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Introduction

A connected oriented hypersurface M of the space form M=En, Sn or Hn

is called a Dupin hypersurface, if for any curvature submanifold S of M the cor-
responding principal curvature λ is constant along S. Here by a curvature
submanifold we mean a connected submanifold S with a smooth function λ on
S such that for each point x^S, X(x) is a principal curvature of M at x and
TXS is equal to the principal subspace in TXM corresponding to X(x). A Du-
pin hypersurface is said to be proper, if all principal curvatures have locally
constant multiplicities. A connected oriented hypersurface of M is called an
isoparametric hypersurface, if all principal curvatures are locally constant. Ob-
viously an isoparametric hypersurface is a proper Dupin hypersurface. Ano-
ther example of a Dupin hypersurface (Pinkall [6]) is an £-tube M* around a
symmetric submanifold M of M of codimension greater than 1, which is said to
be generated by M. Recall that a connected submanifold M of M is a symmetric
submanifold, if for each point x^M there is an involutive isometry σ of M
levaing M and x invariant such that (—l)-eigensρace of {σ*)x is equal to TXM.
The most simple example is the tube M* around a complete totally geodesic
submanifold M. This is a complete isoparametric hypersurface with two prin-
cipal curvatures, which is further homogeneous in the sense that the group

Aut(M8) = {φe J(fi); φ(Mz) = M2}

acts transitively on M2. Here I{M) denotes the group of isometries of M. In
this note we will determine all the symmetric submanifolds whose tube is a
proper Dupin hypersurface, in the following theorem.

Theorem. Let M be a non-totally geodesic symmetric submanifold of a
space form M of codimension greater than 1. Then the tube Mz around M is a
proper Dupin hypersurface if and only if either
(i) M is a complete extrinsic sphere of M (see Section 2 for definition) of codimen-
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sion greater than 1 or

(ii) M is one of the following symmetric submanifolds of Sn:

(a) the protective plane P2(F)(ZS3d+1, d=dimRF, over F=R,C, quaternions

H or octonions O;

(b) the complex quadric Q3{C) C S9

(c) the Lie quadric Qm+1 C S 2 m + \ m>2;

(d) the unitary sympletίc group Sp(2) d Sιs.

(Explicit embeddings of these spaces will be given in Section 2.) In case (ϊ), M*

is a Dupin cyelide, i.e., a proper Dupin hyper surface with two principal curvatures,

but it is not an isoparametric hyper surf ace. In case (ii), Mz is a homogeneous

isoparametric hypersurface with three or four principal curvatures, and it is an ir-

reducible Dupin hypersurface in the sense of Pinkall [6].

l Principal curvatures of tubes

Let M be a connected sub manifold of a space form M of codimension q>ί,

NM and U(NM) the normal bundle and the unit normal bundle of My respecti-

vely. Denote by A% the shape operator of M. Suppose that the map /*:

U(NM)->M, £>0, defined by

f\u) = Exp(£w) for we U(NM)

is an embedding, and set M9=f\U(NM))(zM. Then (cf. Cecil-Ryan [1]) we

have the following

L e m m a 1.1. Let \ l } •••, λ^ be the eigenvalues of Auy MG U(NM), with mul-

tiplicities mly •••_, mp, respectively. Then the principal curvatures of Mz at f*(u)

with respect to the outward unit normal are given as follows.

—^—,\<i<P> and - — for M = E\
1 — \{C c

[<i<p, and — cot £ for M = Sn,
cos 6—λ, sin S

~ s i n h £ + λ - c o s h £ , l < / < / » , and - c o t h f for M=H»,
cosh £—λ, sinhβ

with multiplicities mλ, •••, mp, q—\, respectively.

Corollary 1.2. Suppose that Mz is a proper Dupin hypersurface. Then,

for each point xEΐM, the number of eigenvalues of A%, ξEΞNxM— {0}, is a constant

independent of ξ.

In what follows in this section, let T and N be finite dimensional real vector

spaces with inner product <•,•>> a n ( l ^ : N^ξι-^Aξ^Sym(T) a linear map
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from N to the space Sym(Γ) of symmetric endomorphisms of T satisfying

(1.1) the number v{ξ) of eigenvalues of Aξ9 ξ^N— {0}, is a constant/)

independent of ξ.

Lemma 1.3. Assume that N is an orthogonal sum:

N=N,φN2 with iVx=i={0},dimiV2-:l,

and there are a linear map A{1): iV1~»Sym(Tl) and a vector η2^N2 such that

Aξl+ξ2 = Ag+Q2,V2>I for any ξ

Then there exists a vector η^Nx such that

for any ξ

Proof. For any ξ2^N29 £ 2φ0, we have Aξ2=Q2y η2yi. Thus one has
p=l. Hence, for any ί^eiVΊ, ^ΦO, A^=Aξl is a scalar operator on T. Now
the linearity of A^ implies the existence of ηx above. q.e.d.

Lemma 1.4. Assume that N is an orthogonal sum as in Lemma 1.3, and
also T is an orthogonal sum:

with r1 =M0},:r2=H0}.

Furthermore assume that there are a linear map A(1): Λ^-^SymίT1!) and different
vectors η2, η2^N2 such that

2, v'2>IT2 for any ξ^Nv

Then AV=0.

Proof. For any ξ2G:N2y ξ2 + 0, we have

with <£2, V2):$z<\%2> v£>y a n < i hence p=2. We fix an arbitrary ξλ^Nu ^4=0.
First we assume that the eigenvalues Xu •••, Xk, k>ί, of A^ are all nonzero.

Then, for ξ=aξ1+ξ2 with ξ2^N2y ξ2=^0y and sufficiently small nonzero αG
R, the numbers aX^ζξz, η2y, •••, 0ίXk+<^ξ2y η2y, <Ĉ2> V2} a r e different each other,
and hence v(ξ)=k+l. Thus, by (1.1) we get k=ϊ, i.e., A^^Xj^, XxΦθ.
Take ?2GiV2) | 2 Φ 0 , and β<=R with

Then, for ξ=βξ1+ξ2±0y we have A^=ζξ2, V'2>I, and hence v(ξ)=l. This is a

contradiction to p=2.
We next assume that Aγ) has eigenvalue 0, together with possible nonzero
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eigenvalues λt, —, λA, k>0. Then, for ξ=aξ1+ξ2 with £2eiV2, ξ23=0, a n d suffi-
ciently small αφO, one has v(ξ)=k+2. Thus, by (1.1) we get ft=0, i.e., ^ = 0 .

Since ξ^N^ ^ φ O , is arbitrary, we obtain yl ( 1 )=0. q.e.d.

Lemma 1.5. Assume that both N and T have orthogonal decompositions:

N=N1®N2 with iV1Φ{0},iV2Φ{0},

T=TX®T2 with 71

1Φ{0},Γ2Φ-{0},

fAβre βr* /m^r maps ^4(1): ΛΓ1-^Sym(Γ1) Λfw/ ^4(2): iV2->Sym(Γ2) such that

Ah+h=A£®Ag for any ξ^Nl9 ξ2^N2.

Then A=Q.

Proof. We fix arbitrary ξx <ΞiVx, £ Φ 0, and f2 eiV2, f2 Φ 0.
Case (a): Both Aγ> and A$ have only nonzero eigenvalues λ l f •••, λA,

and /̂ i, •••, ^ , / > 1 , respectively. Then, for ξ=ξi+aξ2 with sufficiently small
ctφO, one has v(ξ)=k-\-l. On the other hand, one has v(ξι)=k+l. Thus, by
(1.1) we get 7=1. In the same way we get k=l. It follows that p=2 and

TV Ag=μiITa with λ2, ^ Φ 0 . Now, for ?=^ 1 ? 1 +λ 1 ? 2 , we get Aξ=
This is a contradiction to ̂ >=2.

Case (b): One of the A$, say ̂ 4^, has only nonzero eigenvalues \, •••, λA,
&>1, and the other ^4^ has eigenvalue 0 together with possible nonzero
eigenvalues μu •••, μh 7>0. Then, for ξ=aξ1

Jrξ2 with sufficiently small αrΦO,
one has v(ξ)=k+l-{-l. Together with v(ξ2)=l+l, we get k=0. This is a con-
tradiction to £ > 1 .

Case (c): Both A^ and A$ have eigenvalue 0, together with possible nonzero
eigenvalues λ3, •••, λΛ, ̂ >0, and ^ , •••, μh 7>0, respectively. Then, for ξ=ξ1^Γ

aξ2 with sufficiently small αφO, one has v(ξ)=k-\-l-\-l. Together with v(ξ1)=
k+l, v(ξz)=l+l9 we get k=l=0, i.e., A%>=0 and Ag>=0.

Thus we conclude that A=0. q.e.d.

2. Proof of Theorem

We first explain some terminologies. The Riemannian metric of M will be
denoted by <(•,•)>. A connected submanifold M of M is called an extrinsic
sphere, if the mean curvature normal η of M is nonzero and parallel (with res-
pect to the normal connection in NM), and moreover each shape oparator Aξ is
the scalar operator <?, η)I. A submanifold of a space form M is said to be
strongly full, if it is full in M, and further it is not contained in any extrinsic
sphere of M of codimension 1.

Let now M be a symmetric submanifold as in Theorem, and suppose that
Mz is a proper Dupin hypersurface.
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First we assume that M is not full in M. Then there exists a complete to-

tally geodesic hypersurface Mn~ι of M with Mcilί*" 1 . Applying Lemma 1.3

to the shape operator A(1) of M c ϊ " " 1 and 972=0, we see that Ag=ζξu Vl>I

for any normal vector ξ\ t 0 MdMn~ι. Here ηx is the mean curvature normal

of MdMn~x, which is parallel since the second fundamental form of MdM

is parallel (cf. Naitoh-Takeuchi [4]). Thus M is a complete totally geodesic

submanifold or a complete extrinsic sphere of M. Since the first case is ex-

cluded from the assumption, we obtain the case (i) in Theorem. In this case, the

principal curvatures of Mz at/ε(w), we U(NM), are calculated by Lemma 1.1 as

follows.

< > and — 1 for M=E\

sin S+<u,v> cos S a n d _ c Q t ε for M=zSn^

cos£—<w, 77>sin6

-sinh ε+<u,vy cosh ε a n d _ c o t h ε for fi=JΓj

cosh 6—<X 77̂  sinh £

where 97 is the nonzero mean curvature normal of MdM. Thus M ε is a non-

isoparametric Dupin cyclide in M.

Next we assume that M is full, but not strongly full. Then there exists a

complete extrinsic sphere Mn~ι of M of codimension 1 such that M is a strongly

full submanifold in Mn~ι. Applying Lemma 1.3 to the shape operator A(ι) of

M dMn~ι and the mean curvature normal η2 of Mn~λdM, we see that M is a

totally geodesic submanifold or an extrinsic sphere of Mn~ι. This is a contradi-

ction to that M is strongly full in Mn~ι.

Thus it remains to determine M in the case where M is a strongly full sym-

metric submanifold of M. We will use the classification of such submanifolds

in Takeuchi [10] (see also Naitoh-Takeuchi [4]).

(I) Case M=En: One has M=EniχM'dEniχSn2(r)dEniχEn2+1=En, nu

ih>\y w1+τi2=w—1, where M' is a symmetric submanifold of the hypersphere

S*2(r) with radius r > 0 in En*+1 such that M'dEn*+1 is substantial. Applying

Lemma 1.4 to the shape operator Aω of M'dSn*(r), we see that M' is totally

geodesic in Sn2(r). This is a contradiction to that M'dEn2+1 is substantial.

(II) Case M=Hn: We regard Hn as

Then M=H\rλ)XMrdHn^rx)X Sn2(r2)dHn, nu n2 > 1, nλ+n2 = n-1, ru r2> 0,

r\—rl=\y where

and M' is a symmetric submanifold of Stt2(r2)dRn2+1 such that M'dRn2+1 is
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substantial. In the same way as in (I), we see that M' is totally geodesic in
*SΛ2(r2), which leads to a contradiction.

(Ill) Case M=Sn: In this case, M is a symmetric i?-space and the inclu-
sion MdSn is induced from the substantial standard embedding MczRn+ι

(Ferus [2]). If M is a reducible symmetric i?-space, one has M=M1χM2cz
Sni(r1)χStt2(r2)c:Sn with nu n2>l, n1+n2=n—l, ru r 2>0, r f+ri=l. Let one of
the Miy say Ml9 be equal to 5n'(rf ). Then, applying Lemma 1.4 to the shape oper-
ator A{1) of Λ^CiS^^), we see that M2 is totally geodesic in Sn2(r2). This is a
contradiction to that M <zRn+1 is substantial. Otherwise, one has dimM^/^
and dimM2<«2. Since the shape operator of M cS'Ίfa) X Sn*(r2) also satisfies
(1.1), we can apply Lemma 1.5 to the shape operators Aω of ilί,.cSn ' (rt ) to see
that both Mi are totally geodesic in Sni(r?). This is also a contradiction to that
MdRn+ι is substantial.

Thus it remains to consider an irreducible symmetric i?-space M. For
this we recall the construction of the standard embedding of M (cf. Ferus [2],
Takeuchi [10], [11]). Let

9 = 9-i+9o+9i> [Qpy 9dc9/H-ί

be a simple symmetric graded Lie algebra over R} with a Car tan involution r
satisfying τQp=Q-p, —l<p<l. The characteristic element eGg0 is the unique
element with

8 , = {*<Ξg; [e,x]=px}> -

Let

with et=p0

be the Cartan decompositions associated to r. We denote by K the compact
connected subgroup of GL(p) generated by adpί, and set

Then we have identifications: !=Liei£ and I 0 = L i e ^ 0 . Making use of the
Killing form B of g, we define a i^-invariant inner product <(•,')> on p by

(χ> y>= WΎ-—s(^» y) f o r *> y e $>
Z dim g_!

to identify p with the euclidean space Rn+1> w=dim p— 1. Then ^ is in the unit
sphere Sn of Rn+\ and

gives the required embedding. Let α be a maximal abelian subalgebra in p in-
cluding e> and set r=dim α. Then one has αct>0 Let W=Nκ(ά)IZκ(a)c:O(a)
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be the Weyl group of g, where

Nκ(a)=

Zκ{a) = {k<=K\ k-h = h for any AGO}.

We define g to be a half of the cardinality #W of IF. Denote by Σ c α the root
system of g relative to α, and set

Let pj be the orthogonal complement to p0 in Jλ Then one has

TeM= Pi = Σ θϊ>v

y : *

where J)7 is the subspace of p defined by

py = {jcGp; [h, [h, x]] = <A, <y>2# for any

Thus the normal space NeM to M dSn aX e is given by

NeM = αoθqo,

where q0 and α0 are the orthogonal complement to α in pQ and the one to Re
in α, respectively. The shape operator A of M d Sn at ^ can be calculated by
the same way as in Takagi-Takahashi [8] to get

(2.1) Ahx = —<Jι, γ>Λ? for Aeα0, x^py, γ e Σ i

Now we come back to our problem. If r = l , one has M=Sn. This case is
excluded because of codimM>l. If r > 2 , one has #Σi>l , since #Σi=l would
imply r = l . Therefore, if we denote the orthogonal projection α—>α0 by tar, we
have #ΌΓ(ΣI)>1, noting that iΣr(γ) = γ—^ for each γ e Σ i It follows that if r>3
there exist A, A'eα0— {0} such that

${-<K 7>; veΣJ- Φ #{-<*', 7>; r e Σ J .

This is a contradiction to Corollary 1.2 by virtue of (2.1). Thus we must have
r = 2 . In this case, by the classification of irreducible symmetric .R-spaces
(Kobayashi-Nagano [3], Takeuchi [9]) we see that only the following four cases
are possible.

(a) Case £ = 3 : M=P2(F), the projective plane over F=R,C,H or O,
and the standard embedding P2(F)dR3d+2 is the generalized Veronese em-
bedding (Tai [7]).

Case £ = 4 :
(b) M is the complex quadric of complex dimension 3:
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and p is identified with the space A5(R) of real alternating 5x5 matrices with
inner product:

r>=-\ti(XY) for X

Any [z]^Q3(C) can be written as

z = x+V—ly with x,y^S4cR5

y ζx,y> = 0.

The map \z\r-^x*y—y*x is the standard embedding.
(c) M is the Lie quadric of dimension τ/z+1, m>2:

ρ-+1 = i[z]^Pm+2(R); -z\-zl+zl+-+zl+z = 0},

and p is identified with the space Mm+U2(R) of real ( m + l ) x 2 matrices with
inner product:

) for X

Any [jar] e O w + 1 can be written as

* = ( J with «eS1cJP,yeS"cJB*+1.

The map [.sr]i—><y*Λ? is the standard embedding.
(d) M is the uuitary symplectic group of degree 2:

Sp(2)= (z^M2(H);tzz=l2},

M2(H) being the space of quaternion 2 x 2 matrices, and p is identified with
M2(H) with inner product:

<X, y> - \ Re tr('XF) for X, Y^M2{H).

The inclusion Sp(2)czM2(H) is the standard embedding.
In these cases, any tube around M is obtained as M* with 0<ε<πjgy and

each M* is a homogeneous isoparametric hypersurface of Sn with £ principal cur-
vatures. In order to show this, first note that K acts on U(NM) transitively.
In fact, since the semisimple part of g0 has rank 1, Ko acts on the unit sphere in
doθC{o=NeM transitively. We choose a unit vector/eα0, and t h u s / e Ue(NM).
Then the stabilizer ZQ of / in K is given by

Zt = ZKa(f) = Zκ(a).

Now for each £ e Λ the map f: U{NM)-*Sn is ϋC-equivariant, and hence
M'=f(U(NM)) is the iΓ-orbit in S" through

h" = (cos £)e+(sin ε)f.
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Note that hz is W-regular if and only if £^(π\g)Z. It follows that MZ=MZ'
if and only if hz and K are PF-conjugate, and that fz is an embedding if and
only if Mz is a regular i£-orbit in Sn, which is the same as that hz is PF-regular.
Moreover, any regular jfiΓ-orbit is a homogeneous isoparametric hypersurface in
Sn with g principal curvatures (Takagi-Takahashi [8], Ozeki-Takeuchi [5]).
These imply our claim.

It is known (Pinkall [6]) that an isoparametric hypersurface McSn is an
irreducible Dupin hypersurface, if Aut(M)cO(n+l) acts irreducibly on Rn+1.
But, Aut(Mβ) for our tube Mz acts irreducibly on Rn+ι

y because the subgroup K
of Aut(M8) acts on p irreducibly by virtue of simplicity of g. Thus we get
the last assertion in Theorem.

We finally note that a Dupin cyclide as in case (i) is always a reducible Du-
pin hypersurface.
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