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1. Introduction

Let F be a piecewise C2 transformation from a finite union of bounded
intervals / to itself. We assume

(Al) The lower Lyapunov number ξ is positive:

ξ = lim inf ess inf — log | F*'(x) \ >0 .
x-*-00 «eJ ft

(A2) The mapping F is nondgenerate:

essinf|ί»|>0.
*ei

(A3) There exists a finite partition of / into subintervals, F is monotone
on each of the subintervals, and the restrictions of F, F' and F" to each of the
subintervals can be extended continuously to its closure.

Here Fn stands for the ra-th iterate of .F:

[x n = 0 ,

In the present paper, we are concerned with the spectrum of the Perron-
Frobenius operator P. The Perron-Frobenius operator P associated with F
is originally a nonnegative contraction operator defined on L1, the set of integra-
ble functions, by

where g belongs to L°°, the set of bounded measurable functions. The spectrum
problem of P as an operator on L1 is rather trivial: for instance, it is found in
[14] that the unit disk is contained in the spectum of the Perron-Frobenius ope-
rator on L1. Therefore, we will restrict PtoBV, the set of functions with bound-
ed variation. We consider that EV is a subspace of L1 functions which admit
versions with bounded variation. We define the norm on EV by
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where

var (/) = inf {the total variation of / such that / = / a.e.} .

Then BV is an invariant subspace of P under the assumptions (A1)-(A3) (cf.
[8]). We will study the spectum of the Perron- Frobenius operator P regarded

as an operator acting on BV and denote the spectum by Spec (F).

As is discussed heuristically in Y. Oono and Y. Takahashi [13], the formal

determinant of / — zP, called the Fredholm determinant, coincides essentially
with the reciprocal of the zeta function (Ruelle-Artin-Mazur zeta function):

?(*)=exp ΓΣ-a* Σ I *•"(*) I -1 "I ,
L »=ι n χ=Fnax) J

which is completely determined by the periodic orbits and the gradients at
these points. In other words, Spec(F) is expected to be determined by the
zeros of the Fredholm determinant. Our purpose is carried it out in a rigorous
way.

Our rseult is as follows:

Theorem A. Assume the conditions (A1)-(A3) above. The reciprocal

of the zeta function has analytic extension to the complex domain {%: \ z \ <eξ} , and

Spec(F)n{λ: \\\>e-ϊ} = {*-*: !/£(*) - 0, \z\<e*} .

REMARK, (i) If the dynamical system is weakly mixing, then the topolo-

gical entropy h(F) equals the lower Lyapunov number ξ .
(ii) We only need to study the spectrum of P which is greater than e~ξ in

modulus because it is proved in G. Keller [5] that

{*: |*| <*-*<*>} cSpec(F).

The importance of the study of the spectrum of P consists in the fact that

the most of the ergodic properties of the dynamical system can be obtained from

Spec(F).
(a) Under the conditions above, the eigenspace associated with the eigen-

value 1 determines the ergodic components of the dynamical system. In par-

ticular, the eigenspace is a subspace of the space BV and is isomorphic to the

space of ί'-invariant density functions. This was first proved for F which is

piecewise C2 by A. Lasota and J.A. Yorke [8] and extended to the case C1+*(£ >0)

by G. Keller [6]. The condition that F is C1 is not sufficient: there exists an

example which has no finite absolutely continuous invariant probability measure
(cf. [2]). The condition (Al) is also essential: there exists an example for which

F\x)>l except only one point XQ (F'(x0)=l) and it also has no finite absolutely
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continuous invariant probability measure (cf. [14], [18]).

(b) The eigenvalues on the unit circle determine the mixing properties of
the dynamical system:

Suppose that 1 is the simple eigenvalue of P (this is always possible when we
restrict F to one of the ergodic components). Then the dynamical system in-
duced by the mapping F is mixing if and only if 1 is the only one eigenvalue
on the unit circle (actually, it is Bernoulic cf. [1]).

(c) The eigenvalues in the unit disk determine the decay rate of correla-
tions for good test functions, although as we stated before, the supremum of
decay rates for functions belonging L1 equals 1. If we restrict P to BV, we can

determine the decay rate of correlation, because, as will seen soon below, / f ( x )
g(Fn(x)) dμ is described in terms of Fredholm determinant iff^BV and g eL°°.

Suppose that 1 is the unique eigenvalue on the unit circle. Recall eigenvalues

are isolated in the domain {λ: |λ| >e~h(F)}. Let -η be the second largest eig-
envalue in modulus, then η is the decay rate of correlation, that is, for any

\gdμ =

where μ is the invariant probability measure and g^L00 ([3], [11]).
Now let us state the main ideas to prove Theorem A. We want to define

the Fredholm determinant det(7— #P), but the Fredholm determinant can not

be defined in the usual sense, because P is not a compact operator. This is the
difficulty in establishing Theorem A. We need three ideas to overcome it.

The first idea is to use the renewal equation (§3), which will mark the struc-

ture of the dynamical system clear ([4]). Let us illustrate how to construct a

renewal equation. For f^BV and g eL°°, put

Then, we get the formal expression

(f,g) (*) = (/-

which suggests that the spectrum problem of P will be reduced to the problem

of singularities of the complex function (/,#)(#). Hence it is expected that

(/>£) (#) *s asymptotically equal to C/det(7— zP) for some constant C. Notice
that

(f g) (*) = }/(*)*(*) dx+z(Pf,g) (x) .

Hence, if we can construct functions/, and coefficients φt tj such that
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then we will obtain an equation

where s, % are the vectors with components (f^g) (#), Sfi(x)g(x) dx and Φ(#) is
the matrix with components Φt ,y(#), respectively. This is an analogue to what
is called the renewal equation in the theory of Markov processes. Our goal is
to prove the determinant det(/— Φ(#)) plays the role that the formal determinant
det(7— zP) is expected to do. We will call det(7— Φ(#)) the Fredholm determi-
nant.

The construction of Φ(#) is straightforward for Markov mappings (cf. [4]).
This method can be applied to certain simple non-Makov mappings such as
/^-transformations and unimodal linear transformations. In the latter cases, the
renewal equation was constructed in [9] on the usual symbolic dynamics and the
Fredholm determinant is proved to be an analytic funciton in | z \ <eξ. Thus we
can see that the singularities of (/, g) (z) are the zeros of the Fredholm determi-
nant, and Spec(F) is characterized by the zeros of the Fredholm determinant.
In [10], we extended the results to some piecewise linear transformations with
different slopes. But this method cannot be applied to general cases even if
they are piecewise linear.

The second idea is to introduce the signed symbolic dynamics (§2). In
the above cases, the usual symbolic dynamics are determined essentially by the
itinerary of the only one division point of the partition stated in (A3), but for gen-
eral piecewise monotonic transformations, we have to trace the itinearies of all the
division points even if they are piecewise linear. If we persist in using the usual
symbolic cynamics the difficulty would arise because we have to trace the orbits
of both endpoints of each subinterval at a time. On the signed symbolic dyna-
mics, it suffices to trace each orbit separately to construct a renewal equation.
Thus, for piecewise linear transformation, we succeed to define a finite dimen-
sional matrix Φ(#) which we call the Fredholm matrix. Then Sρec(.F) is cha-
racterized, just as in [9] and [10], by the zeros of the Fredholm determinant

det(/-Φ(*)).
As we showed in [1 1], these two ideas are sufficient to prove Theorem A when

the mapping F is a piecewise linear transformation ([11]). The Fredholm mat-
rix which, as is mentioned above, is determined by the orbits of the endpoints of
the subintervals corresponding to the aplhabets, has sufficient information to
describe the structure of the periodic orbits (cf. [4], [14], [15]). In particular, we
can calculate the zeta function ζ(z) by the Fredholm determinant and get

det(/-Φ(*)) = !/?(*) .

Piecewise linear cases are also discussed in F. Hofbauer and G. Keller [3]. Some
related topics can be found in [7], [12] and [16].
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The third idea is necessary to approximate general piecewise monotonic
transformations. It is the approximation of F by formal "piecewise linear trans-
formations" FN as stated in §3. These formal piecewise linear transformations
are defined on the symbolic dynamics on which F is realized. Moreover, their
Fredholm matrices ΦN(z) are proved to be finite matrices as in [11]. Then
the spectrum of the Perron-Frobenius operator P can be characterized by using
det(/— ΦN(z)) as follows:

Theorem B. Let zΰ be a complex number such that \ ZQ\ <e%. Then z^1 be-
longs to Spec(F) if and only if there exists a sequence {ZN}N-I such that
ZN=ZO and

By Theorem B, we can calculate the spectrum of P and then we can prove
Theorem A.

The proof of Theorem B will be given in §6. We define in §5 the zeta
functions ζN(z) corresponding to FN and show that they converge to ξ(z) in the
unit disk \z\ <1. Since det(I—ΦN(z)) = llζN(z), then the proof of Theorem A
is reduced to the proof of the uniform boundedness of det(I—ΦN(z)) in N for
any fixed z with \z\ <e% (Proposition 7.1 in §7).

The necessary properties of ΦN(z) are summarized in §5, we will descuss
the limit Φ(z) of ΦN(z) in §4, and the notations which we use throught this
article are listed in §2.

2. Notations

2.1. Alphabets, Words and Sentences
We will define several notations most of which are used in [11]. We denote

by {<X>Ke=A tne partition of / into subintervals which satisfies the condition
(A3) in the introduction. Thus on each subinterval <#> the mapping F is
monotone and can extend to cl<X> as C2 function, where clj stands for the clo-
sure of a set /. We also denote the interior and the boundary of a set / by int J
and dj, respectively.

We call each element a of the index set A an apphabet. For an alphabet
a, we define sgn a by

sgn(ί"|int<β>)

- if F'(x)>Q for #<Ξint<α>,

- if F'(x)<0 for #<EΞint<».

A finite sequence of alphabets will be called a word and for a word w=
aN(a^A) we denote

I w I = N (the length of to) ,
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JSΓ

sgnw= Π

θ* 10 = aκ+1 aN

Thus <(«/> is the subinterval corresponding to a word α;. We denote the empty
word by 6 and define |£| =0 and sgn 6= + . Let WN be the set of all words w

with length N and <zo>Φ0 and set W= U /ϊ.o W*> where W0= {8}.
We call an infinite sequence of alphabets a=^aλ a2- a sentence and denote

the ΛΓ-th coordinate by

the initial TV-word by

[a]N = ΛI— α

and the shifted sequences by

θκa = aκ+1aκ+2

For instance, the word a2 aN+ι is denoted by [θa]N. For words u=a1 aN, v

bι" bM> and a sentence a=c1c2' y we denote u v=a1 aNbl bM and u a

al—aNclc2 ^.
Let

We denote by S the set of all sentences which satisfy {a} Φ0. By the assump-
tion £>0 the set {a} consists of exactly one point if a&S. We denote by SQ

the subset of those sentences a^S for which (Ί JJ.i <[#]#> Φ0.
We introduce orders in the following way. We write

ί x<y if σ — + ,=s -rif σ = — .

(i) For alphabets al9 a2

aλ<a2 if Λ?!<Λ?2 for any Λ?f e<αf > (£=1,2).

(,i) For words Wj, ̂ 2

e ̂ M and for N<M,

Wi<w2 if [wjjv = [̂ 2]̂ v and ^ι[Λ/"+l]<(Γ«;2[Λ/r+l] foisomeA/",

where σ=sgn [wj^.
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iii) For sentences aly a2,

aλ<a2 if [<XI]N< [a2]N for some N .

The following is an immediate consequence of the definitions above.

Lemma 2.1. ([11]) (i) For words wl)w2^W(wl,w2^FS),wl<w2 if and
only if Xι<x2for any #, e< t̂.χ

(ii) For sentences al} a2^S, ({a^ Φ {tf2})> tfι<#2 if an& only if {a^ < {α2} .

We consider the topology on S induced by the order.

2.2. Plus and Minus Expansions

For each x^I, we define a sentence ax=a* a2 ^S0, called the expansion
of x, by the condition F'-^e^f) for all i. Then, x={ax} since £>0. On
the other hand, with each β^S0 we can associate a unique x^I such that
ax=β. Therefore, we can identify / with S0. Moreover, by the assumption
(A3), F, F' and F" can naturally extend to the functions on S and F can be
considered as the shift operator on S. Thus we mainly consider them on the
symbolic dynamics hereafter.

As we saw in [11], the structure of the dynamics becomes much clearer if it
is considered on the signed symbolic dynamics. For x^I, let us denote

and

x+ = sup ay

y<x

x" = inf ay .
y>χ

The sentences x+ and x" are called the plus expansion and the minus expansion
of a point x, respectively. We denote S= {x+, x~: x^I}.

Note that by the assumption (A3) we can define the values of F at x+ and x~
by

(2.1) F(x+) = lim F(y),

F(x") = lim F(y).

For a word zu, we denote the expansions of endpoints of <(w)> by

w+ — sup ay = ( sup y)+

and

w~ — inf ay = ( inf y)~ .

Among the elements of S they are of special importance. For a word w, we
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write w to express one of wσ, σ^{+, — }. We distinguish the signed words
u*&WN and vr^WM if JVΦM even when σ=τ and {uσ} = {vr}. We express
\a\σ

N for a sentence or instead of ([<x]N)σ.
Let

and we call S(x<r) and £(aΛ) the sign of xσ and «Λ Since there will occur no
confusion, we use the conventions that 8 (θ* w*}=σ for n>\ whenever such an
expression appears in below. Now set

A — {α+, a": a^A} (the signed alphabet set),

WN = {w+

y or: w<=WN} ,
00

W= U WN (the signed word set),
JΓ = 1

We define an order on S by
(i) a*>βr\la>β (a,ySeS, <r, τe {+,-}),
(ii) α+<α- (αe5).

Note that (ii) is natural by the definition of x+ and x~.

As a notation, we adopt for α, /§ e*S

,99, .Λ .. , if
(2>2) ( *f fl)=S I (tf },{«}) otherwise.

2.3. Additional Notations

Denote a formal "derivative" F'N (introduced in the next section) on the
symbolic dynamics by

Lebes

where Lebes / is the Lebesgue measure of a measurable set /. We define for
a sentence a

\F\aγl if atΞS,

(2.4) C(a)=\F'N(a)-1 if <M.v>Φ0 and <[a]N+1> = 0 ,

and for ./V>1

^α- 1 if α
(2.5) _„,_., ,̂  otherwise.

For convenience, we set C0(<x)=0.
We also define
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(2.6) G"(a)=τiC(θia),
ί = 0

(2.7) Cn

N(a) = TίCN(θίa).

ί = 0

M-lπ
i = 0

and

For a statement Z/, we adopt

J 1 if L is true,

10 otherwise.

We need the expression δ[L]—^ frequently in the following. Thus we write

ί +£ if L is true,

I — J otherwise.

We also use the expression δ[#<Cy: 6], σ[#<?y: 5] instead of
<r[χ<*y] (£^ {+> — }) f°Γ typographical convenience, respectively.

3. Renewal equation

For an interval /, we define

where the summation Σ^ is taken over all y&J such that F*(y)=x. For an
interval / and g&L00, set

where I/ is the indicator function of a set/. Then we get

ί/(*) = Σ
« = 0

Therefore,

= J s j ( z ; x ) g ( x ) d x .

For simplicity, if /=<«>, we write ί7(^; ΛJ), £/(#) and I/ in place of /(^ Λ?),
ίj(^) and 1,,, respectively.

As in the previous paper ([11]), we will extend su(z\ x) (u& W) to a function
on the signed symbolic dynamics by dividing su(z\ x) into the sum of two quan-
tities su+(z;x) and su~(z;x) given in (3.1) below. On the symbolic dynamics,
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the mapping F acts as a shift operator and — log| F' \ plays the role of a weight
function. In our case for a general piecewise monotonic transformation, this
weight function may depend on all the coordinates, and the construction of the
renewal equation becomes difficult. Therefore, as we stated in Introduction,
we approximate F by formal "piecewise linear transfomration" FN and F' by a
formal "derivative" F'N which depends only on first N coordinates.

As we defined in (2.3), we set

Lebes <[«]„> *

It is convenient to denote the shift operator by FN when we consider the weight
function — log\F'N\ . Although F'N is the approximation of the weight function
ί1', we may say that FN is a formal piecewise linear transformation which appro-
ximates the mapping F.

REMARK. The formal "piecewise linear transformation" FN may differ
from the piecewise linear transformation whose graph connects points (u~, F(u~))
and (u+, F(u*)) for each u^WNy and the symboloc dynamics of such a piecewise
linear trasfoimation does not necessarily coincide with the symbolic dynamics
ofF.

We now proceed to construct the renewal equation which is our main tool.
First of all, for αe*S, z^C and x^I, define a formal power series s*(z', x) by

(3.1) s*(z\x) = s\*;x;F)

= *ΣzW\CM(to x)\σ[ιo x<dt: 6 (a)] S[w[l] =

Lemma 3.1. (i) Let a~ ', β+^S, and suppose that αΓ[l]— /3+[l] and
cr<β+. Then

s«~(z\ x)+sβ+(z; x) = s(*~ β+\z; x) a.e. *.

(ii) Suppose that {tf} = {/3}, a[l]=jS[l] and 6(&) 6(β)=-(a, β e5). Then

(3.2) s*(z\ x) = — s*(z; x) a.e.Λ;.

Proof. This lemma immediately follows from the definition (3.1) and the
fact that

σ[w x<a-]+σ[w x>β+] = δ[w Λ?e[α", /5+)] .

Now let us construct the renewal equation on the signed word set W by
using SΛ(Z\ x) defined by (3.1). Let for αe*S, z^C and #e/, we define for-
mal power series %(<$, x) and %Λ(#; x) by

and
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if

Σ *" C"(e) X.(Θ" a, x) otherwise.
» = 0

Also we denote for g^L00

4(*) = £(*;*") = j Λ*; *)*(*) <**

and

*?(*) = *?(*; ί1) = j **(*; *)*(*) ̂  -

Note that for #eίP

, #) = S (&) σ \x, <δt] a.e.x,

and that

5 {/3"^}

(̂*ί<* }

for α", /3+eS if a~<β+ and {βα'}, {(9/3+> e U w

DEFINITION. We denote by sg(z)=sβ(st 9F) and XXar)=XX«;jF) the infi-

nite dimensional vectors whose components are the formal power series Sg(z) and

%}(j»), u<=W, respectively.
Set for #e5 and

(3.4) φ(α, v) = 6(a) {CM—CI,,-!} (a[l] ϋ)σ[v<θcί]

and define a matrix Φ(#)=Φ(#; A) on Pϊ^ with the alphabet set A by

(3.5) Φ(#)« r = ^ °° ', n
I Σ! % C (u) φ(θ U9 V) otherwise.

This is the generalization of the Fredholm matrix Φ*(^) given in the previous
paper ([11]).

Lemma 3.2. LetJN=(θa, [0S]we(S)) Then

/(*; *) = %(δ, *)+ Σ
jv=ι w e ^ ^

+ 8[β = [ddf]^ sgn «[1] = -]} *'(*; *)+* Σ^^trf]^) sgn

Proof. First of all let αeS and write (3.1) as

(3.6) «"(*;*)

Σ δ[tι *eS]
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Now we approximate F by FN (N>1) or C by CN. Recall that

ΔN(&)={\ 0*1-10^1} (a)

and

Then for v^WN and z/ #e<X> we get

σ[u x<θct: 6(δt) sgn£[l]]

= σ[v<[θc£\N: B(a] sgntf[l]]+δ[> - [θa]N, sgnS[l] = -]

Therefore the sum u^ W in the right hand side can be divided into the sums in

N>ίy v^WN and u xGζv} as follows:

(3.7)

= Σ Σ Σ

Σ ^
lt,eWr^

Σ
,« *e<t)>

[ϊ; = [to]w, sgn«[l] = -]+8gnfi[l] δ[«

= Σ Σ *Δw(a[l].β)ί (Λr;«)
jv=ι "eW^

X {<r[ϋ<[(9<$]w: £(«) sgn df[l]]+δ[t; = [θct]N, sgn ώ[l] = -]}

+jίl*Δw([(3ί]J»+1) sgn «[1] ί/*(af; *) .

This porves the Lemma.

Now our renewal equation is as follows:

Proposition 3.3. As a formal power series > we get the equation :

(3.8) *,(*) = %*(*)+Φ(*)^).

Proof. By Lemma 3.1 and Lemma 3.2, the right hand side of (3.7) is equal
to

(3.9) Σ Σ *ΔN(a[ΐ\ ϋ)s\*;x)
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X {σ[v<[θ$]N: 6(Λ) 8gnΛ[l]]+δ[β=IMU βgn«[l] = -]

+ Σ ̂ ([a]™) sgn «[1] s»*(z; *) .
JF-l

Recall that #+<aT and that £(<2)=£(0a), thus

(3.10) <r

+sgn <2[1] δ[f) = [Θdttf^+S^θct as an expansion]

= 6(&) sgn <

Consequently we get (3.8) if {θόt} e U we^ 9<w>, indeed (3.8) follows from
substituting (3.10) for (3.9), Now let for cί which satisfies {θ&} $ U «,<=ir 3<^>
Since

= r̂ sgn 0[1] O(Λ) ,
J =

we get from (3.9)

(3.11) ί"(ar; *) = X(ct, *)+ Σ Σ «Δ^[l] β) {σ[w<[β«]j,: β(«) βgnΛ[l]]
"-l s**f

+S[v = [̂ <3ί]w> sgn Λ[l] = -]+sgn «[1] 8[β =

Then applying (3.11) to ^(z x) (n>l) repeatedly, we get (3.8). The proof
is completed.

Corollary 3.4. (i) For&^W,

s*(z; x) = X(β, *)+ lim { Σ * I CN(S[ί] v) \ {σ[v<[θa]N: €(&) sgnάi[l]]
JΓ-> «X> V^Wjγ

+S[v = [θct]N, sgn α[l] = -]} ,'(*; Λ)+»| C )̂ | sgn a[ΐ\ ί^(ar; Λ)> .

Moreover, if F=FN for some N, then we get :

[v = [to]̂ , sgn α[l] = -]} jf(ar; Λ?)+^ | CN(&) \ sgn β[l] J/JT(*; x) ,

where JN=(Θ8, [θa]^), as before.
(ii) Suppose that F=FNfor some N. Then for a~ , β+^Wsuch that cΓ<β+

and [a-]N=[β+]N, we get

*<*- ^>(*; x) = X(α-, ^)+%(/3+, x)+z\C(a~) \ s'(x\ x) ,

where J=(θcΓ,θβ+).

Proof. The assertion (i) is a direct consequence of Lemma 3.2, and the
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assertion (ii) follows from (i).

4. Operator Φ

Now we will specify the domain and the renge of the operator Φ(#) so that
Φ(#) be the bounded operator from a Banach space, denoted by IB in below, to
another Banach space 3£. For a while, we fix a real number p so that e~ξ<p<l,
and we only consider z which satisfies \z\<l/p. By the definition of ξ we can
take a constant Kί=K1(ρ)>ί such that

(4.1) ess sup \C*(x)\<KlP*9*el

Lebes <uy<Kt p1"1 (M<Ξ W) .

Lemma 4.1. Let 1 <N< <χ> .
(i) The norm ^((F'n)'1)) is uniformly bounded in N.
(ii) Denote for u e W and \ u \

\CN(χ)\-\CM(x)\ if
0 otherwise.

Then we get

(4.2) V(hUtN) <2K2 Lebers <*/> ,

where

_
2

Proof. First note that

*"'(*>\( i v
\\F'(x)l

Therefore

var (^«,ΛΓ) ̂ ^2 Lebes <«>

and

I j ^,ΛΓ dx I < sup I /<„> I Lebes <w>

< 2̂ Lebes <w> .

This proves Lemma.

We denote by S the space of those vectors (sv)^^w with sυ^C whose com-
ponents satisfy the relations

(4.3)
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whenever {u} = {ϋ} and #[1]=#[!], that is, whenever u and v express the same
point.

Now let 3}=3ϊ(z\ F) be the set of s=(su)^<S which satisfies the following
three conditions:

(i) The following limit exists for a e S, and coincide with su if a=u e W.

(4.4) s* = lim 6(ά) s&#

= - lim €(&) £*** ,
jT+oe

(ϋ) llί|| = ll*ll-+ll*

where

and

\\s\\, = sup Kf,s>\,

where

(4.5) </, s> = lim sup Σ

(iii) sup <oo .
Lebes <«>

REMARK. We will prove in Lemma 6.1 that for any f^BV the limit in
(4.5) exists if z'1 $ Spec (F).

Lemma 4.2. (i) // \\sg(z)\\,<°° forgZΞL00, then ||*,(*)|U<oo.
(ii) Let

\\s\\, = sup sup {|/+/|r^: [Λ\N = ̂  ̂  C(Λ) 6(β) = -} .
zv'^1 Λ.βeS

// lkllr<°° /or ίo/w^ 0<r<l, then IML<°°.

Proof, (i) By Corollary 3.4 (i), we get

(4.6) +δ[z; - [θa]Ny sgn α[l] - -]} s'(z, x)+z \ C(a) \ sgn α[l] j/^ar; Λ?)]

By Lemma 4.1 (i), the third term in the right-hand side of (4.6) converges to
zero as N-^ oo and the sum in the second term is absolutely convergent uniform-
ly in N. This proves (i).

Note that forf&BV the inequality
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Σj/. iH 'szm
holds for a suitable choice of a version of fu such that/=Σ«eϊr/« 1« Hence

(4.7) .
l—r

This proves (ii).

Now we define the range of /— Φ(#). Let

For a vector ί=X^(#)e 3?, we define norm by

I W I = liκ,(*)ll = IL?IU = ess sup \g(x)\ .
*el

and / is defined by (4.4) for &<=S\W.

The definition of X,(#) is stated in §3. The mapping ^^%^(^) is clearly
onto and by (3.3) it is one to one.

Lemma 4.3. A vector s^S belongs to 3ζ if and only if it satisfies (4.3) and
the following three conditions.

(i) The limit

exists for any cί^S where ϋ^W and {θv} e U w^w 9<X>.
(ii) There holds

' j b r β e Λ ^ W e U
V ' ' ' ̂  *' C.(β) ί«"" /or weίT and {θϋ} φ U

(iii) For any x&I, the limit

rhrn ;
χ+~ Lebes <[α*]̂

wίί and bounded where su=su -\-su .

Proof. If s=Xg(z) for some g^L00, then from the definition of Xg(z) it
satisfies the conditions (i)-(iii). Conversely, suppose that s&S satisfies (i)-(iii).
Let
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M = rg(X) * Lebes <[

and s—Xg(z). This proves Lemma.

Proposition 4.4. The operator I—Φ(z) is bounded from 3$ into 3£.

Proof. We will only prove the case when {θu} e U w^w 9Φ^> we can prove
other cases in similar ways.

Recalling the condition (4.3), we get

(4.9)

= lim Σ £(«) C l̂] ϋ) σ[v<ϋu] /

Hence, by Lemma 4.1, the right hand term of (4.9) is bounded. This shows

I (Φ(#) s)u I is bounded and Φ(z)s (s^<B) is well-defined. Next note that

(4.10) (Φ(*) i)" = (Φ(^) s)u++(Φ(z) ,)•-

-lim Σ ssCjf(u[ΐ\ v)5v .

Therefore by (4.2) and assumption (iii) of s ̂ 1B that

sup <00,

Lebes <X>

we get

JfT—fi>(*\\ Λ
<oo .SUp T uLebes <

The proofs of latter parts are easy to be verified, hence we omit them.

5. Estimation of ΦM>N(Z)

In this section, we will consider the mappings FN and define their Fredholm

matrices. Set W(M)— U 2ί-ι Wκ and W(°°)=W.
Let S(N) be the set of those vectors with index set W(N) which satisfy the

condition (4.3) with supremum norm denoted by || \\N. It is convenient to write
<S in place of <S(°°). We denote the restriction of s^S(M) to <S(N) by s\ N for
N<M<oo.

DEFINITION, (i) We define a square matrix Φ# N(z) indexed by W(M)



514 M. MORI

withΛΓ<Λf<oo by

0 otherwise,

and we denote <!>#,#(#)> simpty» by Φ#(#).
(ii) The lower Lyapunov number assoicated with FN is defined by

ξN = Urn inf ess inf — log | F%(cf) \ .
«-»•<*» *el ft

(m) The zeta function ζN(z) corresponding to FN is defined by

ζN(z) = exp Γ Σ 1 sf Σ m(α) I -1] -
L » = 1 ft Λ = Qn<* J

REMARK, (i) Each component of the matrix ΦMtN is analytic in the disk

(ii) Suppose that s is an eigenvector of ΦM tN(z) associated with an eigenvalue
λ (λΦO) for some M>N, then s\N is also an eigenvecotr of ΦN(z) with the
same eigenvalue λ.

(iii) The zeta function ζN(z) converges to ζ(z) in the unit disk |#|<1.

In §7, we will prove it also converges in the disk \z\

Lemma 5.1. ([11]) If 0 is an eigenvalue of I—ΦN(z) restricted to <S(N),
then 0 is also an eigenvalue of I—ΦN(z).

This is Lemma 4.2 in [11] and we omit the proof. The key point of the
proof is to show that the kernel of /— Φ (̂̂ ) is contained in 3£+(I— ΦN(z)) 3£
(Lemma 4.6 [11]).

REMARK. For a partition of / into subintervals which satisfies the assump-

tion (A3), one can express the Fredholm determinant as

det {/-<&*(*)} = {exp Λ*(*)}/U*)

with a certain function RN(z) which depends only on the periodic orbits passing
through the endpoints of <X>, a^A. Furthermore we can always take RN(z)=Q
if we make a suitable choices of subintervals which division points of the parit-
tion belong to (cf. [11] for detail). Thus we get

det {/-Φ*(*)} = !/£„(*)

for such a partition. Hereafter, we always assume the partition is suitable in

this sense.

Lemma 5.2. (i) The operator ΦM,N(z)for N<M< oo is the bounded oper-
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ator from S(M) to itself.
(ii) The restriction of sg(z FN) to W(M) for N<M<°° satisfies the renewal

equation

Proof. The assertions follows directly from Proposition 3.3 and Propo-
sition 4.4.

We will begin with the basic property of ΦM.N(%)

Lemma 5.3. (i) For s e S(M),

(5.1) iΦM.»(*)*Γ

^ιΐ^^
+6(u)z\CN(u)\s'«+ Σ 8(u)z\CN(u[l].ά)\σ[ά<θu]s\

a :

where the sum Σi w taken over all v+^WN such that {v+} φ {θu} and {θv+}

Uwepr3<^>
(ii) There is a constant K3 and for Ni>N2 we get,

(5.2) IIΦW*)

Proof, (i) First note that sv*=—sv^~, where ^t=minM,eίΓ {«;>«;}. Then

{ΦM.*(*)4*= Σ ^) |̂C^[

(41]^+)|σK<^]-|C^(41]^^)|̂

+ Σ £(β) * I c^nti] a) I σ[a < θu] / ,

where the sum Σ£ is taken over all v+ e ίϊ̂  such that {θv+} ̂  U
Therefore, we get the proof of (i) by dividing the sum Σ£ ΐnto the sum Σi and
v+ e Pϊ^ such that {v+} = {θu} .

(ii) Note that

\CN+1(a)-CN(a)\< sup
yιy

<K

Then since

< W^-M*W-| M.( {Φ )̂}̂ .̂  otherwise,

we get (ii).

The determinant det (/— ΦN(z)) does not depend on the choice of alphabet
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set in the following sense:

Lemma 5.4. Let Φ(#; Wκ) is the Fredholm matrix induced by the alpha-
bet set Wκ. Then for K <N<M< oo and \ z \ <e*#, we get

(5.3) det (I-ΦM>N(z; Wκ)) = det (7-Φ*(*)) .

In particular,

Φ(z\A) = Φ(x) .

Proof. We sweep out W(K— l)-elements of the matrix I—ΦN(%). We
continue the following procedure from L=l to K—l:

For ϋ^WLy let u^WL+l be the signed word which satisfies {ϋ} = {u} and
6(ϋ)=ε(ΰ). Firstly, subtract the w-row from the ίJ-row. Note that the compo-
nents of the #-row equal the corresponding components of the D-row except
diagonal components, thus the (#, #)-component becomes 1, the (ϋ, w)-compo-
nent becomes — 1 and the rest of the components of the iJ-row become 0. Next,
add the tJ-column to the w-column. Then all the components of the #-row
become 0 except the (#, #)-comρonent which becomes 1. This shows det (I—

Φ(-2 ; WL))=det (I— Φ(ar; WL+1)). Repeating this, the equality det (/— ΦN(z))=
det (I—ΦN(z; Wκ)) follows. We get (5.3) since for M>N there holds det (/—

Φ*(*5 »rjr))=det(/-ΦJίiJ,(*; Wκ)).

Lemma 5.5. (i)

(5.4) lira ζll = ξ.
&-*<*»

(ii) For sufficiently large N, an inequality

ess sup I Cn

N(ax) \ < ̂  p"
*el

holds.

Proof, (i) For α e S and N < oo , set

Hereafter we use the converntion F00=F and ξ<»=ξ. We denote the conver-
gence radius of FN(z\ a) by ξN(a). Then ξN=ess infΛe/ ξN(cc*).

Recall that F'N converges to F' uniformly. We get

(5.5)

where we set

F'(ά) = 1 +F'(ά)-F'N(ά)
F'N(a)
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Hence,
»-l

Π CN(θ>'a)
C(θ' a)

This shows

By the similar estmiate as (5.5) from below we get

This completes the proof (i) and the proof of (ii) follows from (i).

6. Characterization of Spec (F) by Fredholm matrix

In Lemma 6.1 and Lemma 6.2 below, we characterize Spec(F) in terms
of Φ(#) or, in other words, in terms of sg(z):

Then, in Lemma 6.4 and Lemma 6.5 below we study the relations between
the spectrum of Φ(#) and the spectrum of Φ#(#). Combining these results, we
characterize Sρec(ί') in terms of Φ#(#) in Theorem 6.3. This will lead us to
the proof of Theorem B.

Let

Note that s%(z) is defined in the unit disk | % \ < 1 and has an analytic extension
to the domain 3).

Lemma 6.1. Let z satisfy |#|<0*. Then, ^eSpec^) if and only if
|,,|βl||ί,(*)|| = oo.

Proof. Recall the definitions in (4.5):

ll*,(*)ll = I W^)IU+II^)IL,
||j,(*)IL=sup \<f,sg(*)>\ ,

ΓC/) = 1

and

</> sg(*ϊ> = lim SUP Σ fu <(«) ,
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where

u m
Lebes <X>

We denote fw^(x)=ΣuGWjy.fu lu(x). Then for any f^BV, fWN satisfies the con-
ditions:

(i) im/^=/ (inL1).

(ii)
Therefore, since

Urn I- (X) & = J (/-

if |#| <1 and also if sS^)(i.e. sr^Spec^)), that is, the above lim sup can be
replaced by lim:

</, fΛ*)> = lim Σ /„#*).
jyr-^oo u^WN

Suppose first that sup||ίM==1 ||ί,(#)|| = oo. Then

u Σ Λ *K*) = J (/-^P)-7 (̂̂ )̂ ) Λ

must be unbounded for some/eJ3F and g&L°°. Therefore, there exists /#=

Σ.€nr,(Λr). 1. and^eL" such that F(/w)^l, ||̂ ||=1 and

*).«,(*) I =

In this case, it follows that sΓ^Spec^), because

Σ (/*). O)

Conversely, suppose that sup|^n=1 \\SΛ(Z)\ |<oo. Then for any f^BV and

g<=L~,S(I-zPΓlfWN(x)g(x)dx converges to (/,*)(*)=</,*,(*)>' as ^ °̂°
This shows s

Lemma 6.2. Suppose that z~l§. Spec(F) αwrf that there exists a vector s
satisfying (/— Φ(z)) s=Xg(z). Then for any u^W the equality su=s'g(z) holds,
where we set su=su* +su~.

REMARK. There may be a vector s^psg(z) which satify (/— Φ(z))s='X,g(z),
but this lemma says, if z'1^ Sρec(F), the vector (su)u<=w is unique. Hence </, j>
is also uniquely determined for anyf^BV andg^L00.

Proof. Suppose that there exists s which satisfies (/— Φ(#0))s— Xg(z0) for
^o such that zό1 Φ Spec (F) . Note that
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(6.1) = Um JM

\CN(u[1]'v)\l,(y).

Recall Corollary 3.4(i), then

s« = ( £(*) rf*+ lim Σ #o I CN(u [1] 0)
J <«> IT*- V^WN : <«[!]•«>> <=<«>

This shows that the equation

(6.2) f = Σl*ί ( P* !„(*) *(*) Λe+*y <P* I., *> -

holds for JV=1, and for general cases we can show (6.2) using a similar formula

for P"!, to (6.1). Denote

* 1«W^) dx+z» <PN 1., *> .

Then ίjv(^) coincides with su at ^— ̂ 0 by (6.1). On the other hand, it converges
to Sg(z) as Λ/"-> oo in | z \ < 1 . Therefore, as we assumed z^1 φ Spec (F), it follows

^M— fί(*o) This proves Lemma.

For a piecewise linear transformation, as we have already seen in [11], the
Fredholm matrix can be reduced to a finite dimensional matrix, and so we can
naturally define its determinant D(z) and show that a complex number z~l with
\z\ <e% belongs to Sρec(.F) if and only if D(z)=Q. In our case for a general
piecewise monotonic transformation, we can characterize Spec(F) in terms of
I—ΦN(z), N=l, 2, •••, as follows:

Theorem 6.3. For a complex number z in the disk \z\ <e%, z'1 belongs to
Spec(.F) if and only if \\(I—ΦN(z)Yl\\N is unbounded.

We divide the proof of Theorem 6.3 in two parts.

Proof of Theorem 6.3: "only if" part. It suffices to prove the following
lemma.

Lemma 6.4. Assume \\(I— Φ^^))"1!!^ is unbounded. Then there exists
such that |M| = 1 and (I—Φ(z))s=Q.

In fact, if ||(/— Φ^ί^))"1!!^ is unbounded, then there exists s^<B such that
I M I = 1 and (/— Φ(^)) s=Q. Therefore, by Lemma 6.2, we get s-^eSpec^F).
This completes the proof of only if part of Theorem 6.3.

Proof of Lemma 6.4. We choose r<l so that r>ρ and r> \z\ρ. Denote
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by λjy the least eigenvalue in modules of (/— ΦN(z)) on <S(N). Since we as-

sume that ||(/— ΦX*))""1!!^ is unbounded, \N decreases to zero as TV tends to
infinity. By Remark (ii) in §5, \N is also the least eigenvalue in modulus of

(/— ΦM,N(Z)) restricted to S(M). In particular, there exists the corresponding

normalized eigenvector ίjv^^00)!!^^!!^^! such that the restriction of SN to
S(M) satisfies the condition

(6.3) (/—Φ* .*(*)) %ijr = λ*r SN\M -

If \\SN\\ is bounded, then we can construct sφO and s^3) by diagonal method

from Stf=fy/|tarl|. By (6.3), it is easy to see that (/— Φ(#)) s=0.
Hence we will prove the boundedness of \\SN\\. Let £>0 satisfy r(l—£)~l<

1. Then there exists an integer Nλ such that for N>^ \ \N \ <£. Set

Note that

<^

where v/t=mmwGW{w>v}. Since ||%ιjv-||jv=l, we only need to consider
(K>Q). Let Λ^WN+κfor which there exists no v^WN such that {w} =

Since

we get by Lemma 5.3 (i)

(6.4) (!

+ Σ

Hence, we get by the induction on K

Σ

Consequently,

for sufficiently large N whenever r(l— Iλ^l)"^!. Then the inequality (6.5)

shows that ||%||oo<ίΓ4.
Next we will estimate ||%||r. It can be done in a similar way. Let u=

(or, /3+), α, β^Wand [a ]M=[β+]M Then we get as (6.4)
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+ Σ I
<*>c<0«>

ewjr

Then we also get by (6.5)

2Σ Σ . (l-|λw|)-' |*|'iα(«[l] t»)|Lebeβ<«[; ] ι>>
y=ι o> <=<«.<«>

»eirj

- 1 λ* I )-M K, r" Kt+(Kλγ K2 Σ (1- I λ* I )-Vp»->

Hence setting

Kt = Kt+ {2K4+2 (K, K^K

we get

IMI =

and so sN^3ϊ. The proof is completed.

Proof of Theorem 6.3 : "if " part. It suffices to prove the following lemma.

Lemma 6.5. Let \z\<eξ. Assume ||(7— Φ^))"1!!̂  w bounded. Then there
exists the limit s=\ίmN^(I—ΦN(z)Yl%g(z)^^ uniformly on ig^L00: ||̂ || = 1>
and it satisfies ((I—Φ(z)) s=Xg(z).

Let B={z: \z\ <e* and ||(7— Φ^^))'1!! is unbounded}. Then by Lemma
6.4, the set B has no accumulation point since so does Spec(.F). Thus, if
\\(I—ΦN(z)Yl\\ is bounded, then by Lemma 6.5 we get lim#_>oo^(#; FN)=
sg(z) G.S. Hence z'1^ Spec(F). This proves the if part of Theorem 6.3.

Proof of Lemma 6.5 We choose r<l so that r>p and r>\z\p. Fix

g(=L°* with ||^||oo=l. For u^WMy L>M>N, we get by Lemma 5.2 (ii),

We proved in Lemma 5.3 (ii) that for Ni>N2

llΦW*)-«X
Then we get
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Hence,

(6.6)

for some constant jK"6, this shows the existence of s=limN+g sg(z; FN).
Now we will show s belongs to .3. It is clear that s satisfies (4.3), (4.4)

and |M|oo<°o. It remains to prove the condition (ii) of the definition of <3.
By Lemma 4.2, it is sufficient to show lkj|r<°°. It is sufficient to show that
t(M, N) r~M is uniformly bounded in M and N, where

t(M, N) = sup {|4">; ̂ )l : ε(a) ε(β) = -, [ct]M = [β]M, a, /§e5} .

It is sufficient to show the boundedness of t(N, N) r~N. Indeed, we get by Co-
rollary 3.4 (ii),

*«•(*; FN) = ίf(«; FH)+s*(*; FN)

=JΓΣ"V C"N(ct) %/(B)+^M-W Cy-"(fi) s^M-N\z; FN)
» = 0

where J(n)=-(θ"cί, θ"β). Note first

Since e~ξ<p<l, there exists an integer JV0 auch that |Cw(<5)| <pL fro N>N0.
Therefore for M—N>N0

(6.7) "

for some constant K7.
On the other hand, we get by (6.6) for N=Nί and N—NQ=N2

t(N, N)<t(N, N-NQ)+2K6 p^-^o) ,

then by (6.7)

t(N,N)£(\*\p)» t(N-N0,N-N0)+iK7\s\»+2K^

Hence we inductively get

e,^)T^0 max t(L,L).
r r ) J
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Therefore by (6.7), we get

t(M, N) r~M^K7 (Mp+(M£\M~N

 t(N, N) r~N

max t(L,L)
r r

This shows IMIr<°°. Hence IHI^oo by Lemma 4.2 (ii). This proves

and

(/-Φ(*)) s = lim (/- <£„„(*)) sg(z; FN)
-*•<*»

This proves Lemma.

REMARK. The above proof also shows the following: for 0<r<l, let

':/= Σ /„ 1B with Σ |/Jr""<oo} ,
«e>Γ «eιr

and Spec, (F) be the spectrum of the Perron- Frobenius operator restricted to

3V, Then

= U
0<r<l

Now we can prove Theorem B, which states Sρec(F) can be approximated
by the reciprocals of ZN such that I—ΦN(zN) has eigenvalue 0. It can be done

by a standard way.

Proof of Theorem B. Assume that ^eSpec^). Let f=Σu<=wfu l«
BV be an eigenfunction of P corresponding to an eigenvalue zΰ1. Set

Since eigenvalues are isolated, we can findg^L00 and a nieghborhood U of
#0 such that a(z) is analytic in C7, a(zQ}=Q and |α(#)|>0 in C7 except at %0.
Then ||(7—Φ^))"1!!^ is bounded in N for each z^dU and ##(#) converges to
ίz(,2:) on dU. Hence,

\aN(z}-a(z)\<\a(z)\

holds on dU for sufficiently large N. Hence by Rouchά's theorem there exists
unique zero %N of aN(%) in U for sufficiently large N. This means that 0 is an
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eigenvalue of I—ΦN(zN) restricted to <S(N). As we noticed in Lemma 5.1, 0
is also an eigenvalue of I—ΦN(zN). Hence

On the contrary, if #0$Spec(.F), there exists a neighborhood U of ZQ such

that C/nSρec(ίi) = 0. Note that <f,sg(z\FN)(z)> converges to </,^(#;.F)>
uniformly mg€ΞL°° with ||̂ || = 1 and in z on any compact subset of 3) if fξΞBV.

Therefore (f,g) (z, FN)~ζf, sg(z; FN)y is bounded in U for sufficiently large N.
This shows det(/— ΦN(z)) ΦO in U for sufficiently large N. This completes the
proof.

7. Zeta function

In this section, we will prove the following.

Proposition 7.1. Let \z\<e*. Then for any fixed z, det(I—ΦN(z)) is
bounded.

From Proposition 7.1, we can prove Theorem A.
Proof of Theorem A. Recall

Σ — yn V I F*'(γ\ I -1
Λ ^£j JΓ I XI

» = 1 n x = Fnto J

In §4, we have seen the following:

(i) det(7— Φff(z)) is equal to l/?^(«) and is analytic in the disk

(ii) ξN converges to ξ (cf. Lemma 5.5).
(iii) ζN(z) converges to ζ(z) in the unit disk |^r | <1.
It follows from Proposition 7.1. that l/ξN(z)=det(I— ΦN(z)) converges to

l/ζ(z) and it is analytic in the disk \z\<et. Suppose l/?(jar0)=0, and let us
show sj^eSpecί-F). By using Rouche's theorem, one can find a sequence {ZN}
such that lim^^oo ZN=ZQ and l/ζN(zN)=det(I—ΦN(zN))=Q. Therefore, by The-

orem B, zjleSpec(F).
On the other hand, Theorem B also says that if z^1^Sptc(F)y then there

eixts a sequence {ZN} such that ZN->ZQ and det(/— ΦN(zN))=llζN(zN)=Q. This
shows l/ζ(z0)= 0. Hence, Thoerem A is proved.

Proof of Proposition 7.1. So far we have considered the signed word sets
Wκ and WL (K^L) are different sets. Now we want to identify the signed
word set Wκ with a subset of WL for K<L. For this sake we need some ad-
ditional notations. Let

i = {u<=WN: there exists v^Wλ such that {u} = {ϋ} and 8(u)=S(v)} ,
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andforί:>2

lfrκ = {u<=WN: there exists ϋ^Wκ wuch that {u} == {v} and 6(u) = £(#)} .

Then, WN is the disjoint union of Wκ:

and

In the following, we omit the suffix N and denote FN by F.
Note that by Lemma 5.4,

det(I-ΦN(x)) = det(/-Φ*(*; WN)).

Since the dimension of the matrix /— ΦN(Z] WN) is smaller than that of /— ΦN(z),
we will estimate det(/— ΦN(z, WN)).

First step. Let us sweep out the matrix Φ(#; WN\ the Fredholm matrix
with the alphabet set WN> which is of the form

ϊz" Cn(u)σ[ϋ<,θnu.

We use the following matrix U indexed by WN:

1 if ΰ = ϋ,

— 1 if v = v+

y u = v^~ , and

0 otherwise,

where v^=τmnwew{w^>v} as before. The multiplication of U from right re-
sults in subtracting v^"-column from v~*-column, and the multiplication of U'1

from left results in adding ^+-row to z;t""-row (v+ξ£ T$^).
Consequently, we can compute the components of U'1 Φ(#; WN) U as

follows:
Case 1. (i-a) u^Wl and DG P ,̂

(i-b) βe Tί^, ί)φ TfΊ and €(ϋ)= —,
(ii-a) u$Ξ Wly £(u)=+ and
(ii-b) wφΐί7!, f(w) =+, ί)φ

In these cases, the multiplication of U leaves the w-row unchanged and also
that of C7"1 leaves the f)-column unchanged, thus

Case 2. u^wΊ and β(u)= —. Recalling the fact that the w-row equals
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the ί/4 "'"-row with opposite sign, we get

Case 3. In the rest cases, the multiplication of U leaves the w-row un-
changd and the resultant i)-column is the original v-column subtracted from
the v^ ""-column.

(i-a) If δφT^, £(«)= + , 0$#ι, £(#)= + and ΘΛ=ϋ, then

{tf^Φί*; WN)

(i-b) If βφT^i, £(«) = + , f)φ tί^ £(0)= + but 0WΦ0, then

{t/-1 Φ(*; 0^) E/}ϊ.y = z{C(u[l] v)-C(u[ΐ\ v*)} σ[v<θu] .

(ii) If Λ e T^, ί) φ T^i, and e(£)) = + , then

{C7-1 Φ(ar; W^) U}»t~υ = S(Λ) ±z" C-\U)

{C(u[n] v)-C(u[n] v*)} σ\v<>θnu\.

Thus all the components of the w-rows equal 0 if u~ φ Wl and all the compo-
nents of the w+-columns also equal 0 if u+ e WN. Therefore, we may ignore
them from the matrix U~\I— Φ(z\ WN)) U and get a smaller square matrix

7-Ψ(*) indexed by AW+, where AW+= T^ U {u+ e U 2~ϊ ̂ } .
On the set AW+ we introduce an order for u^ ffiκ and v^ffiκ in a similar

way as before: define u>v if

(1) ί:>L
or

(2) K=L and w>D as signed words.

We denote by

W(u)= {v£ΞWN:v>ϋ} .

Second setp. We can find the following Lemma in p. 54 of [17].

Lemma 7.2. Let M~(Mί ;.)t y==1 ... M be a square matrix and set for \<j<n

where iι=ίι+ι=j Then,

det(/-M) == Π (l-M(j)).

REMARK. If we consider the graph with (weighted) incidence matrix M

then M(j) is a sum over primitive cycles which start from j and pass only elments

less thany and return toj.
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Now set

*?(*) = Σ _ Σ _ Π Ψ(*)ϊ,.ϊ,+l where β, = un+1 = u ,
"~1 ^2»—>«*)ιeτΓθθ l-1

Then by Lemma 7.2, we get

(7.1) det(/-Ψ(*)) = Π (l—*ϊ(*)),
«e^TF+

Therefore, it only suffices to show the uniform boundedness in N of the sum

*ΣϊeAW+\ψϊ(%)\

We now fix £>0 so that r e*< 1. As we have seen in Lemma 5.4,

for any K<N<M. Recall that the length of subintervals <w> (a; e W^) decrea-
ses uniformly to 0 as .fiΓ tends to infinity. Therefore, if necessary, taking Wκ

for sufficiently large K as an alphabet set Ay we may assume the subintervals

{ζβ/}a&A so small that

(7.2) sup sup \F'(x)IF'(y)\<e .
a^A *,ye<e>

Let βlf ΰ2, ^WN satisfy [ίβjw_1= [βj+Jw-j (t > 1) and βjl] «,[!] e S. Then
we get by (7.2)

(7.3) £-fi<lim inf — log Π I F'(ΰt) \ <ξ+£
»->«» /ί ί=ι

Third step

Lemma 7.3. Let u+,vΐtϊί <, φ fy such that <»•[!] =<;[!] (l<i<n).
Then there exists a constant KB such that

π Σ
where VQ=U+.

Proof. By the definition of Ψ(#), we set

Σ φYβΛ + +
v )u v

V '• V\ ^^ZJ "^Vn

0 if θv+<£<vϊ[l]>,

if βii+>ϋf and

if ^M+^i>2+ and
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Consequently Lemma 7.3 follows from the estimate (6.3).

Fourth step. Set

ψu+ fa) = Σ Π Ψ(*V,«ίnv u tn\ / *—Λ J-j. \ /«*» >«*I-TI

with Uι=Un+ι=u+. Then we write ψ>u+(%) as
oo

Note here, since θu+<£W(u+), there exists K9 such that \Ψ(z)u+tίί+\ <K9 Lebes

φ^ Therefore by Lemma 7.3, we get

wΣΛ !*.+»!

=\ Σ + Π |ΨW«>:J Σ

< ΣΛ ̂ 8{̂
8} Λ"1 "̂9 Lebes <t/2> .

Hence,

We can estimate the summation over W1 in a similar manner but taking

care of the infinite sum ΣJ?-o z"\Cn\.

Hence follows the uniform boundedness of ΣU

+GAW+ iΨu+fyl Thus del
(/— ΦN(z)) is uniformly bounded in N in the disk \z\ <eξ. Consequently l/ζ(z)

has analytic extension to the disk | z \ <e%. This proves the Proposition 7.1.
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