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1. Introduction

Let {Vj}jez be an ''-regular multiresolution analysis in L2(Rn) and φ(x) an
r-regular father function. Denote by Γ the one-dimensional torus R/2πZ. Then
there exists an isomorphism of Hubert spaces between VQ and L2(Tn\

(1)

defined by the functional equations

(2) f(2ξ) = mf(ξ)φ(ξ)

and

(3)

denotes the Fourier transform off(x) and ( , •) denotes the inner product

of L2(Rn\ The function mf(ξ) will be called the symbol of f(x).

Put Λ = {0,1}" and £=/ί\(0, •••,()). To construct (2"-l) mother functions

ψt(x\ εeE, we need to construct 2πZw-periodic L2-functions, m^ε, which satisfy

conditions to be specified below. For simplicity, we write w0 for mφ and mε for

To show that the mother functions ψε(x) are r-regular, it is sufficient to show that

mε satisfy the same property as m0. Therefore the simpler the construction of mε,
the better it is.

As asserted by Meyer [2, Section 3.4, Corollary 2], the functions φ(x— k) and

ψε(x—k), εeE,keZn form an orthonornal basis of Vl if and only if the 2n x 2" matrix
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(4) U(ξ) = (mε(ξ + ηπ)\εtη)eR*R

is unitary for almost all ξ.
In this paper, we obtain the eight possible independent sets of unitary matrices

of the form (4) in dimension three for a particular ordering of the vertices of the
unit cube. This ordering allows us to prove the non-existence of similar wavelets
in dimensions higher than three. Our construction will be called a simple
construction. We also remark that our result holds for any ordering of the vertices
of the unit cube.

Our result is based on the construction method used by Mallat [1] for
one-dimensional wavelets with a real- or complex-valued symbol w0, and Meyer [2]
for two-dimensional wavelets with a real-valuued symbol m0.

Riemenschneider and Shen [3,4] and de Boor et alii [5] have used the
machinery of box splines, which is well known to the approximation theorist but
may not be familiar to the average analyst, to construct similar wavelets in
dimensions two and three and used the fact, attributed to Hurwitz [6] by
combinatorists, that no unitary matrices of the form (4) exist for n > 3, to conclude
to the non-existence of similar wavelets in dimensions higher than three. Jia and
Micchelli [7], who are referred to in [3], have obtained similar results by a different
menthod. The present paper is selfcontained and uses only elementary analysis
tools.

2. Simple construction of wavelets

The construction of r-regular wavelets is reduced to the constructuction of
an r-regular multiresolution analysis. More precisely, for a given r-regular
multiresolution analysis {F}>z, we can construct an r-regular father function
φ(x). By using the general existence theorem as in [2, section 3.6], we can find
mε(ξ),εeE, satisfying (4). Thus we can construct r-regular mother functions
ψε(x),εeE.

Our purpose is to show in which case it is possible to find mε(ξ),εeE, in the form
eiβε'ξm0(ξ + αεπ), αε e R, βε e R. This form covers the form λε(ξ)eiβε'ξm0(ξ 4- αεπ), where
λε(ξ) satisfies \λε(ξ)\ = 1 for almost all ξ, because, if the former satisfies (4), then
the latter form also satisfies (4). Since the orthonormality of {φ(x—k)}keZn implies
the identity

o^ + ifπ) ΞΞ 1
ηeR

for almost all ξ, it trivially follows, for this simple construction, that
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for ε e E and almost all ξ. Hence, in the case of our simple construction, we need only
check the orthogonality relations:

ηeR

for ε/ε',ε,ε'e/ΐ and almost all ξ.
First we start with notation and definition. Let /„ = {0, 1, ,2" — 1}. Then any

jeJn can be written uniquely, in the base two, as

(5) y = ς,-ιU)2"-1+c._20)2"-2 + - +c1Q)214-c0(Λ

where each ck(j\ fc=0,.« ,n — 1, is either 0 or 1. Without loss of generality, we
use the lexicographic ordering of the vertices of the unit cube in R*9

We shall prove the following theorem.

Theorem. For the lexicographic ordering of the vertices of the unit cube in

R3, there exist eight independent simple constructions of wavelets in dimension three,
and there are none in dimension greater than three.

The following example is one of the eight simple constructions of wavelets in
dimension three.

EXAMPLE. Let { V^z be an r-regular multiresolution analysis in L2(R3) with

the real-valued symbol m0(ξ) and φ(x) be an r-regular father function. We define the

symbol mQ(ξl9ξ29ξ3) by

and put
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Then the functions ψj(x)J=l9 •••,?, defined by

are r-regular mother functions of wavelets in dimension three.

REMARK. It will be observed later that this theorem is in dependent of the

ordering of the vertices of the unit cube in Rn.

Let xί,x2,'-,x2n be real variables. Then we put x' = (xι,x2,'~9x2n-ι)9

*"=(*2»-ι + ι» v*2») and *=(*'»*")•

DEFINITION 1. The symmetric matric Fn(x) defined inductively by the follwing

recurrence,

X2

• n>2,

is called a function matrix of order n.

Put

where x = (jcl5 ,jc2n). Put

/wβn ,/ί) = w0(ξ + otnjπ)9 j e Jn.

Since m0(ξ) is a 2πZπ-periodic function, for every j9k εJn, there exists /e/n such that

Then the following lemma is obvious.

Lemma 1.

(6) (Λβ

Since, in general, we cannot say anything on the relation among the m0(ξ + αw ̂ π),

we may regard m0(ξ + anjπ), jeJn, as variables denoted by xj9jeJn. Hence
we need only consider the matrix



MULTI-DIMENSIONAL WAVELETS 401

j+an^

Here j?w>fc e {αw>fc}fceJn and we allow equality: βn,k = βn,k' f°r some fc/fc'. If βn,k = βn,k
f

for some fc^fc', then the scalar product of the &th and λ 'th columns cannot be

identically zero. Hence we need only consider the case

where SΠ denotes the symmetric group of order n and S2n acts on Jn = (0, , 2" — 1).
Now we want to evaluate

eίΛn ,σ(k)'(ξ + <*„; jit) _ ^tαM><r(k) αn jπeiαnί<τ(k) ^

It is enough to construct the table of signs, -f or — , corresponding to the values -h
1 or — 1, of the exponential

eiπ[ctn,σ(ky<xn j (mod 2)]^ fc j ^ j

Define

For σe<52n, put

c — n i If — 1 9Π

bjk — aj,σ(k)9 J9 κ — L 5 J ̂  >

where ®2»
 acts on (1> »2).

DEFINITION 2. For σeS2n, the matrix

is called a sign matrix.

Then SΛf<τ can be regarded as the table of signs coresponding to

ein[Λn,σ{kyanj (mod 2)]

For σeS2n, write

Denote by O(n) the orthogonal group of order Λ, by ί/(w) the unitary group of
order «, and by S"1"1 the unit sphere in Rn. Since
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(e^.,(k) ίUak(x). k _+ ίt...t7^

402

where Xj=m0(ξ + aπjπ), jeJn, then we have t7(ξ)el/(2") if and only if

[/„ >a(x)e 0(2"). Hence the simple construction of wavelets reduces to the following

problem.

Problem. Are there any σe<52n satisfying σ(l) = l such that £/„,„(*) belongs

to 0(2") for all xeS2"'*1!

To solve this problem we need several lemmas.

3. Preliminaries

Denote

The lexicographic ordering (5) of the vertices of the unit cube will give a

particular interesting form to matrices (8) and (9) of the following lemma.

Lemma 2. The following relations hold:

(7)

(8)

(9)

+ 1 +1 +1 +1

+ 1 -1 +1 -1

+ 1 +1 -1 -1

+ 1 -1 -1 +1

and
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(10) A4Λί =

+ 1

+ 1

+ 1

+ 1

+ 1

+ 1

+ 1

-1

+ 1

-1

-1

+ 1

-1

+ 1

-1

-1

+ 1

+ 1

-1

-1

+ 1

-1

-1

+ 1

+ 1

_ i

-1

+ 1

+ 1

+ 1

+ 1

+ 1

-1

-1

-1

-1

+ 1

-1

+ 1
J

-1

+ 1

-1

+ 1

+ 1

-1

-1

-1

+ 1

+ 1

+ 1 "

-1

-1

+ 1

-1

+ 1

+ 1

-1

Proof. For every ye / Π _ l 5 there exist two natural injections c0 and

{*«.-! j}/E/n-ι to {**j}*Jn defined by

respectively. Then for j,keJn-ί9

W+2«-ι «».* —«B-1J °

'-ι 'αw,k + 2«-ι= =l+α«-1 «- l,k

This implies (7).

By definition, ajk = akj j,keJn. This symmetry and (7) imply (8).

2 1 1 = + \ then (9) and (10) follow inductively from (7). ΠSinece

4. Necessary condition for the existence of the simple construction

The aim of this section is to seek a necessary condition on the sign matrix

,,,, so that £/„,,(*) e 0(2"). Put

Denote by δjk the Kronecker delta and by /„ the unit matrix of order n.
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Lemma 3. If Un,σ(x) e 0(2") for all xeS2"'1, then

(11) SB,21^2"-. + ι,

(12) 5π,12=(-ί2n-1

(13)

Proof. Assume that there exists σe62n satisfying σ(l)=l such that
Un<a(x) e O(2") for all x e S2"~ '. Since, for k = 2, ,2",

then su = — 1 . Hence, by the orthogonality of they th and fcth columns, we have

(14) sjk=-skj, jϊk, j,k=2, ,2".

In particular, by (7) of Lemma 2, for j,k=2, ,2"~l, we have

S2"-t + l,k= S2"~ ' + !,* + 2"~ ί = sj.2"-ί+l = Sj+2"->,2»-1 + l-

Thus (7) of Lemma 2 implies (11) and

By (14) we have SnΛ2= — 'S î Hence we have the first equalities of (12) and
(13). Since by (14), *S f

Π j l l-h/ 2n-ι_ 1 is an alternating matrix, then

Thus we have the second equalities of (12) and (13), respectively. This completes
the proof. Π

Lemma 4. If Un>σ(x) E O(2n) for all xeS2""1, then

{(^yUlr-^"-1)}*^^

Proof. By its matrix structure, Unt(r(x) e O(2n) only if the 2"~ * x 2"~ l upper-left
block Un.ιy<r,(x') belongs to O(2n~l). In particular, every two columns of the sign
matrix 5n_1 > f f > of t/n_1>(T,(jc') are different. On the other hand, by (8) of Lemma
2, (^Λ,ιι>^Πfl2) consists of 2""1 pairs of columns of An_ί. This completes the
proof. Π
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5. Proof of the Theorem
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First, we consider the three-diminsional case. Since s55= — 1, there are four
possibilities for the choice of (s5tkι fc->2,3,4), that is,

Here, we check only the case corresponding to the first choice: (+!, + !, + 1). Since
53>11 is a permutation of the columns of the matrix

-1 +1 -1

+1 -1 -1

-1 -1 +1

and every diagonal element of 53>11 is —1, there are two possible forms for 53>11,
namely,

-1 -1 +1

4-1 -1 -1

-1 +1' -1

and

-1 4-1 -1

-1 -1 +1

+ 1 -1 -1

Corresponding to these two matrices, the permutations of the columns of the sign
matrix are σ=(0,5,7,6,4,3,2,1) and σ=(0,7,6,5,4,1,3,2), respectively. We can easily
check that U3>σ(x) 6(9(3) in these two cases. By the same argument, we
have the following table of all the possible column permutations of the sign matrix.

Table 1. Column permutations of the sign matrix producing orthogonal matrices in R3.

0(0)

0

0

0

0

0

0

0

0

0(1)

1

1

3

3

5

5

7

7

o(2)

3

7

2

6

3

7

2

6

σ(3)

6

2

5

1

2

6

1

5

σ(4)

7

5

7

5

6

4

6

4

o(5)

4

6

6

4

1

3

3

1

0(6)

5

3

4

2

4

2

5

3

o(7)

2

4

1

7

7

1

4

2

Next, we consider the case of dimension four. To prove the non-existence
of wavelets obtained by the simple construction, it will suffice to show that

Lemma 3 contradicts Lemma 4. By Lemma 4, every column vector
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(s9βjk + 2δjk) 9Jl29 ..9S), & = 2, ..,8,

°f Sn,i2 coincides with one of

(^fc;7|2,. .,8), * = l,-,8,

that is, one of

(^k;y|2, ,8), fc = 2,. ,8,

or

(flΛ1;yi2,-,8).

But this condition cannot be satisfied, because each column

differs from each column

by at least three elements, except in the case where k = k' and s9 j = l,y = 2, , 8. But,
even in this exceptional case, the construction is impossible besause

Finally, we consider the case of dimension greater than four. By the structure
of Unt<r(x\ which is induced by the ordering (5) of the vertices of the unit cube in
/T, it is necessary for Un^(x) e 0(2") that the 2 w ~ 1 x2"~ 1 upper-left block of the
sign matrix SHtff satisfies the condition of the Theorem for dimension n— 1. By
induction, there is no such simple construction. Π

To generalize the result of the above Theorem to any ordering of the vertices,
αk, of the unit cube in /?3, we interpret each line of Table 1 as a permutation, σ, of these
vertices, that is, βk = σ(αΛ). Thus, if σ is one of these permutations, then the 8 x 8

matrix ((-l)^βlJ'βίιπ0K + 7c(αk + α^);yiO,l, ,7,fc-*0,l, ,7) is orthogonal. It thus
follows that the permutation σ satisfies the relation

((σ(αfc) + σ(α^) (αfc + α,-) is odd if k Φj.

Since this relation remains true for any permutation P applied to (α0, ,α7) and
((7(α0), ,σ(α7)), then the above Theorem remains valid in R3 for any ordering of
the vertices of the unit cube, and hence in /?", for n > 3.

As a closing remark, we mention that the wavelets obtained by Riemenschneider
and Shen [3] with the following ordering of the vertices of the unit cube in R3:

(0,0,0), (1,1,0), (0,1,1), (1,0,0), (1,0,1), (0,0,1), (0,1,0), (1,1,1),



MULTI-DlMENSIONAL WAVELETS 407

can be obtained from the lexicographic ordering (5):

(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1),

with the permutation σ given by the fifth line of the sign matrix of Table 1, simply
by mapping the latter ordering onto the former one.
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