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1. Introduction

This is the continuation of the previous paper [11], in which we attempted
the improvement of the remainder estimate for the eigenvalue distribution of
the elliptic operator of order 2m with Holder continuous coefficients of top
order. We use the same notation as in [11] if not specified.

Let us recall the situation. Let Q be a bounded domain in R*. We con-
sider a symmetric integro-differential sesquilinear form

Blu, o] = Sn o3 auale)Du(x)D*o(s) di

and a closed subspace V of the Sobolev space H"(Q)), and assume the following.
(H1) Hy(Q)cVcCH™Q).
(H2) There exist C,=0 and §,>0 such that

Blu, u] = 8,||ul|%— Cl|ulls for any ueV.

(H3) The coeflicients a,g(x)(|a |+ |B| =2m) are bounded on Q, and for
some 7>>0 the coefficients of top order satisfy

a,€EB(Q) (la|=|B|=m).
ReMARK 1.1.  Since an element of B'(Q) can be extended to an element

of B'(R") (see [10], [20]), we may assume that
(1.1) D) Gup(x)E*P= G| E P for xeR",(EcR"

lo|=1B|=m

by modifying the values of a,, outside Q and replacing §, with another constant
if necessary.

Let A be the self-adjoint operator associated with the variational triple
{B, V, L,(Q)}, and let N(¢) (=N(¢, B, V, L,(Q))) denote the number of the eigen-
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values of A not exceeding 2. Then in general, the asymptotic behavior of N(z)
is given by

(WF1) N(t) = p_j(Q)t#n+O(x=0Pm) a5 t—co
with an appropriate constant 4, 0<<0=1 or
(WF2) N(t) = p_y(Q)t"*"4-O(t"-V/?m logt) as t—>oo .

In [11] we proved that (WF1) holds with §=7 for 0<7=1 mainly when
n=1, improving the known estimate §==/(r+1). Moreover we derived the
asymptotic behavior of the trace U(z) of the heat kernel:

(WFP')  U(t) = T( 2 +1) p_j(Q)t~"2m4- O -mPm)  as t—>+0
2m A
when 0<r<1, and
(WF2) U(t) = 1‘(5”_+1) p_f( Q)7 O(13-Mm log 1) as t—>+0
m

when 7=1 under the assumptions that 2m>n and that Q has the restricted
cone property. (WF1’) and (WF2’) are weak versions of (WF1) with 0=+
and (WF2) respectively, for

U() = S‘; e-#dN(s) .

By these results we are tempted to conjecture that (WF1) may hold with
0= for 0<7=1 in general and that therefore the optimal estimate §=1 may
be attained when 7=1.

In this paper we want to take a step for solving this conjecture. Here we
give main results. We recall that

T, = {x€Q; dist(x, 0Q)<&}, I, = {x=R"; dist(x, 0Q)<<&}.

Theorem A. Suppose (H1)-(H3) and that Q is a bounded domain. In
addition we suppose one of the following.
(a-D) m=1; the coefficients a,z(x)(|a|=1|8|=1) are real-valued; V=
H(Q); and supeso|Te| [E<oo.
(a-N) m=1; the coefficients a,5(x) (|| = | B| =1) are real-valued; Q has the
extension property (see [3]); and supyso |Te| [E<oo.
Then (WF1) holds with 0=3/(27+3) when 0<<r<<3, and (WF2) holds when

T=3.

RemMARk 1.2. Theorem A improves the result by Métivier [9] that (WF1)
holds with @==/(v+1) for 0<r=1, although we restrict ourselves to the
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case (a-D) or (a-N).

Theorem B. Suppose (H1)-(H3) and that Q is a bounded domain. Under
one of the following conditions (WF1’) holds when 0<7<1, and (WF2’) holds
when T=1.

(a-D) or (a-N) of Theorem A.

(b) 2m>n; and Q has the restricted cone property.

(c) V=Hy(Q); and 0Q is in C*"-class.

Remark 1.3.  As was stated above, in the case (b) Theorem B has already
been proved in [11]. Hence the proof will be given only for the case (a-D),
(a-N) or (c).

Further we treat the cases where the coefficients of top order satisfy the
following condition (H4), which is weaker than that of [11, Theorem A. (ii)-
(iii)].

(H4) The coefficients a,(x) (|a|=|B|=m) can be written in the form

a,5(%)=b,ep(x)**? with some real constants b, and p(x)=(p,(x), -+,
ba(x)) where p () is a function only of x; for each 1< j<n.

Theorem C. Suppose (H1)-(H3) and that Q is a bounded domain. In ad-
dition we suppose one of the following.

(d) m=1; (HA); V=HYQ); and sup,so| T, | [6< .

(e) 2m>n; (H4); and Q has the restricted cone property.

Then in the case (d) (WF1) holds with 0=+ when 0<1<1, and (WF2)
holds when v=1. In the case (¢) (WF1) holds with =1 when 0<<r<1.

Remark 1.4. In view of Remark 1.1 it is seen that the conditions (H2)-
(H4) imply that p,(x) (1< j =<n) is a real-valued function in F'(R") and that

(1.2) 0<inf p(x)=<sup p,(x)<<co.
seR" *ER"

For the proof of Theorem A, which will be given in Sections 2-6, we ap-
proximate ./ by operators A, with C*= coeflicients and derive the asymptotic
behavior for the spectral function of (A,. Then using the properties of N(, B,
V, L,(Q)) we get Theorem A.

In order to derive the asymptotic behavior of the spectral function we fol-
low the idea of Seeley [19]-we construct the fundamental solution of the Cauchy
problem for the wave equation by the Hadamard-Riesz method ([17]), apply the
inverse Fourier transform with respect to the time ¢, and use the Tauberian ar-
gument.

For our purpose we need the fundamental solution only in the time before
the wave reaches the boundary and expand it up to any order so that the error
term is sufficiently smooth. To evaluate the error term, we use not the ener-
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gy inequality but the rough estimate for e(¢, »,y), which can be derived from
the estimate for the heat kernel by Davies [3]. We also need to elaborate the
Tauberian argument used by Seeley.

For the proof of Theorem B in the case (a-D), (a-N) or (c), which will
be given in Section 7, we approximate A by A, again and construct a paramet-
rix for the heat equation for 4, by pseudo-differential operators. The global
rough estimate for the heat kernel plays an important role. We don’t have to
pass through the construction of a parametrix for the resolvent kernel, as we
did in the case (b) in [11].

The proof of Theorem C, which will be given in Sections 8-10, is based
on the fact that the spectral function can be found explicitly for the operator on
L,(R") which has the same principal symbol as A,. We use the method of the
wave equation in the case (d), and the method of the resolvent kernel ([8]) in
the case (e).

In the proofs we use the following fact: if Q satisfies the conditions in The-
orems A-C it follows that

c 0<p<1)
(1.3) S d(x)~*dx<{C(logt1+-1) (p=1)
dw cr-? (»>1)

for 0<t<1 and p>0 where C>0 is a constant depending only on p and Q.

In concluding this section we define some notations. Let N denote the set
of nonnegative integers. Let d(x) denote the Euclidean distance from x to 9.
For 7=k-+0>0 with an integer k£ and 0<¢=1 and fE B (R") we set

|flo=sup 1 /)], |f1,=sup sup 19AD=OFII,
*ER" lwl=k z,7€R" [x—yl
E==4
Most of the constants, which will appear in the proofs, depend on one of the
following constants:

M, = n+m+-85"+ 3] |aulo,
lal,IBl=m
M, =M+ > |aul,.

le|=1Bl=m

In the proof of each lemma or proposition below we will use one and the
same symbol C to denote constants which possesses the same property of the con-
stant stated in the lemma or the proposition. When we distinguish these con-
stants, we write C}, C,, +--.

2. Construction of the fundamental solution of the wave equation

Throughout Sections 2—4 in addition to the assumptions of Theorem 4 we
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assume that V=H;(Q) or H(Q) and that a,,&B~(R") (|a|=|B|=1) and
a,5(%)=0 (|| +|B]|<2). We set

gii(x) = aeiej(x) (1 él,] én)
and

(gi(%)) = (7(x))™",  G(x) = det(g;;(x))

where e; is the unit vector whose jth element is 1.
From (1.1) it follows that

(2.1) SIEI"S 3 gUWEE,S8IEI"  for xER"ECR"
and
(2.2) STHEIPS 3 g, ()EE, SO E|? for xER",EER

i,j=1

with 8,=nM, We introduce the Riemannian metric 33} ;.1 £;;(x)dx;®dx; on
R". A is written in the form

A= — 308" ®0,), 0 =2
ihi=1 Ox;
and the Laplace operator is given by
23) A= \/Lé 32 0(VGg()0,) = — A+ 2 0,(1og G)g”D,

The exponential mapping exp, is defined by exp,v=x(1, v) where v=(v,,
-+, 9,) denotes a tangent vector 31j., v,(9/0x;), and x(t, v) is the geodesic satisfy-
ing

x(0,v) = x, %(O,v)zv.

We also define the mapping e, by
ex(u) = exp,((8;(x))~u).

Then there exists R,>0 independent of x such that the inverse function exp;*
exists on {yER"; |x—y| <Ry} and such that e, is a diffeomorphism from
{ucsR"; |u| <Ry} into R". Hence the geodesic distance 7(x, y) from x to y is
defined and satisfies

(24) crt|e—y| Sr(x, y)Salx—y|
with ¢;=7"% max {817, §5'%} = 1 when |x—y|<R,. We set

(2.5) dy(x) = min{d(x), cr'Ro} .
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Let x,=Q be fixed. For a given f&C5(Q) with supp fC {x; |x—x,| <
dy(x,)/3} the function u(t, x)=(cost\/J f)(x) satisfies the Cauchy problem for
the wave equation in L,(Q):

(2—;+J)u(t, %) =0

u(0, x) = f(x), 0u(0,x)=0.

(2.6)

In order to solve (2.6) by the Hadamard-Riesz method we introduce an analytic
family of distributions )(s) on R, which is defined by

o {s (s=0)
70 (s<0)

0)(s) = F(;:—v)’

for Rev<<1, and can be analytically continued to the entire plane C by the
first equality of the following:

(27) L gor(s) = 60¥(5), s9(s) = (1—2)0()

Let us find the solution of (2.6) in the form

(2.8) u(t, ¥) = (costn/Af)(x) = 3313 £, )+ Ru(f3 1, %)
when || <dy(xp)/3¢, where

29 L(fit,x) = | Aix,3)-sgnt-0,0AD(E—1(x, YY) (y)dy

and Ry(f;t, x) is the error term. When (n—1)/2—1=0 the integral in (2.9) is
in the distributional sense, and can be justified by

(210)  T(1—v+8) | sgnt-0,00F—r(x 37) F(3) dy
= sgnt: 8‘(%6‘)" Sr(x,y)25t2 (B —r(x, y)")""*F(y) dy,
— a,(zita,)" S: PN — )iy SS Fle(ro)w(ro) do

with v=(n—1)/2—1, an integer k£ with k—»>0 and F(y)=A4,(x,y)f(y) where
S”~! denotes the unit sphere and e, and +» are defined by

y= ex(u) , dy= ‘p‘(u)du .
We have Iy(f; t, x)=0 when |x—x,| =2d,(x,)/3 and | 2| <dy(x,)/3¢c;, since

{x; Iy—xo|<d‘(3—x°), r(x,y)<d—f,’(ci@}c{x; | x— 2, <2d1?()xo)} _
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Therefore I;(f; ¢, ) is a function in C7(Q) when |¢| <d\(x,)/3¢c;.
Using (2.3) and
g (x)0r0r =1,
8,7
dA4

P S1g(x)9, 4o for ASCH(Q),
r i3

where d/dr is the derivative along the geodesic, we have for any C*= function 4,
(ot ) (A@6E—r(x, 7
Gl o ’
— (A6 {42 ()42 00
%

On the other hand, an elementary calculation shows that
I(f; 0, x) = 2z "VEG(x) 2 Ay(x, x)f (%), 8,1o(f;0,2) =0,
I(f;0,2) =8,I(f;0,x) =0 (I=1).
Hence we are led to the following conditions on 4, and Ry. The amplitudes

A, satisfy the transport equations: A_;=0 and

(2.11) 4«{2" —( A+ 2n—4) A+ A4, =0 (IEN)

with the initial value
(2.12) Ay(x, x) = 27z~ ""D2/G(x) .
The error term Ry( f; ¢, x) satisfies the Cauchy problem in L,(Q):

o o _
(2.13) (a—,ﬁJ) Ry(f;t, %) = Qu(f3 1, %)
Ry(f; 0, %) = 8,Ry(f; 0,%) = 0
where

0ufit ) =|_0stt % 0 dy,
QN(t7 X, y) = —'-’quN(x) .’V) * Sgnt ° 6‘0((”'1)/2"N)(t2—1'(x, y)z) N
Lemma 2.1. For |x—ux,| <2d,(x,)[3 and | y—x,| <d\(%,)/3 we have

(2.14) Ay(x,y) = 2-1g=-1f2 \/—Gm(det (%a_;_»"”

and
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1 -1
(2.15) Ax,y) = —Ayx,y) So § (ifl(le—}:;(e;p; s)v,y) ds
0 y° Y

for 1=1 where v is defined by x=exp, v.
Proof. Set

ox;
ov,’

J

g0 = 5 Thau g, GHo) = det(gh(o)

By (2.11) and the well known equality
AP = Zn—l—r—d—log G*,
dar

we have

d4, . d G(x)
4r—"—r—1 Ay, =
i dar ¢ G*(v) "
This combined with (2.12) gives (2.14).

When =1 (2.11) is equivalent to

d (r’A,) _ 4,

dar\ 4, 44,

from which (2.15) follows. Q.E.D.

Lemma 2.2. Let |t|<<dy(%)/3¢, and K=[n/2]42. If N =3[n/2]+S5,

then we have

Ry(fit, )= | Rult, %, 5)f(2) dy

where Ry is continuous in (i, x,y) E(—dy(%,)/3¢1, di(%)[3c1) X QX {y; | y—x0| <
dy(%,)/3} and given by

@16)  Rytxy) = (TLEME) (At 1) 0uts, 5 ) 8.

Moreover, for an integer k with 0Sk<N—3[n/2]—5, Ry is a C* function of t and

@17)  8iRy(t %) = | (L) (17 010w, 3, 3) ds

holds.

Proof. We note that Qu(f; ¢, +)ECF(Q)C N 71 D(A).
Since 9,0("-Y2-N)(Z—y?) is N—[n/2]-1 times differentiable, it follows that
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sup{|[0;A'Qu(f 2, Iy [2] <dy(xo)[3er} < oo

for 0=i+2j=<N—[n/2]—1, especially for (i, j)=(0, 0), (0, 1), (1,0). Therefore
the solution of (2.13) is given by

@18  Rufitm) =[N g 1 a

VA
— (" sin(t—9)vJ K .

As will be seen later (Lemma 5.7), the operator

sin(t—s)\/ A

vV A(A+1)E
has a bounded integral kernel which is a C* function of 2. Hence we get (2.16)
from (2.18).

(2.17) follows from (2.16) by integration by parts. Q.E.D.

Summing up, we conclude the following.

Lemma 2.3. Let A; and Ry be as in Lemmas 2.1 and 2.2. For f&C7(Q)
with supp f C {xER"; |x—x,| <dy(%,)/3} the solution of the Cauchy problem for
the wave equation (2.6) in L,(Q) is given by (2.8) and (2.9) when |t| <d\(x,)/3¢c;.

3. Fourier transform of the fundamental solution

In this section we find the inverse Fourier transform of 8,0™(£—r(x, y)?)
with respect to ¢ by a direct and elementary method. Let us begin with the
lemma concerning the Bessel function. Let [,(2) be the Bessel function and let

59 =(5)" M) = B (3)

Lemma 3.1. For veN

(3.1), N %t;l/_#dt — VEdh(%).

Proof. We proceed by induction on ». When »=0, it follows from
H1(2)=2sinz/(\/72) and the formula

2 (= sinxt
) ==\ ———dt
Sy =2’ i
([14]). Let us denote the left hand side of (3.1), by G,(x). Suppose that
(3.1),-; has been proved. Differentiating G,(x) under integral sign and using
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(3.1),-, and the formula
U+ 205(2) = 255-:(3)
with 2=t and » replaced by v--1/2 we have
x2Gy(%)+20G,(x) = 2/ 7 Fv-1(%) ,

which implies that G,(x) satisfies the same differential equation of first order as
V74, (x). In addition, it is easily checked that G,(x) is bounded in a neigh-
borhood of ¥=0. Hence we get (3.1),. Q.E.D.

Lemma 3.2. Let leN,0=I=(n—1)/2, |x—x,| <2dy(%,)/3 and f € CF(Q) with
supp fC{yER"; | y—x,| <di(xo)/3}. Then
(32) [" emar| sent-aoc-vr-n@—r(w, y)f(s) dy
—oco Q
= [ 2 A G O, S (9)

for nE R where i=+/—1.

Proof. By the continuity in A we have only to prove when A==0.
First suppose that # is odd. From (2.10), integration by parts and the
formulas

1 A\ cos 2
(=) ) = (5) Fon), Fous) = <2
we see that the left hand side of (3.2) is equal to
o 1 (n-1)/2-1 -
2 go cos N di a,(z—ta‘) S F(r) dr

(= 2((n=1)/2=1)
= 2v7 [ () G sanyr-F )

where
F(r) = { S S,,_lf (ex(ro))Pr(rw)de (0<r=cidi(x,)=R,)
0 (r>ad(x).

Then the lemma immediately follows.
Next suppose that # is even. The left hand side of (3.2) is equal to

727_7 S: cos £\ dt 6;(%‘3:)"”-1_1 So \/tz_

=2 (722" fgn-ry at | )

F(r) dr
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— 2—n+21+2|>\,|n—21—1 S”rn-lF(r) dr SN |7\'l'tg(n—1)/2—t(|7\lrt) dat .
0 1 VE—-1

This combined with Lemma 3.1 yields the lemma. Q.E.D.

RemMARK. In the proofs of Lemmas 3.1 and 3.2 we often carried out inter-
change of integrations and differentiation under integral sign, which are not so
difficult to be justified.

Let us choose p&S(R) (the set of rapidly decreasing functions) satisfying

(3.3) pO0)=1, supppc(—1,1), p(\)=0,
Igléf1 p(A) =¢>0, p:even

([18]) where p(2) denotes the Fourier transform of p(\):
86)={"_ep(r) dn.

For §>0 we put ps(A)=38p()) and have p,(t)=p(¢/8). We denote by e(, x, y)
the spectral function of 4 and put

(34) E(\, x,y) = sgnhee(A\?, %, 9) .

For a fixed x,&Q set §=d,(x,)/3c;,. Taking the inverse Fourier transform of
(2.8) multiplied by p4(¢), using Lemma 3.2 and putting x=y=x, we get the fol-
lowing.

Lemma 3.3. Let N=3[n/2]+5. For A€ R and xQ we have

%ps*dE(x,x,x)= ST b, ®)pe * (0] "4

0<I<n-1)/2

b Ay, ) g e,(1) | 27" di

n-1/2I<N —co
+@r) {7 iR, %, %) dt

where 8=d,(x)/3¢, and

B {2—n+21+1n.-1/21‘(n/2__.l)"'1 (0= (n—1)/2)
T e m—@m—1)2) (>@m—1)2).

4. Tauberian argument

In this section we derive the asymptotic behavior of E(x, x, x) from Lemma
3.3 by the Tauberian argument. For simplicity we often write E(A\) for
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E(\, %, x). Roughly speaking, the Tauberian argument ([5], [6], [15], [18], [19])
states that
p * dE(\) = nag\"'+O(\""%) as A—>oo,
implies
E(\) = a\"+O(AY)  as A—>oo.

For our purpose we must investigate precisely the effect by § and the terms of
lower power of A. Our starting point is

(4.1) B0) =+ (oo dB) () du— oy x B)—EOV)}-
Using
| EvE8Y)—E(\) | 528 2p, * dEQN)
we have
(42)  lpox EO)—EMIS |7 p(e)| EO—o8-)—E(N)|do

£ ol)
<c5lo-t S— () ’_[%m ps * dE(A+18"") do .

Here [o] stands for the largest integer which is not greater than o for a real
number ¢. For REN, N =3[n/2]+5 and x€Q put

Gin 8, B) = paxInl*, G 8,8 = |7 empn)ielrar,
Gy(\, 8, N, x) = S“’ AR (2, %, x) di .
In view of (4.1), (4.2) and Lemma 3.3 we need the following estimates.

Lemma 4.1. There exists C,>0 depending only on k such that (i)-(iv) hold
for \>0,8>0, LEN and RE N, and such that (v)-(vi) hold for x>0, xE€Q, =
di(x)/3¢,, K=[n[2]+2 and 0<k<N—3[n/2]—5.

(1) Iﬁz G\(A+187%, 8, k) ‘ < CyL+1)+ 2" SNkt
=" 1=0

(i) SA Gy(u, 8, k) d,u,—i A <O 2" S-1-1pk-1
- 1 » Y, k—|—1 =0, 2 ;

(iii) ,ﬁ."z G157, 8, &) ’ < CYL+1)150H |

A
(iv) S_h Gy, 8, k) dp [ <Co-*.
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) !I_zl_:z Gy (L1871, 8, N, x) ) S C Ry (%) (L 1)HHS-2K-ke2p -k
(vi) |$“ Gy(w, 8, N, x) du ’ < Gy Ry ()5 2R\
-A

Here and in what follows we set

— -(2N=-2K-1+1)j!
(4.3) Ry 4(x) = max sup |t 0:Ry(t, x, x)|.

ReEmMARK. We will show later (Lemma 5.8) that Ry 4(x)<<oo.
Proof. (i): Since p=S(R) we have

0= 3 G5 8,8 = 33 7 plo) l x+———‘ do

S8, [Cno, 5, (H(5)

LJ-o kythyThg=k S
< C(L+1)+ Sk_\‘ o Y
=0

which is the desired result.
(if): When % is even, (ii) immediately follows from

[" w8 kydu= Sf du [__o@)| =5 [ de

i) PN (5) T+ g) ) @

When % is odd, we have
A A
S_k Gi(p, 8, ) dp = 2 So Gy, 8, k) du

= 2 (=2 ()" o4 [ 7 oo ()

The first term is easily evaluated. The second term is evaluated by Cd~*a,
since

s;;gg'j:p(o)a*-'dmoo for 0<I<k.

Hence (ii) follows.
(iii): By integration by parts we have

’ )\."liL G,(A 413871, 8,k) ‘ = l j:o Mok {Iiz I35, (1) | £| ¥} dt

§CS° 5 8 (L) sl s oy,

=8 ky+hpthy=k I==L \ §
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from which (iii) follows.
(iv): When k=0, (iv) follows from
A A 28
S Gy, 8, 0) dp — 27rS 8p(8p) dp = an o) dp .
- -A =8

When k=1, we have

oo iAs —iAg
er—e
P el e

-0 ,

[ G, 8,k =

— 2 S: (e~ —eiN)py(£)1+1 dt

and
\ Ak S“’ eiixtﬁa(t)tk—l dt ‘ é(k_l)!+l S“ eii}"a’:{ﬁg(t)t"'l}dt
o 0
<C+}C Sa "21 S-Gk=hgk=1-1 r< C |
0/=0

from which (iv) follows.
(v): By integration by parts and (4.3) we have

L
‘ N 3 G(n+187, 8, N, %)

= ‘Sj eMpk {léleiu/aﬁa(t)RN(t, x, x)} dt}

3 z 1 \A by Ak
Ol D, B () 87010k Rt 301

3
= CS > (L+1)k+18—k1-k2 g{N'k(x)ItIZN—ZK-k3+1 dt
=8 kythythg=k

< C Ry 4(%)(LA1)2H18eN-2K-kt2

from which (v) follows.
(vi): In the same way as in (iv) we have

SA G 8, N, ¥)du = 20 |~ (e —e)py(2)t Ry (1, 3, ) d
-A 0
and

’ N [ e R, %, %) dt '

=

S: e=MQk (51t Rog(t, %, a)} dt '

<C Sa 1 §kphe-l QN,k(x)ﬁN—2K+ka+1 dt

0 ky+hgthg=k
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< CRy y(x) 82N 2K k41
from which (vi) follows. Q.E.D.

Lemma 4.2. Let N=5n and K=[n|2]4+2. There exists Cy>0 depend-
ing only on N and M, such that for x=Q
| EOv 2 %)= fen ] S Co{| Aolodh(x) ™2 3314, o™
+RN'N-5”(x)d1(x)N+5”—2K+17\,_N+5”}
when di(x)n=1.

Proof. We can take k=N—>5n in Lemma 4.1 since 3[n/2]45=5n. The
lemma follows from (2.12), (4.1), (4.2), Lemmas 3.3 and 4.1. Q.E.D.

5. Estimates for 4,(x, y) and 8:Ry(¢, x, y)

Throughout Sections 5 and 6 we assume the assumptions of Theorem
A. Moreover we assume that V'=H;(Q) or HY(Q) in the case (a-N).

First we construct the operator (A, approximating 4. For r=k+¢>0
with an integer £ and 0<o=<1 we take a function @&C7(R") satisfying
supp oC {xER"; |x| <1} and

SRn<p(x)dx=1, Snnx‘%p(x)dx:O (1=|a| <k)

([10, Lemma 5.1]), and put @.(x)=E& "@(x/E).
For €>0 we consider the form

0
ox;

Biu, 0] = SQ 3 g/@Du(x)Dp) ds, Dy = —i
where
87(%) = @exg(x), £7(x) = a,y(%) .
From the properties of ¢ it follows that
(5.1) | g’ (x)—g (%) | SCE,  |8°g,°(x)| S C,emnr~1=10,

for some constant C depending only on M,, and some constant C, depending
only on « and M,.

Until the end of Section 6 we take 0<<&<1/2 sufficiently small and as-
sume 0<€<&, Then from (2.1) and (5.1) it follows that

(52) 2AIENS 3] gl)EE, <25 E”

and that B, is therefore coercive.
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We define (ge,;;), Ao, 7e(%,), Ce,1 de1(%), Ae (%, ¥), Re y etc. for (gi7) as we
defined (g;,), A, (%, ¥), ¢, di(x), Ai(x,y), Ry etc. for (g"') in Sections 2-4. In
view of (5.2) we have

(5.3) Ce1 = (2n)'7 max{8i/?, 87'7}.

In order to evaluate 4, ; and 0;R, y we begin with estimating the deriva-
tives of the exponential mapping. Let yE R" be fixed and v a tangent vector at
y. The exponential mapping exp, , is given by exp, , v=x(1,v). Here x(¢, v)
is the geodesic satisfying :

dx ‘l"" =0 (1Sisn)

’+ EI‘:M(

(54 &
%(0,v) =y, E—(O, V) =7

where

5:‘ <6g. hi | OBem ag.,u)g:h ‘

T, =
=/t 0x, ij Ox,

13
2

Lemma 5.1, Let 0<+=<3 and |a|=1. There exists C,>0 depending
only on a and M, such that

|82 exp, , v | < C,EmintrA-lai+10
when |v| <&,
REMARK. We note that

0 exXp, , v
6'1) =0

=1
where I is the identity matrix.

Proof. For simplicity of notation we prove the lemma when n=1. The
proof also works when #=>2 only with a little change of notations. We put

£t 0) = 22, 0)

and have
53) 0= (ae) Ho=0)
where

Ty(*) = Teu(x) .

By (5.2) and the property of the geodesic we have
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(56  DIIEPS B Ly@EE = 3 o), <285 0l

from which it follows that the solution of (5.4) exists on R.
Let |£/ =1 and |v|=¢&""A. From (5.5) it follows that

(g:;) )= ((1)) - S: (_p!f(zx)gz —21"1,(x)§> g:;> (s)ds.

Here we omit v for simplicity. By (5.1) and (5.6) we have
T8 <C, |Tyx)E(=C.
Hence Gronwall’s inequality gives
(.7) [0x(2, )| SC, [9,£(t,v)|=C.
By induction we will show that
(5.8): | O%x(t, v) | S CER-#1 | 0kE(2, v)| S CE™R-HH

when k=2. We have
@:?) =, (—rﬁx)gz —21*1,(x)g) (2:9 @ ds 4 [ Foatev)

for k=1 where F, 4(t, v) is a (2, 1)-matrix given by

F, el —
_ N 0
{ Pusnr =04~ vt 20 rpone) 42D

It is easily seen that
(59 | Fou(t)| =CEP4

when k=2. This combined with Gronwall’s inequality gives (5.8),.

Suppose k=3 and that (5.8); holds for any /,2</<k—1. Then we get
(5.9); using (5.8), for 1=</<k—1 and noting that |G| =C&" for some cER
implies |9,G| <C& ! where G stands for either T'{’(x) or 8yx (¢=1) or
9%(B=0). Then (5.9), and Gronwall’s inequality yield (5.8),.

Finally we obtain the lemma by putting t=1 in (5.7) and (5.8),. Q.E.D.

We need an elaboration of the inverse function theorem.

Lemma 5.2. (i) Let f=*(f;, -, f,): {x; |x| <r}—>R" be a C* function
satisfying f(0)=0 and
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[ f (0 =K>0, |f(x)—f(0)]=L|x]|
for some K>0 and L>0. Set

r'=min{r, 1 X |det £(0)] }, r”=_—"_.’ azL_
2KL’ 2nlaL] F(0)]* 470K 2K

Then f~! exists on {y; | y| <8} and maps it into {x; |x| <r'}. Conversely f
maps {x; | x| <r"} into {y; | y| <8}. Moreover we have

(5.10) [f@)I=2]1f(0)], [|detf(x)] z—;—l det f(0) |
when |x| <r', and

(3.11) () (I =2K

when | y| <8.

(ii) In addition, suppose that f is a C* function. Then for a multi-index o
with || =2 each element of the derivative 05 f~* is expressed by a finite sum of
terms of the form

Coatr-sa(det f @) I 08,

where p=1 and | By| ++--+ | B,| —J=| | —1 with J denoting the number of j such
that |B;| =1, and C, , g, .. s, is a constant depending only on p, o and B3y, -+, B,.

ReMARK. For a matrix A=(a;;) we define its norm by
4] = (Satye.
Proof. Let |x] <7'and |y|<<8. Put
F(x) = F(x) = x—(0)(f()—9) -
Then we have

| F(x)| =

f ) [y—S: {f'(zx)—f'(0)} dt-x] ‘

< Klyl+—;-KL|x[2§%r'+%r' _ %,,

and

| F(x)—F(x")| =

£O7 [ FO—f -+ —0 ) dt-(s—)

= KLr’lx—x’lé%lx——x’].
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Hence F, is a contraction on {x; |x| =<37'/4}. Therefore there exists ¥ such
that F,(x)=w«, that is, y=f(x) with |x|<<3r’/4. Thus it has been proved that
Jf'exists on {y; | y| <&} and maps it into {x; |x|<r'}. (5.10) follows from

@ I=LI(x)]+]fO) =LK | f(0)[|x] 4] f(0)] é%lf’(o)l
and
|det f()—det £/(0)| <nlaL|x| (2] £(0)| )"~ .
By (5.10) we have

| f)] =| | 7wy de| <21 1)1 1]

Hence f maps {x; | x| <<7"} into {y; | y| <&}.
Since

| I—f(0)'f'(x)| <KL|x| g% ,

we have
flx)? = g =) f'(x))Ff(0)2,

from which (5.11) follows.
(ii) follows from Cramer’s formula and

Y =F N Q.ED.

Lemma 5.3. Let 0<t=3 and |a|=1. There exist C,=1 depending
only on M,, and C,>0 depending only on o and M, such that the following holds.
(i) exp;; exists on {x; |x—y| <C,&~"P} and satisfies

|02 exprb] S C,gmrr-larior
(if) The geodesic distance r,(x, y) can be defined and satisfies
| 82[re(x, y)7]| S C Emintrf3~1a1+1,0)

when |x—y| <C,&""~,
(i) dy y(x)=min{d(x), C,&"-"5}.

Proof. (i) and (iii) follow from Lemmas 5.1, 5.2 and (5.3). (ii) follows from
(i) and

(5.12) re(x, y)2 = fv‘_j!g,'ij(y)vivj , V= exp; . QE.D.

For simplicity of notation we put
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PyE) = gminB-k0 (R N),
and have
(5.13) PuOP(E)=Pisi(€) (R, IEN).

Lemma 5.4. Let 0<7=3, |a|=0and IEN. There exists C,>>0 depend-
ing only on 1 and M, such that

I a: A:,l l oé Clg)zl+la|(8)
when |x—y| <C\ &7,

Proof. From Lemmas 2.1, 5.2 and 5.3 the lemma follows by induction.
QE.D.

In order to evaluate 9;R, y we need the estimate for the heat kernel by
Davies.

Lemma 5.5 ([3]). There exist C>0 and §>0 depending only on M, and
Q such that

2
| Klexp(—tA)] (x, 3)| SC max{e, 1} exp( —31*=2L)
for t>0 and x, yEQ.
Lemma 5.6. There exists C>0 depending only on M, and Q such that
lee(n, x, y)| = C max {\*?, 1}
for x=0 and x,yEQ.

Proof. We follow the idea of Hormander. By Lemma 5.5 we have
C max {t-"7, 1} = S"’ ePdyey(n, %, %)
-0
1/t
= S elde (N, x, x) = e7ley(1/t, %, y) .
-0
This combined with
l e!(l‘) x’ y) l éel(x” x’ x)llz e!(x’ y’ y)llz
gives the lemma. Q.E.D.
Lemma 5.7. Let K=[n/2]+2. The integral kernel of

5.14 sin(t—s)\/ A
G-1%) VI AL 1)



EicenvaLug DistriBuTION 11 287

is uniformly bounded with respect to t, s and & when (¢, s) varies on a compact set
T. The bound depends only on M,, T and Q. Furthermore it is a C' function

of (¢, ).

Proof. By integration by parts we see that the integral kernel of (5.14)
equals

— S: F(2, s, Mee(n, 2, y) dr

where F(t, s, \) satisfies

_ 0 [sin(t—s)v/X
Fltos, ) = 5| \/X(x+1)K}

i _xf (t—s)? ) Ksin 2
= v+ 1) D se) \/m+1).}

z=(t—2) VX
with S(2)=2"%2 cos #—sin 2) and

8, F(t, s, \) = —0,F (£, 5, \)

2
_ 1 _K{(t——s) sin 2 Kcosz}
(1) 2z + A1 ) le=t-ovx -
Using Lemma 5.6 and
sup [ S(z)| <oo, sup |[SBZ | oo,
2220 z2=20
we get the lemma. Q.E.D.

Lemma 5.8. Let 0<7=3, |t| <d,(x)/3c,;, K=[n[2]+2 and 0=k=N—
3[n/2]—5. Then we have

| a,:R!,N(t’ %, X)| S CyPoyrog+o(E)FN HK-kH1
that is,
—(R:,N,k(x) = CN-C-PzN+2K+z(5)

where C, is a constant depending only on N, M, and ).
Proof. Noting that (+1)¥ is written in the form
K @
(AH1Y = 53 a0

with
I a!.’(x) l § Cemin(T_2K+]d|,0) é Cg)zK—lwl(e) ,

and using Lemmas 5.3, 5.4 and (5.13) we have
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(5.15) [(AA-1)050¢, n(5, 2, %) |
< {C92N+2K+2(E)82N THnR (12, x)P=8%)
0 (re(=, x)zgSZ) ’

when |s| <d,(x)/3¢c,;. Combining (2.17), (5.15) and Lemma 5.7 we get

t
|0iRe (8, % )| = so ds Sr G, 2)?=s C Py rax+o(€)N 2" F dx
SC Loy sog+o )N -k
which is the desired result. Q.E.D.

6. Proof of Theorem A

Now we are ready to prove Theorem A. Let 0<7=<3. We put o=1—
7/3 and have

d, 1(x) = min{d(x), C,£%}
by Lemma 5.3. We note that d, ,(x)A =1 holds when Cié™A =1, d(x)=C,&" and
>0, or when C,€°A=1, d(x)=C\&° and 7=o. Applying Lemma 4.2 to A,
and using (1.3), Lemmas 5.4 and 5.8 we have for N=5n

©1) IV —w g @] = || B0 23— N |
. Sd(z)<Cle" + SC1!TSd(x)<Cla" + Sc,a”gd(z) (T<a-)
Sd(xkcla" + Scla“ds(x) (-réa)

= Cy{e\*+ IAe,ol oA log&Tl+- IA!,0|05‘°'7\"‘1
+ 23 |4l AN H - P ag42(E)ETNTIN2EAD ) ~NH5m}

1Sy

é CN {g‘rxﬂ_*_xn—l IOgE—l—}—8_0'7\,”_1+8(0‘_2)1"_ZK—2+°-(5"-2K+1)7\,_N+5”}

when C,g™("%\ =1 and &n=1. Here and in what follows we use Cj, to
denote constants depending only on N, M, and Q.
From (5.1) and the interpolation inequality it follows that

(6.2) Blu, u] = (14-C&")"(B[u, u]—C&"*||ul[5)
with some constant C depending only on M, and . By the properties of
N(z, B, V, Ly(Q))(=N(t, B)), (5.1), (6.1) and (6.2) we have
(6.3) N\, B) = N(\?, (14-C&)Y(B,—C&-%))
= N((14+C&MN*+Ce-?)
< p QN HCy{eN" 2" loge14-6-"A" 1

—l-E(‘T—Z)N_2K_2+¢(5”_2K+1)7\‘_N+5"}
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when C,6™>*"% 1\ =1 and Ex=1. Now we take A, sufficiently large and put €=
A3EH) for A=, in (6.3). Since

3o 3r _3(c—2) = _—T

1— = , =
2743 2743 2743 2743

<0,

taking NV sufficiently large we get
NOY)— i _( QNS C {16749 331 log 2}

for A=n,- In the same way we get the estimate from below. Hence we
obtain Theorem A, although we have assumed V=H(Q) or H*(Q) in the case
(a-N).

For general V in the case (a-N) Theorem A is also valid, since

N(t, B, H(Q))<N(t, B, V)<N(t, B, H{(Q)) .

Thus we complete the proof of Theorem A.

7. Proof of Theorem B

We begin with the proof of the following.

Proposition 7.1. Let Q be a bounded domain satisfying supes,|Te|/[E<<co.
Let {Ag}oce<e, be a family of self-adjoint operators bounded from below on L,(Q)
satisfying the following conditions.

(Y) The operator A, is a realization of a uniformly elliptic operator. More
precisely, the domain of definition D(A,) D C7(Q) and

A = | IE ay y(x)D*u  for usCF(Q)
o] <2m

with a, ,E B~(Q) and
> a,.(0)E* 28| for x€Q,E€R",

law|=2m

where 8,>0 is a constant independent of x, £ and &.
(II) The heat kernel of A, satisfies

| K[e—tA] (%, y)| = Cp =" exp {Cae'z"‘t—ﬁ(w> 1,(2,,,_1)}

for any x,yEQ and t>0 where C,, C; and & are positive constants independent
of x,y,t and €.
(ITI) For some 7,0<t=1 the coefficients a, ,(x) satisfy

|0y q(%) | < Cpp€mintr=2mtiai-1810)
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where C,5>0 are constants independent of x and €.
Then we get the estimate for the trace U,(t) of the heat kernel:
(7.1) | Ue(t)—Cpmp JE(Q)t"’”"'I S CH-mim (Jogg=14-£77Y)

for 0<t=min{&®", 1/2} where c, ,=T'(n/2m—+1) and C>0 is a constant indepen-
dent of t and &.

To prove Proposition 7.1 we construct a parametrix for the heat equation.
We set

a6, 5) = 3 a @E* (0SS2m), a(®,§) = am(® £).

Let z€Q be fixed. Choose x&C7(R") satisfying supp «C {x; |x| <1} and
x(x)=1 for |x| =1/2, and set

¥ = (5 )

For t>0 and feC5(Q) with supp f C {x; |x—=z| <<d(2)/2} we define
Hf(x) = @m) [ dente-ten fiy) dy d

Then from the theory of pseudo-differential operators ([7]) we have

(%+J.)(¢Hgf )=R..f

(7.2)
VYH, f=>yf=f as t—>+0

in L,(Q) and

(7.3) R, .f €CY[0, o), Ly2))

where R, , is the pseudo-differential operator with symbol

S 1

——0F @y DE{Yr(x)e~ =5}
e ol

= ———-———1 o . D8 « D2-B fo—ta(x,£)
=25 By % Gmew Do) Dm0}
with the sum taken over 0=<k=<2m, 0=<|a|=<2m—k, B<a and k+|a|=1.
When a> we have
D3 Bet) = 3 Cy, ..y f[ DYi(—ta(x, £))e~t*=H
'Yl+-"+““=m—3 Ll ji=1

with the sum taken over |v;|=1(1=j=/) and /=1 where C,, .. y, is a constant
depending only on 7y, -+, 7,. In view of (7.2), (7.3) and f € D(A,) we have
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e—tIs f — ypH, f— S‘ e—(t—)AeR, fds,
0
from which it follows that
(74)  K[e—tAd(z, 2) = K[H,)(z, 9)— K [S' e—(t—5) e R,_,ds:| (2, 2).
0

To evaluate the term involving R, , we prepare two lemmas.

Lemma 7.2 ([2]). For a multi-index o there exist C>0 and >0 depend-
ing only on n,m, a, 8, and Cpy with |B|=2m (see the condition (II1) of Proposi-
tion 7.1) such that

‘ g ME-DEgag-tast) JE ( < Ct-+lansm ey {,_3< [x—y|*" )”‘2""” } ‘
t

Lemma 7.3 ([2]). Let a>—1,8>—1,8>0 and g=1/(2m—1). Then we
have

S: (t—s)~rimtag-nlZmtB Jg SR” exp {~8<|x—t__%:cl—2~m—)q—8(l—z—_;y—lﬁ>q} dz

S Ct-rrmra+brl exp {—8'(—' x—y|*" )q}
t

for any 8', 0<<8'<<8 where C>0 depends only on,n, m, o, B and &'.
In particular, when m=1 we have

st (t—s)~"2+as=l+P g SR” exp{—&lx_zlz _S]z_y]z }dz
0

t—s s

= 71’”/28"'/2_3(“_{_ 1, B+ 1)t—uﬂ+¢+ﬂ+1 exp (__ aLx_:t&z)

where B(p, q) is the Beta function.

Using Lemma 7.2 we have
v |2m\ 1/2m-
(75) | KR, (% 5)] < Crm exp | (12212107
X 3] EriniT-k0)g-@m=k=la])2mg( )~ 1Bl gmin(T-|al+181,0)
k,a,B

We divide the sum in (7.5) into two cases: (i) 4=0 and B@=a, which imply
] =1; and (ii) £>0 or B<a. Then (7.5), the condition (IT) and Lemma
7.3 yield

(7.6) JCU' e—(—9 AR, , ds:l (2, ) < Ct-"m exp (Co6~2"4)
0

X { 2 tlulﬂmd(z)—lwl+ 2 gf—k—lw|+|ﬁlt(k+|dl)/2’»d(z)—lﬂl}_
l®lz1 k>0 or B<a
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It is easily seen that

(7.7) K[H[](2, 2) = ¢y mp g (R)E"" .

By (1.3), (7.4), (7.6), (7.7) and the condition (II) we get
| Ut — o sy ( Q)57

— .Sn{x[e—u.] (2, 2)— K[H,] (2, 2)} = '

Ct="2m

< S ( J{[S’e—(t—sueR,,ds](z, 2) | dz
d()<t/2m At/ 2m 0 '

S Ctrlm(plim |og p=14- g1 2m | g7 m |og 1)

when 0<t<min{&*" 1/2}. Then Proposition 7.1 immediately follows.

Now we will derive Theorem B from Proposition 7.1. As was stated in
Remark 1.3 we give the proof only for the case (a-D), (a-N) or (c). We may as-
sume that V=H;(Q) or H(Q) in the case (a-N) by the same reason as was
stated in the proof of Theorem A. We define the sesquilinear form

Buol={ 3 ) Du(x) Do) de+ (s, )i

Q 1@l <|B|=m
with
Aug = Po * Gyup

where @, is the mollifier defined in Section 5. B, is coercive when 0<<&<§, for
some &>0. Let A, be the operator associated with {B,, V, L,(Q)}. Then it
is easily checked that the condition on £ and the conditions (I), (ITT) of Proposi-
tion 7.1 are satisfied.

In the case (a-D) or (a-N) the condition (II) follows from Lemma 5.5.

In the case (c) we derived (II) in [13], which was not explicitly written, in
the process of obtaining the estimate for the kernel of (A,+C&-*"—n)-! by

using the L,-theory ([1], [21]).
Now that all the conditions of Proposition 7.1 have been checked, we get
(7.1) . As was given in [11], it follows that

U(t) S exp(CE-2m)U,(1— CE) .
This combined with (7.1) gives
U(t)Scpmp_g(Q)E"*m 4 C {€7¢"m 4 g1-m2m Jog =1}
when 0<t<min{€?” 1/2}. Putting E=1*" we get
U(t)—c,,mp_g(Q)E"m < C{17-mm g1-ml2m [og =1}

for sufficiently small ¢. Similarly we obtain the estimate from below. Thus
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we complete the proof of Theorem B.

ReMARK. The method in this section gives an alternative proof of The-
orem B for the case (b) when V=H{(Q), since the conditions of Proposition
7.1 are satisfied in this case, too (see [22, Lemma 5.1]).

8. Spectral function in the whole space

This section is devoted to the preparation for the proof of Theorem C.
We assume p,€ B°(R") (1= j=n) in addition to the assumptions of Theorem
C, and note that (1.2) holds.

Let us find the spectral function for the operator &, on L,(R") defined be-
low, which has the same principal symbol as /. We define the differential ex-
pression L by

L = L(x, D) = (Ly(x, D), +++, L,(x, D)),

L3, D) = p (=)D, —1-2i(x), i) = -2

6xi

2i(*)

and set
by(x, D)= 33 bL**P, bE)= X beE**E.

1@1=|B|1=m lw|=|B|=m

From (H2) and the inverse of Garding’s inequality it follows that #&)>0 for
£=+0. Let b, be the self-adjoint realization of b,(x, D) on Ly(R"):

D(b,) = H*™R"), bu=by(x,Du for ucsD(,).
It is easily seen that the function
Ex3,8) = T (2,02, 9)7 exp(it, | p,06) )
satisfies
(8.1) Ly(x, D)&(x, 3, ) = £,6(x,3,§) (1=j=n).

Lemma 8.1. (i) The resolvent for b, is given by

82) B ) = ey [, G220 f13) dy

for n€C\[0, ) and f € S(R").
(ii) The spectral function &(t, x, y) for b is given by

&(t, x, y) = (27)™" S E(x, y, E) dE .

()<t

In particular, we have
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&2, x, x) = p_y(x)t"m.

(i) When 2m>n,

-, - [ #4020

Proof. To check the differentiability of the right hand side of (8.2) under
integral sings we set

Fw§) = [ Emy e/ dy.

Since f € S(R") we have
03F(x, &) = [ 02605, 5, £/ () dy = | Qul, E(® 3, () dy
where Q,(x, £) is a polynomial in £ satisfying
|0u )| SC(L+[E1'™)

for some constant C independent of x and £. Using new variables
(8.3) v,={"p0as (15j=m),
we easily obtain

|03F(x, £)| SC(1+ £

Hence we can differentiate the right hand side of (8.2) under integral signs.
By (8.1), (8.3) and the Fourier inversion formula we have

=@ [ S8 1(3) 4y ag

= o) ([ &3, 8)1(9) dy a = ),
from which (8.2) follows.

_ (ii) follows from (i) and the formula for the resolution of the identity
{E,} for b,:

B, =lim lim L (" (5, —(o-+ie) '~ (B, —(c—ie)) o .

5>+0 e>+0 271

The first equality of (iii) easily follows from (i). By interchanging integra-
tions and integration by parts we have



E1GeNvALUE DisTrIBUTION 11 295

(2”)-—n S 8(x: Y, E)d‘f _ (2”)-': SR" dg S;g) 8(-"" Y, E) dt

b(&)—x =0y
_ S = &t x,y)dt _ S” dé(t, x,y)
o (2—2)? o t—x
which is the second equality of (iii). Q.E.D.

In the rest of this section we assume m=1. Let b, denote the realization
of b,(x, D) on L,(Q) with the Dirichlet or Neumann boundary condition. Let
x%,EQ be fixed. For a function f€C7(Q) with supp fC {|x—x,| <d(xo)/2} let
us put

GH  B(finn={ costvrd ([ a0nn) o))
—@o) || | costv/ BB Ew, 5,0 /(5) dE dy

The second equality of (8.4) is obtained by letting &40 in
S” e~ cos t\/\ d, (g e %, ¥) () dy)

0 R"

o

which is verified in the same way as the second equality of Lemma 8.1.(iii).

In view of (8.4) we have E(f;t, x)eC=(Rx R"). Further by using new
variables (8.3) and applying the theory of pseudo-differential operators it is
seen that E{f; ¢, x) is the solution of the Cauchy problem in L,(R"):

_e7t® cos ¢/ B(E) E(x, y, E) f(y) dE dy

Rz

62
(6—t2+5L> u(t, x) = 0
(0, x) = f(x), 0u(0,x)=0.

(8.5)

From the theory of the wave equation it follows that
supp E(f3 1, -)C {x; |a—,| <d(x)}

when || <d(x,)/28, where 3, was defined in (2.1).
Hence E(f;t, «x) is also the solution of (8.5) with &, replaced by &;.
Therefore the spectral function e(), x, y) for b, satisfies

(8.6) S: cost/ N d, (SQ e %, ) F(9) dy>
= [T eostvna ([ e0n 1) )

when |2]| <d(%,)/28,. We define E(\, x,, %,) and E()\,, %o, %) for b, and b, re-
spectively in the same way as in (3.4). Taking the inverse Fourier transform of
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(8.6) multiplied by 4(#) with respect to ¢ we obtain
ps*dE (N, %o, x,) = ps*d E(N, %0, %) = p_g(%) ps*(m| %]

where p is the function defined in (3.3) and 8=d(x,)/28,. Using (4.1), (4.2)
and Lemma 4.1 we get the following.

Lemma 8.2, Let m=1. Then
!E(),, X, x)_/'l‘ul(x) 7\'”l éCd(JC)_l At

when d(x)n=1 where C is a constant depending only on M,.

9. Proof of Theorem C in the case (d)

In Sections 9 and 10 we assume the assumptions of Theorem C. We write
L(x, D) for L(x, D) in Section 8 with p, replaced by p, ;=@.*p; and denote by
A, the operator associated with {B,, V, L,(Q)} where

9.1) B, [u, v] = S 33 bup Le(x, D)*u Ly(x, D)Pv dx .

Q |a|=|BI=m

We note that p, ; satisfies
(92) lpe,j(x)_Pj(x) I écgr’ l 6°‘Pe,,-(x) l écdemin{‘r—-lml-ol
for some C depending only on M., and some C, depending only on « and M,.

Lemma 9.1. In the case (d) we have
| Kle=tie] (3, )| S e exp (Ce2e—8 12210

where C and & are positive constants depending only on M, and Q.

Proof. Let A be the operator associated with {B{, V, L,(Q)} where

Bl[u,v] = Sn B %lzlb,,p p(x)* p(x)? D*u Dfy dx—+(u, v)1,0) -

It is easily seen that
9.3) Ay = Hitq
where
9®) = — & STbphs phi— 3T by e pli—1
4 5= G ERL o g Tl Lt ’
b =b,,;(1=i,j<n).

By Lemma 5.5 we have
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(9.4) | Klexp(—t ] (5, ) SCo 7 exp(—8 12221,
From (9.3) it follows that
(9.5) e—tchy — e—tJ:_$: e—(t—5) e ge—s My ds .

To solve (9.5) for e—t1e we set
Tya(t) = S' Tu(t—s) ge—stids (k=0).
0

By induction, (9.4) and Lemma 7.3 we have

0.6) 1K) (5 3) SC G2 ponies e (5 12=21)

Then it is seen that
e=the = 33(—1) Ty(t)
where the series of the right hand side converges in the operator norm and that
9.7) Kle=tA] = 33 (— D K[Tw(0)].
Noting that |¢|,=<C& -2 and using (9.6) and (9.7) we have

2
| K [e—tAe] (x, y) | <C, t~"2 exp (C&“z t_g__lx—tyl ) ,

from which the lemma follows. Q.E.D.
Lemma 9.2. In the case (d) we have
les(Ns 2%, )| SC A2 exp (CE2NY) .
for A>0 where C>0 is a constant depending only on M, and Q.

Proof. The lemma follows from Lemma 9.1 in the same way as Lemma
5.6. Q.E.D.

Now we are ready to prove Theorem C in the case (d). Applying Lemma
8.2 to A, and using (1.3) and Lemma 9.2 we have

N g )1
- ! (Sd(x)<}.'1+ Sd(,)zx-1> {Eg(x’ %, x)—”’ule(x) X"} dx
SCA"A"tlog )
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for A=max {671, 2}. This combined with
Blu, u]= (14 CE") (B, [u, u] —C&?)
yields
(9.8) NOHSN((1+CE) N4 CE™?)
Sp Q)N +C(E A +A" log \)
when A =max {€7, 2}. Putting E=2""!in (9.8) we get
NA)—p_ (@) A" SC(A* 142"t log A)
for sufficiently large \. Similarly we get the inequality from below. Thus

Theorem C has been proved in the case (d).

10. Proof of Theorem C in the case (e)

For the proof in the case (¢) we follow the resolvent kernel method.

We write A, for b, in Section 8 with p; replaced by p, ;. Then Lemma
8.1 gives

(10.1) H[(A—2)1] (x, &) = PL2m g () (— N) e

sin(nm [2m)

If we write (9.1) in the form

B, [u, v] = S 31 ais(x) D*u DPo dx
Q 1e1,(B sm
we have
(10.2) |aga(®%)—aue(x)| =CE (la|=|B|=m),
|8Y a;p(x)' éCyemin(T—2m+l¢|+lﬂ|—|71.°) (|oz|, lﬁlém)-

By (H2), (10.2) and the interpolation inequality we have

(103) B fu, u]2 2 [l i—Ce" full
for 0<€<§, if we choose >0 sufficiently small. Then it follows that
(104) Bl =M 0] ZCs g1l 1 [l

when | A | = C; €7%” for some constants C; and Cy depending only on M, and Q.
If we replace O with R", (10.3) and (10.4) are also valid.

Lemma 10.1. For any p>0 there exists C,>0 depending only on p, M,
and ) such that



E1GENVALUE DisTRIBUTION II 299

| KA (3 )= K [(A2)] (%, 2)]

[\ |72 [ |\ 12m\P
=675 ity ),

when 0<E<CE,, AEC\[0, o) and |\| =& where dy(\)=dist (A, (0, oo]).

Proof. The lemma is essentially due to Maruo and Tanabe [8, Lemmas
4.1, 4.2 and 7.2). Taking care of the dependence on &, using (10.2) and (10.4)
and following the argument of [8] we obtain the lemma if we add the condition
[A] =&
For example, in the proof of [8, Lemma 4.1] we have to estimate
[ S a@s()DenDruDds|
<o N Y

Q |a|,|BI<m

11:

and

I, = |$ > a,ip(x)y%('f)D“uDﬂ’y\pm dx{

Q al,I1Bl<m

for a fixed 2=Q where + was defined in Section 7. Using (10.2) and the in-
terpolation inequality ([8, Lemma 3.4])

lolli=C I =B lo] ], + [ ] [lollo) »
we have
L=C 3 e7tmri=t il d(z)= 1= lul |y lol]ip
=cCx (51 M 1/2m)—2».+|u|+|ﬂ| (d(z) N llzm)—lw|+m
X (lleellw+ 1017 [llo) (ol =+ 13[4 [[0]]o)
S C(d(=) MmNl b+ I uello) (2l [N 12 [[0]]o)

when |\ | =max{~?" d(z)~*”}. In the similar manner I, can be evaluated.
Based on these estimates the lemma can be obtained. Q.E.D.

Now we apply Pleijel’s formula ([16]) to e+, ¥, x). In its original form
Pleijel’s formula needs the assumption that the support of e+, x, x) is contain-
ed in [0, o), but we may weaken it to the assumption that the support of
e,(+, x, x) is bounded from below. Hence we have

(10.5) eo(t, %, X)— Su K A—2)] (5, 3) d

271
= 27| K[(Ae—2) " (%, %) |
for t=&7*" +>0 and A=t+ir where L(\) is an oriented curve in C from X to
A not intersecting the interval [—&%", oo).
By (10.1), (10.5), Lemma 10.1 and the same calculation as in the proof of
[8, Lemma 8.3] we get
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(10.6)

Y. Mivazaxi

|ex(t, %, x)— g () 7] S Co 8(x) 0 rn-02

for any 0<<@<1 when t=&2" where C, depends only on 6, M, and Q. Putting
0= and integrating (10.6) on  we have

[ Ne(t)— 4, (€2) (m| < Crn=2m

when =¢&72".  Then the same calculation as in the case (d) leads us to Theorem
C in the case (e).
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