PROPER DUPIN HYPERSURFACES GENERATED BY SYMMETRIC SUBMANIFOLDS

Dedicated to Professor Tadashi Nagano on his sixtieth birthday

Masaru TAKEUCHI

(Received March 6, 1990)

Introduction

A connected oriented hypersurface M of the space form $\bar{M}=E^{n}, S^{n}$ or H^{n} is called a Dupin hypersurface, if for any curvature submanifold S of M the corresponding principal curvature λ is constant along S. Here by a curvature submanifold we mean a connected submanifold S with a smooth function λ on S such that for each point $x \in S, \lambda(x)$ is a principal curvature of M at x and $T_{x} S$ is equal to the principal subspace in $T_{x} M$ corresponding to $\lambda(x)$. A Dupin hypersurface is said to be proper, if all principal curvatures have locally constant multiplicities. A connected oriented hypersurface of \bar{M} is called an isoparametric hypersurface, if all principal curvatures are locally constant. Obviously an isoparametric hypersurface is a proper Dupin hypersurface. Another example of a Dupin hypersurface (Pinkall [6]) is an ε-tube M^{ε} around a symmetric submanifold M of \bar{M} of codimension greater than 1 , which is said to be generated by M. Recall that a connected submanifold M of \bar{M} is a symmetric submanifold, if for each point $x \in M$ there is an involutive isometry σ of \bar{M} levaing M and x invariant such that (-1)-eigenspace of $\left(\sigma_{*}\right)_{x}$ is equal to $T_{x} M$. The most simple example is the tube M^{ε} around a complete totally geodesic submanifold M. This is a complete isoparametric hypersurface with two principal curvatures, which is further homogeneous in the sense that the group

$$
\operatorname{Aut}\left(M^{\ell}\right)=\left\{\phi \in I(\bar{M}) ; \phi\left(M^{\ell}\right)=M^{e}\right\}
$$

acts transitively on M^{2}. Here $I(\bar{M})$ denotes the group of isometries of \bar{M}. In this note we will determine all the symmetric submanifolds whose tube is a proper Dupin hypersurface, in the following theorem.

Theorem. Let M be a non-totally geodesic symmetric submanifold of a space form \bar{M} of codimension greater than 1 . Then the tube M^{8} around M is a proper Dupin hypersurface if and only if either
(i) M is a complete extrinsic sphere of \bar{M} (see Section 2 for definition) of codimen-
sion greater than 1 ; or
(ii) M is one of the following symmetric submanifolds of S^{n} :
(a) the projective plane $P_{2}(\boldsymbol{F}) \subset S^{3 d+1}, d=\operatorname{dim}_{\boldsymbol{R}} \boldsymbol{F}$, over $\boldsymbol{F}=\boldsymbol{R}, \boldsymbol{C}$, quaternions \boldsymbol{H} or octonions \boldsymbol{O};
(b) the complex quadric $Q_{3}(\boldsymbol{C}) \subset S^{9}$;
(c) the Lie quadric $Q^{m+1} \subset S^{2 m+1}, m \geq 2$;
(d) the unitary sympletic group $S p(2) \subset S^{15}$.
(Explicit embeddings of these spaces will be given in Section 2.) In case (i), M^{e} is a Dupin cyclide, i.e., a proper Dupin hypersurface with two principal curvatures, but it is not an isoparametric hypersurface. In case (ii), M^{ℓ} is a homogeneous isoparametric hypersurface with three or four principal curvatures, and it is an irreducible Dupin hypersurface in the sense of Pinkall [6].

1. Principal curvatures of tubes

Let M be a connected submanifold of a space form \bar{M} of codimension $q>1$, $N M$ and $U(N M)$ the normal bundle and the unit normal bundle of M, respectively. Denote by A_{ξ} the shape operator of M. Suppose that the map f^{2} : $U(N M) \rightarrow \bar{M}, \varepsilon>0$, defined by

$$
f^{\ell}(u)=\operatorname{Exp}(\varepsilon u) \quad \text { for } \quad u \in U(N M)
$$

is an embedding, and set $M^{\mathfrak{e}}=f^{\imath}(U(N M)) \subset \bar{M}$. Then (cf. Cecil-Ryan [1]) we have the following

Lemma 1.1. Let $\lambda_{1}, \cdots, \lambda_{p}$ be the eigenvalues of $A_{u}, u \in U(N M)$, with multiplicities m_{1}, \cdots, m_{p}, respectively. Then the principal curvatures of M^{2} at $f^{q}(u)$ with respect to the outward unit normal are given as follows.

$$
\begin{aligned}
& \frac{\lambda_{i}}{1-\lambda_{i} \varepsilon}, 1 \leq i \leq p, \quad \text { and }-\frac{1}{\varepsilon} \quad \text { for } \quad \bar{M}=E^{n}, \\
& \frac{\sin \varepsilon+\lambda_{i} \cos \varepsilon}{\cos \varepsilon-\lambda_{i} \sin \varepsilon}, 1 \leq i \leq p, \quad \text { and }-\cot \varepsilon \quad \text { for } \quad \bar{M}=S^{n}, \\
& \frac{-\sinh \varepsilon+\lambda_{i} \cosh \varepsilon}{\cosh \varepsilon-\lambda_{i} \sinh \varepsilon}, 1 \leq i \leq p, \quad \text { and }-\operatorname{coth} \varepsilon \quad \text { for } \bar{M}=H^{n},
\end{aligned}
$$

with multiplicities $m_{1}, \cdots, m_{p}, q-1$, respectively.
Corollary 1.2. Suppose that M^{2} is a proper Dupin hypersurface. Then, for each point $x \in M$, the number of eigenvalues of $A_{\xi}, \xi \in N_{x} M-\{0\}$, is a constant independent of ξ.

In what follows in this section, let T and N be finite dimensional real vector spaces with inner product $\langle\cdot, \cdot\rangle$, and $A: N \ni \xi \mapsto A_{\xi} \in \operatorname{Sym}(T)$ a linear map
from N to the space $\operatorname{Sym}(T)$ of symmetric endomorphisms of T satisfying
(1.1) the number $\nu(\xi)$ of eigenvalues of $A_{\xi}, \xi \in N-\{0\}$, is a constant p independent of ξ.

Lemma 1.3. Assume that N is an orthogonal sum:

$$
N=N_{1} \oplus N_{2} \quad \text { with } \quad N_{1} \neq\{0\}, \operatorname{dim} N_{2}=1
$$

and there are a linear map $A^{(1)}: N_{1} \rightarrow \operatorname{Sym}(T)$ and a vector $\eta_{2} \in N_{2}$ such that

$$
A_{\xi_{1}+\xi_{2}}=A_{\xi_{1}}^{(1)}+\left\langle\xi_{2}, \eta_{2}\right\rangle I \quad \text { for any } \quad \xi_{1} \in N_{1}, \xi_{2} \in N_{2}
$$

Then there exists a vector $\eta_{1} \in N_{1}$ such that

$$
A_{\xi_{1}}^{(1)}=\left\langle\xi_{1}, \eta_{1}\right\rangle I \quad \text { for any } \quad \xi_{1} \in N_{1} .
$$

Proof. For any $\xi_{2} \in N_{2}, \xi_{2} \neq 0$, we have $A_{\xi_{2}}=\left\langle\xi_{2}, \eta_{2}\right\rangle I$. Thus one has $p=1$. Hence, for any $\xi_{1} \in N_{1}, \xi_{1} \neq 0, A_{\xi_{1}}^{(1)}=A_{\xi_{1}}$ is a scalar operator on T. Now the linearity of $A^{(1)}$ implies the existence of η_{1} above. q.e.d.

Lemma 1.4. Assume that N is an orthogonal sum as in Lemma 1.3, and also T is an orthogonal sum:

$$
T=T_{1} \oplus T_{2} \quad \text { with } \quad T_{1} \neq\{0\}, T_{2} \neq\{0\} .
$$

Furthermore assume that there are a linear map $A^{(1)}: N_{1} \rightarrow \operatorname{Sym}\left(T_{1}\right)$ and different vectors $\eta_{2}, \eta_{2}^{\prime} \in N_{2}$ such that

$$
A_{\xi_{1}+\xi_{2}}=\left(A_{\xi_{1}}^{(1)}+\left\langle\xi_{2}, \eta_{2}\right\rangle I_{T_{1}}\right) \oplus\left\langle\xi_{2}, \eta_{2}^{\prime}\right\rangle I_{T_{2}} \quad \text { for any } \quad \xi_{1} \in N_{1}, \xi_{2} \in N_{2} .
$$

Then $A^{(1)}=0$.
Proof. For any $\xi_{2} \in N_{2}, \xi_{2} \neq 0$, we have

$$
A_{\xi_{2}}=\left\langle\xi_{2}, \eta_{2}\right\rangle I_{T_{1}} \oplus\left\langle\xi_{2}, \eta_{2}^{\prime}\right\rangle I_{T_{2}},
$$

with $\left\langle\xi_{2}, \eta_{2}\right\rangle \neq\left\langle\xi_{2}, \eta_{2}^{\prime}\right\rangle$, and hence $p=2$. We fix an arbitrary $\xi_{1} \in N_{1}, \xi_{1} \neq 0$.
First we assume that the eigenvalues $\lambda_{1}, \cdots, \lambda_{k}, k \geq 1$, of $A_{\xi_{1}}^{(1)}$ are all nonzero. Then, for $\xi=\alpha \xi_{1}+\xi_{2}$ with $\xi_{2} \in N_{2}, \xi_{2} \neq 0$, and sufficiently small nonzero $\alpha \in$ \boldsymbol{R}, the numbers $\alpha \lambda_{1}+\left\langle\xi_{2}, \eta_{2}\right\rangle, \cdots, \alpha \lambda_{k}+\left\langle\xi_{2}, \eta_{2}\right\rangle,\left\langle\xi_{2}, \eta_{2}^{\prime}\right\rangle$ are different each other, and hence $\nu(\xi)=k+1$. Thus, by (1.1) we get $k=1$, i.e., $A_{\xi_{1}}^{(1)}=\lambda_{1} I_{T_{1}}, \lambda_{1} \neq 0$. Take $\xi_{2} \in N_{2}, \xi_{2} \neq 0$, and $\beta \in \boldsymbol{R}$ with

$$
\beta \lambda_{1}+\left\langle\xi_{2}, \eta_{2}\right\rangle=\left\langle\xi_{2}, \eta_{2}^{\prime}\right\rangle .
$$

Then, for $\xi=\beta \xi_{1}+\xi_{2} \neq 0$, we have $A_{\xi}=\left\langle\xi_{2}, \eta_{2}^{\prime}\right\rangle I$, and hence $\nu(\xi)=1$. This is a contradiction to $p=2$.

We next assume that $A_{\xi_{1}}^{(1)}$ has eigenvalue 0 , together with possible nonzero
eigenvalues $\lambda_{1}, \cdots, \lambda_{k}, k \geq 0$. Then, for $\xi=\alpha \xi_{1}+\xi_{2}$ with $\xi_{2} \in N_{2}, \xi_{2} \neq 0$, and sufficiently small $\alpha \neq 0$, one has $\nu(\xi)=k+2$. Thus, by (1.1) we get $k=0$, i.e., $A_{\xi_{1}}^{(1)}=0$. Since $\xi_{1} \in N_{1}, \xi_{1} \neq 0$, is arbitrary, we obtain $A^{(1)}=0$. q.e.d.

Lemma 1.5. Assume that both N and T have orthogonal decompositions:

$$
\begin{array}{rll}
N=N_{1} \oplus N_{2} & \text { with } & N_{1} \neq\{0\}, N_{2} \neq\{0\}, \\
T=T_{1} \oplus T_{2} & \text { with } & T_{1} \neq\{0\}, T_{2} \neq\{0\},
\end{array}
$$

and there are linear maps $A^{(1)}: N_{1} \rightarrow \operatorname{Sym}\left(T_{1}\right)$ and $A^{(2)}: N_{2} \rightarrow \operatorname{Sym}\left(T_{2}\right)$ such that

$$
A_{\xi_{1}+\xi_{2}}=A_{\xi_{1}}^{(1)} \oplus A_{\xi_{2}}^{(2)} \quad \text { for any } \quad \xi_{1} \in N_{1}, \xi_{2} \in N_{2} .
$$

Then $A=0$.
Proof. We fix arbitrary $\xi_{1} \in N_{1}, \xi_{1} \neq 0$, and $\xi_{2} \in N_{2}, \xi_{2} \neq 0$.
Case (a): Both $A_{\xi_{1}}^{(1)}$ and $A_{\xi_{2}}^{(2)}$ have only nonzero eigenvalues $\lambda_{1}, \cdots, \lambda_{k}, k \geq 1$, and $\mu_{1}, \cdots, \mu_{l}, l \geq 1$, respectively. Then, for $\xi=\xi_{1}+\alpha \xi_{2}$ with sufficiently small $\alpha \neq 0$, one has $\nu(\xi)=k+l$. On the other hand, one has $\nu\left(\xi_{1}\right)=k+1$. Thus, by (1.1) we get $l=1$. In the same way we get $k=1$. It follows that $p=2$ and $A_{\xi_{1}}^{(1)}=\lambda_{1} I_{T_{1}}, A_{\xi_{2}}^{(2)}=\mu_{1} I_{T_{2}}$ with $\lambda_{1}, \mu_{1} \neq 0$. Now, for $\xi=\mu_{1} \xi_{1}+\lambda_{1} \xi_{2}$, we get $A_{\xi}=$ $\left(\lambda_{1} \mu_{1}\right) I$. This is a contradiction to $p=2$.

Case (b): One of the $A_{\xi_{i}}^{(i)}$, say $A_{\xi_{1}}^{(1)}$, has only nonzero eigenvalues $\lambda_{1}, \cdots, \lambda_{k}$, $k \geq 1$, and the other $A_{\xi_{2}}^{(2)}$ has eigenvalue 0 together with possible nonzero eigenvalues $\mu_{1}, \cdots, \mu_{l}, l \geq 0$. Then, for $\xi=\alpha \xi_{1}+\xi_{2}$ with sufficiently small $\alpha \neq 0$, one has $\nu(\xi)=k+l+1$. Together with $\nu\left(\xi_{2}\right)=l+1$, we get $k=0$. This is a contradiction to $k \geq 1$.

Case (c): Both $A_{\xi_{1}}^{(1)}$ and $A_{\xi_{2}}^{(2)}$ have eigenvalue 0 , together with possible nonzero eigenvalues $\lambda_{1}, \cdots, \lambda_{k}, k \geq 0$, and $\mu_{1}, \cdots, \mu_{l}, l \geq 0$, respectively. Then, for $\xi=\xi_{1}+$ $\alpha \xi_{2}$ with sufficiently small $\alpha \neq 0$, one has $\nu(\xi)=k+l+1$. Together with $\nu\left(\xi_{1}\right)=$ $k+1, \nu\left(\xi_{2}\right)=l+1$, we get $k=l=0$, i.e., $A_{\xi_{1}}^{(1)}=0$ and $A_{\xi_{2}}^{(2)}=0$.

Thus we conclude that $A=0$.

2. Proof of Theorem

We first explain some terminologies. The Riemannian metric of \bar{M} will be denoted by $\langle\cdot, \cdot\rangle$. A connected submanifold M of \bar{M} is called an extrinsic sphere, if the mean curvature normal η of M is nonzero and parallel (with respect to the normal conncetion in $N M$), and moreover each shape oparator A_{ξ} is the scalar operator $\langle\xi, \eta\rangle I$. A submanifold of a space form \bar{M} is said to be strongly full, if it is full in \bar{M}, and further it is not contained in any extrinsic sphere of \bar{M} of codimension 1 .

Let now M be a symmetric submanifold as in Theorem, and suppose that M^{e} is a proper Dupin hypersurface.

First we assume that M is not full in \bar{M}. Then there exists a complete totally geodesic hypersurface \bar{M}^{n-1} of \bar{M} with $M \subset \bar{M}^{n-1}$. Applying Lemma 1.3 to the shape operator $A^{(1)}$ of $M \subset \bar{M}^{n-1}$ and $\eta_{2}=0$, we see that $A_{\xi_{1}}^{(1)}=\left\langle\xi_{1}, \eta_{1}\right\rangle I$ for any normal vector ξ_{1} to $M \subset \bar{M}^{n-1}$. Here η_{1} is the mean curvature normal of $M \subset \bar{M}^{n-1}$, which is parallel since the second fundamental form of $M \subset \bar{M}$ is parallel (cf. Naitoh-Takeuchi [4]). Thus M is a complete totally geodesic submanifold or a complete extrinsic sphere of \bar{M}. Since the first case is excluded from the assumption, we obtain the case (i) in Theorem. In this case, the principal curvatures of M^{e} at $f^{\ell}(u), u \in U(N M)$, are calculated by Lemma 1.1 as follows.

$$
\begin{aligned}
& \frac{\langle u, \eta\rangle}{1-\langle u, \eta\rangle \varepsilon} \text { and }-\frac{1}{\varepsilon} \text { for } \bar{M}=E^{n}, \\
& \frac{\sin \varepsilon+\langle u, \eta\rangle \cos \varepsilon}{\cos \varepsilon-\langle u, \eta\rangle \sin \varepsilon} \text { and }-\cot \varepsilon \quad \text { for } \bar{M}=S^{n} \\
& \frac{-\sinh \varepsilon+\langle u, \eta\rangle \cosh \varepsilon}{\cosh \varepsilon-\langle u, \eta\rangle \sinh \varepsilon} \text { and }-\operatorname{coth} \varepsilon \quad \text { for } \bar{M}=H^{n},
\end{aligned}
$$

where η is the nonzero mean curvature normal of $M \subset \bar{M}$. Thus M^{ε} is a nonisoparametric Dupin cyclide in \bar{M}.

Next we assume that M is full, but not strongly full. Then there exists a complete extrinsic sphere \bar{M}^{n-1} of \bar{M} of codimension 1 such that M is a strongly full submanifold in \bar{M}^{n-1}. Applying Lemma 1.3 to the shape operator $A^{(1)}$ of $M \subset \bar{M}^{n-1}$ and the mean curvature normal η_{2} of $\bar{M}^{n-1} \subset \bar{M}$, we see that M is a totally geodesic submanifold or an extrinsic sphere of \bar{M}^{n-1}. This is a contradiction to that M is strongly full in \bar{M}^{n-1}.

Thus it remains to determine M in the case where M is a strongly full symmetric submanifold of \bar{M}. We will use the classification of such submanifolds in Takeuchi [10] (see also Naitoh-Takeuchi [4]).
(I) Case $\bar{M}=E^{n}$: One has $M=E^{n_{1}} \times M^{\prime} \subset E^{n_{1}} \times S^{n_{2}}(r) \subset E^{n_{1}} \times E^{n_{2}+1}=E^{n}, n_{1}$, $n_{2} \geq 1, n_{1}+n_{2}=n-1$, where M^{\prime} is a symmetric submanifold of the hypersphere $S^{n_{2}}(r)$ with radius $r>0$ in $E^{n_{2}+1}$ such that $M^{\prime} \subset E^{n_{2}+1}$ is substantial. Applying Lemma 1.4 to the shape operator $A^{(1)}$ of $M^{\prime} \subset S^{n_{2}}(r)$, we see that M^{\prime} is totally geodesic in $S^{n_{2}}(r)$. This is a contradiction to that $M^{\prime} \subset E^{n_{2}+1}$ is substantial.
(II) Case $\bar{M}=H^{n}$: We regard H^{n} as

$$
H^{n}=\left\{\left(x_{i}\right) \in \boldsymbol{R}^{n+1} ;-x_{1}^{2}+x_{2}^{2}+\cdots+x_{n+1}^{2}=-1, x_{1}>0\right\} .
$$

Then $M=H^{n_{1}}\left(r_{1}\right) \times M^{\prime} \subset H^{n_{1}}\left(r_{1}\right) \times S^{n_{2}}\left(r_{2}\right) \subset H^{n}, n_{1}, n_{2} \geq 1, n_{1}+n_{2}=n-1, r_{1}, r_{2}>0$, $r_{1}^{2}-r_{2}^{2}=1$, where

$$
H^{n_{1}}\left(r_{1}\right)=\left\{\left(x_{i}\right) \in \boldsymbol{R}^{n_{1}+1} ;-x_{1}^{2}+x_{2}^{2}+\cdots+x_{n_{1}+1}^{2}=-r_{1}^{2}, x_{1}>0\right\},
$$

and M^{\prime} is a symmetric submanifold of $S^{n_{2}}\left(r_{2}\right) \subset \boldsymbol{R}^{n_{2}+1}$ such that $M^{\prime} \subset \boldsymbol{R}^{n_{2}+1}$ is
substantial. In the same way as in (I), we see that M^{\prime} is totally geodesic in $S^{n_{2}}\left(r_{2}\right)$, which leads to a contradiction.
(III) Case $\bar{M}=S^{n}$: In this case, M is a symmetric R-space and the inclusion $M \subset S^{n}$ is induced from the substantial standard embedding $M \subset \boldsymbol{R}^{n+1}$ (Ferus [2]). If M is a reducible symmetric R-space, one has $M=M_{1} \times M_{2} \subset$ $S^{n_{1}}\left(r_{1}\right) \times S^{n_{2}}\left(r_{2}\right) \subset S^{n}$ with $n_{1}, n_{2} \geq 1, n_{1}+n_{2}=n-1, r_{1}, r_{2}>0, r_{1}^{2}+r_{2}^{2}=1$. Let one of the M_{i}, say M_{1}, be equal to $S^{n_{i}}\left(r_{i}\right)$. Then, applying Lemma 1.4 to the shape operator $A^{(1)}$ of $M_{2} \subset S^{n_{2}}\left(r_{2}\right)$, we see that M_{2} is totally geodesic in $S^{n_{2}}\left(r_{2}\right)$. This is a contradiction to that $M \subset \boldsymbol{R}^{n+1}$ is substantial. Otherwise, one has $\operatorname{dim} M_{1}<n_{1}$ and $\operatorname{dim} M_{2}<n_{2}$. Since the shape operator of $M \subset S^{n_{1}}\left(r_{1}\right) \times S^{n_{2}}\left(r_{2}\right)$ also satisfies (1.1), we can apply Lemma 1.5 to the shape operators $A^{(i)}$ of $M_{i} \subset S^{n_{i}}\left(r_{i}\right)$ to see that both M_{i} are totally geodesic in $S^{n_{i}\left(r_{i}\right)}$. This is also a contradiction to that $M \subset \boldsymbol{R}^{n+1}$ is substantial.

Thus it remains to consider an irreducible symmetric R-space M. For this we recall the construction of the standard embedding of M (cf. Ferus [2], Takeuchi [10], [11]). Let

$$
\mathfrak{g}=\mathfrak{g}_{-1}+\mathfrak{g}_{0}+\mathfrak{g}_{1}, \quad\left[\mathfrak{g}_{p}, \mathfrak{g}_{q}\right] \subset \mathfrak{g}_{p+q}
$$

be a simple symmeiric graded Lie algebra over \boldsymbol{R}, with a Cartan involution $\boldsymbol{\tau}$ satisfying $\tau \mathrm{g}_{p}=\mathrm{g}_{-p},-1 \leq p \leq 1$. The characteristic element $e \in \mathrm{~g}_{0}$ is the unique element with

$$
\mathrm{g}_{p}=\{x \in \mathrm{~g} ;[e, x]=p x\}, \quad-1 \leq p \leq 1
$$

Let

$$
\mathfrak{g}=\mathfrak{f}+\mathfrak{p}, \quad \mathfrak{g}_{0}=\mathfrak{f}_{0}+\mathfrak{p}_{0} \quad \text { with } \quad e \in \mathfrak{p}_{0}
$$

be the Cartan decompositions associated to τ. We denote by K the compact connected subgroup of $G L(\mathfrak{p})$ generated by $\operatorname{ad}_{\mathfrak{p}} \mathfrak{f}$, and set

$$
K_{0}=\{k \in K ; k \cdot e=e\}
$$

Then we have identifications: $\mathfrak{t}=\operatorname{Lie} K$ and $\mathfrak{t}_{0}=\operatorname{Lie} K_{0}$. Making use of the Killing form B of \mathfrak{g}, we define a K-invariant inner product $\langle\cdot, \cdot\rangle$ on \mathfrak{p} by

$$
\langle x, y\rangle=\frac{1}{2 \operatorname{dim} \mathrm{~g}_{-1}} B(x, y) \quad \text { for } \quad x, y \in \mathfrak{p}
$$

to identify \mathfrak{p} with the euclidean space $\boldsymbol{R}^{n+1}, n=\operatorname{dim} \mathfrak{p}-1$. Then e is in the unit sphere S^{n} of \boldsymbol{R}^{n+1}, and

$$
M=K / K_{0}=K \cdot e
$$

gives the required embedding. Let \mathfrak{a} be a maximal abelian subalgebra in \mathfrak{p} including e, and set $r=\operatorname{dim} \mathfrak{a}$. Then one has $\mathfrak{a} \subset \mathfrak{p}_{0} . \quad$ Let $W=N_{K}(\mathfrak{a}) / Z_{K}(\mathfrak{a}) \subset O(\mathfrak{a})$
be the Weyl group of \mathfrak{g}, where

$$
\begin{gathered}
N_{K}(\mathfrak{a})=\{k \in K ; k \cdot \mathfrak{a}=\mathfrak{a}\} \\
Z_{K}(\mathfrak{a})=\{k \in K ; k \cdot h=h \text { for any } h \in \mathfrak{a}\} .
\end{gathered}
$$

We define g to be a half of the cardinality $\# W$ of W. Denote by $\Sigma \subset \mathfrak{a}$ the root system of \mathfrak{g} relative to \mathfrak{a}, and set

$$
\Sigma_{1}=\{\gamma \in \Sigma ;\langle\gamma, e\rangle=1\}
$$

Let \mathfrak{p}_{1} be the orthogonal complement to \mathfrak{p}_{0} in \mathfrak{p}. Then one has

$$
T_{e} M=\mathfrak{p}_{1}=\sum_{\gamma \in \Sigma_{1}} \oplus \mathfrak{p}^{\gamma}
$$

where \mathfrak{p}^{γ} is the subspace of \mathfrak{p} defined by

$$
\mathfrak{p}^{\gamma}=\left\{x \in \mathfrak{p} ;[h,[h, x]]=\langle h, \gamma\rangle^{2} x \text { for any } h \in \mathfrak{a}\right\} .
$$

Thus the normal space $N_{e} M$ to $M \subset S^{n}$ at e is given by

$$
N_{e} M=\mathfrak{a}_{0} \oplus \mathfrak{q}_{0}
$$

where \mathfrak{q}_{0} and \mathfrak{a}_{0} are the orthogonal complement to \mathfrak{a} in \mathfrak{p}_{0} and the one to $\boldsymbol{R} \boldsymbol{e}$ in \mathfrak{a}, respectively. The shape operator A of $M \subset S^{n}$ at e can be calculated by the same way as in Takagi-Takahashi [8] to get

$$
\begin{equation*}
A_{h} x=-\langle h, \gamma\rangle x \quad \text { for } \quad h \in \mathfrak{a}_{0}, x \in \mathfrak{p}^{\gamma}, \gamma \in \Sigma_{1} . \tag{2.1}
\end{equation*}
$$

Now we come back to our problem. If $r=1$, one has $M=S^{n}$. This case is excluded because of $\operatorname{codim} M>1$. If $r \geq 2$, one has $\# \Sigma_{1}>1$, since $\# \Sigma_{1}=1$ would imply $r=1$. Therefore, if we denote the orthogonal projection $\mathfrak{a} \rightarrow \mathfrak{a}_{0}$ by ϖ, we have $\# \varpi\left(\Sigma_{1}\right)>1$, noting that $\varpi(\gamma)=\gamma-e$ for each $\gamma \in \Sigma_{1}$. It follows that if $r \geq 3$ there exist $h, h^{\prime} \in \mathfrak{a}_{0}-\{0\}$ such that

$$
\#\left\{-\langle h, \gamma\rangle ; \gamma \in \Sigma_{1}\right\} \neq \#\left\{-\left\langle h^{\prime}, \gamma\right\rangle ; \gamma \in \Sigma_{1}\right\} .
$$

This is a contradiction to Corollary 1.2 by virtue of (2.1). Thus we must have $r=2$. In this case, by the classification of irreducible symmetric R-spaces (Kobayashi-Nagano [3], Takeuchi [9]) we see that only the following four cases are possible.
(a) Case $g=3: M=P_{2}(\boldsymbol{F})$, the projective plane over $\boldsymbol{F}=\boldsymbol{R}, \boldsymbol{C}, \boldsymbol{H}$ or \boldsymbol{O}, and the standard embedding $P_{2}(\boldsymbol{F}) \subset \boldsymbol{R}^{3 d+2}$ is the generalized Veronese embedding (Tai [7]).

Case $g=4$:
(b) M is the complex quadric of complex dimension 3:

$$
Q_{3}(\boldsymbol{C})=\left\{[z] \in P_{4}(\boldsymbol{C}) ; t_{z z} z=0\right\},
$$

and \mathfrak{p} is identified with the space $A_{5}(\boldsymbol{R})$ of real alternating 5×5 matrices with inner product:

$$
\langle X, Y\rangle=-\frac{1}{2} \operatorname{tr}(X Y) \quad \text { for } \quad X, Y \in A_{5}(\boldsymbol{R})
$$

Any $[z] \in Q_{3}(\boldsymbol{C})$ can be written as

$$
z=x+\sqrt{-1 y} \quad \text { with } \quad x, y \in S^{4} \subset \boldsymbol{R}^{5},\langle x, y\rangle=0
$$

The map $[z] \mapsto x^{t} y-y^{t} x$ is the standard embedding.
(c) M is the Lie quadric of dimension $m+1, m \geq 2$:

$$
Q^{m+1}=\left\{[z] \in P_{m+2}(\boldsymbol{R}) ;-z_{1}^{2}-z_{2}^{2}+z_{3}^{2}+\cdots+z_{m+3}^{2}=0\right\}
$$

and \mathfrak{p} is identified with the space $M_{m+1,2}(\boldsymbol{R})$ of real $(m+1) \times 2$ matrices with inner product:

$$
\langle X, Y\rangle=\operatorname{tr}\left({ }^{t} X Y\right) \quad \text { for } \quad X, Y \in M_{m+1,2}(\boldsymbol{R})
$$

Any $[z] \in Q^{m+1}$ can be written as

$$
z=\binom{x}{y} \quad \text { with } \quad x \in S^{1} \subset \boldsymbol{R}^{2}, y \in S^{m} \subset \boldsymbol{R}^{m+1} \text {. }
$$

The map $[z] \mapsto y^{t} x$ is the standard embedding.
(d) M is the uuitary symplectic group of degree 2:

$$
S p(2)=\left\{z \in M_{2}(\boldsymbol{H}) ;{ }^{t} \bar{z} z=1_{2}\right\}
$$

$M_{2}(\boldsymbol{H})$ being the space of quaternion 2×2 matrices, and \mathfrak{p} is identified with $M_{2}(\boldsymbol{H})$ with inner product:

$$
\langle X, Y\rangle=\frac{1}{2} \operatorname{Re} \operatorname{tr}\left({ }^{t} \bar{X} Y\right) \quad \text { for } \quad X, Y \in M_{2}(\boldsymbol{H}) .
$$

The inclusion $S p(2) \subset M_{2}(\boldsymbol{H})$ is the standard embedding.
In these cases, any tube around M is obtained as M^{ε} with $0<\varepsilon<\pi / g$, and each M^{ℓ} is a homogeneous isoparametric hypersurface of S^{n} with g principal curvatures. In order to show this, first note that K acts on $U(N M)$ transitively. In fact, since the semisimple part of g_{0} has rank $1, K_{0}$ acts on the unit sphere in $\mathfrak{a}_{0} \oplus \mathfrak{q}_{0}=N_{e} M$ transitively. We choose a unit vector $f \in \mathfrak{a}_{0}$, and thus $f \in U_{e}(N M)$. Then the stabilizer Z_{0} of f in K is given by

$$
Z_{0}=Z_{K_{0}}(f)=Z_{K}(\mathfrak{a}) .
$$

Now for each $\varepsilon \in \boldsymbol{R}$ the map $f^{\ell}: U(N M) \rightarrow S^{n}$ is K-equivariant, and hence $M^{\mathrm{q}}=f^{\mathrm{e}}(U(N M))$ is the K-orbit in S^{n} through

$$
h^{\mathrm{e}}=(\cos \varepsilon) e+(\sin \varepsilon) f
$$

Note that h^{ε} is W-regular if and only if $\varepsilon \notin(\pi / g) Z$. It follows that $M^{\varepsilon}=M^{\varepsilon^{\prime}}$ if and only if h^{ε} and $h^{\varepsilon^{\prime}}$ are W-conjugate, and that f^{ε} is an embedding if and only if M^{e} is a regular K-orbit in S^{n}, which is the same as that h^{e} is W-regular. Moreover, any regular K-orbit is a homogeneous isoparametric hypersurface in S^{n} with g principal curvatures (Takagi-Takahashi [8], Ozeki-Takeuchi [5]). These imply our claim.

It is known (Pinkall [6]) that an isoparametric hypersurface $\tilde{M} \subset S^{n}$ is an irreducible Dupin hypersurface, if $\operatorname{Aut}(\tilde{M}) \subset O(n+1)$ acts irreducibly on \boldsymbol{R}^{n+1}. But, $\operatorname{Aut}\left(M^{2}\right)$ for our tube M^{ε} acts irreducibly on \boldsymbol{R}^{n+1}, because the subgroup K of $\operatorname{Aut}\left(M^{\boldsymbol{e}}\right)$ acts on \mathfrak{p} irreducibly by virtue of simplicity of \mathfrak{g}. Thus we get the last assertion in Theorem.

We finally note that a Dupin cyclide as in case (i) is always a reducible Dupin hypersurface.

References

[1] T.E. Cecil-P.J. Ryan: Tight and taut immersions of manifolds, Res. Notes Math. 107, Pitman, London, 1985.
[2] D. Ferus: Immersions with parallel second fundamental form, Math. Z. 140 (1974), 87-93.
[3] S. Kobayashi-T. Nagano: On filtered Lie algebras and geometric structures I, J. Math. Mech. 13 (1964), 875-907.
[4] H. Naitoh-M. Takeuchi: Symmetric submanifolds of symmetric spaces, Suguku Exp. 2 (1989), 157-188.
[5] H. Ozeki-M. Takeuchi: On some types of isoparametric hypersurfaces in spheres II, Tohoku Math. J. 28 (1975), 7-55.
[6] U. Pinkall: Dupin hypersurfaces, Math. Ann. 270 (1985), 429-440.
[7] S.S. Tai: On minimum imbeddings of compact symmetric spaces of rank one, J. Diff. Geom. 2 (1968), 55-66.
[8] R. Takagi-T. Takahashi: On the principal curvatures of homogeneous hypersurfaces in a sphere, Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo, 1972, 469-481.
[9] M. Takeuchi: Cell decompositions and Morse equalities on certain symmetric spaces, J. Fac. Sci. Univ. Tokyo. Ser. I, 12 (1965), 81-192.
[10] M. Takeuchi: Parallel submanifolds of space forms, Manifolds and Lie Groups, in honor of Y. Matsushima, Birkhäuser, Boston, 1981, 429-447.
[11] M. Takeuchi: Basic transformations of symmetric R-spaces, Osaka J. Math. 25 (1988), 259-297.

