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1. Introduction

In this paper we try to improve the estimates for the remainder term in
the asymptotic formula for the eigenvalue distribution of an elliptic operator
A of order 2m in R" whose principal part has Holder continuous coefficients
with exponent 7, 0<<r=1. In some cases, mainly when n=1 we obtain a
better estimate for the remainder term of the counting function N(¢) than the
known results:

N(t) = pa(Q)t?m - O(t="m) a5 t—o0,

In other cases it remains open whether our new estimate is valid or not. In-
stead of solving this problem we give a corresponding estimate for the remainder
term in the asymptotic formula for the partition function (the trace of the heat
kernel):

U() = (24 1)a( @) 4 O™ as 150,

when 0<7<<1 and 2m>n.

In order to describe the results more precisely and compare our results
with the known ones we shall recall some standard notations and hypotheses.
Let Q be a domain in the n-dimensional Euclidean space R" with a generic
point x=(x, -, x,). We denote by a=(a,, -, a,)E€Z%, Z,={0,1,2,-} a
multi-index of length || =a;+ -+, and use the notations

0% = 07 = 071-++03», 0, = 0/0x,
Dd —_ D‘: —_ Tp..D‘:n’ Dk = ——\/—_16/6xk-
For an integer m=0 H™(Q) is to be the set of all functions whose distributional

derivatives of order up to m belong to L,(Q) and we introduce in it the usual
norm
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il = Nl = (| 2 1012 )"

() denotes the closure of C5(Q) in H™(Q).

For v>0 we define B'(Q) as follows. Let r=k-+o where % is an integer
and 0<o=<1. B'(Q) is the space of functions # in Q such that 9%z are
bounded and continuous for |a|=k and |0%u(x)—0%u(u)|/|x—y|° (x, yEQ,
x%+y) are bounded for |a|=k. We set B~(Q)=N,5cF () and denote by
B(2) the space of bounded continuous functions in Q.

For the boundary of Q, I'=08Q and £€>0 we define

T, = {x€Q; dist (x, T)<&}, I'\= {xR"; dist(x, T')<<&}.
Let V be a closed subspace of H"(Q) containing H{'(€):
(L.1) H{(Q)cV cH™(Q).
We consider a symmetric integro-differential sesquilinear form B[u,v] of
order m

(1.2) Blu,v] = S Y aua(x)Du(x)DPo(x) dx

0 [af|Blsm
which satisfies the coerciveness:
(1.3) Blu, v]=8lull5—Cyllull}, 8>0,C,=0  foranyucV,
and whose coefficients satisfy
(14)  epeB(Q) (lal=|8l=m), a,cL(Q)(lal+]8l<2m)

for some 7>0.

Let A be the self-adjoint operator associated with this variational triple
{B,V,L,(Q)}, that is, uc V belongs to D(4), the domain of 4 if and only if there
exists fEL,(Q) such that Blu, v]=(f,v) for any v &€V, and we define Au=f.
Here ( , ) denotes the inner product in L,(Q).

Let Q be bounded. In most cases, for example, when either (1.5) or (1.6)
stated below is satisfied, or when Q possesses the restricted cone property (see
[1]), the spectrum of 4 consists only of the real eigenvalues {\;}7.; which ac-
cumulate only at co. When we enumerate eigenvalues, we count every eigen-
value as many times as its multiplicity. For a real number ? let N(¢) be the
number of eigenvalues of A4 not exceeding ¢z. Then the well known Weyl’s
asymptotic formula for N(z) is written

(WF1) N@t) = p Q) £ O(E*=02m) a3 t—>o0,
or
(WF2) N(t) = pa(Q)*" O™ log t)  as t—>oo,
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where u4(Q) is the constant defined in the next section. Formula (WF1) with
0=1 is the best possible if the coefficients and the boundary are sufficiently
smooth. We are interested in how large 6 in (WF1) can be taken for a fixed
7 or how small 7 can be taken so that (WF1) holds with §=1.

When 0<7<1, Métivier [18] proved (WF1) with §=7/(t+1) under one
of the following conditions:

(1.5) V=H}(Q) and lim sup,,o|T,|/E< 0.
(1.6) Q has (C’) property (see [18]) and lim sup,,,|I',| /6T oo

Here and in what follows for a Lebesgue measurable set D in R" we denote by
| D] its Lebesgue measure.

The author [20] showed that Métivier’s result remains valid for any fixed
>0, assuming that 2m>n and that Q possesses the restricted cone property.

When 7= o0, i.e., when the coefficients are in C*-class, (WF2) was proved
independently by Briining [3], who assumed D(4*)Cc H**(Q) for some k with
km>n and lim sup,,,|T,|/E<oo, and by Tsujimoto [31] who assumed some
estimate for the resolvent kernel. Furthermore for the Laplacian (m=1) (WF1)
with §=1 was proved by Seeley [26] (n=3) and Pham The Lai [24] (r=1)
when the boundary T" is sufficiently smooth. For the general operator (m=1)
defined by the boundary conditions Vasil’ev [34] also proved (WF1) with =1
(see also Métivier [19]). It is noteworthy that Vasil'ev [34] obtained the
second term:

N(t) — MA(Q)t"/2m+bt<”'l)/2m+o(t("‘1)/2"‘) as t—> oo,

where b is a constant, under some assumption on the Hamiltonian flow (see
also Ivrii [10] for m=1).

Looking through the proof of (WF2) by Tsujimoto in detail, we can see
that (WF2) is valid for some finite number 7, the value of which is not so smart.
Hence there is a gap between (WF1) with §=7/(7+1) for any fixed 7>>0 and
(WF?2) for the finite number 7. Therefore we would like to expect that (WF1)
holds with @ larger than 7/(t+1). In fact in this paper we shall show that
(WF1) holds with §=7 for 0<7=1 in some cases and that (WF2) holds for r=
1 in some cases. That is, the following theorem will be derived.

Theorem A. Let Q) be a bounded domain in R". Let a variational triple
{B, V, Ly(Q)} satisfy (1.1)-(1.4).
(i) When n=1 and 0<7=1, the asymptotic formula (WF1) is valid with
0=r.
(i) We assume that n=2 and that Q is a rectangular parallelepiped whose
sides are parallel to one of the axes, and that the coefficients of top order

(|| = | 8| =m) satisfy
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a;(x) (a=B=me;, j=1,:,n)
0 (otherwise),

(1.7) Ayp(%) = {

where e; is the unit vector in R™ whose jth element is 1 and other elements
are 0, and a;(x), | < j=<n is a function only in x;. Then (WF1)isvalid
with 0=r when 0<7<1.

(iii) We assume that n=2, V=H7 (Q) and lim sup,,,| T, | /E<co, and that
the coefficients of top order ( |a|=|B|=m) satisfy (1.7). Then (WF1)
is valid with = when 0<7<1, and (WF2) is valid when v=1.

ReMARK. Theorem A is also valid when B[u, v] has a non-symmetric part

of lower terms if 2m>n and Q possesses the restricted cone property (see [20,
Theorem 2)).

Theorem 4 is proved in sections 3 and 4. 'The proof of Theorem A.(i) is
based on Theorem 3.2 stated in section 3.1 which gives the remainder estimate
of the counting function for the Sturm-Liouville operator 4 (m=1):

Au — ——%(p(x)%) . D(A) = {ueHYI); AucLyI)}

with pe CY(I) where I is a finite open interval in R. We will obtain Theorem
3.2 by using a variant of the Pritfer transform which was used by Shimakura [28].
Theorem 3.2 is extended to a 2mth-order operator which has the same differen-
tial expression as 4™ when p(x) is sufficiently smooth {Proposition 3.4). Itis
important that the remainder term of the asymptotic formula can be estimated
by the constant which depends on min p(x), max p(x) and max|p’(x)| and is in-
dependent of max |p®(x)|, k=2. By approximating the Holder continuous
function by smooth functions and using the properties of N(¢,B,V, H) stated in
section 2.1 we complete the proof of Theorem A.(i) in section 3.3.

Theorem A. (ii) is derived from Theorem A.(i) in section 4.1. Theorem
A.(iii) is proved in section 4.2 by using a stronger version of Theorem A.(ii)
(Corollary 4.3) and the method of Dirichlet-Neumann bracketing which is origi-
nated in Courant-Hilbert [4].

We wonder whether (WF1) with §=7/(v+1) for a fixed =, 0<r=1 or
(WF2) for 7=1 are valid or not in the other cases which are not mentioned in
Theorem A. This problem remains open. But we will try to give some con-
tribution to this problem. Instead of N(t) we consider the partition function
U(t), that is, the trace of the heat kernel U(t,x,y) (the kernel of the semi-group
e~t4):

Ut) = Sn U(t, x, %) dx — S: e dN(s).

Then we obtain the corresponding result for the partition function, although
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we assume 2m>n.

Theorem B. Let 2m>n. Let Q be a bounded domain with the restricted
cone property. Let a variational triple {B, V, Ly(Q)} satisfy (1.1)-(1.4). Then
the following formulas hold.

(i) When 0<r<1, we have

ut) = P(zi‘f‘ 1)#4(9-)'—"”/2”’+O(t(f"")”"') as t—>0.
m
(i) When v=1, we have
U(t) = I‘(—Z—’f—+ 1)MA(Q)t""/2"'+ O(te-—m2m log t71) g5 t—0.
m

Here T'(x) is the Gamma function.

The proof of Theorem B is given in section 5, which is independent of sections
3 and 4. In section 5.1 for the operator 4 with C*~-class coefficients a,4(x) in
the whole space R" we construct a parametrix for A—\ by pseudo-differential
operators and estimate the resolvent kernel in terms of the differentiability of
the coefficients a,g(x). In the remainder estimate of the resolvent kernel the
derivatives of higher order of a,4(x) appear. Roughly speaking, it is evaluated
by the sum of the terms of the form

const sup |0}a,s(x) | | A | (=idlzm,
x

The point of the proof of Theorem B lies in the fact that &, 8,7 and j vary so
that |y | +(2m— |a| — | B|)—j remains constant. The estimate for the heat kernel
in R" is derived by the Laplace transform. In section 5.2 we estimate the trace
of the heat kernel in a bounded domain Q when the coefficients are in C*-class.
In the process we use the estimates for the resolvent kernels by Maruo and
Tanabe [14] and Tsujimoto [32]. In section 5.3 approximating the Holder
continuous function by smooth functions and using the properties of N(¢,B,V,
H) we complete the proof of Theorem B.

As is well known, the asymptotic formula for N(¢) is connected with the
asymptotic formula for the spectral function e(#,x,y) through the formula

N@) = Sn oz, %, x) dx

It is also interesting to investigate the asymptotic behavior of the spectral func-
tion. But we are contented with stating the following. As far as we know,
the best results for the spectral function corresponding to (WF1) and (WF2) are

e(t, x, x) = p ()2 O(3(x)~0t#-0¥2m) a5 f—>o00

with @, 0<<7/(r+2) for any fixed 7>>0 by Tsujimoto [32], and
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e(t, x, x) = po(x)t"?m+ O(S(x)1g#-D/2m) a5 t—>o0

by Brining [3] and Tsujimoto [31] for 7=o0, where wu,(x) is the function de-
fined in the next section and §(x)=min {dist (¥, 8Q), 1}.

In the next section we prepare some lemmas for the proof of Theorems
A and B. ’

2. Notation and Preliminaries

2.1. Properties of N(¢,B,V,H)

Following Métivier [18] we shall state the properties of N(¢,B,V,H). Let
H and V be two Hilbert spaces with VCH. Let the inclusion from V
into H be continuous . We denote by (f,2) (resp. (#,7)y) the inner product in
H (resp. V) and put ||fl|=(f,f)¥* and ||u||y=(u,u)}/*>. Let B be a continuous
symmetric sesquilinear form defined on V' X V:

[ Blu, v]| = Mllullyllolly, M>0 for any u, vE V.
B is said to be strongly coercive on V if there exists §>>0 such that
Blu, u]=8]|ull;  for any ueV.
B is said to be coercive on V if there exists §>>0 and C;=0 such that
Blu, u] = 8||u||5 — Collul[? for any us V.

{B,V,H} is said to be a variational triple if V—H is continuous and B is a con-
tinuous symmetric sesquilinear form on VXV and coercive on V. It is con-
venient to denote a form B+ pu( , ) (uER) simply by B+ p.

DEerINITION. For a variational triple {B,V,H} and tER we define
N(t,B, V, H)=inf {codimy E; E is a closed subspace of V'
such that B—t is strongly coercive on E}.

Lemma 2.1 ([18]).
(1) N(t+s,B+s,V,H)=N(,B,V,H) forseR,
(i) N(st,sB,V,H)=N(t,B,V,H) fors>0.
(i) If {B,, V,H}, {B,, V, H} are two variational triples such that B[u, u]
< B,[u, u] for any u€V, then

N(t, B, V,H)=N(t,B,, V,H).
(iv) If {B,V, H} is a variational triple, and V, is a closed subspace of V,
then
N(t, B,V,,H)<N(t,B,V,H)<N(¢, B, V,, H+N(t, B, Z,,H) ,
where Z,={u€V; Blu, v]=t(u,v) for any vEVy}.
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Let A be the self-adjoint operator associated with a variational triple {B,
V,H}. Let the inclusion mapping V'—H be compact. Then the spectrum of
A consists of all the eigenvalues of 4 which accumulate only at co. The next
lemma clarifies the relation between N(¢, B, V, H) and N(¢, A) which denotes
the number of eigenvalues of 4 not exceeding 2.

Lemma 2.2 ([18]).
N(t, B, V, H) = N(t, 4).

Lemma 2.3. Let Q be a finite open interval I in R. Let {B,V,Ly(I)} be
a variational triple satisfying (1.1)-(1.4). Then we have

N(¢, B, H¥(I), L(I))<N(t, B, V, Ly(I))
<N(t, B, Hy(I), L(I))+2m .

Proof. Let Z,={u€V; Blu,v]=t(u,v) for any vEH(I)}. Because of
Lemma 2.1 and because N(¢, B, Z;, Ly(I)) =<dim Z,, we have only to prove

dim Z,<2m

which is seen from that Z, is contained in the space of solutions of 2mth-order
ordinary differential equation Au=tu.

2.2. Approximation of functions

Let 0<7=1. For a sufficiently differentiable function f defined on Q we
define semi-norms

[flo= |floa =sup {| fx)|; x€Q},
| fle= 1flra = sup {| fX)—f) |/ |x=|"; x, yEQ, 2% y}.

The following lemma can be easily seen.
Lemma 2.4. Let = CF(R") satisfy
SR" p(x)dx =1, o(x)=0, supp pC{xER"; |x|<1}.
For €>0 put
Po(x) = E7"p(*]€) .

Let feB(R"), 0=7=<1. Then the following inequalities hold.
(1) l@exflo=|flo
(11) |¢e*f_f|o§ Ifl-,-ET when 0<7<1.
(i) For a, || =1 we have
[0%(@exf) [0=v,| 0% || f|. €%

Here v, denotes the volume of the unit ball in R".
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2.3. Polynomials with weight

In this subsection any function is to be sufficiently differentiable if not
specified.

In the proof of Theorems A and B we encounter polynomials in the deriva-
tives of the coefficients a,4(x) in (1.2). We must describe these polynomials
precisely so that we can see how they depend on the differentiability of the coe-
ficients a,g(x). To this end we introduce polynomials with weight.

Let =1, m=0 and k=0 be integers. For multi-indexes a, B Z" with
|| <2m we consider a polynomial Q(z{) in variables zf”s. A polynomial
O(=%) is said to be a polynomial with weight 2 with respect to {n, m; 1} if
O(2%) can be written

(2.1) O@=P) = 3 Cly b 282, ChunlieC

with the finite sum taken over |a| =2m and 2m— |ot,| + | By )+ +(2m— ||
4 1B;1)=k. Here C stands for the complex plane. We denote by F(=F; =
Fs.n.m1) the set of all polynomials with weight & with respect to {n, m; 1}.

Let 4 be a 2mth-order differential operator such that

Au(x) = wf:";m a,(x)D%u(x) .

Substituting 2 =aP (x)="0%a,(x) in (2.1) we obtain the function Q(a¥(x)) in

x, which we denote by Q[4](x).
In particular when #=1 and m=0 we write 2 simply by 2® and set

Olp] = Q[4,]

for a function p(x) defined on an interval in R, where

Apu(x) = pu(@)

For example the function p(x)p”(x)+3p’'(x)p’(x) is corresponding to the polyno-
mial 2@2® 4 32Mz® with weight 2.

Next we consider another type of polynomials Q(2$3) in variables 23’s for
multi-indexes «, @ and yE Z*% with |a|<m, |B|<m. A polynomial Q(2{3) is
said to be a polynomial with weight k with respect to {n, m; 2} if Q(2{3) can be
written

) ) (¢D)] Y10
(2‘2) Q(z“ ) 2 C“;ﬂ, ,“151 o 1|51 z“lél’ C"‘iﬂn "IBIE c

with the finite sum taken over |a|<m, |B|=<m and 2m— |a;|— |G|+ |71]|)+
ceo4-(2m— || — | Byl 4+ |vi])=k. We denote by F; (=S} u,m2) the set of all
polynomials with weight & with respect to {n, m; 2}.

Let B be an integro-differential sesquilinear form defined by (1.2). Substi-
tuting 2f=al(x) in (2.2) we obtain the function Q(aff(x)) in x, which we
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denote by Q[B](x).
The following properties will be often used.

Lemma 2.5. Let A, B and p be as above. Let @, be the function defined
in Lemma 2.4.

(1)

(i)

(i)

(i)

()

If Q% (resp. ) and RET, ,; (resp. F,,), then it follows that QR
EF i1 (resp. Fyi15) and that
(OR)[4] = QIAIR[A] (resp. (QR)[B] = Q[BIR[B]) .
For a multi-index o and QEF,, (resp. Fyz) there exists REF 14511
(resp. g*.,.[,l.z) such that
020[4](x) = R[A](x) (resp. 93Q[B](x) = R[B](x))-
Suppose that A is associated with B, that is, Blu,v]=(Au,v) for u,v
€C5(Q). Then for QEF, , there exists RE Fy , such that
Q[4](x) = R[B](x)-
Let peF(R) (0<7=1), 0€F,,(k=1) and 0<€E<1. Then there
eixsts C >0 independent of & such that
| Qlpexp]lo= CE*.

Let B satisfy (1.2) and (1.4) with Q=R" and 0<7=<1. Let Q<
Fr2(kR=1). For & 0<E<] define the form B, by replacing a,g(x) with
Pe¥ayp(x) in (1.2).  Then there exists C>0 independent of & such that

|O[B,]l,=CE*.

Proof. (i) and (ii) are easily seen. (iii) follows from

(2.3)

@)= ('87) D4, .

B+853,85Y

(iv) and (v) follow from Lemma 2.4, (iii).

24.

Miscellaneous

Lemma 2.6. For a>0 and AEC\[0, o) we have

(2.4)

=4
la=M 25 @t M),

where d(\)=dist (A, C\[0, o°)).

Proof. We put A=t4++v —1s. When ¢<0, we have

la—n| = \/—(a+|t|)2+s271§(a+|t|+|s|)%<a+m>,
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from which (2.4) follows. When #>0, (2.4) is equivalent to the second-order
inequality for a:

#INP=)@ =2 [N (# It at I F(#IN =) 20,
which is easily verified. Q.E.D.

We often use the following interpolation inequality.

Lemma 2.7 ([1]). Let Q be a bounded domain in R" with the restricted
cone property. Let 0<EX1 and k=0, -, m. Then there exists a constant C>
0 depending only on m and Q such that

llull < CEPllull+&>lull})  for any uc H™(Q).

Finally we conclude this section with defining some notations. We often
write N(t, B, V, H) simply by N(¢, B, V). Let B be the sesquilinear form de-
fined by (1.2) and let 4 be the differential operator associated with B. We set

a(x, g) == 2 auﬁ(x)gﬁ-*‘ﬂ )

1@ =|B|=m

pa®) = ey A, i@ = @) = | ) dv.

a(z,8)<1

For a function f defined on Q we define

m(f) = mg(f) = min {f(x); x€Q}.

3. Ordinary Differential Operators

In this section we will prove Theorem A.(i).

3.1. Sturm-Liouville operators

Let I=(a, b) be a finite open interval in R. For a real-valued function
peCYI) with 0<m(p)<|p|,<oo, we consider the self-adjoint operator 4 in
Ly(I) defined by

(3.1) Aur—--%(p(x)(;ixu), D(4) = {ucHYI); AucLI)}.

In order to obtain the estimate for N(t, 4) we follow Shimakura’s method ([28])
which is based on a variant of the Prufer transform. Since this variant of the
Prufer transform does not seem to be widely known, we shall review it briefly
for sake of convenience.

To solve the eigenvalue problem

Au = \u,
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we start with the following initial value problem
(3.2) —%(p(x)zx—u)—i—xu =0, uwa)=0, payu'(@=1.

Here we may assume A>0 because A is a positive operator. The variant of
the Priifer transform given by
p%‘—-!— V—1VApu = r(x, ) exp(vV—16(x, 1)),
x
with 7(x, A)>0, 0=6(a, \)<2r,
which is equivalent to

u=—\7r—7\'_j~)sin9, %=—r—cos0

changes (3.2) into the following equations for 7(x, A) and 6(x, \):

1dr ¢

’ dx E—P—' Sinz 0 ’ r(a, 7\.) = 1 )
(3.3) ‘fi—z — V%Jr% sin20,  O(a,\)—0.

Integrating (3.3) from a to b we obtain

_al (e .
66, M)~ V[ T S B sin 265, %) ds,

from which it follows that

1pLlI1
4m(p)

(3.4) .e(b, N—Vx g" \/";"( .

Lemma 3.1.
(1) 6(x, \) is a non-decreasing function in \ for a fixed x.
(i) If O(xe, N)=jm for some xy=a and some integer j, then O(x, N)>jz for
x>xy and O(x, N)<jm for a=x<x,.
(iif)  The first eigenfunction of A has no zero in the open interval I=(a, b).

Proof. (i) follows from the lemma concerning the differential inequalities

([8, Corollary 4.2, p27]).
(ii) is easily seen from 0’(x, N) ="V N/p(x5)>0.
(iii) is well known ([9, Theorem 8.3.3, p398]). Q.E.D.
From Lemma 3.1 it follows that for A, the Ath eigenvalue of 4,

O(b, \) = k.
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Substituting A=2; in (3.4) and putting M=|p"|,|I|[(4mwm(p)) we obtain
(3:5) |k—paI)VMl=M.

First let £=\,. Substituting k=N(t)=N(¢, 4) in (3.5) and noting Ay =t
we have

N@)= pa(D)EP4-M .
Substituting £=N(¢)+1 in (3.5) and noting #<Ayn+1 We have
pa)E —M<N(@)+1.
Hence it follows that
(3.6) —M—1<N({#t)—p(I)?<M  for t=n,.
Next let 0<t<<A,. From the min-max principle we have
M = mind{| p(3) |w/() 17 dx; ue HY(I), Ilully = 1}

< min{|plo| |u'(%)|*dx; ucHy(]), llulle=1}
I

= IP ' o(&[—l)z-

Here we have used the fact that the first eigenvalue of 4 with p(x)=1is (z/|1|)%
Since N(#)=0, we have for 0=t<)\,

e <L 121 (110 )
(3.7) INO—pd = s §<m(p)> '

Combining (3.6) and (3.7) we conclude the following.

Theorem 3.2. Let A be the self-adjoint operator defined by (3.1) for pE
CY(I) with 0<m(p)< | p|o<co. Then we have

D <12l (P10}
NG, )=y U2 S (20 )

for t=0.

ReEMARK. Instead of Theorem 3.2 Shimakura [28] obtained the estimate
for N(t,A4) in the following form. The equality

N(t, A)—[na(1)$¥%] = 0 or +1

holds for sufficiently large ¢.
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3.2. Ordinary differential operators of higher order
For a real-valued function p& C=(I) with

(3.8) O<m(p)=<|plo<oo,

we define the differential expression L, by
d du
(g — — 2 au
P de (p(x) dx )

Let A be the self-adjoint operator defined by
Au= L, D(A)=HY(I)NHyI).

We note that 4 is the same operator as defined by (3.1). Then 4", the mth
power of A4 satisfies

A = Lju, H™I)cDA™YcH™I).
On the other hand, we define the self-adjoint operator 4,, by
(3.9) Agu= L3u, DA, =H"I)NnHYI),
and also have
H"(I)c D4, cH™I).

In order to compare N(t, A™) and N(t, A,) we consider the sesquilinear form
bu, o] — S, L0 T dx.

It is easily seen from (3.8) and the interpolation inequality that b is coercive.
We note that (4™)? (resp. (4,)?) is an operator associated with the variational
triple {b, D(A™), Ly(I)} (resp. {b, D(A4p), Ly(I)}). From Lemma 2.3 we have

I N, b, D(A™)—N(2, b, D(4n)) | <4m.,
that is,
[N(z, (A™))—N(2, (An)’)| 4m.,
which gives
(3.10) | N(t, A™)—N(¢t, A,)| <4m .

In what follows until the end of this section we write &, ,,, (see section
2.3) simply by .

Lemma 3.3. For an integer m=1 there exist polynomials Q;,(2®), 0=1,j
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<m with respect to {1, 0; 1} satisfying the following properties (i) and (ii).

(i) Qijegzm—(eﬁ), Q;i=Q.‘,~, Qmm(z(m)_=(z(0))m'
(i) For a real-valued function p C=(I) we define the sesquilinear form B, ,

by
By fu,0] = |, 31 0,[#10D' u(x)D o(a) d.
Then it follows that
B, su,v] = (L3 u,v)  for any uc H**(I), ve Hy(I).

ReMARrk. From Lemma 3.3 it follows that B, ,[#,v] is symmetric and that

Proof. For sake of simplicity we write £, simply by L.
Step 1. First we prove that L™ can be written

(3.11) L= z’”:.) ay, j(j‘jc_)j,

where a,,, ; is a real-valued function satisfying
Ap,; = Qm.j[P]a Qm.jegzm—j, Amom = ("‘1)um-

We proceed by induction on m. When m=1, (3.11) is seen from
d \? d
L=—p(LYpL.
? dx ) P dx
Suppose that (3.11) is valid for m. Then for m+1 we have

= ()22 Gl )
_ *E{Pam.j((;ix)nz_’_(zPa{,,j—H"am.j) (éi“)jﬂ

J
+(pau.;+p'am.; (—j-) } ,
x
from which it is seen that (3.11) is valid for m+4-1. Hence (3.11) has been prov-
ed for any m=1.
Step 2. Let T be a formally self-adjoint differential expression of order
2m such that

where a; is a real-valued function satisfying
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(3.12) a; = 0[], Qjeg;zm—j+k

for some nonnegative integer k. Then T can be written
m : .
i=o

where b, is a real-valued function satisfying

b= 0;[p],  QiELem-2j+kr bmw= tom-

We will prove this assertion by induction on m. It is clear when m=0.
When m=1, we put

Su = Tu—(apuu™)™.

Then S is formally self-adjoint and can be written
2m=1 .
Su = ) c;ju?,
i=0
where ¢; is a real-valued function satisfying

¢i=Ri[p], R;€EFppjis.

Because S is formally self-adjoint and because ¢;,-; is real-valued, it follows
that ¢,-;=0. Hence S is a formally self-adjoint differential expression of
order 2m—2 with real-valued coefficients satisfying the property corresponding
to (3.12) with m replaced by m—1 and k replaced by k+2. Thus the proof of
(3.12) is reduced to the case of m—1. Consequently the assertion has been
proved.

Step 3. Combining the assertions obtained in step 1 and step 2 and not-
ing D=—+/—1d/dx, we get Lemma 3.3. Q.E.D.

Proposition 3.4. For an integer m=1 and a real-valued function pe C=(I)
with (3.8) let B, , be the symmetric sesquilinear form defined in Lemma 3.3. Let
V be a closed subspace of H™(I) containing HF(I). Then B,,, is coercive on V
and we have

_ o < 1P 1ol I] | (1Pl \
|N(t, By V)— s, (D)7 < rim +(m(p)) +6m-+1
for t=0.

Proof. The coerciveness of B, , follows from (3.8) and the interpolation
inequality. From Lemma 3.3 it follows that 4, defined by (3.9) is the operator
associated with {B,, Hy(I), L,(I)}. Because of Lemma 2.3 we have

IN(t, B, V)—Ni(t, 4,)| <2m..
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This combined with (3.10) gives
(3.13) | N(¢, By, V)—N(2, A™)| <6m .

Noting N(t, A")=N(#", A) and psp, (I)=p4(I) and using Theorem 3.2 and
(3.13) we get the desired result. Q.E.D.

3.3. Proof of Theorem A.(i).

Now we shall prove Theorem A.(i). Let 0<7=1. Let Q be a finite
open interval I in R. Let V be a closed subspace of H™(I) containing Hg'(I).
We consider a symmetric sesquilinear form

Blu,v] = Sl ,',J'Esm a;4(x) Diu(x)Div(x) dx

which satisfies the coerciveness:

(3.14) Blu, u]=8||ullf—Cyllull}, 8>0,C,=20  for any ucV,
and whose coefficients satisfy

(3.15) um = PEDB(I), a;;EL(I) (+j<2m).

It is seen from (3.14) and the inverse of Garding’s inequality that
(3.16) O<m(p)= | plo<<oo.

From the lemma on the extension of the Holder continuous function ([29, p174])
we may assume that pE B'(R) and that (3.16) holds for this extended function
p. Using the function @, defined in Lemma 2.4, we define

q= Pumr g, = P*q,
and have
(EF[R), q.eC(R).

From Lemma 2.4 it follows that there exists &, 0<<&<<1 such that
(3.17) mig)zLmig), 19,105 gl
hold for any &, 0<&€<§,. We define B, by

Bu,o] = | 33 0ufg)x)D'ux) Do) ds,
where Q;; is the polynomial determined in Lemma 3.3.

In what follows until the end of this section we denote by C constants in-
dependent of &, # and # which may differ from each other. Let 0<&<E,.
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Using Lemma 2.4, Lemma 2.5, Lemma 2.7 and (3.14) we have

| B[, u]—B.[u, u]|
<14 lallullat 3 (1aylot10,0a 10| Dl Dl

SCElla+C X eI | ull;
(3.18) Pri<am

<Ce||ullZ+ C“!Zgzm %(grﬂi—zml |24 €722 [y |2)

S C(& [l |2 +E72m)ulI5)
<C& Blu, u]+C& | |ul|§ .

Noting that 1—C&"=1/2 if &, is sufficiently small, we get

Blu, u] 2 (14-C€){B.[u, u] — C&*"([ul[t},

(3.19) Blu, u] <(1—CE&){B,[u, u]+CE"||u|3}.

We choose £,>0 so that #5¥*»=¢&,. Putting E=t"¥?" for ¢>1, and using (3.19),
Lemma 2.1, Proposition 3.4 and Lemma 2.4 we obtain

N(t, B, V)
<N((1+C&Y)t+Ce ™, B,, V)

< s (1) {(14+CE)t+ CET-2my1/zm Ll;lf’l;(l;; +< J’Z;I; >uz+6m+1

= us(1)(1+CE){(14-CE&")+- Ce™~Imp 1} Vompilom | Cg™~
éMB(I)tIIZm_'_Ct(l—T)/zM

for t>t,. Similarly we get the estimate for N(¢, B, V) from below. Hence we
obtain

(3.20) |N(2, B, V)— ua(I)8'™ | SCtd="2m  for t>1,

Thus we complete the proof of Theorem A.(i).

For the proof of Theorem A.(iii) we need a stronger version of Theorem
A.(i).

Corollary 3.5. Let 7,Q,V and B be defined as in the beginning of this
subsection. Put

M = Iamm l 'r+’_ ém I a;; I 0 +m(amm)_l°

Then there exists a constant C>0 which depends only on n, m, Q and M, and is
an increasing function in M such that

IN(2, B, V)— ps(I)t*m | < C(1-+20-"/2m)



952 Y. MI1YAZAKI

holds for t=0.

Proof. Let us take #,>0 as above. Noting that § and C, in (3.14) are
determined by M and looking through the above proof of Theorem A.(i), we
can see that (3.20) holds for #>#, with the constant C>0 having the properties

stated in the corollary.
When 0=<z=1#,, it follows from Lemmas 2.1, 2.3 and (3.14) that

N(t, B, V)SN(¢t, B, Hy(I))+2m
S N(EY(t,+Co),Bo, HY (1)) +2m ,
where B, is the form defined by

Bifu, v] = S, 3} D) Do(a) d

Hence the left-hand side of (3.20) is evaluated by the constant having the pro-
perties stated in the corollary when 0<¢<#, Thus we obtain the corollary.

4. Multi-dimensional Operators

In this section we consider the case of n=2.

4.1. Proof of Theorem A.(ii).

Let 0<r=1. Let Q=IX---XI, where I;, 1< j=n is a finite open interval
in R. Let V be H"(Q) or Hy(Q2). We consider a sesquilinear form

(4.1) Blu,o] = | 33 p,(x)Dyu(x) Do) ds
where p; is a function on R and satisfies

(4.2) P;,EF(R), 0<m(p))=|p;lo<<co.

Clearly B is coercive on H™(Q). Let A be the operator associated with {B, 7,
L)}
In order to find the eigenvalues of 4 we consider the form in one dimension

B,u, v] = S;- p,()Du(t)DTo@) dt  on V,,

where V' is H"(I;) or H§(I;). B, is also coercive on V. Let A; be the opera-
tor associated with the variational triple {B;, V,, Ly(I;)}. Let {\;}7-. and
{@; .1} ¥-1 be the eigenvalues and the corresponding eigenfunctions of 4;. Since
A; is nonnegative, N(t, 4;) is a non-decreasing function with N(t, 4;)=0 for

t<0.
For non-decreasing functions N,(f), i=1,2 defined on R with Ny(#)=0 for
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t<<0, we define

(o Ni(t—s) dN)  (¢20)

NN = 1, (t<0).

By definition it is clear that N;# N,(¢) is also a non-decreasing function with
N3 Ny(t)=0 for £<0.

Lemma 4.1. In addition to the above situation we assume that V—=H"(Q)
and V,=H"(I1;), 1=j=<n. Then the set of the eigenvalues of A consists only of
{7\'1,&,4-"‘—!—7\4",»,,; k,-=1, 2, (1=j=n)}.

Moreover it follows that

(4.3) N(-, A) = N(-, A)FHFN(-, A) -4 (-, 4a) -
The same statement is also valid when we replace H” by H7.

Proof. We shall prove Lemma 4.1 only in the case V=H"(Q) and V,=
H™I,), 1=j=<n. The proof in the case V=H7(Q) and V;,=H{(I,), I<j<n
is carried out similarly. Let

I = Lx I X I X1,

;= (%1, o0 X1y Ky, +o0) Ki)-
For a function #(x) such that
w(x) = ty(%1) >~ sy(0y)
where u;, 1= j<n is a function on R, we define the function 12]. in £; by
u(x) = uy(x;)u;(2;) .
For sake of simplicity we write
D, £;) = 0(%1, 0y Xjogy *y Xja, 0y £a) -
For a multi-index k=(&,, **-, k,) we put

P(x) = <P1,k1(xl)"'¢’n,h,,(xn) ’

which is clearly an element of H™(Q2). Because @, ,; is an eigenfunction of 4;,
it follows that for v C=(R"),

Blpn,v] = 33|, P0&)B sy o, £)] d,

(4.4) = S0, Sb (P0),(2;) d, SU (%) 0() dx,

= At hak,) (@ 0) -
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Since C~(R") is dense in H"™(Q), (4.4) holds also for any v&H"(Q). Therefore
@€ D(A4), and
A¢k = ()"1,k1+"'+7\'n,h,,)¢b .

Because of the completeness of the eigenfunctions {@;}7-1 in Ly(I;) the set of
the eigenvalues of 4 consists only of {\, 4 +*+X,; }. Thus the first half of
Lemma 4.1 has been proved.

Next we shall prove (4.3). For a finite set | we denote the cardinality of J
by | J|. Since \;,=0, we have only to prove (4.3) for 2=0.

' '{(n’ M); 7\'l,n+7\2.m§t} l = ? l {m; 7\'2.»! == S} I X l {n; kd,nét““s} |
= ;}(N(s, A;)—N(s—0, 4,))N(t—s, A;)

= S N(t—S; A])dN(s; Az) .
[o,t]

Repeated use of the same calculation as above leads us to (4.3). Q.E.D.

We prepare the following lemma to evaluate N(¢, A) from the estimates for
N(t,4;), 1< j <n obtained by Theorem A.(i).

Lemma 4.2. Let N(t), i=1,2 be a non-decreasing function defined on R
with N,(t)=0 for t<<0. Suppose that there exist positive constants c;, b;, 0;, o with
0,2 0>0 and a function 7v,(t) such that

Ni) = efitni(t), 17,0 Sb @ +1)
hold for t=0. Then we have

(0, +1D)T(0,+1) 0,40

Ny Ny(t) — cyop—22 10176;

‘ 1 A(t)—ac T(0:14+-6,+1)
S4(bicy+-b,1+byb,) (1070277 4-1) for t=0.

Proof. Let¢t=0. By integration by parts we have
SM Ny(t—s) dNy(s)
= ¢(, St (t—s)°® d(s°%)
0

T S[o,t] %(t_s) a'(soz)-}— S[O.t] 'Yz(t——s) le(s)

— o D(OH-1T(04-1) 44,40,
ac T(0,+0,+1) 4 +h+)e-

Since generally for p>0 it follows that #<1 when 0=¢<1, and 1=<# when
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1<¢, we have

[ il Sbiey (877 + 1)t S 2bic,(#1+%27°+ 1),
and
| Jol Sby(t%2~"+-1)Ny(2)
by (192774 1) (% + byt~ +-by)
= by(26,+4b,) (8170277 4-1) .

Combining the above equality and inequalities we obtain the desired result.
Q.E.D.

From Theorem A.(i) we have
(45) | Nt A))— a Q)P | SCLH0-m), 1< j<n
for t=0. Using Lemma 4.2 repeatedly with (4.5) we obtain
(4.6) |N(2, B, V)— up(Q)t*?»| K C(1-+t*="02m)  for ¢>0,

where V=H"(Q) or Hy(Q). From Lemma 2.1 (4.6) is also valid for any V
satisfying (1.1).

Now we are ready to prove Theorem A.(ii). From [17, Proposition 2.1]
or [20, Lemma 4.3] we may assume that the coefficients of lower order (|a|+
| B| <2m) are identically zero. It is seen fiom the inverse of Garding’s inequality
and (1.3) that (4.2) is satisfied. Therefore we have only to prove (WF1) for a
symmetric form B satisfying (4.1) and (4.2), which is (4.6) itself. Thus we
complete the proof of Theorem A.(ii).

Looking through the above proof and using Corollary 3.5 instead of Theo-
rem A.(i), we obtain a stronger version of Theorem A.(ii).

Corollary 4.3. Let 7,Q and B be defined as in the beginning of this sub-
section and let V satisfy (1.1). Put

M= E(l?,ld— |Pj|o+m(Pj)_l) .
Then there exists a constant C>0 which depends only on n, m, Q) and M, and is
an increasing function in M such that
|N(t, B, V)— pp(Q)t*» | < C(14-#n-"2/2m)
holds for t=0.

4.2. Proof of Theorem A.(iii)

Let 0<7=<1. Let Q be a bounded domain satisfying lim sup,,,|T’,|/6<
oo. Let V=Hg(Q). We consider a symmetric form
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4.7) Blu, 0] = SR" 31,5, Dyu() Do) d
with
(4.8) Pje—@r(R)’ O<m(pj)§lpjlo<°° .

We note that B can be regarded as a form defined on H"(Q') for any open set
Q' in R".

Lemma 4.4. For x,€R" and &, 0<EX1 let Q(x,) be the cube of side &
with center x, whose sides are parallel to one of the axes. Then there exists C>0
independent of &, x, and t such that

| N(2, B, H"(Qx(%0)))— ps(Qu(%0) 8" | < C(1+n~"¢=l2m)
for t=0. The same statement is valid if we replace H™ by H{.

Proof. Let OQ=(—1/2, 1/2)". We define the mapping ¢ from Q,(x,) onto
Q by

¥ =9 = (x—x)/e.
For a function f(x) defined on Q,(x,) we denote fo¢~Y(y) simply by f(y). We
consider the form

Blu,o] = 315,)D5u(»)D5o(3) dy

and the operator 4 associated with {B, H™(Q), L,(Q)}.
Let A be the operator associated with {B, H"(Q), L,(Q)}. It is seen that
Au = 8'2;"11? ,
from which it follows that
4.9) N(t, A) = N(&t, A) .
On the other hand, it is easily seen that
1;l0,e=18;lo, |B;lr,0=E1p;1.=|0;l., mo(B)Zm(p;).

Therefore applying Corollary 4.3 to A which may depend on & and x, we
conclude that there exists C>0 independent of &, x, and # such that

| N(2, A)— pa(Q)t¥2m | < C(14ta=m2m)

for t=0. Replacing ¢ by &"¢ in the above inequality and using (4.9) we ob-
tain the desired result when V=H"™(Q2). The assertion in the case V=Hg(Q)
can be proved in the same way. Q.E.D.
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For each nonnegative integer &, let {Q, ,}s.1 be a countable family of con-
gruent and nonoverlapping open cubes of side §=27% such that U.,0,,=
R". Inaddition, each side of the cube Q, , is to be parallel to one of the axes and
the cubes O, of the kth family are to be obtained by halving the sides of each
cube of the (k—1) th family.

We approximate the domain Q by unions of cubes as in [4]. We define
the index set I, ], and the open set Q;, Q; by induction on % as follows:

I, = {V;QO,VC'Q'}) Jo= {V;Qo.vnaﬂ*‘l{’}»
\Qo = U veIOQo,v ) Qf = Qo u ( U 'UE]OQO,‘U) ’
I = {v; Qpn CONQe-}s Ji = {v; OuyN0Q ¢},
-Qq, = U ’f=o U uet,Ql.u ) Q; = QU ( u vE],,Qk.v) .

It is clear that

Q,..CQ,CQCQCO
From Lemma 4.4 there exists C>0 independent of &, v and ¢ such that
(410)  [N(t B, H™(Q4))— s Q)™ | S C(1+&1"10-70m)

holds for £=0. (4.10) also holds if we replace H" by Hy'.

For an index set I we denote by || the number of elements of I. Al-
though we have used |I | to denote the length of an interval I, this notation should
not create any confusion. Because Q, ,, vE1, is contained in I',, with c=2V/n

and becasue lim sup,,q|I';|/E<<oo, there exists C>0 independent of %k such
that

IIk|52§v§ le,vléchzl,( écek’
k

from which it follows that

ll/\
M,

{14 =03 2D <2,

1]

I 0

(4.11) o "
k k c <r<
n—T < 1—1'3
AlnET=CRE _{Ck (r=1).
For sake of simplicity we write N(¢, B, H"(Q'), L,(Q')) by N(¢, H™(Q")) and so
on. The method of Dirichlet-Neumann bracketing ([4], [25]) gives
31 31N, HE(010) S NG, HE(Q)

= OVEI

(4.12)
S5+ 2) N6 HUG) -

=0 VEI
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Hence combining (4.10)-(4.12) we have
N(z, H7 (Q))— ps(Q)2*?"
231 3 N HE(01) =l Q) — (@)= 35 5] ol Q1)
2 —C 3| LI (14€ 10" —C| T, | =

_C(Zk(n—l)__l_t(n-'t‘)/2m_|_2—kta/2m) (O<‘T< 1)
= _C(Zk(’l—l)+kt(l-1)/2m+2—ktn/2m) (r= 1)

for t=0. Now we choose an integer & so that 2* <#/?»< 2! and obtain

—C(1+gn-m02m) (0<T<1)

N(t) H:’”(‘Q‘))_ I"B(‘Q')t"/zm = —C(l - g(n=Df2m log t) (==1)

for t=1. Similarly we get the estimate from above. Hence we obtain (WF1)
when 0<7<1 and (WF2) when =1 for the sesquilinear form defined by
(4.7) and (4.8).

This result leads us to Theorem A.(iii) through the same argument as in the
end of section 4.1.

5. Heat Kernels

In this section we shall prove Theorem B. We assume 2m>n through-
out this section.

5.1. Resolvent kernels and heat kernels in the whole space
Let B[u, v] be a symmetric sesquilinear form:
Gl Blu,u] = SR” 3 au()Dux) D) dx, aupE B(R),

which is strongly coercive:

(5.2) Blu, u] =8||ullz, >0 for any uc H"(R").

From the regularity theorem of elliptic operators it follows that the positive
self-adjoint operator A associated with {B, H"(R"), L,(R")} satisfies

Au= 3} a,(x)D*u, D(A)= H™(R"),

|| =2m

where a,E B>(R") is determined by (2.3). We set
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aZm(x) E’ 7\') = a(x; E)_k' =Im§maa(x)‘fa—7\' ’
o EN = (8= Da e (0=<j<2m—1).

Let N be a positive integer and let A&EC\[0, ). For N and A we construct
a parametrix By(\) for A—N\ which satisfies

(A—N)-By\)=1,  By() = %‘b_,m_ (D),

where b_;n-;(x, D, \) is the pseudo-differential operator with the symbol b_,,- ;
(%, €, A) defined successively as follows.

(5.3) aZmb—zm =1 ’

54 @bt S 0% Do =0 (jZ1).

i<j a+k+lel=j o

We note that b_,,-;(x, £, \) is a homogeneous function of order —2m—j in
(&, AV?m), that is,

b_ym- (%, tE, ™) = t72m=Ib(x, £, 0), t>0.

We set

(5.5) Cu() = (A—2)-By(M)—1,
and have

(5.6) (A—=N)7" = By(A\)—(A—2)"'Cx(7) -

We denote by cy(x, £, \) the symbol of the pseudo-differential operator Cy(\).

The above construction of the parametrix By(\) is well known ([5], [6], [7],
[23], [31]). In order to prove Theorem B we must estimate the symbols of
By(A) and Cy(\) more precisely so that we see how they depend on the differen-
tiability of the coefficients a,(x). In what follows we write &, , ,, (see sec-
tion 2.3) simply by & ;.

Lemma 5.1. For a multi-index ¢ we have

. _zitlal b (x) &
Db _yp- (%, E,\) = ,;0 m=§k-i (a(x, g)_h)l&l

with the sum taken over 2mk— j =0 where bj}(x) can be written
b?z = Q?Z[J](x) ’ Qﬂegjﬂwl .

% is determined only by m, n, &, 7, j and k and independent of the operator
A. In particular we have
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bog(x) = 1.

Proof. We prove Lemma 5.1 by induction on j. For sake of simplicity
we write

p=a(xE)—N\.
For j=0 we have
bosa(s, £, 1) = (alr, =0 = p
Since
(5.7) D, p™ = —p7"D,,p-p7,
we obtain by induction

D3b_yn = 33 Cay, .y (27 D21p) - (p7 D51 p) - p7°

D‘:lp"‘D:kp
= C —y————————
2 o1, Iz( ( ,E) )\')],-{-1

with the sum taken over @;+-++a,=a and k< |a|, where C,,,.. ,, is a con-
stant. From this equality it is easily seen that the assertion for j=0 is valid.
Suppose that the assertion for / less than j is valid. Then the assertion for
7 is seen from (5.4) and (5.7).
Hence the assertion is valid for any j =0. Q.E.D.

Lemma 5.2. We have

CN(x’ S’ 7\') :_‘N.Tzzjv__lcN,—j(x’ E; 7\') >

=
where cy, (x, €, \) is homogeneous of order —j in (£, N*™) and satisfies

2N +2m-2 c%jk(x)gy

CN."/'(x) £ 7\') = 2 peaen-; (a(x, g)_h)k+l

with the sum taken over 2m(k+1)—j =0 where c}ji(x) can be written
ki = Oki[A], Okn€d;.
OXj ts determined only by m, n, v, N, j and k and independent of the operator A.
Proof. By the product formula for pseudo-differcntial operators we have
(538) e £ 3) = 33 02 0sm-sD0b s

with the sum taken over |a|+k+I=N,I<N,0=<k<2m and |a|=2m—k.
Combining Lemma 5.1 and (5.8) we get Lemma 5.2. Q.E.D.
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Now we consider the semi-group {e—#},5,. It is known that e—#4 is given
by the Laplace transform of (A—2x)™":

(5.9) et =

1 N )-1,-fA
= \/?182(“’4 A)le R d,

where = is a path in the region C\[0, o0) which comes from cce™-1° and sur-
rounds the origin clockwise and goes to c0e”~-1° for some o, 0<o<z/2.

Let U(t, x, y) be the integral kernel of e—#A. We want to evaluate U(¢, x, x).
For sake of simplicity we define some notations. Generally for an integral ope-
rator T on L,(Q) we denote its integral kernel by K[T]:

Tf(x) = | _ K71 )/ (9) .
For a multi-index o and a nonnegative integer j we set
(5.10) d4(x) = Ss a(x, )+ DEmey oy |

where S stands for the unit sphere in R".

Lemma 5.3. By(\) has a continuous kernel and it follows that for t>0

(5.11) S K[By(\)](x, x)e™* dn = %‘bj(x)tu-n)/zm,

1
2V —1J=

where

b (x)_ Ej P (2m)- r<”+ |')’|>d'v (x)b (x)

k=0 |y|=2mk-; 2mk!

with the sum taken over 2mk—j =0. In particular we have
=r("
(5.12) Bu(x) = r(zm +1 )yl -
ReMARK. b3} was defined in Lemma 5.1 and satisfies

bk = QRlAl, ONET;.

Proof. We consider the pseudo-differential operator P(X.) with a symbol

wEN) =08 e g
P( » & 7\') (a(x, S)“‘X)HI ’ = ( )

with |v|—2m(k+1)<<—mn. The kernel of P(\) is continuous and given by

(5.13) KO3 3) = @m)= | & =emip(e, £, 0) dE
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In particular we have
HPO ) = @m)* | oo £, 1) d

By Cauchy’s integral formula and using the polar coordinates, we have

27;\}__1 5 JHIPO(x, x)e™ dn

= (2z)™" Snn%tkb(x)fye—mx's) 43

_ Ca)yrnfntH v\ v k- (n+171)/2m
— =) k!r( L7 wjoce -

This combined with Lemma 5.1 gives (5.11).
(5.12) follows from the definition of x_j(x) and the equality
1

—_ —n/2m
Sa(z.£)<l € n js a(x, ») do .

In the following we denote by C, ... OF ¢4, pOsitive constants depend-

ing only on n, m, ---.

Lemma 5.4. Let N>n. Then Cy(\) has a continuous kernel and there

exists a constant C, ,, x>0 such that
[ K[Ch(M)](x, ¥)
N+2m~1 )
SComn 33 (31 lolchisle) 0] x-0om
=N kY

for A, IN| =£2d(\) with the sum taken over k=0, --+,2N+2m—2 and |y|=

2m(k-+1)—j =0.

Proof. Let P(\) be defined as in the proof of Lemma 5.3. Using (5.13)

and Lemma 2.6 and changing variables we have

| KPP ) < (2@;’451 4o )',,'+ £l g

ety

X d1°~,|(x) |b(x) | l A l (n+171)/2m— (k+1)

This combined with Lemma 5.2 gives Lemma 5.4.



EI1GENVALUE DISTRIBUTION 963

We set
M = max {|agle, 15 || Sm, |B<m}, 8 = min {5, 1}.
Lemma 5.5. There exist C, ,>0 and c, ,>0 such that
| KLA=N ], )]
S Co T M| "2t exp (—Cp w M N | V21 | x—y )

Sfor A, 1= |N| =2d(N).

Lemma 5.5 is essentially due to Tsujimoto [32], who proved it when A is
an operator on a bounded domain in R". We must prove it when A is an ope-
rator on the whole space R". Furthermore we need to estimate K[(A—\)™]

(%, y) paying attention to the constants M and 8,. Lemma 5.5 will be proved
in Appendix.

Lemma 5.6. Let N>n. We have for 0<t=1

1 - 31

Ty Ja KA )
<C. . S-arpp” N%""‘ |48 ¥ Li=mi2m
=C4, m,n01 A \& i lol€xrlo

with the sum taken over k=0, «--, 2N+2m—2 and |7y |=2m(k+1)—j =0.
Proof. Let 1=|\|=2d(\). From Lemma 5.5 it follows that

S o | KAV, 9) |y = Co WT M N

This combined with Lemma 5.4 gives

| AN a5, )]
(5.14) <[ 1A= DHICH N 0, )1 dy

H+2m+ .
<o OM" " ST (S 1y Lol ale) N[ -,
Let g(\) be a function defined on {\; 1= |x| =24(\)} which satisfies
lg) I = In]*

for some peR. For a fixed £, 0<¢<1 we define the path 5, in {\; IS N[ =
2d(\)+ by

2; = F+UPOUF_ ,

', = {\€C; |72t ImA = +Rel},

3

T,= {A€C; A= —1t7%, “-—4T7Z'_S_O'§%7K}.
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Then we have

1 i
‘2” T1Sz,e "‘q()»)dx'
(5.15) <2. L S" ctevig-igsy 1 f‘“ o) do
T 2@ et 2 J-3en

é(fr"IZ"/"r &l ds—l—e)t"’.
1/2

Since K[(A—A)"1Cy(\)] (%, y) is analytic in A we may change the path 3
into 3,. Hence from (5.14) and (5.15) we get Lemma 5.6. Q.E.D.

Combining Lemma 5.3, Lemma 5.6, (5.6) and (5.9) we conclude the following.
Lemma 5.7. Let N>n. We have for 0<t<1

| U, x; t)—glb,(x)t<f-~)/2m |
(5.16) i=o

m=1

N+2
g Cn,m,NSI-(“-H)M” E

35 (S 10l calo)t-2m

with the sum taken over k=0, -+, 2N+2m—2 and |y |=2m(k+1)—j =0.

5.2. Traces of heat kernels in Q

Let Q be a bounded domain with the restricted cone property. Let V
be a closed subspace of H™(Q) containing H§(Q). Let Blu, v] be a symmetric
sesquilinear form satisfying (5.1) and (5.2). Furthermore we assume that the
restriction of B to Q, which is denoted by B:

Blu,v] = S ST aus()D*u(x)DPo(x) dx

Q 1a1,1Bl<m
is also strongly coercive on V:
Blu, u] = 8||ull5 for any u€V,

where § is the same constant as in (5.2). Let A (resp. 4) be the operator as-
sociated with the triple {B, H"(R"), L,(R")} (resp. {B, V, Ly(Q)}). We denote
by U(¢, x, y) (resp. U(t, x, ¥)) the heat kernel of A (resp. 4) and put

U(t) = Sn Utt, », %) d .

In order to estimate U(Z) we prepare two lemmas.

Lemma 5.8 ([14]).
(i) There exists Cy 4y,0>0 such that
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n/2m
K[(A—r)" <C, nodrim "
| KA1 )| S ComadTM 1S

for x, y€Q and A€ C\[0, o).
(i)’ (i) 2s also valid if we replace A and Q by A and R".
(i) Let 0=0=1. There exists Cp po,0>0 such that

| KLA—N)"](x, %)= K[(A—=N)T](x, )|

_2 zlhl'ﬂm |x|1-1/2m [
= C,n,0,001°M d(\) (3(x)d(7&))

Jor x,yEQ and n&C\[0, ), || =1.

Proof. From Lemma 2.6 we have

| Blu, u]—\w, u) | = ;’f’”) AN (Blu, ]+ MIull?)

> 6:d()) 12)(44]1)2
_4|M(Ilull..+l7\l Iluello)?.

(5.17)

To prove Lemma 5.8 we have only to follow the proof of Maruo and Tanabe
[14, Lemma 3.1] (resp. [14, Lemmas 4.1, 4.2]) for (i) (resp. (ii)), paying the at-
tention to the constants 8, and M, and using (5.17). Q.E.D.

Lemma 5.9. There exists a constant Cq>>0 such that the following inequali-
ties hold.

@) IT.SCot for £>0.
(ii) sn 3(x) 0 dx<oo for 0<f<1.
(iii) SS( ., 8(x) dr=<Callog* €41  for £,
where log* t=max {log ¢, 0}.

Proof. Since Q possesses the restricted cone property, (i) holds (see
[16]). (ii) and (iii) follow from (i). The details are found in [21].

Proposition 5.10. Let 0<0=<1. We have for 0<t<1

} U@ —1( A1)

<CpmoadT™H Mn+1('j§'-jlmzjt(i-a)/2m + fo(t)> ,

where
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- {lb,-lo (1sj<n)

B Shaldilolchinirle  (a+1=j=n+2m),
1O-miim (0<o<1)
t=mi2m(log t714-1) (6=1).

i

Jio =

Here the sum >3 y is taken over k=0, +++, 2n+2m and |v|=2m(k+1)—j=0.

Proof. Let 0<#<1. Using Lemma 5.8.(ii) and (5.15) we get the estimate
for the difference of heat kernels:

(5.18) | U2, x, x)— Ul(t, x, x) | SCp 0,007 M25(x) =010~ ")2m

for 0<@<1. Integrating (5.16) with N=n-+1 and (5.18) on Q and using
Lemma 5.9.(ii) we obtain the desired result for 0<<§<C1.

It remains to prove Proposition 5.10 for §=1. From (5.18) and Lemma
5.9.(iii) we have

Sa(x)gﬂ/ m U, x, x)—U(t, , x)} dx
S Cp o, aOT MM 2m(log +711-1) .

(5.19)

Using Lemma 5.8.(i), (i)’ and (5.15) we have
|U(t, x, x)— U(t, x, x) | < Ch p,oOT Mt =2m,

This combined with Lemma 5.9.(i) gives

(5.20) {U(t, x, x)— Uz, x, x)} dx| < C, pp o8T Mt1-22m,

Sa(z)étl/ 2m

Integrating (5.16) with N=n-+1 on Q and combining (5.19) and (5.20) we ob-
tain the desired result for 6=1. Q.E.D.

5.3. Heat kernels with Holder continuous coefficients

Now we shall prove Theorem B. Let a variational triple {B, V, L,(Q)}
satisfy (1.1)-(1.4) with 0<7<1. We may regard a,z as an element of B"(R")
(see [29, p174]). For €>0 we set

a;3:¢e*a¢p (lal":lﬁl‘:m)’

where @, is the function defined in Lemma 2.4. We define symmetric forms

Bluol={ 3 D% detCyl v)rgen

Q |o|=|Bl=m

B, v] =§ S ataD*uDPo du+Cyltt, o) 1yam »

R" |®|=IB =m
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where C,>0 is a constant. Replacing the values of a,g outside Q if necessary,

taking C,>0 sufficiently large, and using (1.3), Garding’s inequality and so on,
we may assume that there exists &, 0<&<1 such that

(5.21) Bg[u,u]g%llullf,, for 0<E<&, ucV,
(5.22) .@,[u,u]g%nunﬁ, for 0<&<&,, uc H™(R").

We denote the trace of the heat kernel of the operator associated with {B,, V,
Ly(Q)} by U®).

Lemma 5.11. Let 0<0=<1. There exists C>0 independent of € and t
such that

Ud) —r‘(%jL 1) ()"

<c ”;22: g -Ig-mizm L CJ,(8)

holds for 0=<t=<1, where J,(t) was defined in Proposition 5.10.

Proof. From (5.22), Lemma 2.4 and the inverse of Gérding’s inequality it
follows that the constants 87%, M and |dfy,|, can be evaluated from above by
positive constants independent of & Let 51_, stand for the constant 5,. coz-
responding to the forms B, and 3B, in Proposition 5.10. Using Lemmas 5.2, 5.3
and Lemma 2.5.(v) we have

15,1 <CE™,

where C>0 is independent of & Hence applying Proposition 5.10 to the
forms B, and B, we obtain the desired result. Q.E.D.

From the interpolation inequality, Lemma 2.4 and (5.21) we have
| Be[u, u] —B[u, u] | < CE|[1]|7+Clle] |l 2] -

S C(E|ullmA-&72m 1 |ul|3)
< CEB,[u, u)+C& | |u|[5,

from which it follows that
Blu, u]=(1—CE&")By[u, u] —C& | |u5 ,
Blu, u)<(14-C&")B,[u, u]+Ce 2+ |u]|7 .

Noting that 1—C&"=1/2 if &, is sufficiently small, and using Lemma 2.1 we
have
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N(t, B, V)< N((1—C&)"Yt-+Ce*), B, V),

(5.23) NG, B, V)gN((l+Cg")'1(t——C8'2m+l), B,V).

We write N(¢, B, V) or N(t, B,, V) simply by N(f) or N,(¢) respectively. From
Lemma 2.1, (5.23) and the relation between U(t) and N(f) we have

u(e) Sl et dN(s) = S: te~N(s) ds

Il

= S” te—“N,((l—-CE"')‘I(S_I_C&—zmH)) ds

I

[" a—ceypexp (—(1—Ceyps-Cemvin) N(s) s
= U(1—C&Mt) exp (CE™*m1y) .
This combined with Lemma 5.11 gives
exp (—CE&NU(Y)

<T( 4 1) (@11 CEp
+CS (- ey It O (1—Ce)
< r‘<%+ 1) A Q) - CET -l
+c”ii:e*-ft<f-~>/2m+01.,(%) for 0<#=<1.

Now we take #, so that #{/*"=§,. Putting =7 and &=¢"*" for 0<t<t,, and
noting

exp (C&2m+1f) = 14 O(V*m) ,

we obtain

m ot 1 [CLTPIm (0<r<1)
U(t) él"( om + I)MA(Q)t + {Ct(l-u)lzm logt? (v=1)

for 0<t<t, Similarly we get the estimate for U(#) from below. Thus we
complete the proof of Theorem B.

Appendix
We prove Lemma 5.5. Let B[u, v] be a sesquilinear form satisfying (5.1)
and (5.2). For n=(n, ***, 7,) EC" we set

Bufu, o] = |31 a0(0)(D+in)*u(e) D—in)Pore) d,

R" |@],|BI<m
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where 7 stands for the imaginary unit /—1. This notation should not oc-
cur any confusion. Let A, be the operator associated with {38, H"(R"),
L(R™}. At first we want to evaluate K[(A,—N\)""](x,y). To this end we
have only to follow Tsujimoto’s proof ([32, Lemma 5.1]), paying attention to
the constants 8, and M as follows.

Let 1=<|XA| =2d(M). The same inequality as (5.17) gives

(A-1) | Blu, u]— N, u)| z%(llullﬁ— 2l )2.

Using the interpolation inequality we have

| B,[u, u]—Blu, u] |
(A-2) éc"""MoQgém EiadbY —(k+l)/2m(”u||m+ |7\-|m”u”o)2

< ComM 9| [N 727 (|l | | N2 [l
if |p]|A]"¥?»<1. Hence from (A-1) and (A-2) we have

(A-3) | B4l 51— My )| 22l 212 o,

if [9][A]"""<C, 0.M™". We put
uZ(J"—X)_lf’

and have
[ fHlolleello
7 - 77

Here || fl|-, stands for the norm of the Sobolev space H-"(R"). From (A-3),
(A-4) and the integral kernel theorem ([14, Lemma 3.2]) we obtain

(A-4) | B[, u]—Mu, w) | = | (f,w)| =

| KL A2 () SCot [ M55
1
if [n| N~ <C, W0 M
If we can show that

(A-5) KA=N)"(x, y) = e EIK[(A—2) ] (%, 9)
holds, then we obtain Lemma 5.5 by putting

A vem, (¥—Y)

n= —Cn,m—'k'l Wo s

M fx—y|

in (A-5). Since it does not always follow that

A-6 ue H"(R") implies e'uc H"(R") ,
(A-6) p
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it is not so easy to show (A-5) as in [32].
We will prove (A-5).
Step 1. Suppose nE(iR)". Since (A-6) holds in this case, it is seen
that (A—n)"!f=e"*"(A,—\)e*" f, from which (A-5) follows.
Step 2. We show the differentiability of K[(A,—A\)7"] (»,y) in . Let
fEL,(R"), heC with h=%0, |h| <1. Put
Up = (Jﬂ+h¢j'—7\')_1f*(uq’1—'>")-lf’
where 7] SC\ 8M7[N|V?" and |y+e;| <C, 8M | N|¥*". For any vE
H™(R") we have
Ba[vh, v]— Moy, )
= n+hej[(h’qn+he1_7\')—1f: Z)]—)\,((J,,+h,j—7\,)_1_ﬂ 'U)
—B,[(A—2)f, O]+ M(Ar—2) 7 f, 0)
+($n_$n+hq) [("Aﬂ+h2j_)\')_1_f) 7)]
(A-7) = (By—Byshe)) [(Antse; =)' f 0]

= SR, }; ag(%) {(D+i9)*(Ansne;—2N) 2 f - (D—im)Po

—(D+i(n-+he))(Ansne;—N) " f+(D—i(7+he;))Po}dx
= h],,[(gﬂ,,+h,]—7\,)—1f, 7)]+In(h) [(Jvﬂuj"")")_lf» v] ’

where J,[«, v] and I,(k)[u, v] are sesquilinear forms satisfying the following.

Fli o) = | S au{(D-+in)u-TB Dm0
—iot (D+in)*~*u-(D—i7)Po}dx
(A-8) | Jalwe, 911 SC(1+ [ 712 lullallv]lm ,
(A-9) [ L(h) [, 0] | SCRI2(1+ |9 ]*™) |l ][] -

Here and in what follows we denote by C positive constants depending only on
n, m and sup |a,e(x)|. Putting v=v, in (A-7) and using (A-3), (A-8) and (A-9)
we get

(A-10) loallw=CI1A] (14 |2 ") (Apsse;—2) " fllm -

On the other hand, from Lax-Milgram’s theorem there exists w& H"(R")
such that

(A-11) By[w, v]—Mw, v) = JH[(A—2)7 f, 0] .
Putting

1
Up= —Up—wW,
h
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and combining (A-7) and (A-11) we obtain
B[uny un]— Mgy #4) = Jul[vns uh]"'%ln(h) (Antre;—N)' fi ] -

This combined with (A-3), (A-8)-(A-10) gives

lpllmt I allo S C LA+ 12 VI Antie;—2) 7 llm
S{Clhl(H-Inl”")’lM"”llfllo
—ClRIA+ 121Vl f1l-m -
From the above inequality and the integral kernel theorem we conclude that
K[(Aa—N)"1 (%, y) is holomorphic in 1.
Combining step 1 and step 2 and using the uniqueness theorem we obtain
(A-5). Thus we complete the proof of Lemma 5.5.
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