Mori, M.
"Osaka J. Math.
29 (1992), 497-529

FREDHOLM DETERMINANT FOR PIECEWISE
MONOTONIC TRANSFORNATIONS

Makoro MORI

(Received July 24, 1989)

1. Introduction

Let F be a piecewise C? transformation from a finite union of bounded
intervals I to itself. We assume
(A1) The lower Lyapunov number £ is positive:

£ = lim inf ess inf - log| F*(x)| >0.
el p

(A2) The mapping F is nondgenerate:
essinf | F'(x)| >0.
zel

(A3) There exists a finite partition of I into subintervals, F is monotone
on each of the subintervals, and the restrictions of F, F’' and F’’ to each of the
subintervals can be extended continuously to its closure.

Here F” stands for the n-th iterate of F:

n—1
P = iF(F (%) n=>1.
x n=20,

In the present paper, we are concerned with the spectrum of the Perron-
Frobenius operator P. The Perron-Frobenius operator P associated with F
is originally a nonnegative contraction operator defined on L', the set of integra-
ble functions, by

[ Pr@ g ar = fx) eF () v,

where g belongs to L=, the set of bounded measurable functions. The spectrum
problem of P as an operator on L! is rather trivial: for instance, it is found in
[14] that the unit disk is contained in the spectum of the Perron-Frobenius ope-
rator on L!. Therefore, we will restrict P to BV, the set of functions with bound-
ed variation. We consider that BV is a subspace of L! functions which admit
versions with bounded variation. We define the norm on BV by
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V() =var(f)+] /1 dx,

where
var (f) = inf {the total variation of f such that f = fa.e.} .

Then BV is an invariant subspace of P under the assumptions (A1)-(A3) (cf.
[8]). We will study the spectum of the Perron-Frobenius operator P regarded
as an operator acting on BV and denote the spectum by Spec (F).

As is discussed heuristically in Y. Oono and Y. Takahashi [13], the formal
determinant of /—zP, called the Fredholm determinant, coincides essentially
with the reciprocal of the zeta function (Ruelle-Artin-Mazur zeta function):

tE@=exp [ D12 3 P,
"E1 R =R
which is completely determined by the periodic orbits and the gradients at
these points. In other words, Spec(F) is expected to be determined by the
zeros of the Fredholm determinant. Our purpose is carried it out in a rigorous
way.
Our rseult is as follows:

Theorem A. Assume the conditions (A1)-(A3) above. The reciprocal 1/5(2)
of the zeta function has analytic extension to the complex domain {z: |z| <<€}, and

Spec(F)N{n: [n|>e 8 = {27: 1/5(x) = 0, | 2| <ef} .

RemARk. (i) If the dynamical system is weakly mixing, then the topolo-
gical entropy A(F) equals the lower Liyapunov number £.

(i) We only need to study the spectrum of P which is greater than e~f in
modulus because it is proved in G. Keller [5] that

{z: | 2| <e P} C Spec(F) .

The importance of the study of the spectrum of P consists in the fact that
the most of the ergodic properties of the dynamical system can be obtained from
Spec(F).

(a) Under the conditions above, the eigenspace associated with the eigen-
value 1 determines the ergodic components of the dynamical system. In par-
ticular, the eigenspace is a subspace of the space BV and is isomorphic to the
space of F-invariant density functions. This was first proved for F which is
piecewise C2by A. Lasota and J.A. Yorke [8] and extended to the case C'***(£>0)
by G. Keller [6]. The condition that F is C' is not sufficient: there exists an
example which has no finite absolutely continuous invariant probability measure
(cf. [2]). The condition (A1) is also essential: there exists an example for which
F’(x)>1 except only one point x, (#'(x,)=1) and it also has no finite absolutely
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continuous invariant probability measure (cf. [14], [18]).

(b) The eigenvalues on the unit circle determine the mixing properties of
the dynamical system:

Suppose that 1 is the simple eigenvalue of P (this is always possible when we
restrict F to one of the ergodic components). Then the dynamical system in-
duced by the mapping F is mixing if and only if 1 is the only one eigenvalue
on the unit circle (actually, it is Bernoulic cf. [1]).

(¢) The eigenvalues in the unit disk determine the decay rate of correla-
tions for good test functions, although as we stated before, the supremum of
decay rates for functions belonging L' equals 1. If we restrict P to BV, we can
determine the decay rate of correlation, because, as will seen soon below, [ f(x)
g(F"(x)) du is described in terms of Fredholm determinant if f €BV and g €L™.
Suppose that 1 is the unique eigenvalue on the unit circle. Recall eigenvalues
are isolated in the domain {\: |A|>e™*P}. Let » be the second largest eig-
envalue in modulus, then % is the decay rate of correlation, that is, for any
fEBV

[ )8 @)) dp—{ fau (g d = 06,

where y is the invariant probability measure and gL~ ([3], [11]).

Now let us state the main ideas to prove Theorem A. We want to define
the Fredholm determinant det (/—=zP), but the Fredholm determinant can not
be defined in the usual sense, because P is not a compact operator. 'This is the
difficulty in establishing Theorem A. We need three ideas to overcome it.

The first idea is to use the renewal equation (§3), which will mark the struc-
ture of the dynamical system clear ([4]). Let us illustrate how to construct a
renewal equation. For fEBV and gEL*, put

(1@ = 52" | @) g @) ax.
Then, we get the formal expression
(£.8) () = | I—=P) flx) g() a,

which suggests that the spectrum problem of P will be reduced to the problem
of singularities of the complex function (f, g)(2). Hence it is expected that
(f, &) (2) is asymptotically equal to C/det(I—=zP) for some constant C. Notice
that

(/,8) () = [ f3) 8() dx+-2(P 0) ().

Hence, if we can construct functions f; and coefficients ¢, ; such that

2P fi(x) = 33 i,,(2) f(%) »
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then we will obtain an equation
s =X+D(2) s,

where s, X are the vectors with components (f;, £) (2), S fi(») g(x) dx and ®(z) is
the matrix with components ¢; ,(2), respectively. This is an analogue to what
is called the renewal equation in the theory of Markov processes. Our goal is
to prove the determinant det(/—®(z)) plays the role that the formal determinant
det(I—=P) is expected to do. We will call det(/—®(z)) the Fredholm determi-
nant.

The construction of ®(2) is straightforward for Markov mappings (cf. [4]).
This method can be applied to certain simple non-Makov mappings such as
B-transformations and unimodal linear transformations. In the latter cases, the
renewal equation was constructed in [9] on the usual symbolic dynamics and the
Fredholm determinant is proved to be an analytic funciton in |2|<<ef. Thus we
can see that the singularities of (f, g) (2) are the zeros of the Fredholm determi-
nant, and Spec(F') is characterized by the zeros of the Fredholm determinant.
In [10], we extended the results to some piecewise linear transformations with
different slopes. But this method cannot be applied to general cases even if
they are piecewise linear.

The second idea is to introduce the signed symbolic dynamics (§2). In
the above cases, the usual symbolic dynamics are determined essentially by the
itinerary of the only one division point of the partition stated in (A3), but for gen-
eral piecewise monotonic transformations, we have to trace the itinearies of all the
division points even if they are piecewise linear. If we persist in using the usual
symbolic cynamics the difficulty would arise because we have to trace the orbits
of both endpoints of each subinterval at a time. On the signed symbolic dyna-
mics, it suffices to trace each orbit separately to construct a renewal equation.
Thus, for piecewise linear transformation, we succeed to define a finite dimen-
sional matrix &(z) which we call the Fredholm matrix. Then Spec(F) is cha-
racterized, just as in [9] and [10], by the zeros of the Fredholm determinant
det(I—D(2)).

As we showed in [11], these two ideas are sufficient to prove Theorem A when
the mapping F is a piecewise linear transformation ([11]). The Fredholm mat-
rix which, as is mentioned above, is determined by the orbits of the endpoints of
the subintervals corresponding to the aplhabets, has sufficient information to
describe the structure of the periodic orbits (cf. [4], [14], [15]). In particular, we
can calculate the zeta function £(2) by the Fredholm determinant and get

det(I—d(2)) = 1/8(2) .

Piecewise linear cases are also discussed in F. Hofbauer and G. Keller [3]. Some
related topics can be found in [7], [12] and [16].
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The third idea is necessary to approximate general piecewise monotonic
transformations. It is the approximation of F by formal “piecewise linear trans-
formations” Fy as stated in §3. These {ormal piecewise linear transformations
are defined on the symbolic dynamics on which F is realized. Moreover, their
Fredholm matrices ®y(z) are proved to be finite matrices as in [11]. Then
the spectrum of the Perron-Frobenius operator P can be characterized by using
det(I—Dy(2)) as follows:

Theorem B. Let 2, be a complex number such that | z,| <et. Then 27" be-
longs to Spec(F) if and only if there exists a sequence {2y}%-. such that limy_.
2y=2, and det(]—Dy(zy))=0.

By Theorem B, we can calculate the spectrum of P and then we can prove
Theorem A.

The proof of Theorem B will be given in §6. We define in §5 the zeta
functions {y(2) corresponding to Fy and show that they converge to £ (2) in the
unit disk |2|<1. Since det(/—®y(2))=1/y(2), then the proof of Theorem A
is reduced to the proof of the uniform boundedness of det(/—®y(2)) in N for
any fixed = with |z| <ef (Proposition 7.1 in §7).

The necessary properties of ®y(z) are summarized in §5, we will descuss
the limit @®(z2) of ®y(2) in §4, and the notations which we use throught this
article are listed in §2.

2. Notations

2.1. Alphabets, Words and Sentences

We will define several notations most of which are used in [11]. We denote
by {{a>}.,cs the partition of I into subintervals which satisfies the condition
(A3) in the introduction. Thus on each subinterval <{a) the mapping F is
monotone and can extend to cl<a> as C? function, where cl J stands for the clo-
sure of a set /. We also denote the interior and the boundary of a set J by int J
and 0/, respectively.

We call each element a of the index set 4 an apphabet. For an alphabet
a, we define sgn a by

sgn a = sgn(F"'|int(,)
_{—}— if F'(x)>0 for xEintla),
| — if F(x)<0 for x€intla).

A finite sequence of alphabets will be called a word and for a word w=
a,-+-ay(a; € A) we denote

|w| = N (the length of ),
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w[K]=ag, (1KZN),

[w]y = ayrayy (ISMZN),

sgnw = ﬂ sgn a; ,

0w = ag,,--ray (0KK<N),

@y = [ F-+({ap) = wel: Fii(z)eda), 1<i<N} .
Thus <w) is the subinterval corresponding to a word w. We denote the empty
word by & and define |&| =0 and sgn E=-+. Let W)y be the set of all words w
with length N and {w> =@ and set W= U 5.0, Wy, where W= {€}.

We call an infinite sequence of alphabets ¢=a, a,-+- a sentence and denote
the N-th coordinate by

a[N] = ay,
the initial N-word by
[aly = ay--aw,
and the shifted sequences by
0 o = ag,y ag.r (K=0).

For instance, the word a,:+-ay, is denoted by [fa]y. For words u=a,---ay, v=
by-++by, and a sentence a=c, c,-*, we denote u-v=a,-*ay b,--:by and u-a=
alnloaN cl Cznc..

Let

{a} = N c<fals>.

We denote by S the set of all sentences which satisfy {a} ==@. By the assump-
tion £>0 the set {a} consists of exactly one point if a€S. We denote by S,
the subset of those sentences @ €S for which Nx.; {[a]x> 0.

We introduce orders in the following way. We write

{x<y if o=+,
gy = .
x>y if o= —.
(i) For alphabets a;, a,€ 4,
a<a, if x<wx, forany x,€E<{q)> (i=1,2).
(1) For words w,, w,& W), and for N< M,
w<w, if [w]y=[w,]y and w[N+1]<,w,[N+1] forsome NN,

where o=sgn [w,]y.
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iii) For sentences a;, o,
a,<a, if [a)y<[a,]y for some N.
The following is an immediate consequence of the definitions above.

Lemma 2.1. ([11]) (i) For words w,, w,& W(w,, w,=E), w,<w, if and
only if x,<x, for any x;E<w;>.
(if) For sentences a;, a, €S, ({a;} #+ {at,}), ey <a, if and only if {a,} <{ct;}.

We consider the topology on S induced by the order.

2.2. Plus and Minus Expansions

For each x€1, we define a sentence a*=af a3+ €S,, called the expansion
of x, by the condition Fi~Y(x)&E<a}> for all &. Then, x={a"} since £>0. On
the other hand, with each BE€S, we can associate a unique x&JI such that
a*=p. Therefore, we can identify I with S,. Moreover, by the assumption
(A3), F, F' and F” can naturally extend to the functions on S and F can be
considered as the shift operator on S. Thus we mainly consider them on the
symbolic dynamics hereafter.

As we saw in [11], the structure of the dynamics becomes much clearer if it
is considered on the signed symbolic dynamics. For x&1, let us denote

xt =supa’
<=

and
¥~ = infa?.
I>zx
The sentences x* and x~ are called the plus expansion and the minus expansion
of a point x, respectively. We denote S= {x*, x~: x=I}.
Note that by the assumption (A3) we can define the values of F at x* and x~
by

(2.1) F(x*) = lim F(y),
FZNES!

F(x™) = lim F(y).
Iy {=")

For a word w, we denote the expansions of endpoints of <w) by
w" = sup @’ = (supy)”*
yelw) yedw)
and

w~ = inf &’ = (inf y)~.
yedw) yedw)

Among the elements of S they are of special importance. For a word w, we
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write @ to express one of w”, e={+, —}. We distinguish the signed words
w”EWy and v"EW,, if N+M even when o=r and {u’} ={v"}. We express
[a]¥ for a sentence « instead of ([er]y)°.

Let

@) =¢€@’) =0 o€{+,—},

and we call €(x”) and &(»”) the sign of x” and w°. Since there will occur no
confusion, we use the conventions that &(6” w”)=o for n>>1 whenever such an
expression appears in below. Now set

A= {a*,a": ac A} (the signed alphabet set),
Wy = {w", 0w : wsWy},
w :NQ Wy (the signed word set),

We define an order on S by
(i) a™>F ifa>B (a,BES, o,r€{+, —}),
(i) at<a” (aES).

Note that (ii) is natural by the definition of x™ and x~.
As a notation, we adopt for &, S S

s [Uar {8} it {ar<{8},
(2:2) @8 )_{({B},{a}) otherwise.

2.3. Additional Notations

Denote a formal “derivative” F% (introduced in the next section) on the
symbolic dynamics by

1) — E@ly)—F(alv)
(2:3) FM@ = T dhes qal>

b

where Lebes [ is the Lebesgue measure of a measurable set J. We define for
a sentence «

_[F(@) if a€S,
(2.4) C(a) = { Fi(a)™ if {[aly>*0 and <[a]yy> =0,
and for N>1

Moy if el *0,
C(a) otherwise.

@5 o=

For convenience, we set Co(ct)=0.
We also define
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(2.6) C™a) = :ij:C(e" a),
2.7) Ci(e) = 11 Cul(0 ).
and

(2.8) Ay(@) = |Cy(@)| — | Cy—v(a)] -

For a statement L, we adopt

1 if L is true,
0 otherwise.

8[L]={

We need the expression §[L]=4 frequently in the following. Thus we write
o[L] = 8[L]—%
_ { +4% if Lis true,
| —% otherwise.

We also use the expression &[x<y: €], o[x<<y: €] instead of &[x<<.y],
a[x<.y] (€€ {+, —}) for typographical convenience, respectively.

3. Renewal equation

For an interval J, we define

oo

(Eix) =IO

u

where the summation 33, is taken over all y&€ J such that F*(y)=x. For an
interval J and g€ L", set

@) = (11,8) (3) = 532" | 1,0 2F"(x)) ax
where 1; is the indicator function of a set /. Then we get
si(2) = ;2‘}’ 2" S P" 1,(x) g(x) dx .
Therefore,
#) = | (x5 %) g(o) v

For simplicity, if J=<u>, we write s/(z; x), s7(2) and 1; in place of s*(z; x),
sg(2) and 1,, respectively.

As in the previous paper ([11]), we will extend s“(z; x) (#€ W) to a function
on the signed symbolic dynamics by dividing s*(z; x) into the sum of two quan-
tities s*(2; ) and §*"(z; x) given in (3.1) below. On the symbolic dynamics,
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the mapping F acts as a shift operator and —log|F’| plays the role of a weight
function. In our case for a general piecewise monotonic transformation, this
weight function may depend on all the coordinates, and the construction of the
renewal equation becomes difficult. Therefore, as we stated in Introduction,
we approximate F by formal “piecewise linear transfomration” Fy and F' by a
formal ““‘derivative” F} which depends only on first IV coordinates.

As we defined in (2.3), we set

1y = Faly)—F([a]y)
Fi@) = Lebes {[@]y>

It is convenient to denote the shift operator by Fy when we consider the weight
function —log|F4|. Although F} is the approximation of the weight function
F’, we may say that Fy is a formal piecewise linear transformation which appro-
ximates the mapping F.

REmMARK. The formal “piecewise linear transformation” Fy may differ
from the piecewise linear transformation whose graph connects points (-, F(u~))
and (u*, F(u*)) for each u&€ Wy, and the symboloc dynamics of such a piecewise
linear trasformation does not necessarily coincide with the symbolic dynamics
of F.

We now proceed to construct the renewal equation which is our main tool.
First of all, for # S, EC and xE1, define a formal power series s*(z; x) by

(3.1) s¥(z; x) = s¥(z; x; F)
=W§Vz""' |C'"Nwex)|o[w-x<a: &@)] d[w[l] = @[1], (fw)-xES].

Lemma 3.1. (i) Let a~, B*€S, and suppose that a [1]=pR*[1] and

a~<B*. Then

$*7 (=5 %) +5P (25 x) = s@ TP (z; x) aewx.
(i) Suppose that {a} =18}, @[1]=PB[1] and &(a) &B)=—(a, B<S). Then
(3.2) sz %) = —sﬁ(z; x) a.e.x.

Proof. This lemma immediately follows from the definition (3.1) and the
fact that

clw-x<a ]to[w-x>B" =S[w-xE[a, BY)].

Now let us construct the renewal equation on the signed word set W by
using s*(2; x) defined by (3.1). Let for @S, 2EC and x<1, we define for-
mal power series X(&, x) and X*(z; x) by

X(&, x) = o [x<a:&()]

and
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X = { gy if {08} € Usey <>,
, % 2" C@) X(0" &, x) otherwise.

Also we denote for gL~

s3(2) = s3(2; F) = Ssa(z; %) g(x) dx

and

@ Y LT

X3(a) = 23z F) = { X3 0) g(w) do
Note that for aeW
X(@,x) = &(@) alx, <a] a.eux,
and that
- a+ 8%)

(33) X @@ = | g d

for =, BreSif a-<B* and {fa7}, {08} € U yep Kw).

DeriniTION. We denote by s,(2)=s,(2; F') and X, (2)=X,(z; F) the infi-
nite dimensional vectors whose components are the formal power series s%(z) and
X¥(z), #E W, respectively.

Set for a=S and s€W

(3.4) b(@, v) = &(@) {Ci,)—C -1y (@[1]-9) o [0 <0a]
— Aw(@[1]-9) o [0<a],
and define a matrix ®(z)=®(z; 4) on W with the alphabet set 4 by

(3.3) @()i7 = { i;o " C* @) p(6" @, 0) otherwise.

This is the generalization of the Fredholm matrix ®4(2) given in the previous
paper ([11]).
Lemma 3.2. Let Jy=(0&, [0a]5*®). Then
P 9) = X(@, )+ 3 3 #Ay(@ll]-) lo<[saly: &@)sgnalt]
+ 8[v = [6a]y, sgn (1?[1] = —]} s°(=; »)+= Z‘, AN([&]NH) sgn @[1] s/#(z; x) .
Proof. First of all let @ =S and write (3.1) as

(3.6) s*(z; x) = X(&, x)
+“52W8[u-xES] U CHY @[] ux) | ola[l] - u-x<a: &(&)] .
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Now we approximate F by Fy (N >1) or C by Cy. Recall that

Ay(@) = {|Cy| — | Cy-l} (@)
and

1C@)] =3 Av@),
Then for vE W)y and u-xE<v) we get
olu-x<<6a: &@)sgn a[l]]
= glv<[0aly: &(@) sgn &[1]]4-8[v = [6&]y, sgn &[1] = —]
+sgn @[1] é[u-x< Jy].

Therefore the sum # & I in the right hand side can be divided into the sums in
N>1,vEWy and u-x=<v) as follows:

(3.7
3 8[u-xeS] &7 M @[L]-u-v) | o [@[1]-u-x<a: £(@)]
=uEWz| C(a[l]-u-x)|olu-x<0a: &@) sgn @[1]] 8[u-xS] 2" | C*lu-x)|

oo

=23 ey, A 0) Sl x €8] CF )]
Xo[u-x<0a: &@)sgn a[l]]

=NZ°;]1 ”E%I 2Ay(a[1]-0) S[u-x=S] 2 | Cl*l(u-x)|
Wi {o[o<[6a]x: &(@) sgn a[1]]
+8[v = [0a]y, sgn @[1] = —]+sgn a[1] 8[u-xE [y}

=323 =A@l o) Sz )

x {olo<[0aly: &(@) sgn @[1]]+8[v = [0y, sgn @[1] = —}
+ 3 #Ay((@y+) sgn 1] s7x(3; %)
This porves the Lemma.
Now our renewal equation is as follows:
Proposition 3.3. As a formal power series, we get the equation :
(3.8) £4(2) = Xg(2)+D(2) 55(3) -

Proof. By Lemma 3.1 and Lemma 3.2, the right hand side of (3.7) is equal
to

(3.9) Nz”: 31 2Ay(@[1]-) s (z; %)

Wy
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X {ofv<[0a]y: &(@) sgn @[1]]+8[v=[0a]y, sgn @[1] = —]
+sgn @[1] §[v= [0a];,'.@)]}
+ 3 2Ay([@ly) sgn al1] (a3 %)
Recall that x* <x~ and that &@)=&(6&), thus

(3.10) olv<[0a]y: &(@)sgn @&[1]]+48[v = [6a]x, sgn &[1] = —1]
+sgn a@[1] §[9 = [6a]5"®]+8[0=60a as an expansion]
= &(@) sgn a[1] c[0<0a] .

Consequently we get (3.8) if {§a@} € U ,ep 9<w), indeed (3.8) follows from
substituting (3.10) for (3.9), Now let for & which satisfies {0} & U ,ep <.
Since

3 #by([@lvs) = C(@)] = =sgnall] C(@),
we get from (3.9)
(3.11)  F(z; x) = X(@, %)+ Ni ?E%‘,NzAN(a[l]-z‘)) {o[v<[6aly: &@) sgn &[1]]
+8[v = [6a]y, sgn @[1] = —]+sgn @[1] 8[2 = [a]x* @]} s'(z; x)
+2C(a@) **(z; %) -

Then applying (3.11) to s**(z; x) (n>1) repeatedly, we get (3.8). The proof
is completed.

Corollary 3.4. (i) For acsW,
(a3 5) = X(@ )+ lim { 3 #1Cu(@l1]-0)| {oo<[0a]y: @) sgn al1]
180 = [Batly, sgn @[l] = T 5'(s; 2)-+-] Cu(@) | sgn al1] s7a(a; )}
Moreover, if F=Fy, for some N, then we get:
(x 8) = (@, 9+ 3 21 Co(@ll]-)] {o[o<[0a]y: &(@) sgn al1]]
+-8[0 = [0],, sgn al1] = I} *(3; )+5] Cu(@) | sgn @[1] s'(s; %),

where Jy=(0a, [0a]5*®), as before.
(i) Suppose that F=Fy for some N. Then for o=, B* €W such that a~<fB*
and [a~|y=[B*]x, we get

s@T BN (25 %) = X(a~, ¥)+X(B*, x)+=z| C(a”)| s'(z; %),
where J=(0a~, B").

Proof. The assertion (i) is a direct consequence of Lemma 3.2, and the
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assertion (ii) follows from (i).

4. Operator ®

Now we will specify the domain and the renge of the operator @(z) so that
&(2) be the bounded operator from a Banach space, denoted by 2 in below, to
another Banach space . For a while, we fix a real number p so that e"¢<p<1,
and we only consider z which satisfies [2| <1/p. By the definition of & we can
take a constant K;=K;(p)>1 such that

(4.1) ess sup [C™(x)| <K, p",
Lebes <up<K, p'' (uEW).

Lemma 4.1. Let 1<N<oo,
(i) The norm V ((F4)™")) is uniformly bounded in N.
(ii) Denote for uc W and |u| <N < oo

ICv@)| = 1Cu@®)| i zE<w,

(%) = 0 otherwise.
Then we get
(4.2) V (h,,n) <2K, Lebers <u) ,
where

_ supee|F@)]
(inf.e/| F'(x)])?

Proof. First note that

()]~ [ <.
F'(x) F'(x)
Therefore

var (h, y) <K, Lebes <u)>
and

| S h, y dx| <sup| f¢»| Lebes <u
<K, Lebes<u) .
This proves Lemma.

We denote by S the space of those vectors (s");ep with s’€C whose com-
ponents satisfy the relations

(4.3) E@@) s* = &(0) 5"
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whenever {#} = {7} and #[1]=9[1], that is, whenever # and @ express the same
point.

Now let B=B(z; F) be the set of s=(s")ES which satisfies the following
three conditions:

(i) The following limit exists for @ =S, and coincide with s* if ¥=a € W.

(4.4) ¥ = lim &(@) 1
~limet@ 5,
(ii) lIsll = llsllt-1lslly<<oo .
where
llsll = sups°| ,
e
and
[Isly = sup I<f, 21,
where
(45) <S> =timsup 33 Je SO L
(i) =2 Clu)| ™ .,

sew |  Lebes <u)
ReMARK. We will prove in Lemma 6.1 that for any f BV the limit in
(4.5) exists if 27¢=Spec (F).
Lemma 4.2, (i) If ||s,(2)ll,<<oo for gEL™, then ||s,(2)||e<oo.
(i) Let
lisll, = sup sup {|s*+-s"|r~V: [@]y = [Bly and &@)&(B)= —} .

w21 3,8e’
If ||s|l,<<oo for some 0<r<1, then ||s||,<<oo.
Proof. (i) By Corollary 3.4 (i), we get
(a3 %) = (@ %)+ lim [ 3 21 Cy(alt]-0)] fofo<[0aly: &(@) sgn 1]
(46) 5[0 = [0aly, sgn all] = I} (3 %)-+5| C(@)]sgn al1] 'x(z; )]

By Lemma 4.1 (i), the third term in the right-hand side of (4.6) converges to
zero as N— oo and the sum in the second term is absolutely convergent uniform-
ly in N. This proves (i).

Note that for f €BV the inequality
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PAREEIAC)
uEW 1—r

holds for a suitable choice of a version of f, such that f=33,c f, 1,. Hence

llsll, = sup 33 | fu 5"

V(=1 ueW

<sup X3 |f.lr|sll,

V(H)=1u4EW

[Isl],
(4.7) <o

This proves (ii).
Now we define the range of J—&(z). Let
X=2(2) = {X,(2):gEL"} .
For a vector s=X,(2) € ¥, we define norm by

sl = 11%X(@)| = llgll~ = ess sup | g(x)! .

and s® is defined by (4.4) for € S\W.
The definition of X,(2) is stated in §3. The mapping g X,(2) is clearly
onto and by (3.3) it is one to one.

Lemma 4.3. A4 vector sES belongs to 2 if and only if it satisfies (4.3) and
the following three conditions.
(1) The limit

£* = &(@) lim &() *

V>

exists for any & €S where VEW and {09} € U yep 0<wd.
(ii) There holds

48 - {tw ~ for GEW and {88} € U yep 0w,
gz" C (@) t"* for GEW and {00} & U yew 0w .
(iii) For any xE1, the limit
lim 7%
x»=Lebes {[a"]y>
exists and bounded where s"=s"+—|—s"_.

Proof. If s=X,(2) for some gL, then from the definition of X,(2) it
satisfies the conditions (i)-(iii). Conversely, suppose that s&.S satisfies (i)-(iii).
Let
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sty
8®) = N->°° Lebes <{[a*]y>

Then g€ L™ and s=X,(2). This proves Lemma.
Proposition 4.4. The operator I—I(z) is bounded from B into 2.

Proof. We will only prove the case when {0%} € U ,e 0<w); we can prove
other cases in similar ways.

Recalling the condition (4.3), we get
(4.9) (B(2) 9)* = 3 D(=)ii 8

ey

=lim > >} @(z);;s

N> eV gy @ <w> ¢

—llvlfg ”EZW s <w>: E(u)z{clwl—clwl i (#[1]-w)
Xa[w<0u]s
= lim 3% &(@) Cu(u{1]-v) o0 <0a] ¢

Hence, by Lemma 4.1, the right hand term of (4.9) is bounded. This shows
[(D(2) 5)¥| is bounded and ®(2)s (s€ B) is well-defined. Next note that

(4.10) (D(2) )" = (D(=) )" +(D(2) 5)*
= lim PN z Cy(u[l]-v)s".
N> 0EW . : {u[1]00) ={u)

Therefore by (4.2) and assumption (iii) of s€ B that

2| Cu(®) ™| _
Lebes <u)

sup
uEW

we get

p|1d=2(x)s%|
Lebes <u>

The proofs of latter parts are easy to be verified, hence we omit them.

ueW‘

5. Estimation of @, ,(2)

In this section, we will consider the mappings Fy and define their Fredholm
matrices. Set W(M)— U¥., W and W(o0)=W.

Let S(N) be the set of those vectors with index set W(IN) which satisfy the
condition (4.3) with supremum norm denoted by ||+||y. It is convenient to write
S in place of S(o0). We denote the restriction of s&€S(M) to S(IN) by s|y for
N<M<L oo,

DerFINITION. (i) We define a square matrix ®y y(z) indexed by W(M)
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with N<M < oo by

o(z);; if asW(M), seW(N),

Dy ()75 = .
wv(?)5 {0 otherwise,

and we denote @y y(2), simply, by Dy(2).
(i) The lower Lyapunov number assoicated with Fy is defined by

Uy x|

gy = lim inf ess ;nf 1 log| F(a")].
e n
(i) The zeta function {y(2) corresponding to Fy is defined by

tie) = exp [ 51 2 3 1FH@) ]
=1 N a=90"a

RemaRk. (i) Each component of the matrix @, y is analytic in the disk
| 2| <etrw.

(ii) Suppose that s is an eigenvector of @, y(2) associated with an eigenvalue
A (A=%0) for some M>N, then s|y is also an eigenvecotr of ®y(z) with the
same eigenvalue \.

(ili) The zeta function &y(2) converges to §(z) in the unit disk |z|<1.
In §7, we will prove it also converges in the disk |z|<Céf.

Lemma 5.1. ([11]) If O is an eigenvalue of I—®y(2) restricted to S(N),
then 0 is also an eigenvalue of I—®y(z2).

This is Lemma 4.2 in [11] and we omit the proof. The key point of the
proof is to show that the kernel of I—®y(2) is contained in X+ (I—®n(2)) X
(Lemma 4.6 [11]).

ReMARK. For a partition of I into subintervals which satisfies the assump-
tion (A3), one can express the Fredholm determinant as

det {I—Dy(2)} = {exp Ry(2)}/En(2)

with a certain function Ry(2) which depends only on the periodic orbits passing
through the endpoints of <a>, ac 4. Furthermore we can always take Ry(2)=0
if we make a suitable choices of subintervals which division points of the parit-
tion belong to (cf. [11] for detail). Thus we get

det {I—®@y(2)} = 1/Ex(2)

for such a partition. Hereafter, we always assume the partition is suitable in
this sense.

Lemma 5.2. (i) The operator @y y(2) for N <M < oo is the bounded oper-
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ator from S(M) to itself.
(i) The restriction of s,(z; Fy) to W(M) for N <M < oo satisfies the renewal
equation
Sg(z; Fy) [ = xg(Z; FN) | M+<I)M,N(3) sg(z; FN)IM .

Proof. The assertions follows directly from Proposition 3.3 and Propo-
sition 4.4.

We will begin with the basic property of @y ().
Lemma 5.3. (i) For s&€S(M),
(5.1)  {®Pun(2)s}H*
= 06(@) 2{| Cy(u[1]-v")| — | Cx(u[1]-0" )|} oo™ <6a] s

TE@DHICH@I T S @) x| Ca(ull]-) e[a<6a] ¢

where the sum ), is taken over all v* €Wy such that {v*} + {0d} and {9v*} €
U weEW 6<w> .
(if) There is a constant K, and for N,>N, we get,

(5'2) l|¢N1,N3(z)—¢N1(2)”N1<K3 PNZ .
Proof. (i) First note that s"*=—s*"", where v'=min,ey{w>v}. Then

(Ouu(2) ¥ = 3 &) 2| Ca(u[1]-) | [0 <07] *

= 3, &@) 2{| Cy(u[1]-0%) | ofv* <O@]— | Cy(u[1]-v" ") |o[ot - <O8]}s*
b (@) 2| Cy(u[1]-d)| s[@ < 0] §°

a:0ae Upew 0w
where the sum 3, is taken over all ¥ €W, such that {fv*} € U ,ep 0<e0).
Therefore, we get the proof of (i) by dividing the sum 33, into the sum >3, and
vteW,, such that {o*} = {04} .
(ii) Note that
[Cysa(@)—Cx(a)| < sup [F'(y)" —F'(y,)7"]

Y2 E{[®] 5>
<K, K, PN .
Then since
(0 if 9EW(,),
D 2)— Py ()7 =
{ Dy, 1o(2)— Py} 3, | {®y,(2)} 75 otherwise,
we get (ii).

The determinant det (/—®y/(2)) does not depend on the choice of alphabet
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set in the following sense:

Lemma 5.4. Let ®(z; W) is the Fredholm matrix induced by the alpha-
bet set Wy. Then for K<N<M<oo and |z| <efw, we get

(5.3) det (I—®y, n(z; Wy)) = det (I—Dy()) -
In particular,
D(z; W) = D(z; 4) = D(2) .

Proof. We sweep out W(K—1)-elements of the matrix I—®y(2). We
continue the following procedure from L=1 to K—1:

For s€W,, let #=W,,, be the signed word which satisfies {9} = {@#} and
&E(D)=&(#@). Firstly, subtract the #-row from the #-row. Note that the compo-
nents of the #-row equal the corresponding components of the #-row except
diagonal components, thus the (#, #)-component becomes 1, the (#, #)-compo-
nent becomes —1 and the rest of the components of the #-row become 0. Next,
add the #-column to the #-column. Then all the components of the #-row
become 0 except the (¥, ¥)-component which becomes 1. This shows det (I—
D(z; Wy))=det (I—D(z; W.,,)). Repeating this, the equality det (I—Py(2))=
det (I—Dy(z; Wk)) follows. We get (5.3) since for M >N there holds det (/—
Dy (2; Wy))=det (I—Dy n(z; Wk)).

Lemma 5.5. (i)
(54) limgy=£.
(ii) For sufficiently large N, an inequality
ess sup |CH(a®) | <K, p"
holds.
Proof. (i) For a&€S and N< oo, set
Cu(z; @) = 3 | C(@)] 5"

Hereafter we use the converntion F.=F and £.=£. We denote the conver-
gence radius of Fy(2; &) by Ey(a). Then Ey=ess inf,c; Ex(’).
Recall that F} converges to F’ uniformly. We get

(5.5) Fla) | _ 1 |F(@)=Fia)
) Fi(a)| Fi(a)
S(1—'8(1\]’))— ’

where we set
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E(N) — SupﬁeleJ’V(B)"F/(ﬁ)l )
infges | F'(8)|

Hence,
. = 12| Cy(6’ @) i
Cutes el < 3 JT|Ge ||C<o a)l |#"|
< S A—s)*IC @)1 15°] -
This shows

En(@)Z(1—E(N)) Ex(a) -

By the similar estmiate as (5.5) from below we get
En(@)<(1+E(N)) Ex(@) -

This completes the proof (i) and the proof of (ii) follows from (i).

6. Characterization of Spec (F') by Fredholm matrix

In Lemma 6.1 and Lemma 6.2 below, we characterize Spec (F) in terms
of ®(z) or, in other words, in terms of s5,(2):

s3(3) = | (I—3P)" 1,(x) g(w) d .

Then, in Lemma 6.4 and Lemma 6.5 below we study the relations between
the spectrum of ®(z) and the spectrum of ®,(2). Combining these results, we
characterize Spec (F) in terms of ®y(2) in Theorem 6.3. This will lead us to
the proof of Theorem B.

Let

= {2: | 2] <ef, 2~ e Spec (F)} .

Note that sj(2) is defined in the unit disk |2| <1 and has an analytic extension
to the domain 9.

Lemma 6.1. Let 2z satisfy |z|<<et. Then, 27 'ESpec(F) if and only if

SUPigii=1 llsg(2)l|=o°.
Proof. Recall the definitions in (4.5):
lsg()I = lisg()lw+lsg(2)ls
llsg(=)lls = sup I<f, s(2)>1 ,
ViH=1

and

<y sdal> = lim sup 3 fusi(e)
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where

f,=Jwf@)dx
Lebes <u)

We denote fy ()= sewy fu lu(x). Then for any f EBV, fy . satisfies the con-
ditions:
(1) }iﬁfwlv:f (in LY),
(i) V(fwx) <V(f)for N=1,2,--,.
Therefore, since for g& L~
lim | (F—2P) i () g(x) dx = | (1—2P) f(x) g(0) dv,

if |2| <1 and also if zE9) (i.e. 27'& Spec(F)), that is, the above lim sup can be
replaced by lim:

s> = lim 31 fusi(2).
Suppose first that supy 1, [Is,(2)[|=cc. Then
3 st = [ T—P) ) (o) e

must be unbounded for some fEBV and g&L=. Therefore, there exists fy=
Suew y(fv)a 1, and gy € L™ such that V(fy)<1, [|gyl[=1 and

| 3 (e sial@)] = oo
In this case, it follows that 2~'& Spec(F), because
31 (fadesia() = | (T—2P) () gu(®) dv
N

Conversely, suppose that supj,-; lls,(2)l[<cc. Then for any f&€BV and
gEL>, [ (I—2P)7 fy () g(x) dx converges to (f,g) (2)=<f, s,(2)> as N—>oo,
This shows 27'& Spec(F).

Lemma 6.2. Suppose that z~' & Spec(F') and that there exists a vector s EB
satisfying (I—®(2)) s=X,(2). Then for any u€W the equality s*=sy() holds,
where we set s*=s*" .

RemMARK. There may be a vector s=¥s,(2) which satify (I—®(2)) s=X,(2),
but this lemma says, if 27'& Spec(F), the vector (s*),cp is unique. Hence {f, s>
is also uniquely determined for any f EBV and g L~.

Proof. Suppose that there exists s which satisfies (I—®(2,)) s=X,(2,) for
2y such that 25'&Spec(F). Note that



FrRepHOLM DETERMINANT FOR PIECEWISE MONOTONIC TRANSFORMATIONS 519

P1,) =3 ICO)IL()

(6.1) =lim 3 |Cu(y)|1.(y)
= lim b | Ca(u[1]-2)[1,(y) -

N> 0€W o 2 (u[1]°0) =<u)

Recall Corollary 3.4(i), then

o= S<u> g(@)dxtlim 2] Cu(u[1]-9) | .

N> vEW o3 (u[1]+0) <<u)

This shows that the equation
(6.2) & =”z_'::zs S P 1,(x) g(x) dx-2 <PV 1, 5> .

holds for N=1, and for general cases we can show (6.2) using a similar formula
for P¥ 1, to (6.1). Denote

s¥(2) =l§‘,:z" S Pt1,(x) g(x) de+2V <PV 1,,5>.

Then s¥(2) coincides with s* at =2, by (6.1). On the other hand, it converges

to sz(2) as N—oo in | 2] <1. Therefore, as we assumed 27" & Spec(F), it follows
s*=sg(2,). This proves Lemma.

For a piecewise linear transformation, as we have already seen in [11], the
Fredholm matrix can be reduced to a finite dimensional matrix, and so we can
naturally define its determinant D(2) and show that a complex number 27! with
| 2| <et belongs to Spec(F) if and only if D(2)=0. In our case for a general
piecewise monotonic transformation, we can characterize Spec(F) in terms of
I—®y(2), N=1, 2, ---, as follows:

Theorem 6.3. For a complex number z in the disk | 2| <<ef, 27! belongs to
Spec(F) if and only if ||(I—@y(2)) ||y ts unbounded.
We divide the proof of Theorem 6.3 in two parts.

Proof of Theorem 6.3: “‘only if” part. It suffices to prove the following
lemma.

Lemma 6.4. Assume ||(I—®y(2))7 'y is unbounded. Then there exists
SEB such that ||s||=1 and (I—®(z)) s=0.

In fact, if ||(/—®x(2)) "Iy is unbounded, then there exists s &P such that
[Isl=1 and (I—®(=)) s=0. Therefore, by Lemma 6.2, we get 2~'& Spec(F).
This completes the proof of only if part of Theorem 6.3.

Proof of Lemma 6.4. We choose r<(1 so that r>p and 7>|z|p. Denote
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by Ay the least eigenvalue in modules of (I—®y(2)) on S(N). Since we as-
sume that ||(/—®y(2))7Y||ly is unbounded, Ay decreases to zero as N tends to
infinity. By Remark (ii) in §5, Ay is also the least eigenvalue in modulus of
(I—®y n(2)) restricted to S(M). In particular, there exists the corresponding
normalized eigenvector sy €S(o0)||sy|,|Iy=1 such that the restriction of sy to
S(M) satisfies the condition

(6.3) (I—Dy () Snize = Av Sy -

If ||sy]| is bounded, then we can construct s#=0 and s€.8 by diagonal method
from §y=sy/lIsyll. By (6.3), it is easy to see that (I—d(z)) s=0.

Hence we will prove the boundedness of ||sy||. Let £€>0 satisfy 7(1—&)7'<
1. Then there exists an integer N, such that for N >N,|ay| <€. Set

K\(K; K, +24 A‘l‘l)’ max |s§|} .
{1—r(1—1€])7"} Tewar)

K,:max{

Note that
[Cy(u[1]-v*)—Cy(u[1]-v"")| <K, K,|Cy(u[1]-v*)| Lebes <u[1]-v)>,

where v'=min,ey {w>v}. Since ||sy|,|ly=1, we only need to consider Wik
(K>0). Let #€ Wy« for which there exists no & €Wy such that {#} = {o}.
Since

{(I— CI)N+K,N(3')) SNIN,,K}; = Ay 35 ’

we get by Lemma 5.3 (i)
(64) (1= DIskI <2l Cu@)| |5
+”E§N |z] |Cy(u[1]-v)| K; K, Lebes <u[1]-v>
+ 33 |2l | Cu(u[1]-@) 1.
Hence, we get by the induction on K
1<K AR (1= D)2/ [ 3 1CHIL 10+ 3 I ChL j1-0)11
(1= [ l) 1215 CH@) 15
Consequently,
(635) |5h | KK, Kok 244+ D AL—r (1= [ )}

for sufficiently large N whenever r(1—|Ay|)"'<<1. Then the inequality (6.5)
shows that |[sy]]|. < K.

Next we will estimate ||sy||,. It can be done in a similar way. Let u=
(@™, BY), a, BEW and [a~]y=[B"]n. Then we get as (6.4)
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(I="a )k <|2| | Cx(@) | |s¥]

—|—<">§w [2]|Cy(u[1]-v)| K, K, Lebes <u[1]-v)> .

W e

Then we also get by (6.5)
ISNIS(l—IMI)'M |2 ™| CX(w)| |55

+K1KzZ<>E (1=1xn 1) 1217] Ci(u[1]-v)| Lebes <u[j]-v>

<(A—=Ixl)” MKlrMK4+(K1)2Kz (1—l7wl) ' pM
<{K K +(Ky) K[1—pr7'(1— IMI )“1]} ™.
Hence setting
= K+ 2K +2 (K, K A(K) Ky [1—pr™(1—&) "]} /(1—7),
we get
llswll == lsnllot1lsnll,
< lsyllo-t il
—r
<K,

and so sy €B. The proof is completed.

Proof of Theorem 6.3: “if” part. It suffices to prove the following lemma.

Lemma 6.5. Let |z|<et. Assume ||(I—®y(2))7'|ly is bounded. Then there
exists the limit s=limy_.(I—Py(2))™} X (2) EB uniformly on {gEL~: ||gl|l=1}
and it satisfies (I—D(2)) s=X,(2).

Let B={z: | 2| <ef and ||(I—®y(2))7"|| is unbounded}. Then by Lemma
6.4, the set B has no accumulation point since so does Spec(F). Thus, if
[|(I—®x(2))7'll is bounded, then by Lemma 6.5 we get limy.. s,(z; Fy)=
5,(2)€9B. Hence 2 '¢Spec(F). This proves the if part of Theorem 6.3.

Proof of Lemma 6.5 We choose r<(1 so that »>>p and r>|z|p. Fix
g€L> with ||g|ll.=1. Fora€W,, L>M=>N, we get by Lemma 5.2 (i1),

$2(33 Fn) = {(I—@00) ()}
We proved in Lemma 5.3 (ii) that for N,>N,

I,®N1.Nz(z)_—CDN1(z)”N1<K3 pN2 .
Then we get ’
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{s4(2; Fn,) —$5(2; Fuy)} gl I,
= [{—®w,,x) (P, — Pry,vp) ([—Pw) (X))} ol
< T —Dw,) vy 1Py — Py, gl Iy IT—Pw,) M Ml -
Hence,
(6.6) Hsg(2; F,)—54(2; Fupk wllw,
<Kgp"2,

for some constant Kj, this shows the existence of s=limy,, s,(2; Fy).

Now we will show s belongs to B. It is clear that s satisfies (4.3), (4.4)
and ||s|Je<<co. It remains to prove the condition (ii) of the definition of 4.
By Lemma 4.2, it is sufficient to show [|s,||,<<oo. It is sufficient to show that
t(M, N)r~" is uniformly bounded in M and N, where

t(M, N) = sup {|s®P(z; Fy)| : €(@) €(B) = —, [@lu = [Blw> @ BES} .

It is sufficient to show the boundedness of ¢(IV, N)r~¥. Indeed, we get by Co-
rollary 3.4 (ii),

s@P(z; Fy) = s¥(z; Fy)-+si(2; Fy)
M-N-
="V 2" OH(@) XD -2MN CHN(@) 5] M V(z; F)

n=0

where J(n)=(0"&, §"8). Note first

1% <l gl Lebes J (n)
<llgll Ky p"".

Since e"t<p<1, there exists an integer N, auch that |C(&)| <p® fro N>N,.
Therefore for M—N >N,

67) (M, N)<" 3 (K)(I51p)" p¥ P+ (12l o) ¥ ¢(N, N)
<K(|=p)+(|2] o)~ 1 (N, N)

for some constant K.
On the other hand, we get by (6.6) for N=N, and N—N,=N,

t(N, N)<t(N, N—Ny)+2K; p¥-No) |
then by (6.7)
t(N, N)<(|2|p)¥o t(N—No, N—Ny)+{K;| 2|V + 2K p~No} pV .
Hence we inductively get

t(N, N) r-N <N {K,+ 2K, p—No}[max {Mﬁ, _P_}J”'“ max #(L, L) .
r

r 1SIS N,
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Therefore by (6.7), we get

t(M, N)r <K, (|_zr|£)M+<|2|p>M—N t(N, N) =¥

r
<K, (I_z_|£>M
r

+(1210)" N tr 2K, oo max {1212, YT max 42, 1)

r 1ISLSN,

This shows [[s]|,<<eo. Hence [[s|[,<<oo by Lemma 4.2 (ii). This proves s&€3
and

(I—®(2)) s = lim (I — D y(2)) 5,(2; Fy)
N>
= X,(2).
This proves Lemma.
ReMARK. The above proof also shows the following: for 0<<r<C1, let
D, = {=7": | 2| <ref},
F,={fel:f= %}Vfu 1, with X |f,r'<oco},
e uEW
and Spec, (F) be the spectrum of the Perron-Frobenius operator restricted to
&, Then
Spec(F)= U {Spec(F)N9D,},
0<rL1

Now we can prove Theorem B, which states Spec(F) can be approximated
by the reciprocals of zy such that I—®y(zy) has eigenvalue 0. It can be done

by a standard way.

Proof of Theorem B. Assume that 27'€Spec(F). Let f=3,cp [, 1.€
BV be an eigenfunction of P corresponding to an eigenvalue 25'. Set
an(@) = {3 fusizs F) (2
a(z) = (£,8) ().

Since eigenvalues are isolated, we can find g& L and a nieghborhood U of
2, such that 4(2) is analytic in U, a(2,)=0 and |a(2)| >0 in U except at 2,.
Then ||(I—®(2))7"|ly is bounded in N for each x€0U and ay(2) converges to
a(z) on 0U. Hence, '

lay(z)—a(2)| <|a(2)]

holds on dU for sufficiently large N. Hence by Rouché’s theorem there exists
unique zero 2y of ay(2) in U for sufficiently large N. This means that 0 is an
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eigenvalue of J/—®y(zy) restricted to S(NV). As we noticed in Lemma 5.1, 0
is also an eigenvalue of /—®y(zy). Hence

det(I—Dy(2y)) = 0.

On the contrary, if z,& Spec(F), there exists a neighborhood U of z, such
that U NSpec(F)=0@. Note that <{f,s,(2; Fy)(2)> converges to {f,s,(z;F)>
uniformly in g &L~ with ||g||=1 and in 2 on any compact subset of 9@ if f EBV.
Therefore (f, g) (2; Fy)=<{, s,(2; Fy)> is bounded in U for sufficiently large NN.
This shows det(I—®y(2))=+0 in U for sufficiently large N. This completes the
proof.

7. Zeta function

In this section, we will prove the following.

Proposition 7.1. Let |z|<<ef. Then for any fixed =, det(I—®y(2)) is
bounded.

From Proposition 7.1, we can prove Theorem A.
Proof of Theorem A. Recall
— had 1 n/ -1
(@) —exp[ 12 35 1P

In §4, we have seen the following:

(i) det(J—®y(2)) is equal to 1/C,(2) and is analytic in the disk | 2| <efw
(cf. [11]).

(ii) &y converges to £ (cf. Lemma 5.5).

(i) &y(2) converges to £(2) in the unit disk |z|<1.

It follows from Proposition 7.1. that 1/¢y(2)=det(I—®y(2)) converges to
1/6(2) and it is analytic in the disk |2|<<ef. Suppose 1/{(2,)=0, and let us
show 25'€Spec(F). By using Rouche’s theorem, one can find a sequence {2y}
such that limy_,.. 2y=2, and 1/{y(zy)=det(I—®y(2y))=0. Therefore, by The-
orem B, 25 ESpec(F).

On the other hand, Theorem B also says that if 25’ € Spec(F), then there
eixts a sequence {2y} such that zy—=z, and det(]—®y(2y))=1/{5(2y)=0. This
shows 1/£(2,)=0. Hence, Thoerem A4 is proved.

Proof of Proposition 7.1. So far we have considered the signed word sets
Wy and W, (K=L) are different sets. Now we want to identify the signed
word set W, with a subset of W, for K<L. For this sake we need some ad-
ditional notations. Let

W, = {#€Wy: there exists 5 W, such that {#} = {9} and &@)=&(@)} ,
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and for K >2
Wy = {#€Wy: there exists s & W, wuch that {#} = {8} and &%) = &(®)} .
Then, Wy is the disjoint union of W,:
WenW,=¢ (K=*L)

and
N
WN = U WK .
K=1

In the following, we omit the suffix N and denote Fy by F.
Note that by Lemma 5.4,

det(I— @y(2)) = det(I—Dy(z; Wy)) -

Since the dimension of the matrix I—®y(z; Wy) is smaller than that of I—®,(z),
we will estimate det(/—®y(2; Wy)).

First step. Let us sweep out the matrix ®(z; Wy), the Fredholm matrix
with the alphabet set W}, which is of the form

Oz; Wa)is — {E(ﬁ)zg(u[l]-ﬁ) ol0<0a) agW,
(2, N)up = E(ﬁ)nzqz" C"(ﬁ) 0'[2'730" ﬁ] ﬁEWI )

We use the following matrix U indexed by Wy:

1 if a4=170,
Uz ={—1 if 9=o"d=0"'"", and &, 0&W,,

0 otherwise,

where v'=min,cy {w>v} as before. The multiplication of U from right re-
sults in subtracting v'~-column from v*-column, and the multiplication of U™*
from left results in adding v*-row to v'~-row (v* & W)).
Consequently, we can compute the components of U™ &(z; Wy) U as
follows:
Case 1. (i-a) @€ W'l and 7€ Wl,
(i-b) we W, 9 W, and §(9)=—,
(ii-a) @e Wy, &(@)=+ and 5 W,
(ii-b) @e Wy, @)=+, & W, and &(5)=—.
In these cases, the multiplication of U leaves the #-row unchanged and also
that of U™! leaves the #-column unchanged, thus

{U ®(z; Wy) Utzy = O(z; Wy)as -

Case 2. #d W, and &(@)=—. Recalling the fact that the #-row equals
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the %' *-row with opposite sign, we get
{U ' ®(2; Wy) U}tz =0.

Case 3. In the rest cases, the multiplication of U leaves the #-row un-
changd and the resultant #-column is the original #-column subtracted from
the v'~-column.

(i-a) If a&W, @)=+, d& W, &&)=+ and =12, then
{U ®(z; Wy) Utis = 2{C(u[1]-0)+C@[1]-2")} o [9<04] .
(i-b) If A= Wy, &@)=+, v W, &)=+ but 9=, then
{U ®(z; Wy) Uti; = 2{C(u[l]-0)—Cu[1]-v")} o[0<64] .
(i) If ae W, oW, and &@)=+, then
(U~ ®(z; Wy) Uyis = (@) 3} 5" C*(@)
{Cur]-0)—Cu[r]-0")} o [0<6" @]
Thus all the components of the #-rows equal 0 if u~ ¢ W, and all the compo-
nents of the w*-columns also equal 0 if «*& W,. Therefore, we may ignore
them from the matrix U Y(I—®(z; Wy)) U and get a smaller square matrix
I—W(z) indexed by AW™, where AW+=W,U {u*€ U¥z} Wy}.

On the set AW* we introduce an order for #€ W, and &€ Wy in a similar
way as before: define #> if

(1) K>L
or

(2) K=L and #>1® as signed words.
We denote by

W@) = {oEWy: 0>d} .
Second setp. We can find the following Lemma in p.54 of [17].
Lemma 7.2. Let M=(M, )); ;-1,...» be a square matrix and set for 1< j<n

MG)=% = 1M,

I=1ige i<y p=1
where i,=1,,,=j. Then,
det(I—M) = II (1— M(j)) .
i=1
ReEMARK. If we consider the graph with (weighted) incidence matrix M

then M(j) is a sum over primitive cycles which start from j and pass only elments
less than j and return to j.
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Now set
Uz (2) = i > f[ ¥(2)z,z,, Where @ =@, =1,
n=1 172,~--.17,,EW'07) i=1
Then by Lemma 7.2, we get
(7.1) det(I—¥(2)) = I (1—vs:(2),
ugAw

Therefore, it only suffices to show the uniform boundedness in N of the sum

EgeAW"' l'\l";(z) I .

We now fix £>0 so that r ¢*<1. As we have seen in Lemma 5.4,
1/t n(z) = det(I—@y(x) = det(I— Dy n(x; W)

for any K<N<M. Recall that the length of subintervals <w) (w € W) decrea-
ses uniformly to 0 as K tends to infinity. Therefore, if necessary, taking Wy
for sufficinently large K as an alphabet set A, we may assume the subintervals
{{a&>} 44 50 small that

(7.2) sup sup |F'(x)/F'(y)| <e*.

aEA x,5E{a)

Let ﬁl) 122, oo E WN Satisfy [01‘2;]1\]-1: [u~l'+1]N—l (i 2 1) and ﬁl[l] . az[].] A E S. Then
we get by (7.2)

(7.3) E—&<lim infl log f[ |F'(#%)| <&-+&
n-»o n i=1
Third step

Lemma 7.3. Let u*,vi,, v, & W, such that of[1]=v3.[1] (1<i<n).
Then there exists a constant Ky such that

I, 5, %l <Kbet”,

oy F +
Slyp 101, 20; 20y

where vg =u".
Proof. By the definition of ¥(2), we set

2 YR
vt o, 2ot >0,
0 if ot 1],
% {Cu[1]-oD)+C@[1]-v)} if vf>0u*>vf,

= 1

.
-

% {C(u[1]-97)—Cu[1]-v,)} Out>v{ and Out elot[1]D,

-
Lz}

~§— {—C@u[1]-v)+C@[1]-v)} Ou* <v; and Gutof[1])>.
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Consequently Lemma 7.3 follows from the estimate (6.3).
Fourth step. Set

”
Yt a(R) = > IT W(2)ui 4y
u;r""u: (S W(u+) i=1
with ui =u;,;=u"*. Then we write v, +(2) as

Vit (@) = 3t a(3) -

Note here, since fu* & W(u"), there exists K, such that | W(2),+ .; | <K, Lebes
<up. Therefore by Lemma 7.3, we get

21 | W)
u+$v@'1 .
= pX II |2l syl 2D | W(R)ur ) |
g ety € W(nt)i=2 wre
< X Kgf{ret}» ' Ky Lebes <u, .
";eﬁl

Hence,

2 [, +(2) | < Kg Kog{l—re} .
u+$W1
We can estimate the summation over I, in a similar manner but taking
care of the infinite sum >l%. 3"|C"|.
Hence follows the uniform boundedness of 3}, +cp+ ¥ +(2)|. Thus det
(I—®y(2)) is uniformly bounded in [V in the disk | 2| <ef. Consequently 1/5(2)
has analytic extension to the disk | 2| <<ef. This proves the Proposition 7.1.
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