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1. Introduction

Let z denote a semifield plane of order ¢ and kernel K=<GF(q) where
g is a prime power p". A p-primitive Baer collineation of 7 is a collineation &
which fixes a Baer subplane of z pointwise and whose order is a p-primitive
divisor of ¢-1 (i.e. |o||g—1 but |o| f p'-1 for 1<i<r). A semifield plane
of order p* and kernel GF(p?), where p is an odd prime, is called a p-primitive
semifield plane if it admits a p-primitive Baer collineation.

In [7], Hiramine, Matsumoto and Oyama presented a construction method
(which was extended by Johnson in [9]) by which translation planes of order
¢* and kernel © GF(¢?), g=p’, are obtained from arbitrary translation planes
of order ¢* and kernel GF(q). The class of p-primitive semifield planes is pre-
cisely the class of planes obtained when this method is applied to the Desar-
guesian plane of order p? (see Johnson [10], Theorem 2.1).

In this article we study some properties of p-primitive semifield planes and
determine necessary and sufficient conditions for isomorphism within this class.
The main result is on the number of nonisomorphic p-primitive semifield planes

Theorem 4.2. For any odd prime p, there are (P —;1 )2 nonisomorphic p-

primitive semifield planes of order p*.

We show that of these, P ';1 are Hughes-Kleinfeld semifield planes and

one is a Dickson semifield plane. Also, the Boerner-Lantz semifield planes of
order p* are shown to be p-primitive semifield planes. Each of the remaining
planes is either a Generalized twisted field plane or is a new plane.

Further properties of p-primitive semifield planes, including an explicit re-
presentation of the autotopism group will be reported elsewhere. This work is
part of the author’s Ph.D. dissertation at the University of Iowa which was
written under the supervision of Professor Norman L. Johnson and the author
wishes to thank Prof. Johnson for his encouragement and many discussions on
the subjeat.
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2. Properties of p-primitive semifield planes

In [7] Hiramine, Matsumoto and Oyama introduced the following con-
struction method:

Let = denote a translation plane of order ¢* and kernel GF(q), where ¢ is a
prime power p'(p>2), with matrix spread set

{[ dnr) e y)] | myes=Gr)|

where g and /4 are mappings from KX X into K. Let F=GF(¢®)D K. Take
an element t€F— K with t*< X and define a mapping f: F—F by

fx+yt) = (%, y)—h(x, y)t
for x,yeK. Then

{L{l) :]  uoSORP)

represents a matrix spread set of a translation plane, z(f), or order ¢* and ker-
nel GF(¢?). In [10] Johnson showed that if z is a semifield plane then =(f) is
a semifield plane which admits a p-primitive Baer collineation; and conversely,
if a semifield plane of order ¢ and kernel D K=GF(q), g=p', admits a p-pri-
mitive Bear collineation, then ¢ is a square and coordinates may be chosen so
the matrix spread set for # may be represented in the form

{y o] woea=cral.

Now if #z(f) is a p-primitive plane (so order (z(f))=p*) then = is a semifield
plane of order p? hence z is Desarguesian. We conclude that if = is a semi-
field plane of order p* and kernel GF(p?) then 7 is a p-primitive semifield plane
if and only if 7 is obtained from the construction method of Hiramine, Matsu-
moto and Oyama applied to the Desarguesian plane of order p?; and this occurs
if and only if ~ admits a matrix spread set of the form

{[fz"v) zﬂ] : “:WEGF(pZ)}

where f is an additive function on GF(p*). Therefore, f(v)=f,v+f,v? for some
foiEGE(P?). (See e.g. [14]). We shall denote this plane by =(f) or =(f,
f1)- In the following proposition we give conditions on the function f that give
a matrix spread of a p-primitive semifield plane.

Proposition 2.1. Let f: GF(p*)—>GF(p?) be given by f(u)=fu-+fu? where
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fo=aptat, fi=>b,+bt, a, a,, by, b GF(p) and let 6 be a nonsquare in GF(p)
such that t*=0. Then =(f) is a p-primitive semifield plane if and only if

ai—(ai—b3)0
is a nonsquare in GF(p).

Proof. First, since we must have the determinant of the difference of any
two distinct matrices in the spread must be =0, i.e.

de‘[[f?v) u,,] - [fZ) w]] =0

for every u,v,w, 2z GF(§?) such that (#,7)=(w, 2), we need (4—w)(u—w)?—(v—
2)(f(v)—f(2))=%0. Since f is additive this is equivalent to

(1) w*'—of(v)=*0 for every u,v&GF(p?), (u,v)=%(0,0).

Let teGF(p*)—GF(p) such that #=0&GF(p). Let GF(p?)=GF(p)[t].
Then if v=x-+yt for x,y = GF(p) we have

v = &>+ 2xyt+0y°
and

o = 2470 .

Since u?*'e GF(p) for every uc GF(p?), (1) becomes
(2) 2—f*—fiv?*' =0 for every (2,v) € GF(p) X GF(p*)— {(0,0)}.
Let fy=a,+a,t and f,=>b,+b,t for ay,a,,b,b,€GF(p). Then (2) becomes

2—(ay+ayt) (4 220+ 2x2t)— (by+byt)(¥*— 2%0) =0
So
2—(agX*+ 220+ 2a,x20 +byx* — by26)
—(2ayxz+ax*+a, 220+ b3 —b,220)t£0 .

Hence the t-component above must be==0. When 2=0 and x=0 we have
(@b %0 for every x& GF(p)— {0} ; so
a,+b,=+0.
When 20, dividing by 2* we get, letting wz—:— ,
(@, +b,)w*~+(a,—b,)0+2aw =0 for every we GF(p) .
Therefore, the discriminant
4a5—4(a,+b,)(a,—b,)0 is a nonsquare in GF(p) .

Hence, we must have aj—(ai—b%)0 is a nonsquare in GF(p). Conversely, if
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@y, a4y, b, satisfy this condition and if we let
fo=ay+a;t and f, = b,+b;t for some b,E GF(p),
then the function f:GF(p?)—GF(p?) given by

f(v) = foo+fio?
gives a matrix spread set for a p-primitive semifield plane z(f).

In the next proposition, further properties of the function f are studied.

Proposition 2.2. Let z(f,,f,) be a p-primitive semifield plane. Then,

() f, and f, cannot belong both to GF(p). In particular, if f;=0 then f ¢
GF(p).

(%) If f,=0 then f, is a nonsquare in GF(p?).

(#2) If fo=£0 and f,=0 then fi+ = fi+L.

Proof. (i) follows directly from (2.1) for if fy=a,+a;t and fi=>b,+b;t
both belong to GF(p) then a,=0=b, and in (2.1), we will have 4f is a nonsquare

in GF(p). If f,=0 then A=det lile) vp :‘:uﬁ"'l-—fo'vz, So if f, is a square in
v U

GF(p*)— {0}, say f,=¥5" then for u=1 and v:% we will have A=0. Thus f,

cannot be a square in GF(p%); this proves (ii). Suppose now that f,%=0, f,=0
and fi'—f4"1=0. If f,=a,+a,t and f,=>5,+b,¢ we have

FE—f1" = af—(al—0})0—b5 = 0.
So aj—(a?—b3)0=>b5 and this contradicts (2.1). Thus, f4'== f§+.

3. The isomorphism theorem

Let z(f,, f,) and =(F,, F,) be p-primitive semifield planes. The following
theorem determines necessary and sufficient conditions on the functions f=

(for fi) and F=(F,, F,) for the planes z(f) and =(F) to be isomorphic.
Theorem 3.1. Two p-primitive semifield planes =(f,,f,) and =(F,,F,) are
isomorphic if and only if one of the following is satisfied :
() Fy= ac*”! fy and F, = af,
or
(%) Fy = ac*! f§ and F, = af}
for some ac GF(p)— {0} and ce GF(p*)— {0}.

In particular, =(0, f,)==(F,, F\) if and only if F;=0 and F,=af, or
F,=af} for some ac GF(p).
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Proof. Any isomorphism of translation planes is a bijective semilinear map
of one plane into the other (as vector spaces over their kernels). Thus, z(f)
and #(F) are isomorphic if and only if there exists a semilinear transformation.

o 5]

“lc B

which sends a spread set of z(f) onto a spread set of z(F), where o is an auto-

morphism of GF(p?) and 4, B, C, D are 2x 2 nonsingular matrices over GF(p?).
The elation axis (O, X) is sent to (O,X) and we may assume that (X, O) is

sent into (X, O) because, since = is a semifield plane, the elation group is tran-
sitive on the components not equal to (0,X). Thus D=0 and C=0.

Let A=|: 4 % | B =[ 2 bz] and let d=a,a,—a,a;. Suppose first that o=
a 4 by b,

1. If [:)4 89] sends the component (X,X [ fz;) :p :l) of z(f) into the com-

ponent (X,X l: cmy) 3; ) ]) of z(F) then

1[ a4 —a u v b, bz_ x y
d[—% @]'L@)w}WQSm]‘[Hw w]

1 [ bau—ba, f(v)+bav—bau’  bau—ba, f(v)+bav—bau? ]
d | —bau+tba f(v)—baw+bau® —bautba f(v)—bav+baut

=[§» ;}'

From here, we get that

I:I)la,g;—blcz2 f(v)+ba,0—bya,u? ]" _ —bau+tba f(v)—bap+bau?
d d

ie.

and

F( b,au—b,a, f(v)+bav—bau’ ) _ —bau-tba, f(v)—bsayv+bsau?
d d )

Therefore, the following conditions must be satisfied in order for [g z:l

to be an isomorphism of z(f,, f;) into = (F, Fy):

b,a baz]’
1 _z*__sz[a_ ,
1 = ¥
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@ ba[hal,

d d
3) b, fo—b.a; _ _[éxfz__]p ?
d d ’
banfy _ [’zs_a«:]"_[lh_az]’ ’
(4) d b d 0

bya b, | —ba
5 F[24]—F[4a2:|= 14
() Rfbos]-p[be)= b

e

o -ralog sl enle] - [

o -efiglnli]-[).

Now we consider the following cases:

CaseI: a,=0
Case II: q,=0
Case III: a, 0 and 4, = 0

CaseI: a,=0

Since d=a,a,+0, we must have 4,#0 and a,#0. From (1) and (3), we
have that @;=—0 and b,f,=0. Thus 5,=0 or 5,70 and f,=0.

Suppose 4,=0; hence b,3=0 and 4,#0. Conditions (1), (3) and (5) are
trivially satisfied and (2) becomes

o -1
oG a
From (4), we get b;=0; thus (8) is satisfied trivially. Substituting (2)’ into
(7) we get
F,= [ﬂ]’ﬂ fi-
a,

1
Substituting a =[~ql]p+ in (6), we get
a

4

_ faQ
Fy=a bl] fo-
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If we let ¢ = %, we have
1

F,= ac’'f, and F, = af,.

Suppose now that b,5+=0. Then f;=0 and f,=0. (1) and (3) are trivially satis-
fied and (2) and (4) become, respectively

o [)-[2]
@ fi=p 2]

From (5), we get F;=0 and then (6) is trivially satisfied. Hence, (7) be-
comes

oy F[%]=2y,

a,

. a1Th , a, P+
and (8) gives F, = [—b{| ~3—:| From (4)’ and (8), we get F, = l:—:l i If

2 a, a,

b,%0 then 5,50 by (2)' and from (7)’ we have F, = I:%:r [ﬁ] fi- Solving in
4 a,

1
2)' for b, and replacing it in this last equation, we get F, = 4" f;. From
P g q g p J
4
1 +1
(4)" and (8)" we get % = [ﬂ]H , e Fy = [ﬂ]p f%. From this last two ex-
f 1 a, a,

pressions for F,, we get fi=f, and this implies f,&GF(p). But this contradicts
(2.2) (i). Therefore, we must have 5,=0. It follows from (2)’ that 5,=0 and
now (7)’ is trivially satisfied. Let a = [ﬂ]ﬁl; then ae GF(p) and F,=af}.
a
Thus we have proved that if

is an isomorphism of z(f,, f,) into z(F,, F,) then a;=0, and if b,=0 then 5,=0
and

F, = ac’”'f, and F, = af,

where a = [%]”!EGF(p), c= % and [—bl]p= Q If 5,0, then b,=0=b,,
]

4 4 a
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fo=0=F,, F,=af! where a= [EL:IHIEGF( p) and a,,a,,b,,b, satisfy the con-
a

dition %4 — [“1] fi Also, if F—(Fy Fy) and f=(finf)

are related as above then T is an isomorphism of z(f) into z(F) for the cor-
responding choices of ;’s and 4,’s.

Case II: 4,=0
In this case, d=—a, a;#+0 and so we must have 2,0 and ;0. From (1)
and (2), we have (1)’ ﬁ:[%@]’ and b, a,—0. Thus =0 or =0 and a,=0.
Suppose 4,=0. a’f‘hus bZ:t:O and b,%0. From (3) and (4) we get b,=0 and
2,=0 then (7) gives Fo—0 and substituting (1)’ in (6), we get f Fl=[i‘3_]’“, s0
F,=[ﬂ]9+l 1 1; letting a= [ % ]PH we have Fi=a f, and ac GF(p).
a @i

4
If fo=0, in (7) we have (7)" F -——-[ ] h F0 and substituting this
into (6) we get

[

Since f§*'—f4*'=0 by (2 2) (iii), we can solve for F, and then replacing
this in (7)" we get
— _[aP.__f
F, = —[a_::l .fﬁ'“-—lf{”'l .

and CZ(Zz—th. Then a€GF(p), Fy=ac*™ f, and
3

a, P+ 1
;; fr—fH
Fy=af,. Suppose now that 4,0 and a,=0. Then (3) becomes

Oy fr=2[2]

and from (4) we have f,=0. From (5) we get b,%0 and

6y F=2[a].
a, Lb,

o m[5]n-[4]

and from (8) we have Fy=0. Thus (7) is satisfied. Now b,=0 for if b,%+0
then substituting (3)’ and (1)’ in (5)’ and (6)’ respectively, we get F, ]'lzl:f_:’_]ﬁl:
a

Let a=—[

Now (6) becomes
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F, f} which implies f,eGF(p); but f,=0 implies f,&GF(p) (22) (i). From
this contradiction, we get that 5,=0 and from (1) we have b;=0. Solving (3)’
for ay and replacing it into (5)" we get

Let a=[%]p+l, so a&GF(p) and Fy=af}{. Therefore, in this case, we proved
4

0 a

as a

that if I'= b B is an isomorphism of z (fq, f;) into z (Fy, F,) then a,=
1 2

bs b,
0. If b,=0 then b,=0; in this case if f,30, then Fy=ac?"! f; and F,=af, where

aPH 1 atfy s 3 3
o —[a_z] S OF (@), and c=—%, if f,—0, then Fy=0, and F,=af,

where a:[a—;]ﬁle GF(p). In either case, a,, as, b, by satisfy the condition
a2J1
(b;/a;)=(bsas)?. If b,+0 then b,=b,=0, f,=0=F, and F,=af}{ where a=
I:A‘—:IPH. Also a,, as, by, b, satisfy the condition [ﬁ:li’:[h] fi- Again if F=
a;

b, a,
(Fo, Fy) and f=(fy, f,) are related as above then I" provides an isomorphism be-
tween z(F) and z(f).

Case III: 4,%+0 and a,+0

Let Aiz%". From (1) and (2), we get

b A3
1;b=2 3
1y by="7

b AL
2)" b, =24
@ b=

1

In (3), we have b, 4, f,+(8) [Agf{~‘%]=o. If f,==0 then we get b,= a
AL A 4, A, fo
4]

1

Let C:ﬁﬂ@__—_‘w. Then

4ify
b, = CW
b, — Chudls
4,
p _ B
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Thus b,#0. Substituting these in (4) and dividing by 434}, we get
A, A4 A3A%P
R R U 7

we have

»
Letting u=jlj >

w—(fi+f) u—(fE"—f1") = 0.
Therefore, the discriminant, D, of this equation has to be a square in GF(p?).
If fy=u,+u,t and fi=vy+v,t for some uy, u,, v,, v, EGF(p), tGF(p*)—GF (p),
£=0&GF(p), then D=uj—(ui—v}) 0 and by (2.1) D is a nonsquare in GF(p).

Therefore, if a,30 and 4,0 we must have f,=0.
Now substituting (1)’ and (2)’ in (3) and (4) respectively we get
e [AAft= 245 _ g
4,
and
A, 48— 4,48 _
b [ ;4p A —o.
AL A,
454,
contradicts (2.2) (i), we must have that =0 or 4,=0.
Suppose b,=0. Then b,#0 and from (2)" we get ,=0. From (4) we get
@) fi= A3A“ and this implies that 4,30 and 4,0, so from (5) we have F,=0,

so (7) is satlsﬁed. Now in (6) we have (6)’ F,f’= = . Solving in (1)’ for
(7)i (6) (6)' F, g in (1)’

If 5,%0 and b,%0 we get fi=

, which implies f,&GF(p). Since this

b, and replacing it in (8), we get (8)’ F,— é]’é. Combining (4)’ and (8, we
4 2

get F1f1=|:%3]p+l and this equals F,f}{ by (6)’. Therefore, fi=f,; this implies
2

fi€GF(p) which contradicts (2.2) (i). Therefore, b,=0 is not possible and we
must consider the case b,=0.

Suppose b,=0. Then from (1)’ we get b=0. Now, replacing (2) into (3)
and (5) we get

At A,
4,42

A, 4

fi= and Fl:A"A .

From these, we get Fl—-[A :l fi(*). From (6), we get that F;=0; now (7) be-

comes F= ‘i:r fi; combining this with (*) we get fi=f, and this implies

that f, € GF(p); but this contradices (2.2) (i). Therefore, the case b,=0 is not
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possible either and we conclude that there is no isomorphism with 4,40 and
a,%0; this completes the case o=1.

Suppose now that o=1. The semilinear transformation o [(I) ?] with o

x+->x?, the Frobenius automorphism, induces an isomorphism of z(f,, f;) into

L (fo’fl)'

with F(y)=F(v*)=F, v*+F, v=f(v)’=f§ v*+f{v; so F,=f} and F=fi.
Therefore, two p-primitive planes z(f;, f; )and z(F,, F,) are isomorphic if and
only if there exists linear isomorphism of = (F,, F) into = (fy, f;) or = (f3, f1).
This completes the proof of the theroem.

Corollary 3.2. All the planes = (f,, f,) with fy=0 constitute an isomorphism

2
class with 2 ;1 elements. The planes in this class are Dickson semifield planes.

Proof. Let z(f,, f,) and =(F,, F,) be p-primitive semifield planes with f;=0
and F,=0. Then by (2.2) (ii), f, and F, are nonsquares in GF(p*); thus there
exists d € GF(p?) such that F,=d?f,.

By (3.1), z(fy, 0)=¢x (F,, 0) if and only if there exists ac GF(p), c€ GF(p%)
such that Fy=ac?"' f, or Fy=ac’™' f§. Let acGF(p) with |a|=p—1 and cE
GF(p®) with |c|=p*—1; then |¢*!|=p+1 and |ac’™'|=(p*—1)/2. It follows
that ac?™! is a generator of the subgroup of squares in GF(p?); hence &* is a
power of ac?’™! and therefore 7 (f,, 0)=x (F,, 0).

Conversely, it follows directly from the theorem that if 7 (F, Fy)=z(f,, 0)
then F,=0.

If f,=0 then w=r(f;, f,) has matrix spread set

[P

and the product is given by

(%, )+ (1, ©) = (xy+Y fov, xv-+-yu?)

This is the product in [5, p. 241] with a=8=1 and o: ¥+ x* and therefore »
is a Dickson semifield plane.

Corollary 3.3. There are 1%1 nonisomorphic p-primitive semifield planes

7 (fo f1) with f,=0. The number of planes isomorphi'c to w(fo, f)) is p—14f fi'=
—1 and is 2(p—1) if fi7'4=—1. All the planes = (0, f,) are Hughes-Kleinfeld semi-
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field planes.

Proof. = (F,, F,)==(0,f,) if and only if F,=0 and Fy=af, or F;=af} for
some aGF(p)—{0}. By (2.2) (i), i GF(p); hence if f=b,+b, ¢, then b,+0.

Taking a—-—bl—, we have = (0, b,4-b, t)--n( "-i—t)

Now 7z (0, b+2)=z (0, c+t) if and only if b+t=a(c+t) or b+t=a(c+t)’=
a(c—t) for some acGF(p)—{0}. In the first case a=1 and b=c and in the
second a=—1 and b=—c¢. Thus the number of nonisomorphic planes with
£,=0is 1’%‘+1=1%1_.

Suppose # (0, F;)=<z(0,f,). Then Fy=af, or F,=af} for some ac GF(p)
—{0}. Now, af,=>bf% for some a, be GF(p)—{0} if and only if f}*-D=1
Since f,&E GF(p), we have a f,=b f} for some a, b GF(p)— {0} if and only 1f
fi'#=—1. Hence the number of planes isomorphic to z (0, ;) is 2(p—1) if f2!
+—landis p—1if fi'=—

If z=n(fy, f1) is a p-primitive semifield plane with f,=0 then the matrix
spread set of z is of the form

{ [f:a’ :”;l: 2, veGF(p’)}

and

(®3)-(4,9) = (=) [ I }
= (xu+y fiv?, xv-+yu?)

for x, y, u,veGF(p?). This is the product in a semifield of all Knuth types
(i)~(@v). In [8] Hughes and Kleinfeld showed that a semifield of order ¢ and
kernel GF(q) is of all four types if and only if J1,=J1,=J1,=GF(q); a semifield
plane corresponding to a semifield with this property is called a Hughes-
Kleinfeld semifield plane.

Corollary 3.4. If = (F, F)==(f, f,) and F,=f,+0, then F;=4f, or
Fi=4f%. Conversely, if Fy=f,+0 and Fi=+f, or F;=+ f} then n(F,, F})=
7 (for f1)-

Proof. Suppose 7 (Fy, Fy)==x (f,, f;) and Fy=f,=0. Then, from (3.1) there
exist a€ GF(p)— {0} and ce GF(p*)— {0} such that Fy=ac’™' f; and Fy=a f; or
Fy=ac*™' f§ and Fy=af}{. Let Fy=ac’™'f,. Then ac’~'=1 and this implies
that a?*'=1. Therefore, |a| divides p+1. But |a| divides p—1; hence |a|
divides 2 and consequently a=-+1. Thus, Fi=4f, or Fi=4-f}. If Fy=ac*™!
f% then, since Fy=f;, we have a(cf,)?"*=1 and again, we obtain a?*'=1; by the
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same argument as above, we obtain the result. The converse follows directly.

In 1984 Boerner-Lantz defined a class of semifields of order ¢* as follows:
Let S={a+Bx|a, BEGF(9)} and x&GF(9). Define addition on S to be
the usual vector addition. If multiplication - is defined on S by

(a+Bx):(v+8x) = av+B(8 a—3&,)+(ad+By°) x

where §=38,+3, 4, a&GF (3), @=2a+-1 and 3,, §,GF(3), then (S, +, <) isa
semifield. Now this is generalized for p>3 as follows: Let g=p" with p>3.
Choose o= GF(q) such that ¥*—g¢ is irreducible over GF(q) and 1+4c is a
nonsquare. Let ae GF(q) be a root of #*=¢ and S={a+Bs|a, BEGF ()}
where seeGF(¢%). Define addition on S to be the usual vector addition. If
multiplication is defined on S by

(a+Bs)+(v+8s) = ay+B(8%a—8)+(8+Bx") s

where §=28,+93,4, §,, ,GF(q), then (S, +, ) is a semifield of dimension 2
over GF(¢%). Boerner-Lantz [3]. In the next corollary we show that the
semifield planes of order p* associated to the Boerner-Lantz semifields are p-
primitive semifield planes.

Corollary 3.5. Let z=n(f,,f,) be a p-primitive semifield plane with f,=0
and f,=0. Then the number of planes isomorphic to = is p*—1 if f3*~P=1 and is
2(p*—1) if fi®D=k1. The semifield planes of Boerner-Lantz of order p* are p-
primitive with f,=0 and f,=0, and for p>3, fi¢~D =1,

Proof. By (3.1), = (Fy, Fy)===(f;, f,) if and only if there exist ac GF(p)—

{0} and ceGF(p*)— {0} such that

Fy,=ac*"'f, and F,=af,
or

Fy=ac*'f§ and F,=af}.
Thus, there are p?—1 or 2(p*—1) planes isomorphic to z(f,, f;). Now, if ac*~*f,
=bd?™' f§ and af,=>bf} for some a,beGF(p)—{0} and ¢,d=GF(p*)—{0},
then f{’":—Z— and this implies f{& GF(p) and hence f{=1.

Conversely, if f{®*"V=1, then fi'=41. If f{~'=1, then ac®~! fi=a(cf,)**
foand afi=af,. If fi7'=—1 then ac®™ fi=a(f, cw)*™* f, and a fi=—af, for
some w&GF(p?) such that w*~'=—1. Therefore, there are p*—1 planes iso-
morphic to 7z (fy, f,) if and only if fi€ GF(p).

For p=3, the product for the Boerner-Lantz semifield is given by

(%, 5) (v, v) = (x, %) l: vp:' where a=GF(3),

vda—u, u
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@=2a+1 and v=v,+v,a for v, v,GF(3).
Letting t=a—1 we have v’a—v,=(1+4¢) v+2¢° and the semifield plane of
Boerner-Lantz is p-primitive with matrix spread set

{{fz;) zj;:l:u,veGF(?)}

where f(v)=(1+t) v+2¢°. For p>3,

u L/
(%, ) (u, v) = (x, ) [ ]

v?’t—o, u?

where v=v,41v, ¢, v,, v,EGF(p). Now t#»=—¢ so that v? t—ov,=v? t—% v—

%v’: (——%) v+(t—%) o2, Lettingf(v)-:(—%) v—i—(—%—l-t) v? we have

(%, ) (4, v) = (x,9) [f( ) u":l

Therefore, the semifield planes of Boerner-Lantz of order p* are p-primitive

semifield planes. Moreover f0=—i¢0, flz—l—i—t:l:O and f3 —-——t—}-tz
s0 f2GF(p). 2 2

In [9], Johnson showed that in general the semifield planes of Boerner-Lantz
of order ¢* may be obtained from the construction method of Hiramine, Matsu-
moto and Oyama from the Desarguesian planes. Then he obtains another class
of planes from the Desarguesian ones and he conjectures that these two classes
are not isomorphic. In fact this is the case because any plane in this second class
has f,=0 and by (3.3) it is a Hughes-Kleinfeld semifield plane. Therefore, it
is not isomorphic to the planes of Boerner-Lantz (since for those planes f,==0).

4. On the number of non-isomorphic p-primitive semifield planes

Let =(f,, f,) be a p-primitive semifield plane with fy=a,+a, ¢, fi=>5b,+b, ¢,
ay, a4y, by, beGF(p). By (2.1), a5—(ai—b%) 0 is a nonsquare in GF(p) where 0
is a nonsquare in GF(p) such that #=6@. The proof of the following proposi-
tion depends on this fact.

Proposition 4.1. For any prime p, p>2, there are ‘' _£/ (#* p ) functions f such
that 7(f) is a p-primitive semifield plane.

Proof. Let f(u)=fyu+fiw?, fy=ay+a,t, i=>by+b, t, a, a,, by, b, GF(p).
Let 6 be an arbitrary but fixed nonsquare in GF(p) and let #=6. By (2.1),
7(fy, fi) is a p-primitive semifield plane if and only if af—(ai—0%)0 is a
nonsquare in GF(p).
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Let W be a nonsquare in GF(p). Then the number of solutions in GF(p)
of the equation

aj—(@i—b)o=Ww

is p*—p. (See Dickson [6, p. 48]). Since b, is arbitrary in GF(p) and there
are P—;—l nonsquares in GF(p), we have that there are (p*>—p) (p _2— 1) p—(P z—z—p )’

Pp-primitive semifield planes.

It follows from the proof that there are (p?>—p) (2—2——1) p-primitive semifield

planes z(f, f;) with fy=>0,+b,¢ and b,=0 and p—1 with f,=0 and 5,=0. If
fi=b,+b,t%=0 and ,=0 the condition is now aj—af 6 nonsquare in GF(p) and

using Dickson [6, p. 46], we conclude that there are (p*—1) (P—_Z—l) p-primitive

semifield planes with fi=b,&GF(p), and consequently f,#=0. These remarks
and 4.1 will be used in the proof of the following result.

Theorem 4.2. For any odd prime p, there are (?il)z nonisomorphic p-
primitive semifield planes of order p. 2

Proof. First, by (3.3) there arei%1 nonisomorphic p-primitive semifield

planes z(f,, f;) with f,=0 and the number of isomorphic planes to = (0, f,) for
fixed f; is p—1 if f{GF(p) and is 2(p—1) if f2=GF(p).

Second, by (3.2) there are =1 p-primitive semifield planes with f,=0 and
they are all isomorphic. 2

It remains to determine the number of nonisomorphic p-primitive planes
with f,=0 and f,#0. Let fy=a,+a, t=0, fj=>5,+5, 40 and suppose that fic
GF(p); hence b,=0 or b,=0.

By (3.2), and the remarks after (4.1) we get that the number of p-primitive
semifield planes with f,==0, fy=>0,+b, t==0 and 5,=0 is

) (2=1\_(p—1)— P—1\ _ 3y (21
=) (557)--D-p+1) (25 = (-3 (£
(the left hand side is (§ of planes with 5=0)—(# of planes with f,=0 and 4,=0)

—(# of planes with f,=0)).
By (3.5), there are p?—1 isomorphic planes to a fixed plane with f,=0 and

$€GF(p). Thus, there are ? —2'3 nonisomorphic planes with fi€GF(p) and
by=0.
By the remarks after (4.1), there are (p*—1) (P—;l) p-primitive semifield

planes with b,=0 and f,30 and by (3.5) there are p*—1 isomorphic planes to
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each one; hence, the number of nonisomorphic planes with b,=0 is Pz;l and

therefore there are ﬂ%—?—’—l—j’%l: - p—2 nonisomorphic p-primitive semifield planes

with fy+0and f&GF(p). Suppose that f,=0and fiGF(p). Then, by (3.5),
there are 2(p*—1) p-primitive semifield planes isomorphic to a plane z(fy, f;)

with f,+0 and fi&GF(p) and by (4.1) there are (iizfp—)z p-primitive semifield

planes; hence there are (2—1) (2 _23) (#*—1) p-primitive semifield planes with

£o50 and fi&GF(p) and these divide into (_1{—;1%}:_3) isomorphism classes.

2
Having considered all the possibilities we conclude that there are (£j2_—1)
nonisomorphic p-primitive semifield planes of order p*.

5. Classification of p-primitive semifield planes

Presently there are nine classes of proper (non-Desarguesian) semifield
planes, namely: the semifield planes of Dickson [5, p. 241], Knuth four types
[12] (these include the Hughes-Kleinfeld planes [8]), Knuth of characteristic
2 [12], Kantor [11], Sandler [13], Boerner-Lantz [3] and the two classes dis-
covered by Albert called twisted field planes [1] and generalized twisted field
planes [2] and the commutative semifields of Cohen and Ganley.

Now we answer the following question: of the known classes of semifield
planes, which one contains p-primitive semifield planes?

By (3.2), if z==(fy, f,) is a p-primitive semifiled plane with f,=0 then z is
a Dickson semifield plane and if f,=0, z is a Hughes-Kleinfeld semifield plane by
(3.3). By (3.5), the Boerner-Lantz semifield planes of order p*, p-primitive with
o0, f,%0 and for p>3, f}®V1. Of the other known classes, the only one
which could contain p-primitive semifield planes is the class of Generalized
twisted field planes: the twisted field planes and Sandler semifield planes are of
dimension 4 over the left nucleus and the Knuth and Kantor semifields planes
are of characteristic 2. If a Knuth type (i), (ii), (iii) or (iv) semifield plane = is
p-primitive then J1,,=J1,=Jl,==GF(p?) and thus it is a Hughes-Kleinfeld semi-
field plane. The p-primitive semifields are not commutative. So they do not
belong to the class constructed by Cohen and Ganley.

For p=3 there are four nonisomorphic p-primitive semifield planes; two
of these are Hughes-Kleinfeld semifield planes, one is a Dickson semifield plane
and the other is the plane of Boerner-Lantz of order 81. For p>5 we say that a
p-primitive semifield plane is of type IV if f,30 and f1®~=0, 1, and of type
V if f,%0 and fi®"=1. A p-primitive semifield plane of type IV which is
not a Boerner-Lantz semifield plane and any plane of type V is either a Gen-
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eralized twisted field plane or is a new plane. The distinction of these two
cases is currently under investigation.

(]

(2]
[31

[4]

(5]
(6]

7
(8]
[9]
[10]

(11]

(12]
[13]

[14]
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