Ly

Now sum up both sides of inequalities (4.16) and (4.17) over we W,, and h>1,
respectively, we complete the proof of Lemma 4.6.

To prove the corollary, observe that P,u(by)=u(by)=P,ub}), for n>m and
xeK. Lemma 3.13 and Lemma 4.6 give



DIFFUSION PROCESSES ON MANDALA 903
| Pratt — Pyt L2k, )
= {J |Pytt(x) — Pou(b7))* uldx)}* + {J | Pou(b) — P ()] plx) }*
K K
<o) Z{E(P i, Ph)* + E(Pot, P,i)} < 2¢(r) 28 (u, u)*.
Letting m — oo, we get the assertion. []

By virtue of Lemma 3.13 and Lemma 4.6, we see the following propositions
and theorem in the same way as Kumagai [9].

Proposition 4.8. The mapping « from Dom(&) to LXK, p) is injective.

We denote the image ¢ (Dom(&)) by #. For ue %, when no confusion can
arise, we use P,u instead of P, ¢ '(u), and &(u,u) instead of &(t™(u), t™'(u)).

Theorem 4.9. (&, %) is a regular local Dirichlet form cn L*(K, p).
Proposition 4.10. For >0, (&§,%) has the compact a-order resolvent.

5. Dirichlet form~(1I)

Throughout this section, we suppose Condition B instead of Condition A. In
this case, every element of Dom(&) < (V) has continuous extension on K. Then,
we shall show the bilinear form (&, Dom(&)) is a regular local Dirichlet form on
L*(K,v) for any eveywhere dense probability measure v.

Let T=r;*Ar;'. Note that 1<T<2.
Condition B. 7>1(>1).
Proposition 5.1. For any ue Dom(&),

G.1) sup [u(x) —u(y)| < ()6 (u,u)?,

x,yeV o

where c(f)=4/(1—./(2t/ T)—1).

Lemma 5.2. Let u be an m-harmonic function. Then for any xe K,

(52) |u(¢1)_u(x);sr_%g(u,u)%.

b

t

|
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Proof. We prove this lemma by induction on m. Let us denote

(2/(1—+/(2t/T)—1))* by D(f). Note that D(f)>4. In case of m=0, by Lemma
3.5, we have

(5.3) (1) — (&) = E 1(u, 1) < E(uu).

By the maximal principle, we get (5.2). Suppose that m>1. We devide the plain
Mandala into 3 parts: L, K, and K,.

(Case I) Consider the case of xe L. By the maximal principle, there exists ye LNV,
such that

(¢ 1) —u(x)| < (&) —u(y)l-

Appling Corollary 3.6 to the right hand side of the inequality above, we obtain

(5.4) (€)= u()* < 3 ry {u(n(n3) — u(n(n4))}>

nely

=ET(u,u) < Eu,u) < D)8 (u,u).

(Case II) Consider the case of xe K;,. Since uo F, € #,,_,, by combining induction
hypothesis and Lemma 3.11, we have

(5.5) (&) —u(x)* =|uo Fy(&)—ue Fy(FT ‘(X))
<D(N)E(uoFy,uc Fy)=7D(t)6 g, (u,u)

siTD(z)(s’(u, )

Since t<T, we have our assertion.
(Case III) Consider the case of xe K,. We denote n(12) by £;. Then, by using
the same argument with (Case I) and (Case II), we can see that

(5.6) (&) —u(E3)* <F Byt ),
5.7 (& 3) — u(x)|* <7, D(0)E (1, u).
Let 0= [u(¢,)—u(E3)l/ |u(€,) —u(x)|.
@) If > D(f)"*, then (5.6) gives
(&) —u()|* =0 *u(¢,) — ul(&5))?
<F D(OE g, 1)1, 10).

(ii) Suppose that §<D(f)"*. Note that
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(& 1) = ul(&)I + (€ 3) — u(x)|* = (26 — 26 + D)|u(&,) — u(x)|.
Let A=(26>—26+1)"'. Then by combining (5.6) and (5.7),

(5.8) [1(€ 1) — ()| = A{Juu(€ 1) — (&)1 + [u(E5) — u(x)|}
< AP, 8 gyt ) + A7, D(1)E (1, 1)

< {6, )+ DO 5,10}

Observe that §<D(7)"* is a part of the solution of the inequality At/ T<1. This
completes the proof. [J

Proof of Proposition 5.1. For any x,yeV_, let m=max{i(x),i(y)}. Recall
that i(x)=min{n>0|xe V,}. Since P, u=uon ¥V, and P,ue #,, Lemma 5.2 gives
[t(x) — u(Y)| | Ppta(x) — P pt(E )| + |1 P s € 1) — Prt(y)|
4

<
- i1

8 (P,u, P,u) < c()8(u,u).

By virtue of Proposition 5.1, we see the following theorem in the same way
as Kigami [6] and Kusuoka [12].

Theorem 5.3.

(i) Every ue Dom(&) can be extended to a continuous function on K.

(ii) The bilinear form (&, Dom(&)) is a regular local Dirichlet form on L*(K,v),
where v is any everywhere dense probability measure on K.

By using Theorem 5.3, we have the following proposition just in the same
way as Fukushima [2, Theorem 2.3].

Proposition 5.4.
(i) For a>0, (§®,Dom(&)) admits a positive continuous symmetric reproducing
kernel g (x,y). for each yeE there exists g,(-,y)€ Dom(&) such that

EDNg (- ,y)v)=v(y)  for all ve Dom(é).
(i) The associated diffuson on K is point recurrent:

P (o, <0)=1 for all x,yeK,
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where o, is the first hitting time for {y}.

Finally, we shall show that if #> 7, then there exist a function in Dom(&),
which can not be extended to be a continuous function on K. Frist of all, we
see that (5.1) fails, provided that ¢>T.

Lemma 5.5. Suppose that t>T. Then for any positive constant c, there exists
ue Dom(&) such that

(5.9 sup [u(x)—u(y)| > c&(u,u).

x,yeV o

Proof. Without loss of generality, we may assume that r,>r,: ie, T=r; .
Let m>1 and z=n(1---12)e V,. Obviously
m times

sup |Y7(x) -y =1.

x,yeV 0
Since Y7 is an m-hamonic function, Lemma 3.7 gives

Sy =67 ;",wz')=ﬂ(f)m_l

t—1\t

This implies our assertion. []

Let f be a function on K defined by
(i) For any n>1 and wel!, foF, is a bridge harmonic function.

(ii) fAx)=1 for any xen(IM\{¢,}, and f(£,)=0.

From Proposition 3.2, we see that f exists. Now, if we assume T=r;! <, then
we have

m—1

S N=lim Y (tr)*=—"<co.
m=oo t—T

=0

Therefore fe Dom(&). On the other hand, it is obvious that f has no continuous
version on L3(K,v).

6. Dimensions

We assume Condition A again throughout this section. Kigami-Lapidius [8]
have studied the spectral dimensions of the P.C.F. self-similar sets with Bernoulli
measures. This result suggests a way of determining the spectral dimensions of
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the plain Mandala (and the Mandala) with the self-similar measure u defined at the
end of Section 3.

Kigami [7] also obtained the Hausdorff dimensions of a class of self-similar
sets associated with a non-transitive Markov subshift. First of all, we shall apply
his result to our objects.

Theorem 6.1. The Hausdorff dimension of the Mandala is log 5/log 3, and
that of the plain Mandala is 1.

By the proof of Lemma 4.6, we obtain
j (™) — u(x)|* w(dx) < c(r) "™ & 1 (u,u) for ue C(L; R).
L

Foranyfel(V, )and ye L let PPf(»)=2, ., ~.fCWT(y). Using the same argument
with Cotollary 4.7 and Proposition 4.8, we see that {P{"g},.. o is a L*(L,u)-Cauchy
sequence for ge Dom(&,;). We denote its limit by ¢ ;(g). Then, ¢ ,:Dom(&,)
— L*(L,p) is injective. Now, we define the domain &, of &, on L*L,u) by
F =t (Dom(&.)). ForueZF ;, when no confusion can arise, we use &, (u,u) instead
of &.(¢ '(u), v '(w)). Let us introduce new Dirichlet forms following Fukushima

[2].
DEFINITION 6.2.
(6.1) F ={ue LXK, p)lfor ielu;=uoF,u—ae,u;e F
J

for jely,uj=ucFjp—ae(L),uje ¥},

o)=Y F7 1 8u,v)+ Y. rj ' & (ujv;) for uveZ.

iels Jjelv

6.2) Fo={ueF|t '(u(x)=0 for xeV,},
E%u,v)=EWwu,v) for uve F°.

6.3) FO={ueF|L u)(x)=0 for xeV,},
E%u,0)=Eu,v) for uve #°.

6.9 F={ueL¥L,p) | for jel,uj=uoFjp—ae(L)u;e ¥},

&)=Y r; 16 (uy0) for uve F .
Jelv

(6.5) Fo={ueF |t W(x)=0 for xeV,},
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ENu,v)=E,(u,v) for u,ve F5.
(6.6) Fl={ueF,| i (u(x)=0 for xeV,},
E%u,v)=&(u,v) for upe F?.
Lemma 6.3. The following hold
() F = %, and Eu,u)=E(u,u) for ue F.
(i) F,c F,, and & (uu)=E& (u,u) for ue F
Proof. For any ue%, by the definition of ¢and ¢;, we can verify
Fi=t(t Y u)oF)eF foriel,
uoFy=1 (¢t '(weoF)eF, for jel,
Thus, for any u,ve &, Lemma 3.11 gives

Euv)=Y Ex (L ™), L7 ()

iel

=Zfi_léa(6_l(“)°Fi, L—I(U)OFJ"’ ij_lépL(L_l(u)°Fj’ L._l(v)°Fj)

ielg Jelp

=Y i 6o FyooF)+ Y 77 ' & (uoFvo F)=&u,v).

iel s Jjelv

Hence, we obtain the first assertion. We can show the second assertion in the
same way. [

We can see the following proposition in the same argument as in Section 4.

Proposition 6.4.
() (&, %), (&°F °) and (£°,%°) are Dirichlet forms on L*(K, ).
(i) (6LZ L), ELFL), (62,79 and (8%, F?) are Dirichlet forms on L*(L,p).

Now, let p(x) be a counting function of eigenvalues of (&,%) less than x:
6.7) p(x)=#{A|A is an eigenvalue of (&,F),A<x}.

Substituting (&, %) for (&, %) in (6.7), we define p(x). So p° p° pL, Pr. P2, PY are
defined in a similar way.

Lemma 6.5. For any x>0, the following hold

(6.8) P2 p(x) > p°(x) 2 pO(x).
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6.9) Prx) = pr(x) = pP(x) > pR(x).
6.10 2 i).
(¢10) PeI=2p ( ( )) (c(r)

~0 X of X
6.11) p(x)=2p ( v )>+2pL<c(r)>'
6.12) prlx)= 2pL< ad )

cor)

(6.13) pix)= 2PL< ( )>

Proof. From the definition, it is clear that (6.8) and (6.9) hold.
Let u be an eigenfunction of (§,%) with eigenvalue 1:

(6.14) E(u,v)= A1, V) 2k for any ve .

By the self-similarity of u, we have

(6.15) (u, U)LZ(K, w= Z (u, v)LZ(Ki, 1K)

iels

= Zc(r )~! (unvz)Lz(K wt Z ! (“j, V)LAL, ury

Jels Jely
Thus we have

(6.16) Zfi_lég(ui,vi)-" er_lé’aL(uj,vj)

iels Jjelv

Z ri ( V)LL)

—-Z N 0ok, +—— FEY

cor )tels

Since ve# is arbitrary, this implies (6.10). By a similar argument, we have
(6.11), (6.12) and (6.13). O

Theorem 6.6. Let d,=%I%%3  Then

(6.17) 0< lim f(x) < fim d;:(x) <o
ooxTIQg x “x2logx

Proof. For any nelN, by Lemma 6.5, we have
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n X " X 0 nof * n 50 X
6.18) 2 p<c(r)n)+n2 pL( C(r)">2p(x)2P (x)=2 <c(r)")+n2 m(c(r)")

Give a sufficient large positive number x,, which satisfies p9(x,) >0, then (6.18) implies

pletrx) _ p0ro)

" +pE(x0) 2 pP(x0) >0
n2

and

pLeAryxo) _p (:0) +p1(x0) < p(xo)+ p1(Xo) < 0.

n2"
Thus, there are positive constants c,, ¢, such that

(6.19) 0<clsM%Scz<oo.
n

For x>x,, there is ne N such that c(r)"xo<x<c(r)"*'x,. So, there are positive
constants c3, ¢, such that

ds
(6.20) n2"<cyx2(logx+ca) <(n+1)2"+1
And, obviously p(c(r)"x,) < p(x) < p(c(r)"*'x,). This implies our assertion. [J

7. An extension

So far (except Section 5), we have taken the self-similar measure u as the
basicmeasure for the Dirichlet form (&,Dom(&)). In this section, we introduce
more general self-similar measure k instead of pu, and examine how much the
argument in Section 4 and Section 6 works.

Let s,, 55, 83, 54 be positive numbers with s, +s,=1 and s3+s,=1. Let t>1
and let §; equal ts; for i=1,2, and equal s; for i=3,4. Moreover, we assume the
following

Condition C. s,5,=535,: Le., §, =83 or S,

Hereafter, we shall assume Condition C instead of Condition A. Let
c(s)=(s,5,) ' =(5354)"'. Now, let us define a probability x measure on K as
follows: for any non-negative integer k, with k<m

(A=t Ye(s)™ ™5, fweltp*

c(s)™ s, ! foel™

(7.1) K(Ky)= {
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Then, we can prove the following proposition in a similar way as Proposition

3.16.

Proposition 7.1. «,, converges weakly to k, where k,, is a probability measure

on V,, defined by

1 T 1
ZpewnrmSy - H2TE perm Sy

xeF (Vo) xeFp(Vo)

(7.2) Knm(X)= for all xeV,,.

s—1 -1
Zzwsz\I;"Sw + Zﬁx

wel ;"s [

Let us assume the following condition in addition to Condition C.

Condition D. 1>¢(>1).

Let y,=c(s)5;7; ' for iel, and let y=min{y;: i=1,2,3,4}. Then y>1.

following lemma is proved analogously to Lemma 4.6.

Lemma 7.2. Let u be a continuous function on K. Then
(7.3) j |u(by) — ulx)|reldx) <y ~"E (u,u).
K

Proof. For any we W, let U (w)=F (L)N"(V+,\V,)- Then
(7'4) Km + n( Un(w)) S C(S) - ms'; ! .

By (4.14), we see that

(7.5) 2 Nub) —u(x) K 4 o(X) < cl8) "5 o F )1, 1)

xeUn(w)

<y ORI w )

The

Forany wel™and h> 1, let Ll =K, N\ (U,epm+nFy(L)) and let UNw)=LlA(V,p i, \V,0)-

Then, we see
(7.6) Km+n(Un(@) < c(s) ™™t 7"5,
(7.7 |u(b™) — u(x)|> < F o t"E ! "(u, 1),

From Condition D, we have

h
(7.8) X (b)) K1 f(X) < c(5) "5 1%(2) & "(u,u)

xeUh
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<y~ "ETy "(u,u).
The result now follows from Proposition 7.1. [
Using the same argument with Corollary 4.7 and Proposition 4.8, there exists
a injective map from Dom(&) to L*(K,x). We denote the image of Dom(&) by
%. Then we see the following theorem analogously to Theorem 4.9.

Theorem 7.3. (&,%) is a regular local Dirichlet form on L?*(K,x).

In virtue of Theorem 7.3, we can determine the spectral dimension of (£,%) with
respect to k.

DEFINITION 7.4.  Let d® and d® be the solutions of the following equalities;

1 \ag2 1 \a»
(- RO
iels \YVi jelp \V;j

@
Letd,=d®Vvd®, andleta,=(1/y)2 fori=1,234. Following Kigami-Lapidus
[8], we shall define a collection of words with various length A, < U, W, by

An__‘{w:wle"'wmlawlawz'”awm_1>anzaw}’
where a=min{q;|i=1,2,3,4}.
Theorem 7.5.
() If d¥=d®, then
. x — px
(7.9) 0<tim P _fm P

X0 S

== xX—*ow CS
XZlog x Xx2log x

where p(x) is a counting function of eigenvalues of (&,%) less than x, see (6.7).
(ii) If d¥#d®), then

(7.10) 0<1im? < im?Y o,
X=0 x_2£ x—'ooxai

To prove the theorem above, we need to show the following lemmas.

Lemma 7.6. Suppose that d®' <d®. Let
A={weA,|w is in the k-th bridge: ie., weI*I}*I*},

where |w| is the length of the word w. Then
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(7.11) Y a,<(a;+ay)

weAk

In particular, equality holds if k=0,1,---,n.

Proof. Notice that for any m>1 and any k=0,1,---m,

(7.12) Z a,= (al + az)k(a3 + a4)'"- k.

welkIm—k

Let M,=max{|w|:weA,}, and let

[AK]= T] {w&|Eer}=mloh,

weAk

Then we can see that the natural projection f from [A¥] to IXIM»~* is injective.

d®<d®, then a;+a,<1 and a;+a,=1. Hence, (7.12) gives

(7.13) Ya,= ) ay< Y, a,=(a;+a,)

weAk w’e[AK] nel§IMn-k
If k=0,1,---,n, then for any nel¥,

(7.14) a,>(a; Nay) >(a, Na,)' >a".

913

If

This implies natural projection f'is surjective. Thus, in case of k=0,1,---,n, equality

holds in (7.11). O

Lemma 7.7. Suppose that d'>d®. Let A=A, (U I™) and let
Al={weA,|well” 'L}

Then
(7.15) Y a,=1.
And there is a constant ¢, >0 such that

(7.16) Y a,<cy(as+ay).

weAl,

Proof. Notice that if d9>d®, then a;+a,=1 and a;+a,<1. Let

(As]= 1 {weige ri-toh,

weAs,
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Then we can see that the natural projection from [AS] to IM~ is bijective. If
d®>d®, then a;+a,=1. Hence, (7.12) gives

(7.17) Yoa,= Y ay= Y a=L

weA$, w'e[A$) nelMn
Thus we have (7.15). For any we Al we write 0 =wPw®, where o e 1°!~! and

w®Pel. Let

A= [ {oWéa®|Ee 1o,

weAl,

We denote the natural projection from [AL] to IM»~'I} by g. From the definition
of a, it is obvious that there is a constant ¢, € NV such that

(@, Vay)' ' >az(a Vay)*
Then we can verify that
(7.18) #g ')} <c, for ne M-I},

Hence, (7.12) gives
(7.19) a,= Y ay<c; Y a,=cilaz+a,).
O

Lemma 7.8.
() If d¥=d®, then

(7.20) n+1< Y a,<cin+1,

weA,

where cy is the same constant as in Lemma 7.7.
(ii) If d©'#d®, then there are positive constants c, and c; such that

(7.21) 0<c,< ) a,<cy3<o0.

weAn

Proof. Suppose that d®=d{®. Let Mi=max{|w|:weAs}. Notice that if
k> M3, then Ak=0. By the definition of c;, we have Mi<c,n. Since a,+a,=1,
Lemma 7.6 gives
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n+l=y Y a,< 3 a,

k=0 weAk weAn

M;
=) Y a,<Mj+1<cn+l.

k=0 weAk

Hence, we have (7.20).
Suppose that d¥<d®. Lemma 7.6 gives

M, Ms
I=Y a,< Y a,=), ¥ a,<} (a;+a)
weAf weAn k=0 weAk k=0

Since a, +a,<1, we have (7.21) in the case of d*¥<d®
Suppose that d®>d®. Notice that A%=AS. Let M?=max{|w|:weAl},
where A2=A,\A:. We see that if />M?, then AL=0. Thus Lemma 7.7 gives

1= )Y a,< Zaw=§f Y a, clz(a3+a4)

weA$, weAn 1=0 weAl, 1=

Since a;+a, <1, we have (7.21) in the case of d¥>d®. [

Proof of Theorem 7.5. As in Section 6, we can define the Dirichet form (&,%)
on L*K,x). The counting function of eigenvalues of (£,4) is denoted by
p. Similarly, we define (£°,%°),p°,---,(£9,4Y),52. Then, Lemma 6.4 can be easily
extended to the present case. For example, (6.8) and (6.9) are obvious. The
assertion (6.10) is replaced by

p(x)—2p< )+ Zm( )
iels \Vi/ eIy \Vj

The counterparts of (6.11), (6.12), (6.13) will be obvious. Using the results above,
we can verify

(7.22) Y p(yw>+ Y pL< >>p(x)

weA;$, weAb

x x
2p%%)= ) p°<~)+ ) p%(—)-
weA§, Yo weAl Yo

By the definition of A,, we see that

2n 1 2(n+1)
(7.23) a¥%s>—>a 4 for weA,.
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Hence,
(7.24 HADPx) + H(Apu(atx) 2 p()
=) 280 T x)+ A ).
This implies that there exists x,>0 and constants c,, ¢5 such that

2n
Tds,
_pla”xg)

(7.25) O<ey< A) <cs< 0.
From (7.23)
(7.26) a"y a,<#A)<a "V Y a,
weAn weAn
This, combined with Lemma 7.8 and (7.25), implies our assertion. []
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