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Introduction

A connected oriented hypersurface M of the space form M=E", S" or H"
is called a Dupin hypersurface, if for any curvature submanifold S of M the cor-
responding principal curvature A\ is constant along S. Here by a curvature
submanifold we mean a connected submanifold S with a smooth function A on
S such that for each point x&.S, A(x) is a principal curvature of M at x and
T.S is equal to the principal subspace in T,M corresponding to A(x). A Du-
pin hypersurface is said to be proper, if all principal curvatures have locally
constant multiplicities. A connected oriented hypersurface of M is called an
isoparametric hypersurface, if all principal curvatures are locally constant. Ob-
viously an isoparametric hypersurface is a proper Dupin hypersurface. Ano-
ther example of a Dupin hypersurface (Pinkall [6]) is an &-tube M*® around a
symmetric submanifold M of M of codimension greater than 1, which is said to
be generated by M. Recall that a connected submanifold M of M is a symmetric
submanifold, if for each point x&€M there is an involutive isometry ¢ of M
levaing M and «x invariant such that (—1)-eigenspace of (o), is equal to T, M.
The most simple example is the tube M*® around a complete totally geodesic
submanifold M. This is a complete isoparametric hypersurface with two prin-
cipal curvatures, which is further homogeneous in the sense that the group

Aut(M?®) = {p I(M); p(M*) = M?}

acts transitively on M®. Here I(M) denotes the group of isometries of M. In
this note we will determine all the symmetric submanifolds whose tube is a
proper Dupin hypersurface, in the following theorem.

Theorem. Let M be a non-totally geodesic symmetric submanifold of a
space form M of codimension greater than 1. Then the tube M*® around M is a
proper Dupin hypersurface if and only if either
(i) M is a complete extrinsic sphere of M (see Section 2 for definition) of codimen-
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sion greater than 1; or
(if) M is one of the following symmetric submanifolds of S™:

(a) the projective plane Py(F)C S**', d=dimgF, over F=R, C, quaternions
H or octonions O;

(b) the complex quadric Q4(C)C S®;

(c) the Lie quadric Q"*'C S*»*', m>2;

(d) the unitary sympletic group Sp(2)C S™.
(Explicit embeddings of these spaces will be given in Section 2.) In case (i), M*®
s a Dupin cyclide, i.e., a proper Dupin hypersurface with two principal curvatures,
but 1t is not an isoparametric hypersurface. In case (ii), M*® is a homogeneous
isoparametric hypersurface with three or four principal curvatures, and it is an ir-
reducible Dupin hypersurface in the sense of Pinkall [6].

1. Principal curvatures of tubes

Let M be a connected submanifold of a space form M of codimension ¢>>1,
NM and U(NM) the normal bundle and the unit normal bundle of M, respecti-
vely. Denote by Ag the shape operator of M. Suppose that the map f*:
U(NM)—M, £>0, defined by

f*(u) = Exp(&u) for ues UWNM)

is an embedding, and set M*=f*(U(NM))C M. Then (cf. Cecil-Ryan [1]) we
have the following

Lemma 1.1. Let \, -+, N, be the eigenvalues of A,, us UNM), with mul-
tiplicities m,, -+, m,, respectively. Then the principal curvatures of M® at f*(u)
with respect to the outward unit normal are given as follows.

M 1<i<p, and —% for M = E”,

1—e” — 7

M, 1<i<p, and —coté for M= S",
cos E—\; sin &

_31nh8+7\;FOShE,1gigp, and —coth & for M=H"
cosh E—X; sinh &

with multiplicities m,, ---, m,, g— 1, respectively.

Corollary 1.2. Suppose that M*® is a proper Dupin hypersurface. Then,
for each point x& M, the number of eigenvalues of A¢, Ee N, M— {0}, is a constant
independent of &.

In what follows in this section, let 7" and NV be finite dimensional real vector
spaces with inner product <-,->, and 4: N 2&—A4;&Sym(T) a linear map
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from N to the space Sym(T') of symmetric endomorphisms of T satisfying

(1.1)  the number »(&) of eigenvalues of Az, E&N— {0}, is a constant p
independent of £.

Lemma 1.3. Assume that N is an orthogonal sum:
N = N®N, with N,=%{0}, dim N,=1,
and there are a linear map AV : N,—Sym(T') and a vector n,& N, such that

AE,+£2 = Agi)+<52’ 2l for any & €N, §,EN,.

Then there exists a vector n, &N, such that
A =&, >l forany EEN,.

Proof. For any &,EN,, £,+0, we have Ay,=<&,, 5,>I. Thus one has
p=1. Hence, for any £,EN,, £ +0, A=A, is a scalar operator on 7. Now
the linearity of 4™ implies the existence of %, above. q.e.d.

Lemma 1.4. Assume that N is an orthogonal sum as in Lemma 1.3, and
also T is an orthogonal sum:

T=T@®T, with T,=%{0}, T, {0}.

Furthermore assume that there are a linear map A®: N,—Sym(T,) and different
vectors 1y, 75N, such that

A51+§2 = (A%ll)+<fz, 772>ITI)€B<E2J 77£>IT2 for any EIENU EZENz'
Then AM=0.
Proof. For any £, N,, £,40, we have

AEZ = <EZ’ 772>IT1®<EM 77;>IT25
with <&,, n,>+<&,, 7%, and hence p=2. We fix an arbitrary &, €N, &,+0.

First we assume that the eigenvalues Ay, -+, A4, k=1, of A§) are all nonzero.
Then, for é=af, &, with £,EN,, £,%0, and sufficiently small nonzero a<
R, the numbers an,+<&,, 7o), -+, an,+<&,, 120, <Es, 5 are different each other,
and hence »(§)=k+1. Thus, by (1.1) we get k=1, ie., AL=n1Iz, N=*0.
Take &£,EN,, £,%+0, and B R with

,37\'1+<§2, 772> = <Ez’ 77§>-

Then, for £=RE,+&,+0, we have A;=<&,, »3>I, and hence »(§)=1. Thisisa
contradiction to p=2.
We next assume that 4§ has eigenvalue 0, together with possible nonzero
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eigenvalues Ay, -+, Ay, K>0. Then, for E=ak,+&, with £,€N,, £,+0, and suffi-
ciently small =0, one has »(§)=k+2. Thus, by (1.1) we get k=0, i.e., 4¢’=0.
Since £, €N, £,0, is arbitrary, we obtain 4®V=0. q.e.d.

Lemma 1.5. Assume that both N and T have orthogonal decompositions:

N=N,®N, with N={0}, Ny {0},
T—T@®T, with T,#+{0}, T,+ {0},

and there are linear maps AM: N,—Sym(T,) and A®: N,—Sym(T}) such that
Ap e, =AP DAL forany & €N, E,EN,.
Then A=0.

Proof. We fix arbitrary £, €N,, 0, and §,EN,, £,+0.

Case (a): Both 4A{ and A have only nonzero eigenvalues Ay, +++, Ny, k=1,
and wuy, -+, uy, 121, respectively. Then, for £=§,+af, with sufficiently small
a=+0, one has »(§)=k—+.. On the other hand, one has v(§,)=k-+1. Thus, by
(1.1) we get I=1. In the same way we get k=1. It follows that p=2 and
AP =Nz, AL =p,Iz, with A, p, 0. Now, for E=uE+NE,, we get A=
(Mpy)I. This is a contradiction to p=2.

Case (b): One of the A{, say A{, has only nonzero eigenvalues Ay, -+, A,
k>1, and the other A has eigenvalue 0 together with possible nonzero
eigenvalues y,, **+, u;, [>0. Then, for £=af,+&, with sufficiently small =0,
one has »(§)=k+I1+1. Together with »(§,)=/+1, we get k=0. This is a con-
tradiction to k>1.

Case (c): Both Af) and A} have eigenvalue 0, together with possible nonzero
eigenvalues A, *++, A, 820, and py, +++, p;, [ >0, respectively. Then, for E=§,+
ak, with sufficiently small =0, one has v(§)=k-+I/4-1. Together with »(§,)=
k41, v(&)=I+1, we get k=I[=0), i.e., 4{’=0 and AL =0.

Thus we conclude that 4=0. q.e.d.

2. Proof of Theorem

We first explain some terminologies. 'The Riemannian metric of M will be
denoted by <{-,->. A connected submanifold M of M is called an extrinsic
sphere, if the mean curvature normal 5 of M is nonzero and parallel (with res-
pect to the normal conncetion in NM), and moreover each shape oparator A4 is
the scalar operator <£,n>I. A submanifold of a space form M is said to be
strongly full, if it is full in M, and further it is not contained in any extrinsic
sphere of M of codimension 1.

Let now M be a symmetric submanifold as in Theorem, and suppose that
M:® is a proper Dupin hypersurface.
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First we assume that M is not full in M. Then there exists a complete to-
tally geodesic hypersurface M*~* of M with M CcM*~'. Applying Lemma 1.3
to the shape operator A® of M CM"™ and 7,=0, we see that A =<&,, p, I
for any normal vector & to M CM*'. Here 7, is the mean curvature normal
of M cM", which is parallel since the second fundamental form of McM
is parallel (cf. Naitoh-Takeuchi [4]). Thus M is a complete totally geodesic
submanifold or a complete extrinsic sphere of M. Since the first case is ex-
cluded from the assumption, we obtain the case (i) in Theorem. In this case, the
principal curvatures of M*® at f*(u), uc U(INM), are calculated by Lemma 1.1 as
follows.

<u7 77>
1—<u’ 77>8
sin é+<u, ) cs€ .nd —coteé for M=S"
cos E—<u, n>sin &
—sinh &+4-<u, 5> cosh &
cosh €—<u, »» sinh €

and —% for M=E",

and —cothé& for M=H",

where 7 is the nonzero mean curvature normal of M cCM. Thus M® is a non-
isoparametric Dupin cyclide in M.

Next we assume that M is full, but not strongly full. Then there exists a
complete extrinsic sphere M*~! of M of codimension 1 such that M is a strongly
full submanifold in M**. Applying Lemma 1.3 to the shape operator A® of
M cM* ' and the mean curvature normal », of M*"'C M, we see that M is a
totally geodesic submanifold or an extrinsic sphere of M*~!. This is a contradi-
ction to that M is strongly full in M»~1,

Thus it remains to determine M in the case where M is a strongly full sym-
metric submanifold of M. We will use the classification of such submanifolds
in Takeuchi [10] (see also Naitoh-Takeuchi [4]).

(I) Case M=E": One has M=E" X M' CE" X S™(r) CE"1 X E"'=E", n,,
n,>1, n,4-n,=n—1, where M’ is a symmetric submanifold of the hypersphere
S*2(r) with radius r>0 in E"*' such that M’'CE"* is substantial. Applying
Lemma 1.4 to the shape operator A® of M’C S”(r), we see that M’ is totally
geodesic in S*z(r). This is a contradiction to that }’C E*:*! is substantial.

(II) Case M=H": We regard H" as

H"={(x)eR""; —xi+xj+ - +x5,.1=—1, x,>0}.

Then M=H"(r))x M' CH"(r,) X S*(r,)CH", n;,n,>1, n)+n,=n—1, r,, r,>0,
r2—ri=1, where

H"(r)={(x)€R"*; —xi+ab+ - +uxp 1=—ri, >0},

and M’ is a symmetric submanifold of S":(r,)C R"*' such that M'C R"* is
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substantial. In the same way as in (I), we see that M’ is totally geodesic in
S"x(r,), which leads to a contradiction.

(III) Case M=S": In this case, M is a symmetric R-space and the inclu-
sion M cCS" is induced from the substantial standard embedding M C R**
(Ferus [2]). If M is a reducible symmetric R-space, one has M=M,X M,C
S™(r,) X S*(r,) C S” with n,, m,>1, n,+n,=n—1, r,, 7,>0, ri4+r3=1. Let one of
the M;, say M, be equal to S*(r;). Then, applying Lemma 1.4 to the shape oper-
ator A® of M, S"(r,), we see that M, is totally geodesic in S”(r,). This is a
contradiction to that M C R**! is substantial. Otherwise, one has dimM,<n,
and dimM,<n, Since the shape operator of M C.S™(r,) X S™(r,) also satisfies
(1.1), we can apply Lemma 1.5 to the shape operators A® of M,C S*(r;) to see
that both M, are totally geodesic in S"(r;). This is also a contradiction to that
M C R**! is substantial.

Thus it remains to consider an irreducible symmetric R-space M. For
this we recall the construction of the standard embedding of M (cf. Ferus [2],
Takeuchi [10], [11]). Let

8 =08-11618, [8p 8T8+

be a simple symmeiric graded Lie algebra over R, with a Cartan involution 7
satisfying r9,=g_,, —1<p<1. The characteristic element e€g, is the unique
element with

g, = {xeg; [e, x] = pa}, —1<p<l.
Let
g=1+p, g ="5+p with e€p,

be the Cartan decompositions associated to 7. We denote by K the compact
connected subgroup of GL(p) generated by ad,f, and set

K,= {k€K; k-e = ¢}.
Then we have identifications: !=Lie K and f,=Lie K, Making use of the
Killing form B of g, we define a K-invariant inner product {-,-> on p by
1
) =——B8B » fi , YED,

= gaBlxy)  for xyep
to identify p with the euclidean space R**!, n=dim p—1. Then e is in the unit
sphere S” of R**!, and

M= K|K,= K-e

gives the required embedding. Let a be a maximal abelian subalgebra in p in-
cluding e, and set 7=dim a. Then one has aCp, Let W=Ng(a)/Zx(a)CO(a)
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be the Weyl group of g, where

Ng(a) = {k=K; k-a=a},
Zy(a) = {keK; k-h = h for any hea}.

We define g to be a half of the cardinality #/ of W. Denote by 3 Ca the root
system of g relative to a, and set

1= {rexl; <y, > =1}.
Let b, be the orthogonal complement to P, in p. Then one has

TeM = ‘pl = E @Py,

ve3s,
where b? is the subspace of b defined by
p = {xep; [k, [A, x]] = <k, ¥)*x for any hea}.
Thus the normal space N,M to M C.S* at e is given by
N.M = a,®qy,

where g, and a, are the orthogonal complement to a in p, and the one to Re
in a, respectively. The shape operator 4 of M CS" at e can be calculated by
the same way as in Takagi-Takahashi [8] to get

(2.1) Ay = —<h, vdx for heaq, xep’, yEX,.

Now we come back to our problem. If r=1, one has M=S". This case is
excluded because of codimM>1. If r>2, one has #3,>1, since #3,=1 would
imply r=1. Therefore, if we denote the orthogonal projection a—a, by w, we
have #w(=,)>1, noting that w(y)=9—e for each y&Z=,. It follows that if r>3
there exist &, i’ €a,— {0} such that

${—<h, v>; vEZ} + N, 7>, vEZY}.

This is a contradiction to Corollary 1.2 by virtue of (2.1). Thus we must have
r=2. In this case, by the classification of irreducible symmetric R-spaces
(Kobayashi-Nagano [3], Takeuchi [9]) we see that only the following four cases
are possible.

(a) Case g=3: M=P,(F'), the projective plane over F=R,C, H or O,
and the standard embedding P,(F)C R**? is the generalized Veronese em-
bedding (Tai [7]).

Case g=4:

(b) M is the complex quadric of complex dimension 3:

04C) = {[z]€P,(C); 'zz = O},
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and p is identified with the space A;(R) of real alternating 5X5 matrices with
inner product:

X, V> = —% (XY) for X, YEA(R).

Any [2] € O4(C) can be written as
2=x+V—1y with », yeS‘C R’ {x,y>=0.

The map [2]—x’y—9y'x is the standard embedding.
(¢) M is the Lie quadric of dimension m+1, m>2:
O"*t = {[2]E P, (R); —2i—23+25+ 20,5 = O},
and p is identified with the space M,,.;,(R) of real (m+1)X2 matrices with
inner product:

(X, Y>=tr({XY) for X, YEM,..(R).

Any [2]€0™*! can be written as
¥ = (x) with xS'CR?, yeS"CcR"*.
Y

The map [2]—y*x is the standard embedding.
(d) M is the uuitary symplectic group of degree 2:

Sp(2) = {reM,(H); zz = 1},

M,(H) being the space of quaternion 2Xx2 matrices, and p is identified with
M,(H) with inner product:

(X, V> = —.12~ Re tr(XY) for X, YEMyH).

The inclusion Sp(2) C M,(H) is the standard embedding.

In these cases, any tube around M is obtained as M* with 0<€<r/g, and
each M* is a homogeneous isoparametric hypersurface of S” with g principal cur-
vatures. In order to show this, first note that K acts on U(/NM ) transitively.
In fact, since the semisimple part of g, has rank 1, K, acts on the unit sphere in
a,Dqy=N,M transitively. We choose a unit vector f €a,, and thus f € U,(NM).
Then the stabilizer Z; of f in K is given by

Zy = Zy(f) = Zx(a).

Now for each €ER the map f*: UNM)—S" is K-equivariant, and hence
M*=f*(U(NM)) is the K-orbit in S" through

h* = (cos €)e+(sin &)f.
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Note that A® is W-regular if and only if €€5(r/g)Z. It follows that M*=M*’
if and only if A° and A* are W-conjugate, and that f* is an embedding if and
only if M*® is a regular K-orbit in S”, which is the same as that 4°* is W-regular.
Moreover, any regular K-orbit is a homogeneous isoparametric hypersurface in
S" with g principal curvatures (Takagi-Takahashi [8], Ozeki-Takeuchi [5]).
These imply our claim.

It is known (Pinkall [6]) that an isoparametric hypersurface McS" is an
irreducible Dupin hypersurface, if Aut(M)cO(n+1) acts irreducibly on R**,
But, Aut(M?®) for our tube M* acts irreducibly on R"**', because the subgroup K
of Aut(M?®) acts on P irreducibly by virtue of simplicity of g. Thus we get
the last assertion in Theorem.

We finally note that a Dupin cyclide as in case (i) is always a reducible Du-
pin hypersurface.
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