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Introduction

One of the most fundamental quantities in scattering theory is the scattering
cross section, which is directly related to experimental observations in laboratories.
The total cross section is a quantity which measures how much the motion of
particles scattered by potentials differs from the motion of free particles. In the
present work, we study the semi-classical asymptotic behavior of total scattering
cross sections with two-body initial states for N-body systems. The scattering
process with two-body intial states is not only relatively easy to analyze from a
theoretical viewpoint but also is practically important, because situations with
many-body initial states are difficult to realize through actual experiments in
laboratories. The problem of semi-classical bounds or asymptotics for total cross
sections has been already studied by many works (5, 16, 19, 20, 21, 22, 23] in the
case of two-body systems. On the other hand, some important properties of total
cross sections in many-body systems have been also obtained by a series of works
[2, 3, 4] (see also the recent work [9]). In these works, the following problems have
been mainly considered : (1) finiteness of total cross section ; (2) continuity as a
function of energy; (3) behavior at high and low energies. The semi-classical
asymptotics has not been discussed in detail in the works above. Many basic
notations and definitions in many-body scattering theory are required to define
precisely the total scttering cross section. We here mention the obtained result
somewhat loosely. In section 2, the precise formulation of the main result is given
as Theorem 2.1 together with the definition of total scattering cross section.

Throughout the entire discussion, the positive constant %, 0< 2<1, denotes a
small parameter corresponding to the Planck constant. We consider a system
consisting of N, N >2, particles which move in the three-dimensional space R* and
interact with each other through pair potentials Vi, 1<7<k2<N. We denote by
7;ER?, 1<j<N, the position vector of the j-th particle. For notational brevity,
we also assume that all the /N particles take the identical masses m,;=1 for all 7, 1
<j<N. For such a N-body system, the configuration space X is described as
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N
X={r=(n, -, r)ER>": g‘irj=0}

in the center-of-mass frame and the energy Hamiltonian (Schrédinger operator)
takes the form

0.1) H(h)=—(h*/2)A+V on L¥(X),

where A denotes the Laplacian over X and V= V(7) is given as the sum of pair
potentials

V(V): 2 Vin(rs— 7k).
1<j<k<N

The pair potentials Vix(y), yER®, are assumed to fall off like Vx=0(|y|™") at
infinity for some 0 >2.

Let a={1, (2, 3, ---, N)} be a two-cluster decomposition. For one example of
two-body initial states, we consider the situation in which at time {=—00, the N
—1 particles labelled by 2, 3, ,--- ,and N form a bound state at some energy E.(%)
<0 and the remaning particle labelled by 1 comes into the scatterer from the long
distance at relative energy A— Eq(h), A>0, and at incident direction w < S?, S?
being the two-dimensional unit sphere. For such a two-body initial state @, the
total scattering cross section 0+(A,  ; %) can be defined for a. e. (4, w)E(0, ) X
S? ([2, 3]). The exceptional set {(4, w): 0a(A, @ ; h)=00} is expected to be empty
but it seems that this has not yet been established under the above decay assump-
tion of pair potentials. The finiteness or smoothness in (4, @) of total scattering
cross sections is one of the most important problems in many-body quantum
scattering theory (see [9, 18] for the related problems). The exceptional set above
may depend on the parameter z. Thus we here regard the quantity 0.(4, @ ; %) in
the distributional sense D'((0, c©)X S?) as a function of (4, ) and study its
asymptotic behavior in the semi-classical limit 2—0. The main result obtained
here, somewhat loosely speaking, is that

/:i/;z F(A, w)oA, w; h)dwdA~h=2*=Y p—(,

for FE CF((0, )X S?). When p >5/2, the result above has been already proved
by the authors [11] in the case of three-body systems and the method developed
there extends to N-body systems without essential changes. A special emphasis in
the present work is put on the case 2< p<5/2.

The proof of the main theorem depends on the two basic results in spectral and
scattering theory for many-body Schrddinger operators. One is the principle of
limiting absorption proved by [13, 14] and the other is the asymptotic complete-
ness of wave operators proved by [8, 17]. The principle of limiting absorption
guarantees the existence of boundary values R(1%70; H(%)) to the positive real
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axis of resolvents R(Axik; H(h))=(H(h)—AF k)" in an appropriate weighted
L? space topology and makes it possible to represent scattering amplitudes with
two-body initial states in terms of R(A+:0; H(k)). On the other hand, the
asymptotic completeness enables us to prove the optical relation through which
total scattering cross sections are related to forward scattering amplitudes. The
main theorem is proved by analyzing the resolvent R(A+:0; H(%)) through the
time-dependent representation formula. The proof also uses the microlocal resol-
vent estimate at high energies for the free Hamiltonian ([10, 12]), which makes it
possible to improve the result obtained in the previous work [11].

1. N-body scattering systems

In this section, we fix several basic notations and definitions used in many-
body scattering theory. We begin by making the assumption on pair potentials
Vi(y), yER®. Let <y>=(1+]|y|*)"2. The pair potentials Vs are assumed to fulfill
the following assumption :

(V)o Vi(y) is a real C™-smooth function and obeys
|05 Vie| < Coky> #7191 for some 0>2.

Throughout the entire discussion, we use the constant o with the meaning ascribed
above. Under this assumption, the Hamiltonian H(%) formally defined by (0.1)
admits a unique self-adjoint realization in L*(X). We denote by the same notation
H(h) this self-adjoint realization.

The letter @ or b is used to denote a partition of the set {1, 2, -, N} into
non-empty disjoint subsets. Such a partition is called a cluster decomposition. We
denote by #(a) the number of clusters in . We consider only a cluster decomposi-
tion a with 2<#(a)<N. For pair (J, k), 1<j<k<N, we also use the notation j
a k if j and % are in the same cluster of @ and ~;j a k if they are in different
clusters.

Let <, > be the usual Euclidean scalar product in the configuration space X.
For given cluster decomposition a, we define the two subspaces X* and X, of X
as follows:

Xe={r=(n, -, )EX: _;crjzo for all custers C in al,

Xo={r=(n, -, ¥v)EX : v;=rs for pairs (j, k) with j a k}.

These two subspaces are mutually orthogonal with respect to the scalar product
<, > and span the total space X, X =X"“® X,, so that L*(X) is decomposed as the
tensor product L*(X)=L*(X?)® L*(X,). We write x for a generic point in X and
denote by x® and x. the projections of x onto X“ and X, respectively. Let

(1.1) Ia(x)=~§k Vin(7—7%)



756 H.T. ITO and H. TAMURA

be the intercluster potential between clusters in @. The cluster Hamiltonian H.(h)
is defined as

H.h)=Hh)—L,=H*h)®Id+1d ® T.(h) on LA(X*)® L X,),
where To(h)=—(h*/2)A acts on L*(X,) and H%(%) is given by
Ha(h)= —(h2/2)A+ % ij(?’j— Tk> on LZ(XG).

Let H% (%) be as defined above. We denote by d*(%), 0<d%(h)<oo, the
number of eigenvalues of H“%(%) with repetition according to their multiplicities.
A pair a=(a, 7), 1<7<d%h), is called a channel. The following notions are
associated with channel @: (1) E.(%) is the j-th eigenvalue of H*(k); (2) ¢a=

¢a(x®; h)EL*X?®) is the normalized eigenstate corresponding to eigenvalue
E«(h); (3) Hu(h) is the channel Hamiltonian defined by

(1.2) Ho(h)=To(h)+Eo(h) on L¥(X.);

(4) Jo(h): L¥(Xa2)— L*X) is the channel identification operator defined by Jau
=¢o®u; (5) Wi(h): LA X,)—L*X) is the channel wave operator defined by

Wi(h)=s— tlirtn exp(ih ' tH(h))J«(h)exp(—ih ' tHJ(h)).
We know ([15]) that under assumption (V),, the channel wave operators really
exist and that their ranges are mutually orthogonal
Range Wi(h) L Range Wit(h), a=8.
The channel wave operators are said to be asymptotically complete, if
Za‘, ® Range Wa'(h)zza‘. ® Range Wi (h),

where the summation is taken over all channels @. It is also known ([8, 17]) that
under assumption (V),, the channel wave operators are asymptotically complete.
Let @ and B be two channels associated with cluster decompositions @ and b,

respectively. We define the scattering operator Sa-p(%): L*(Xa)—L*X,) for
scattering from the initial state to the final one as follows:

Sa-s(h)= W5 (h)* Wa (h).

By definition, it follows that S.-s(%) intertwines the channel Hamiltonians H.(%)
and Hs(%) in the sense that

(1.3) exp(—ih ' tHp(h))Sa-s(h)=Sa-s(h)exp(—ih " tHd(h))
and also we obtain by the asymptotic completeness of channel wave operators that

(1.4) ;Sa~s(h)*5a~s(h)=ld
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as an operator acting on L*X,). This relation plays a basic role in proving the
optical theorem.

2. Total scattering cross sections

In this section, we give the precise definition of total scattering cross section
and formulate the main theorem. We first construct the spectral representation for
the operator Hqa(%) defined by (1.2). Let S, be the unit sphere in X, and let Y,
=L*(Aa)® L¥(Sa) with Ae=(Eo(h), ). We define the generalized eigenfunction
9o of Ha(h), Ho(h)pa=2¢a, by

2.1 Pa(xa; A, wa, B)=exp(ih ™ 9a(A)xa, WaD)

for (4, wa)EAaX Sa, where 7.=+v2(A—E.(h)). We also define the unitary
mapping Fu(h): L*(X.)— Yz by

(Fa(h)f)(/‘, CUa):Ca(/i, h)/aa(Xa; A, Wa, h)f(xa)an

with ca=27h)™"*?p¢*=?? y,=3(#(a)—1), where the integration with no domain
attached is taken over the whole space. This abbreviation is used throughout. The
mapping F.(%) yields the spectral representation for H.(%) in the sense that H.(%)
is transformed into the multiplication by A in the space Y.

(Fe(h)Ha(h))(A, wa)=AFe(R)f)(4, wa).

From now on, we fix the two-cluster decomposition a, #(a)=2, as a={Ci, C»} and
consider the two-body channel @=(a, /) as an initial state. Let E4(%)<0 be the:
binding energy of initial channel @. We assume, in addition to (V),, that for co
>0 fixed arbitrarily,

(E) Eo(h)—inf cess(H*(h)) < — o< 0

uniformly in %, where dess(H %(%)) denotes the set of essential spectrum of H*(%).
If (E) is fulfilled, then we can prove that for any L>1, the normalized eigenstate
¢ L*(X*?) associated with eigenvalue E.(%) obeys the bound

2.2) /(x”)ngba(x“; nlEdxe< C.

with C. independent of 4.

We proceed to defining the total scattering cross section 0d(A, wa; h) with
two-body initial channel @. Let 3 be a channel with b as a cluster decomposition.
We define the operator Ta-s(h): L*(Xa)— L (Xs) as

(23) Ta—-ﬂ(h)=Sa-ﬁ(h)_8aﬂId,

where J4s is the Kronecker delta notation. As is easily seen, this operator also has
the same intertwining property as in (1.3). This enables us to represent Te-s(%) as
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a decomposable operator
To-sW)= [ ® TausRs W), Aes=(Eur(h), o),

where Ep=max(Eq(%), Es(%)) and the fibers Ta-s(A; &) : L*(Ss)—L*Ss) are
defined for a.e. A& As. For example, Te-o(A; &) is defined through the relation

(Fa(h) Ta-o( M)A, 0a)=(Ta-a(A; B)(Fa(B)F)A, *))wa).

We can show (see Proposition 3.2) that under assumption (V),, Ta-g(A; %) is of
Hilbert-Schmidt class for a.e. A>0 and that its Hilbert-Schmidt norm is locally
integrable as a function of energy A>0. Denote by Ta-s(0s, wa; A, k), (4, wa, 65)
€(0, 00) X S; X S, the integral kernel of T4-s(A; ). Then the scattering ampli-
tude fa-s(@a—0s ; A, k) for scattering from the initial state @ to the final one £ at
energy A is defined by

Farilwa 6y ; A, B)=—27inz"*9a(A) " 0 Taus(6s, wa; A, 1),

7a=+2(A— E(h)) being again as in (2.1), where #, is the reduced mass for a={C;,
C.} and is given as
na=N7'2 m;* 2} ma
JEeC1 keC2

for the N-body system with the identical masses m,=1, 1<;<N. We refer to the
book [1, p. 627] for the above definition of scattering amplitude. We now define
the total scattering cross section 0+(A, wa; %) for scattering initiated in the two-
body channel « at energy A>0 and at incident direction w.E Sa as follows :

0u(A, wa: W)= ﬁ faeslwa—0s: A Wb

As stated above, 0.(A, wa; &) is defined only for a.e. (4, wa)E(0, ©)X S, It
should be noted that the exceptional set may depend on the parameter 4.
We proceed to formulating the main theorem. Let [o(x)=I.(x?% xa) be the

intercluster potential defined by (1.1). We denote the intercluster coordinates for
a={C1, Cz} by

§a=(%}mjr,-)(%}mj)‘l—(gmkrk)(gmk)‘IER3,
where the summations 2; and 2 are taken over j& C; and k€ C;, respectively.

The coordinates x. over X, are represented only in terms of {, and hence we can
write

(2.4) Loo(xa)=1,(0, xa)=~§k Vir(€inta),

where €, 1<j<k<N, takes the value +1 or —1 according as (j, )€ Ci: X C; or
(7, B)E C2 X C1. We identify S, with the two-dimensional unit sphere S? and write
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LER? as
2.5) La=b+swa, bEIl,, sER,

where I, is the two-dimensional hyperplane (impact plane) orthogonal to wa.
With these notations, we are now in a position to formulate the main theorem.

Theorem 2.1. Let the notations be as above. Assume that the pair potential
Vie fulfills (V), with p>2 and that the binding energy Eo(h) of two-body initial
channel a satisfies (E). Then, as a function of (4, wa)E(0, ©©)X S, the total
scattering cross section 0.(A, wa; h) behaves like

0d(A, wa; B)=Lo(A, wa; h)+o(h™2*V), h—0,

in the distributional sense 0’((0, ©©)X S,), where Lo is given as

LA, wa; h)=4 [ sin?{(21)" 3 [Viuleub+ sa(R)wa)ds)db

with pe=v2(A—Eo(h))/na,1a being the intercluster relative velocity along the
incident direction wa.

The next result can be obtained as an immediate consequence of the above
theorem, if the non-negativity of 0. is taken into account.

Corollary 2.2. Suppose that the same assumptions as in Theorem 2.1 are
fulfilled. Let

08’ (A; h)=(47r)“‘[Sa 04(A, wa; h)dwa
be the averaged total scattering cross section. Then one has
[o23: mar=a)y [ [ Lo(3, wa: Wdwadi+olh )
for any compact interval AC(0, o).
We conclude the section by making some comments on the theorem above.

REMARK 1. The leading term Lo is of order O(2™%®~"), If, in particular, Vja
behaves like Vie(y)=|y|™*(c+0(1)), c=0, at infinity, then Lo can be calculated as

Lo=0oua® " h#“"Y(140(1)), h—0,

for some 0o>0 by making use of the spherical coordinates over R°.

REMARK 2. The proof of the theorem makes only an essential use of the
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behavior at infinity of pair potentials V. The theorem can be extended to a
certain class of pair potentials with local singularities.

REMARK 3. Recently Isozaki [9] has proved that if 0 >11/2, 6.(A, wa; k) is
finite and continuous in (4, w.)E(0, ) X S, in the case of three-body systems. We
can combine this with the semi-classical resolvent estimates obtained by [7] to
derive the semi-classical asymptotic formula as in the theorem for (4, w.) fixed, if
A is restricted to a non-trapping energy range in the sense of classical dynamics.

3. Optical theorem

We keep the same notations as in the previous sections and always assume the
assumptions in the main theorem (Theorem 2.1). In particular, the two-cluster
decompsiton @ and the two-body initial channel @ associated with a are fixed
throughout the discussion below. The first step toward the proof of the main
theorem is to represent 0a(4, wq; %) in terms of the forward scattering amplitude
fawalwa=wa; A, k). This representation formula is called the optical theorem.
The aim here is to prove this relation.

We begin by making a brief review on some important spectral properties of
the N-body Schrédinger operator H(%), which are required to formulate the
optical theorem. The operator H(%) is known to have the following spectral
properties ([6, 14]): (1) H(%) has no positive eigenvalues. (2) The boundary
values R(A+70; H(h)) to the positive real axis exist as an operator from LY X)
into L2,(X) for any v>1/2 and have the local Hélder continuity as a function of
A>0 in the uniform topology, where LY X)=L*(X ; <{x>*’dx) denotes the weight-
ed L? space with weight <{x)>”. i

We denote by (¢, *)o and | * [lo the L? scalar product and norm in L3(X). The
proposition below is concerned with the representation formula for scattering
amplitude fz-« and it can be verified in almost the same way as in the two-body
case.

Proposition 3.1. Let ¢. be the generalized eigenfunction defined by (2.1)
and let $o=L*(X®) be the normalized eigenstate associated with the binding
energy Eo(h). Define e.(wa) as

ea(wa)zea(x; /1, Wa, h)=¢a(xa; h)®§0a(xa, /1, Wa, h).

Then the operator Ta-o(A; h): L*(Sa)—L*(Sa) is of Hilbert-Schmidt class for
all A>0 and has the integral kernel

To-o(Ba, wa; A h)=coa((— I+ 1.R(A+10; H(h))I.)edwa), eaba))o

with coa=1(27) *9.h™%. In particular, the scattering amplitude fa-o(ws—0a; A
h) is represented as
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fara=Q@nr) 'na P W7 ((— Lo+ LR(A+10; H(h))Io)edwa), ea(6a))o.

The argument here based on the proposition above. By making use of this
proposition, we first prove the following

Proposition 3.2. The operator Ta-ps(A; h): L*(Sa)—L*(Ss) is of Hilbert-
Schmidt class for a.e. 1>0.

Proof. The proof uses the relation (1.4) follows from the asymptotic complete-
ness of wave operators. If we use this relation, then we have by definition (2.3) that

(31) ; Ta—-,e(/1 5 h)* Ta—-,e(/i N h)= —2 Re Taaa(/l s h)

for a.e. A>0, where
Re Taaa(/l 5 h):(Ta—-a(/] N h)+ Ta—-a(/l N h)*)/2

As is easily seen from Proposition 3.1, Re Tu-a(d; &) : L*(Se)—L*(S.) is of trace
class for all A>0. This proves the proposition. []

The next result is called the optical theorem, which is obtained as a conse-
quence of the asymptotic completeness of channel wave operators.

Theorem 3.3. Assume that the same assumptions as in Theorem 2.1 are
fulfilled. Then one has

(A, wa; B)=4712"%9(A)h Im fo-dWa™ wa; A, &)
in D’((0, ©)X S.), where
Im faua=Q2r) 02202 Im(R(A+:0; H(h)) el wa), Isea{wa))o.

Proof. Let F(A, w.) be a real smooth function with compact support in (0, %)
X Sa. We denote by Fi the multiplication operatof by F(A, wa) acting on L*(Sa).
Then we have by Proposition 3.1 and relation (3.1) that

/F(/i, 0a)*04(A, Wa; h)dwadA
=@y WS [1a D AR Toess Wl
=—202n)na' W f 7d(A)72 Trace(Fi Re Tu-o(A; h)F:)dA
=47m;”2h//F(A, 0a)*7(A)7' Im famelWa™ a5 A, h)dwadA.

This proves the theorem. []
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4. Representation formula

By the optical theorem, the total scattering cross section in question is now
represented as

(41) Ga(ll, Wa , h)=27l;l77a(/1)_1h_1@(/1, h) in @,((0, OO)XSa),
where
Q(/i, h):Im(R(/l'i"lO, H(h))laea(wa), Iaea(wa))o-

The proof of the main theorem is reduced to analyzing the behavior as 2—0 of Q(4,
h). The aim here is to rewrite this quantity in a form adapted to this purpose.
Throughout the discussion below, w.E S, is fixed and A>0 is assumed to range
over a compact interval AC(0, o) fixed arbitrarily.

Several new notations are required. Let Tzo(x2)=14(0, x2) be as in (2.4). We
define 6:=0:(xa; A, &) by

(4.2) O =exp(ih™! _/(; _m]ao(xa+s77awa)d3)

with 7.=v2(A—E.(h)) again. As is easily seen, @: solves the equation

(43) 77a<a)a, an> (91 + Z.h_lla049¢=0.

Let ¢o(s)E C5([0, ©0)), 0< o<1, be a basic cut-off function such that
@o=1 for 0<s<1, po=0 for s>2

and let 9 be defined by ¢p=1— @o. With these functions, we introduce a partition
of unity over X, as follows :

2-(xa; M, d)==(|xal/M)po(( X0, wa>+1)/d),
(4.4) 2+(xa; M, d)=o=(|xal/ M) pol({ X0, wa>+1)/d),
x(xa; M)=o(|xd/M)=1—x:(xa; M, d)—x-(xa; M, d)

for M >1and 1>d >0, where X2=xa/|xa|. We write 0, for 3/0xa. It follows from
assumption ( V), that

4.5) x208(0:—1)= O(|xa|™**7'%"), |xa|—00.

Here the order relation depends on Z but it does not matter to the argument below.
Let Ior(xe)=@o(|xal/ R) I2o( %) for R>1 and define O-r=0-r(xa; A, &) by (4.
2) with I replaced by l.r. We also define

wor=(1—x-0-r— x+)ea=(x+x-(1— 0-r))eq,

where we write es=ea(w,) for notational brevity. As is easily seen, wor is of
compact support as a function of x. and converges to wo=(1—x-0-—x+)ea as
R—o0 in L%,(X) for any v>1/2. We now set
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R(A+ix ; H(h))Ioea=wor+ wr, x>0,

where the remainder term wr solves the equation

(H(h)—A—ix)wr=Isea=ixwor + w+r

with w+r=—(H(h)— A)wor. By the principle of limiting absorption, the resolvent
R(A+ix ; H(h)) is bounded uniformly in x, 0< x<1, as an operator from L%(X)
into L2,(X) for any v>1/2, which implies

xlIR(/H—ix s H(h))WOR”(J—’O, x—0.
Thus we have
R(A+i0; H(h)).ea=wor+R(A+i0; H(h))(Ieeat wsr).

We calculate w+r on the right side and take the limit R—co. Recall that the cluster
Hamiltonian H.(%) is defined as

Ho(h)=H(h)—IL.=H%h)®Id +1d ® Tu(h),

where Ta(%#)=—h?A/2 acts on L*(X.). Since e. satisfies (Ho(h)—A)e.=0, we
have (H(h)—A)ea=1Ise.. Similarly we have

(Hh)—A)xrea=[Ta(h), x+leat x+lerea+ x+(Io— Iar)ea,

where the notation [+, +] stands for the commutator relation. Since 8- satisfies the
equation (4.3) with g replaced by I, it follows that

[Tu(h), O-r)eat IarB-rea=(Tu(h)6-r)eq
and hence we have
(H(h)— ) x-0-rea=[Taoh), 2-10-rea+x-(Ta(h)0-r)ea+ x-0-r(Ia— Iar)ea.
Let xo(xa; M)=@o(|xs|/2M). Then %=1 on the support of ¥ and hence
[Ta(h), 2+ 2-1= 2l Ta(h), 2+ 2-].
The sum [ Tu(%), x+]1+[ Ta(h), x-16-r is written as
xol[ Ta(h), 2:1+[To(h), 2-160-r)+Q— 20)[ Tu(h), 2-1(6-r—1).

Estimate (4.5) is still true for @+ uniformly in R>1. Hence, w+r converges to w-+
as R—oo strongly in LY X) for some v>1/2 and the limit w+ is given as w+=
—Iaea+215js3wj, where

W1=X0{[ Ta(h), X—] 0- +[ Ta(h), X+]}ea,

wr={(1—xo)[ Ta(h), 2-1(0-—1)+ x+1ao}ea,
ws={x(Ta(h)0-)+ (x-0-+ x+)(Is— Ia0)}€a.
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Here the brackets {*} are regarded as operators acting on e.. Thus we have
(4.6) R(A+i0; H(h)aea=wo+ 3 R(A+i0; H(k)w;.

We fix the constant y throughout as
4.7 r=1/(p—1)
and take 8>y as
(4.8) B=(1+08)y, 0<K1,
with 0 to be determined later. According to notation (4.4), we also define
(4.9) po(xa; h)=po(h*|xal/32), p+(xa; H)=2+(xa; 16K7%, 1/2)
with M=16~"" and d=1/2. Then we have

RG+i0; H))Laea=uo+ 2 R(G+i0; H(I)us

by (4.6), where

ulx; A, B)=(1—p-0-—p+)eq,

ul(x; 4, h)po{[ Ta(h), P—]6—+[Ta(h), P+]}ea,
uo(x 5 A, B)={(1—po)[ Ta(h), p-1(6-—1)+ p+1ac}eq,
us(x 5 A, B)={p-(Ta(h)6-)+(p-0-+ p+)(Ia— Ia0)}ea.

Hence Q(A, %) can be written as

(4.10)

3
(41 l) Q:Im(uo, Iaea)0+ ;Im(uj, R(/l— 70 5 H(h))[aea)o.
The same argument as above applies to R(A—10; H(%))I.e.. We again use the
notation (4.4) to define
(4.12) ao(xa; h)=oo(h’|xal/2), q:(xa; B)=xs(xa; B™*, 1/16)
with M=h"% and d=1/16. Then we obtain

RG—i0: H(h))Iaea= o+ gR(/i—z‘o; H())v,

where

Z}0(x§ 4, h)z(l_CI-_(]+0+)€a,

ulx; A, B)=qol[ Tu(h), q:16++[Tu(h), q-1}ea,
va(x 5 A, B)={(1~qo)[ Tu(h), q+)(6+—1)+q-Iao}eq,
Z)3(95; A, h)z{(]+( Ta(h)l9+)+(4+9++(Z—)(Ia—1ao)}ea.

Hence it follows from (4.11) that

(4.13)
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Q(A, h)=@Qu(A, h)+1s§ng"ku’ h),
where §o and Q. are given as

3
Qo(/l, h)=Im(Z{0, [aea)o'{'jgllm(uj, Z}0)0,
Qin(A, W)=Im(R(A+10; H(h)u;, va)o, 1<j, k<3,

(4.14)

This is a representation formula which plays a basic role in studying the asymptotic
behavior as #—0 of quantity Q(4, %).

The remaining sections are devoted to evaluating each term defined in (4.14).
Stating our conclusion first, only the term Qi1 makes a contribution to the leading
term of asymptotic formula in the main theorem and the other terms which are
dealt with as remainder terms are shown to behave like o(%#'%") as A—0 in
D’((0, o)) as a function of A uniformly in w.E Se, 7 being as in (4.7).

By definitions (4.10) and (4.13), %; and v; take the form

U;=fi€a, Vi=giea, 1<7<3.

We end the section by formulating several simple properties of f; and g; as a series
of lemmas, which are required in the proof of the main theorem. Below we again
write 0, for d/dx. and use the following notations :

IM, d)={xaEXa: |xd>M, (%0, wad>Zd}

for M>m=0 and 1>d >—1. 1If, in paricular, m=0, then B(0, M) is simply
denoted as B(M).
Lemma 4.1. (i) 6:(xq; A, h) defined (4.2) satisfies the estimates

|p- Re(6-—1)| < Chx>72*7V, |p- Im O-| < Ch~ x>~ 7Y,
|g+ Re(8: —1)| < Ch x>V, |g+ Im 04| < Ch~ x>~ %7V,

(ii) If x.ET-(Mh™* d), then |0f6-|<C: and
|02020-| < Carh™ oo~ ®He=1 || >1.

Similar estimates remain true for 0t0. in I''(Mh™*, d).

Lemma 4.2. (i) fi=A(xa; A k) is supported in B(16h™*, 64h7*) and satisfies
the estimates

|Re fll < C<xa>"’, |Im f1| < Ch(x:;)'l,
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Iagaf 1|SCakh<xa>'1"“'.
(ii) gi=91(xa; A h) is supported in B(h™*, 4h™*) and obeys the same bounds
as above.
Lemma 4.3. (i) f:=rF(xa; A h) is supported in I'.(16h7%, —1/2) and
satisfies the estimates
|Re £2| < C<xa>7", |Im fo| < C(Mlxa>™ "1+ B Kxa> %),
|agaf 2!3 Carhlxa>™ 7',
(ii)) @¢2=g:(xa; A, k) is supported in I'-(h™#, —7/8) and obeys the same
bounds as above.
Lemma 4.4. (i) fs=/f(xa; A k) has support in |x.|>16h~* and obeys the
bound
|08fs| < Crrlxad "7 xad, L>1.
(ii) gs=gs(xa; A, k) has support in |xe| >/~ and satisfies the same estimate

as above.

These lemmas can be easily verified by a direct calculation. We give only a
sketch for the proof.

Proof of Lemma 4.1. (i) follows from assumption (V). Since S(po—1)>7(p
—1)=1 by choice (4.8), we have &< C{x>""" for |xo|=mh™®. If this is taken
into account, (ii) can be easily proved. [

Proof of Lemma 4.2. We prove (i) only. By definition, it is clear that fi has
support in B(1647%, 6447%). Denote by V. the gradient over Xz. Then we have
u1=po(— h*<Vap++ 0-Vap-, Vaee> + O(h){xa>"" " eat O(h*)xa>*ea)
by Lemma 4.1. We can take 0 in (4.8) so small that #*(xa>"2< C<{x2>"" on supp

b0 CB(64%7%). The lemma follows from these facts. [

Proof of Lemma 4.3. The lemma can be proved in the same way as Lemma 4.
2. Since p-=1 on I.(32h7%, —1/2), it is easy to see that f2 has support in the
outgoing region I+(16427%, —1/2). By Lemma 4.1, we have

u2=p+1aoea - hz(l —po)( 5— - 1)<Vap-, Vaea> + 0(h)<xa>—p_lea,

from which the lemma follows. []

Proof of Lemma 4.4. We have |p- Tu(h)6-|< Ch{x.>*""' by Lemma 4.1 and
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also it follows from assumption (1), that
(4.15) [Ia— Tao| < Crdxad>™Kx®E, L>1.
This proves the lemma. []

S. Preparatory lemmas

In this section, we prepare three preparatory lemmas which are often used
throughout the proof of the main theorem. These lemmas are stated without proofs
and their proofs are given in section 8.

5.1. Let u=u(x; A, &) be a function such that « is C*smooth in A and that
for some 0>0 and v >0, u satisfies the estimates

lullo=0(k%), Kxa>*ulo=0(h"*),

- [(h3) alo= O(h™), [<xa>*~2(hd,Yulo= O(ho~*)

uniformly in A€ A, AC(0, o) being again a compact interval fixed arbitrarily.

Lemma 5.1. Let F(A)€C5((0, ©)). Assume that u=u(x; A, h) and v=
v(x; A ,h) belong to LX) and fulfill (5.1) with 6=01 and =0, respectively,
for some v>1. Define the integral | as

I= [TF)(RG+i0; H()u, vodi.

Then one has J=O(ho+%~471),

By Lemmas 4.2 and 4.4, u: and us satisfy the condition of the lemma above.
We apply this lemma to ovaluate the terms Q;x with (7, £)=(1, 3), (3, 1) and (3,
3). However the condition of Lemma 5.1 is not necessarily satisfied by %z behaving
like O({x2>~*) under the assumption p>2.

5.2. The second lemma is mainly used to evaluate the terms @,z with j=2 or
k=2. Before formulating the lemma, we recall the notations. e, is defined by e«
=¢a® @a. Ja: L*(xs)—L*(X) is the channel identification operator defined by
Jau=¢o(h)®u. Hoh)=Toh)+Es(h) acting on L*X,) is the channel
Hamiltonian associated with the two-body initial channel a.

Lemma 5.2. (i) Assume that f(xa; A, h) is supported in I'"(Mh™* d) and
obeys the bound |050%f|< Carlxa>™ """ uniformly in AEA. Then one has
R(A+1i0; H(h)fea=JR(A+10; Ho(h))fpat+ R(A+10; H(h)w,

where the remainder term w=w(x ; A, h)E LY X) satisfies (5.1) with a=p(2p
—5/2)—1 for any v, 0<v<p—1.
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(ii) If g(xa; A h) is supported in I'-(Mh™*, d)and obeys the same bound as
above, then one has a similar representation for R(A—i0; H(h))geo.

5.3. The third lemma is employed in calculating the leading term which comes
from the term Qu. Let 7.=+v2(A— E.(%)) be as before. We define the self- adjoint
operator A(4, &) as

(52) A(A, h)=77a<(l)a, —l'hVa>+]a0 on LZ(Xa)
and denote by G:(A, h)=exp(—ih'tA(A, h)) the unitary propagation group
generated by A(4, ). This unitary group is explicitly expressed as
t
(5.3) G4, h)f=f(xa—tmm)exp(—ih“ﬁ Too(xa—(t —$)9awa)ds).

Lemma 5.3. Let the notations be as above. Denote by (+, +)a the scalar
product in L*(X.). Assume that f(xa; A, h) and g(xq; A, h) are supported in
B(mh™*, Mh™*) and obey the bound

|020%f|+|050%9| < Canhlxa> 71!
uniformly in AEA. Then one has in D'((0, o))

(R(A+10; H(h))few gea)o=ih™ A (GiA, B, gadt +o(R'?).

5.4. Let To=—A/2 be the free Hamiltonian acting on L*(X,). Then we can
write

R(A+10; Ho(B)=h2R(h2&()x40; To)

with §&=A—FE.(h). The resolvent estimate at high energies for the free
Hamiltonian 7% plays an important role in the proof of Lemma 5.2 as well as in
the proof of the main theorem. Such a result has been already established by [10,
12]. We here formulate this result in a form adapted to our purpose.

We require several new notations. Let £&:€ Xz be the coordinates dual to X,
€ X, and let # denote the Fourier transformation

i(&)= (Zﬂh)‘a/zfexp( —th X %xa, Ea0)u(xa)dxa.

We denote by Sn the set of all a(xa, £2)E C(XaX X5) such that
1(8/0x4)*(3/ 3€a)?al < Caprlxad™ %>t for any L>1.

A family of symbols a(xs., £.; €) with parameter € is said to belong to Sn
uniformly in €, if the constants Cas above can be taken uniformly in €. Most of
symbols which we consider in the later application have compact support in &; and
hence are of class S». For given symbol a(xs, £:)ESm, we define the
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pseudodifferential operator a(xa, £D.) as
a(xa, hDa)u=(27rh)'3’2fexp(z'h'l<xa, Ed)a(xa, )it (Ea)dEs

and denote by OPSn the class of such operators. We also use the notation
Ei-(M, d, C):{(Xa, Ea): lxa|>M, EaeQ(C),<fa, §a>%d},
where Q2(c)={Ea: |Ea— nawal < c} for 0< c<1 small enough.
Proposition 5.4. Write R:d(A, h) for R(A£i0; Ho(h)) and Qa for the
multiplication operator with {x.>. Denote by | + || the operator norm when
considered as an operator from L*(X.) into itself. Then one has following

resolvent estimates uniformly in AE /.
1) If u>1/2, then

|Qa**{(hd:))*Rsa(A W)}Qa"~*|=O(h™).

(ii) Let £<1/2. If b+ is of class OPS, with symbol supported in X.(Mx,
ds, ¢), then

1Q&~*"{(hd:)*R+o(A, h)}b:Q2*|=O(h™).
(iii) Let b+E OPSo be as above. If d.>d-, then
| Q4b+{(hd:1)*R+a(A, h)}b: Q4= O(R").

for any p>1 and L>1.
(iv) Let b.€ OPS, be again as above and let ¢+=po(|xa|/ms). If me< My,
then

|9+{(18:)*Rea(2, h)}b: Q4= O(R")
for any p>1 and L>1.

REMARK. The proposition above is a special case of the results obtained in [10,
12]. Statement (iv) is not explicitly mentioned there but it can be verified in the
same way as (iii), if we take account of the fact that classical free particles with
initial satates in X+ never pass over the support of ¢s.

6. Remainder estimates

The present and next sections are devoted to proving the main theorem. Let
Qo(A, 1) and Qix(A, k), 1<j, k<3, be defined in (4.14). The aim here is to prove
that Qo and Q;x, (j, £)*(1, 1), behave like o(%'~?”) as #—0 in D'((0, =°)) as a
function of A.

(i) We first consider the term Qo. This is split into Qo= Qoo+ 213=16);, where
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Qo;=Im(fieq, vo)o, 1<7<3, and
Qoo=Im(u0, Ioea)o=Im(—p-0-ea, lseao.
We prove that each term obeys the bound
(6.1) Qos(4, B)=o(h'™?"), 0<;<3.
The function p- is supported in |xs|>16/4"" and also we have
|Za| < Col{xad> ™ +<{xad> 7P HKa®h), L>1,
by (4.15). Hence it follows from (2.2) and Lemma 4.1 that

(6.2) Qoo=0(h™") l (xad 2 dig= O(B1H28=D),

Xa|>16h—8

Since 8> 7 by choice (4.8), we obtain the bound (6.1) for Qoo.

Next we evaluate the terms Qo;. By Lemmas 4.2~4.4, all the functions f;, 1<
7<3, vanish on B(1647%). If we write vo=(q+¢q+(1—6:))e. with ¢g=1—q+—q-
supported in B(247*), then we have Qo,=Im(f;eq, q+(1—6:+)eq)o. By Lemmas 4.
1 and 4.2, the term Qo is estimated as in (6.2) and hence we have (6.1) for Qo:. By
Lemma 4.3, £z also obeys the bounds |Re fz|< C<xe>™" and |Im fo| < Chlxad>7!,
which implies (6.1) for Q2. The bound for Qos also follows from Lemma 4.4 at
once. Thus we have proved that Qo=o(%'"?7).

(i) The aim here is to prove that
(6.3) Qir(A, B)=0(R*~*") in D'((0, o))

for (7, £)=(1, 3), (3, 1) and (3, 3). This is obtained as a simple application of
Lemma 5.1. By Lemma 4.2, u satisfies the estimates in (5.1) with 6=01=1— /2
for any v>0. On the other hand, us satisfies these estimates with 6=03=8(p—1/
2)>1+ /2 for any v, 0< v< p—1/2, by Lemma 4.4. The functions v: and vs also
satisfy the same estimates as u: and us, respectively. Since 8(p—2)>1—27, (6.3)
follows from Lemma 5.1 at once. -

(iii) We deal with the term @2 and prove that

(6.4) Q22(4, B)=0(h'"?") in D'((0, )).

We again write (+ ,*)q for the scalar product in L*(X.) and denote by || + ||« the.
norm in this space. By Lemma 4.3, /> and ¢ satisfy the assumption of Lemma 5.
2. Hence we obtain
R(A+1i0; H(h)frea=TR(A+10; Ho(h))fopa+ R(A+i0; H(h))w.,
R(A—i0; H(h)gea=JaR(A—1i0; Ho(h)gpoa+ R(A+i0; H(h))w-.

Here the remainder terms w- satisfy (5.1) with 0=8(20—5/2)—1 for any v, 0<v
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<p—1. Since
20—B—1=B(4p—6)—3>1—27,
it follows from Lemma 5.1 that
(R(A+i0; H(R)w+, w-)o=0(h*"*") in D’((0, ©)).
Thus we have
Q2=Im(R(A+i0; Ho(W))(fopatJEw:), g2pa)a+t o(h7?)

in D’((0, ©°)). We now use Proposition 5.4(i) to evaluate the first term on the right
side. Take x#>1/2 close enough to 1/2. Then we have

"<xa>yf2"a + “(xa)“gz"a = O(hﬂ(p—#-3/2))

and [Kxa>*J¥w.lla=O(h°~#), because w. satisfies (5.1) for any v, 0<v<p—1.
We can choose u so close to 1/2 that 28(0o—uz—3/2)—1>1—2y and

Blo—p—3/2)+0—Bu—1=BBo—2p—4)—2>1-27.
Hence (6.4) is obtained.

(iv) The terms €23 and @s: are estimated in the same way as Q2. As stated
previously, vs satisfies (5.1) with 0=0s=8(p—1/2) for any v, 0<v<p—1/2, so
that

os+o—B—1=B8Bp—4)—2>1—-2y
for 0=£(20—5/2)—1. This, together with Lemmas 5.1 and 5.2, implies that
Qx(A, B)=Im(R(A+i0; Hu(h)fopa, JEvs)a+ 0o(h~?) in D'((0, o0)).

By Lemma 4.4, |[<x2>*J& vslla= O(A*®~#~1?) for 1£>1/2, 1 being close enough to 1/
2. Hence we again use Proposition 5.4(i) to obtain that Q;s=o(%'"?") in
D'((0, ©0)). A similar argument applies to Qsz.

(v) Finally we analyze the remaining two terms &2 and Q2. the function 2
satisfies (5.1) with 6=01=1— /2 for any v>0 and hence

ot+o—B—1=8Q2op—4)—1>1-2y
for c0=8(20—5/2)—1. By Lemmas 5.1 and 5.2 again, we have
Qu=Im(f1¢e, R(A—10; Hu(h))g:0a)a+0o(h'?") in D'((0, o0)).

We denote by 7 the first term on thr right side of the relation above. By Lemma
42, fi=fi(xq; A, h) is supported in B(16%7%, 64h~*) and obey the bound |A|<
Chixz>"'. However it does not necessarily satisfy |/i| < C<{xs>~* uniformly in 4.
Thus the first term 7" above cannot be controlled by a direct application of
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Proposition 5.4(i) as in the previous steps (iii) and (iv). We employ a slightly
different argument to evaluate this term.

By Lemma 4.3, g:=¢2(xa ; A, &) is supported in I-(2~#, —7/8) and satisfies the
estimate |052| < Co<xa>™*7'*. We now take M >1 large enough and decompose g
into

92= a0+ geo= @o(K¥|xal/ M) g2+ @ ¥ | al / M) g2,

so that 7 is split into 7= To+ T« according to the decomposition above. Let
a—(xa; Ea; A, h)ES-, be the symbol defined by

a—(xa, Eas A, h)zgzoo(xa; 4, h)¢0(2lfa“7lawa'/0),

where ¢ >0 is chosen so small that it is supported in S_(MA™*, —3/4, c). We write
a- for the pseudodifferential operator a—(xq, 2Dqo ; A, k). Then we have goo=a-@a
by definition and hence it follows from Proposition 5.4(iv) that Tw= O(k") for any
L>1. On the other hand, the term 7o can be written as

Tozlm(R(A+20, Ha(h))flea, gzoea)o.

Both the functions f; and gzo satisfy the assumption of Lemma 5.3. Hence we use
this lemma with I,=0 to obtain that

To=h""! / "Re(GYA, h)fi, gm)adt +o(h2) in D7((0, o)),

where GU(A, h)Ai=f(xa—tn.wa; A, k). The integration on the right side is
actually taken only over a finite interval (0, CA~*) for some C>1, because Gifi
vanishes on the support of gz for > Ch™*. Since {xa>~'~h~* is comparable on
the support of f; and gz, we have by Lemmas 4.2 and 4.3 that

IRe fila=O(#**=*), |Im filla= O(A'~*?),

IRe gzolla=O(A**=*2), |Im geofla= O(R~"*#0=5/2),

Hence T is estimated as To=o0(%""?") in 0’((0, ©°)). This yields the desired bound
for @2. A similar argument applies to @2 also.

Summing up the results obtained here, we can conclude that all the terms o
and Qjx except for Qi1 in (4.14) obey the bound o(%'~*") in D’((0, ©°)) as a function
of A uniformly in w.& S, and hence it follows from relation (4.1) that

(6.5) 0a(A, w; B)=2n2' 7)) h7' Qu(A, h)+o(h~?")
in D’((0, ©0) X S,).
7. Calculation of leading term

In this section, we complete the proof of the main theorem by calculating the
leading term arising from Q.
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(i) According to Lemma 4.2, fi and ¢ satisfy the assumption of Lemma 5.3.
Hence

Qu=1"" [ Re(GlA, 1Ay, gadt+0(R~27) in D'((0, ),

where the integration is actually taken only over a bounded interval (0, C#~*) for
some C>1. Recall definitions (4.10) and (4.13) of z: and v1. We decompose 1
= fies and Vi=@g1€q into ur=u+~+u- and vi=v++v_, where

u+=p0[ Ta(h)a p+]ea, u—=p0[ Ta(h)a D-]ﬁ-ea,
v+=qol Ta(h), q+]16+ea, v-=qo[ Ta(h), q-]ea.

We further define f: and g: through the relations #+=7f+e. and v+=g:+e.. Since
f+ is supported in I'.(16427%, —1/2), we can easily see from (5.3) that G:(4, h)/f+
vanishes on supp giCB(4h™*) for t >0. Thus we obtain

Qu=I(4, W)+I1(A h)+o(h'~*) in D'((0, ©)),

where
L=h" A “Re(Ge(A, h)f-, gs)adt.

(ii) We analyze I+ defined above. Write dw for we, Vo>. Then f- and g- take
the forms

fo=—inahpo(0uwp-) 0-+ 7, g-= —inahqo(dwq-)+ 7-,

where the remainder terms obey the bound |7 [« +[7-o= O(A**#%) by Lemma 4.1.
We can choose 6 >0 so small that these remainder terms do not make any contribu-
tion to the leading term. If we neglect such a contribution from the remainder
terms, then G:(A, &)f- takes the form

Gi(A, h)f-~—inah(po(0uwd-))(Xa— tnawa) O—(xa ; A, h)
by (5.3). Since Re - behaves like
Re 6-(xa; A, B)=1+O(h *)<xa>"2*" V=14 0(h*)
for xoEsupp g-CI'-(h™*, —7/8), it follows that
(7.1) I-(A, h)=L_(A, h)+o(h*~?")

where
L_=n%h £ N ﬂpoamp-)(xa— 1920a)(qo0wq-)(xa)dxadlt.

A smilar argument applies to I+ and we obtain
(7.2) LA, B)=L+(4, h)+o(h'™?"),
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where
L= [ [(0odup-)ea— 7002 (030 2e) O xa)dlvadt
with
O(xa; A, h) =COS{h_I/Ia0(xa + svawa)a’s}.

We now write x.€ X, as
(7.3) Xa=Yat 2alaWa, VaE v, 2.ER,
where II, again denotes the impact plane orthogonal to direction w. (see (2.5)).
As is easily seen, @ defined above depends only on v.E [l
O=0(ya; A, h)=cos{h“/lao(ya+za77awa)dza}

and behaves like ®=1+/4"20(|ya|2*"") as |ys|—00 uniformly in %, so that we
have

9 -/':Va|>mh—ﬂ(1— @(ya))dya: O(p~2+26e-2),

(iii) The argument below uses the relation between the supports of cut-off
functions po, p-, go and g+ defined by (4.9) and (4.12). We here recall that :

(1) supp poCB(6447F) and po=1 on B(3247%).

2) supp p-CI' (16477, 0) and p-=1 on (324, —1/2).

(3) supp go”B(4h7*) and qo=1 on B(2h7*).

4) supp q+CI'v(h™*®, —15/16) and q+=1 on I'.(2h7%, —17/8).
We now assert that

(75) _/()'mﬂpoawp—)(xa— t?]a(l)a)(qoaw(Q— + Q+))(Xa)andt =(.

To see this, we first note the relation
(7.6) 400u(q-+ g+)=— go0uwg = — duq,

where ¢g=1— g+ —g- has support in B(247#). If x, represented by (7.3) satisfies | v
>2h7*, then xoEsupp q and hence godw(g-+g+)=0. On the other hand, if x.
satisfies |va| <2/7*, then podwp-=0wp- at such a point x. and hence

7a(000wp-)(Xa— t7awa) = — 0sp—(Xa— t7awa),

so that we have

(@.7) e || (P03t (xa— trewa)dt =1
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for xo€E supp p- with |v.|<2k~* and hence, in particular, for x.Esupp q. This,
together with relation (7.6), proves (7.5). Therefore the sum of the two leading
terms in (7.1) and (7.2) equals

Lot L=k [ [(poup-)(xa— tawe)(a0dut-)xaX( O(va) ~1)cixadt.

If Xa€ supp dwg+ with |ye| <mh™*, m >0 being small enough, then it follows that
xaE supp p- and godwq+=0wq+ at such a point xa. Hence we have

7o [(@080a:)(xa)dza=1

for |vo| <mh™*, 0<m<1. By (7.3), we can write dXo=7adVadz.. If (7.4) and (7.
7) are further taken into account, then we see that the sum behaves like

Lo+Lo=neh | (1=0(ya: A wa, h)dya+ (i)

This yields the leading term in the asymptotic behavior of @u
Qu=2""nanohLo(A, wa; h)+o(h'7?") in D'((0, o0)),

where

L0=4n;‘[lwsinz{(Zh)'lfIao(ya+za7)awa)dza}dya.

By use of (2.4) and (2.5), Lo can be put into the form as in the theorem. Thus
we can obtain from (6.5) that

0(A, wa; h)=Lo4, wa; B)+o(h™*) in D((0, )X Sa)
and the proof of the main theorem is now completed.
8. Proof of Lemmas 5.1~5.3

In this section, we prove the three lemmas (Lemmas 5.1~5.3) which remain as
unproved.

Proof of Lemma 5.1. The lemma can be easily proved. The proof uses the
timedependent representation formula

RG+i0; H(w)=ih™ [ "exp(ih™ R)exp(— ih™ tH(k))dt.
More precisely, we have to write
R(A+10; H(h))=z'h'lliflol‘/o-mexp(ih'lt(/i—f-z)c))exp(—ih“tH(h))dt.

However we proceed with this formal representation for notational brevity. The
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rigorous justification can be easily done.

Let F(A)€C5((0, o0)). By the time-dependent representation formula above,
the integral J can be written as J=:4""'I, where

d =£ °°/o " F(Aexp(ih~ 12)(exp(— ik tH (1)), v)odtdi.

To prove the lemma, it suffices to show that 7=0(~%*?*"#). Take r as t=/"* and
divide the intergal / into two parts

1= [ [+ [}t

We denote by I, and I the first and second integrals, respectively. By assumption,
we can immediately obtain [1=O0(h%*%7%),

Next we consider the integral .. We write %= @o(|xa|/t)u+ ¢ul|xal/t)u ;
similarly for ». Then I is split into four integrals. Denote by I3, I and I7 the
integrals associated with decompositions (@e— @0), (o— Pw) and (Pe— ¢=), respec-
tively. These integrals can be easily estimated by repeated use of the relation

l@ellzal/ ) ulo= O(t=")Kxa> ullo= O(t=*) O(R*=),

which follows from assumption. Since v>1, we ltave I3=0(h""*°*"#). Similarly
I3 and I are shown to obey the same bound as above. The last integral I3
associated with decomposition (@o— @o) is estimated with aid of partial integration
in A. Making use of the relation

exp(ih~'tA)= —iht'0: exp(ih '),

we repeat integration by parts in A twice to obtain that I3 is majorized by a linear
sum of such terms as

_/;mt‘2|| @ol|xal/ ) (Ro2) ullol po|xal/ ¢ )( RO *v]odlt

with 0<j+%2<2. We may assume that y<2. Then we have by assumption that
"¢0(|x0|/t)(ha/\)2u”0= tz—”O(ho'l—ﬁu) :

similarly for v with ¢2. This implies that /3 also obeys the bound 3 = O(4°*727#)
and the proof of the lemma is complete. []

Proof of Lemma 5.2. We prove (i) only. A similar argument applies to (ii)
also. Let 0=8(2p—5/2)—1 be as in the lemma. We again write R..(A, %) for the
resolvent R(A+170; Ha(h)). As is easily seen, the remainder term w in the lemma
is given as w= —IaJoR+o(A, h)fpa. Therefore, to complete the proof, it suffices to
show that wo=wo(xq; A, ) defined as wo=<x2> *R+4(A, h)fpa. satisfies the esti-
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mate

<> wolla= O(R=#*), ||(hd2) wolla= O(R°~*),

@1 K>3 wolla = OCR—)

for any v, 0<y<p—1, where | - |« again denotes the L? norm in L*(Xa).

By assumption, f is supported in IZ(Mh™?, d) and satisfies the estimates
[0502f| < Carlxa>™"'*'. We take Mi<M and di<d, and define the symbol a.(xa,
Es: A, h)ES_, as

a+(xa, Eas A, h):f(xa; A, h)¢0(2|5¢1_7iawa|/c),

where ¢ >0 is chosen so small that the symbol is supported in Z:(Mih~%, d, c).
We also write a- for the pseudodifferential operator @+(xa, 2D, ; A, k). Then we
have f@.=a.@.. By a simple calculus of pseudodifferential operators, we see that
there exists b OPSo uniformly in % and A€ A such that

Joa= b0f0¢a+ 70
with f=/,, where the remainder term 7o=70(x.; A, /) obeys the bound
(8.2) [<xa>*7|e=O(h*) for any L>1.

We may assume that the symbol of b is still supported in Z.(Mih™*, di, c).
Similarly we have

(h0:)* fpa=brfrPat 1e, 1<kE<2,

with remainder term 7% obeying the bound (8.2), where b, is of class OPSo with
symbol supported in Z.(Mih~?, di, ¢) and fe=fu(xa; A, k) has support in
I''(Mh™*, d) and satisfies the estimate |fx| < C<xa>***.

The remainder terms 7, 0<.<2, are all negligible. In fact, it follows from
Proposition 5.4(i) that

[<x>* P R1aA, B)7olla=O(AL), |Kxa> *{(70:)' *R+a(A, h)}7ella= O(K*)
for k, 0<k<1, and
I<xa>*~2{(h0:)* *R+a(A, )} 7ila= O(R*)

for k£, 0<%k<2. In particular, the third estimate above is obtained, if we note that
o+2—v>5/2.

We now set vx=>brfe@a, 0<k<2. Let ¢o=po(h*|xa|l/m) and ¢u=1—¢o. We
take m, m<M,, small enough. Then it follows from Proposition 5.4(iv) that

[ goR+a(A, h)vola=O(A"), ll¢o{(hd) *Ri+a(A, h)}vila=O(h*)
for k£, 0<k<1, and
ll‘/’O{(haA)z *Ria(4, h)}vk”a O(h*)
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for k£, 0<k<2. The terms cut-off by ¢ are evaluated by making repeated use of
Proposition 5.4(ii). We apply this proposition with £=0 to obtain that
| ¢eCxa> " Roa(2, B)volla=O(h°~*).
If we further use the same proposition with y=—F%, 0< %<1, then it follows that
|¢Cxa>=*{(h32) " RealA, W)}valla= O(R"~%).
Similarly we have
| elxa>* 2 {(h02)* *Rsa(A, B)}vrla=O(RT~#).
We combine these estimates to obtain (8.1) and the proof of the lemma is complete.

0]

Proof of Lemma 5.3. The proof again uses the time-dependent representation
formula for resolvents. Let F(A)e C3((0, ©)). We consider the integral

1= [ ["F(exp(in™ t)exp(— il tH(1)) ea, gealodtda.
To prove the lemma, it suffices to show that
(8'3) I:’/O’m./o.mF(/l)(Gt(/l, h)f, g)aa’td/l‘F 0(1’12_27),

As stated previously, the f-integration above is actually taken only over a finite
interval (0, Ch™*) with some C>1, because G:(A, %)f vanishes on the support of
g for t>Ch™®. Let c=(1+48)y> B for the same 6 >0 as in (4.8). Weset t=h"°
and divide the integral / into two parts

1=11+12=[°{[+[m}---dtda.

By partial integration in A, the integral z over (z, ©©) is majorized by a linear sum
of such terms as

[ 2o e ol (hd:)*(gea)lodt, 0<j+E<2.

By assumption, we have

[(hd:Y (feolo+ (R (gea)lo= O(R'-46+1),

Hence I; is shown to behave like L= O0(h**“"*)=0(h*"*") by choice of c.

To control the integral I; over (0, 7), we represent this as a sum of two integrals
by decomposing f into two terms with small and large imapact parameters. We set
x=(1—50)7 for the same 6 >0 as in (4.8) and decompose f into

f=Fst f1= eo(h*|yal) f + @l h*|yal ).
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According to this decomposition, /1 is split into a sum of two integrals. Since
| fseallo= O(h**#27%), the integral I,s with cut-off ¢, is evaluated as I s= O(h?~°~*)
=0(h*7*") by choice of ¢ and x. Similarly we have

(8.4) [" [F(A)(Gt(/i, W) fs, 9)adtdA=o(h2~27).

The leading term comes from the integral Ii; associated with cut-off ¢w. To
see this, we construct an approximate representation for the solution

v()=v(t; A, h)=exp(ih *t)exp(—ih *tH(h))fea
to the equation
thow=(H(h)—A)v, v|i=0=fiea=Jof 1Pa.
As an approximate solution to this equation, we define
u(t)=u(t ; A, N=JapaGe(A, B)f1=Japa exp(—ih ' tA(4, h))f1.

Recall the definition (5.2) of A(A, 4). Since the relation

Ja9o A4, h)—(H(B) = )] epa=—Ja@aTo(h) — (Lo~ La0) ] apa
holds as an operator from L*(X,) into L*(X), we see that «(¢) solves the equation

thosu=(H(h)—Du—n(t)—r2),

where 7;(¢)=7r,(t; A, h), 1<7<2, are given as

1(t)=Japa Tl B)G(A, B)f2), 72(t)=Ta— La0)JePaG:(A, h)f:.

Hence the Duhamel principle yields that
t
o()=1(t) =it~ [ exp(— i~ (t = sYH ()= D)(r(s)+ rls))ds.

Both the remainder terms 71 and 72 have support in {ye: 2 *<|y.|< Ch™*} for
some C>0 as a function of yo<Ila, so that 2< C<{ya>"“ """ on their supports,
provided that § >0 is chosen small enough. By the assumption of the lemma, we
have

| Ta(h)th.z' < Ch<ya>_p_l<ya +(Za - L‘)”aCUa>_1

and hence 7:1(¢) obeys the bound

[7(£)5=O(n?) |va| 208 dya= O(2+*2e+D)

|Yal>h~*

uniformly in ¢, 0<#<r. A similar estimate remains true for 72(#) also. Thus it
follows that
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[ [ n o+l olgealodsdt = 0 02,

where £=1+x(p+1/2)+1—8/2—2c+2y—3=y(1+ O(8)). We can choose &>
0 so small that >0 and hence

Ill='/0‘°°[;rF(/])(Gt(/i, h)fl, g)adtd/l+o(h2—27)_

This, together with (8.4), proves (8.3), because (G:(4, 4)f, 9)a=0 for ¢t >7 and
hence the proof is complete. []
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