Takeuchi, M. Osaka J. Math. 28 (1991), 153-161

PROPER DUPIN HYPERSURFACES GENERATED BY SYMMETRIC SUBMANIFOLDS

Dedicated to Professor Tadashi Nagano on his sixtieth birthday

MASARU TAKEUCHI

(Received March 6, 1990)

Introduction

A connected oriented hypersurface M of the space form $\overline{M} = E^n$, S^n or H^n is called a Dupin hypersurface, if for any curvature submanifold S of M the corresponding principal curvature λ is constant along S. Here by a curvature submanifold we mean a connected submanifold S with a smooth function λ on S such that for each point $x \in S$, $\lambda(x)$ is a principal curvature of M at x and T_xS is equal to the principal subspace in T_xM corresponding to $\lambda(x)$. A Dupin hypersurface is said to be proper, if all principal curvatures have locally constant multiplicities. A connected oriented hypersurface of \overline{M} is called an isoparametric hypersurface, if all principal curvatures are locally constant. Obviously an isoparametric hypersurface is a proper Dupin hypersurface. Another example of a Dupin hypersurface (Pinkall [6]) is an \mathcal{E} -tube $M^{\mathfrak{e}}$ around a symmetric submanifold M of \overline{M} of codimension greater than 1, which is said to be generated by M. Recall that a connected submanifold M of \overline{M} is a symmetric submanifold, if for each point $x \in M$ there is an involutive isometry σ of \overline{M} levaing M and x invariant such that (-1)-eigenspace of $(\sigma_*)_x$ is equal to T_xM . The most simple example is the tube $M^{\mathfrak{e}}$ around a complete totally geodesic submanifold M. This is a complete isoparametric hypersurface with two principal curvatures, which is further homogeneous in the sense that the group

$$\operatorname{Aut}(M^{\mathfrak{e}}) = \{ \phi \in I(\overline{M}); \, \phi(M^{\mathfrak{e}}) = M^{\mathfrak{e}} \}$$

acts transitively on $M^{\mathfrak{e}}$. Here $I(\overline{M})$ denotes the group of isometries of \overline{M} . In this note we will determine all the symmetric submanifolds whose tube is a proper Dupin hypersurface, in the following theorem.

Theorem. Let M be a non-totally geodesic symmetric submanifold of a space form \overline{M} of codimension greater than 1. Then the tube $M^{\mathfrak{e}}$ around M is a proper Dupin hypersurface if and only if either

(i) M is a complete extrinsic sphere of \overline{M} (see Section 2 for definition) of codimen-

sion greater than 1; or

(ii) M is one of the following symmetric submanifolds of S^n :

(a) the projective plane $P_2(\mathbf{F}) \subset S^{3d+1}$, $d = \dim_{\mathbf{R}} \mathbf{F}$, over $\mathbf{F} = \mathbf{R}$, \mathbf{C} , quaternions \mathbf{H} or octonions \mathbf{O} ;

- (b) the complex quadric $Q_3(C) \subset S^9$;
- (c) the Lie quadric $Q^{m+1} \subset S^{2m+1}, m \ge 2$;
- (d) the unitary sympletic group $Sp(2) \subset S^{15}$.

(Explicit embeddings of these spaces will be given in Section 2.) In case (i), M^{e} is a Dupin cyclide, i.e., a proper Dupin hypersurface with two principal curvatures, but it is not an isoparametric hypersurface. In case (ii), M^{e} is a homogeneous isoparametric hypersurface with three or four principal curvatures, and it is an irreducible Dupin hypersurface in the sense of Pinkall [6].

1. Principal curvatures of tubes

Let M be a connected submanifold of a space form \overline{M} of codimension q>1, NM and U(NM) the normal bundle and the unit normal bundle of M, respectively. Denote by A_{ξ} the shape operator of M. Suppose that the map $f^{\varepsilon}: U(NM) \rightarrow \overline{M}, \varepsilon > 0$, defined by

$$f^{\mathbf{e}}(u) = \operatorname{Exp}(\mathcal{E}u) \quad \text{for } u \in U(NM)$$

is an embedding, and set $M^{\mathfrak{e}}=f^{\mathfrak{e}}(U(NM))\subset \overline{M}$. Then (cf. Cecil-Ryan [1]) we have the following

Lemma 1.1. Let $\lambda_1, \dots, \lambda_p$ be the eigenvalues of $A_u, u \in U(NM)$, with multiplicities m_1, \dots, m_p , respectively. Then the principal curvatures of M^e at $f^e(u)$ with respect to the outward unit normal are given as follows.

$$\frac{\lambda_i}{1-\lambda_i\varepsilon}, \ 1 \le i \le p, \text{ and } -\frac{1}{\varepsilon} \quad \text{for } \quad \overline{M} = E^n,$$
$$\frac{\sin \varepsilon + \lambda_i \cos \varepsilon}{\cos \varepsilon - \lambda_i \sin \varepsilon}, \ 1 \le i \le p, \text{ and } -\cot \varepsilon \quad \text{for } \quad \overline{M} = S^n,$$
$$\frac{-\sinh \varepsilon + \lambda_i \cosh \varepsilon}{\cosh \varepsilon - \lambda_i \sinh \varepsilon}, \ 1 \le i \le p, \text{ and } -\coth \varepsilon \quad \text{for } \quad \overline{M} = H^n,$$

with multiplicities $m_1, \dots, m_p, q-1$, respectively.

Corollary 1.2. Suppose that $M^{\mathfrak{e}}$ is a proper Dupin hypersurface. Then, for each point $x \in M$, the number of eigenvalues of $A_{\mathfrak{k}}, \mathfrak{E} \in N_{\mathfrak{x}}M - \{0\}$, is a constant independent of \mathfrak{E} .

In what follows in this section, let T and N be finite dimensional real vector spaces with inner product $\langle \cdot, \cdot \rangle$, and $A: N \ni \xi \mapsto A_{\xi} \in \text{Sym}(T)$ a linear map

154

from N to the space Sym(T) of symmetric endomorphisms of T satisfying

(1.1) the number $\nu(\xi)$ of eigenvalues of A_{ξ} , $\xi \in N - \{0\}$, is a constant p independent of ξ .

Lemma 1.3. Assume that N is an orthogonal sum:

 $N = N_1 \oplus N_2$ with $N_1 \neq \{0\}$, dim $N_2 = 1$,

and there are a linear map $A^{(1)}: N_1 \rightarrow \text{Sym}(T)$ and a vector $\eta_2 \in N_2$ such that

$$A_{\xi_1+\xi_2} = A_{\xi_1}^{(1)} + \langle \xi_2, \eta_2 \rangle I$$
 for any $\xi_1 \in N_1, \xi_2 \in N_2$.

Then there exists a vector $\eta_1 \in N_1$ such that

$$A_{\xi_1}^{(1)} = \langle \xi_1, \eta_1 \rangle I \quad \text{for any} \quad \xi_1 \in N_1.$$

Proof. For any $\xi_2 \in N_2$, $\xi_2 \neq 0$, we have $A_{\xi_2} = \langle \xi_2, \eta_2 \rangle I$. Thus one has p=1. Hence, for any $\xi_1 \in N_1$, $\xi_1 \neq 0$, $A_{\xi_1}^{(1)} = A_{\xi_1}$ is a scalar operator on T. Now the linearity of $A^{(1)}$ implies the existence of η_1 above. q.e.d.

Lemma 1.4. Assume that N is an orthogonal sum as in Lemma 1.3, and also T is an orthogonal sum:

$$T = T_1 \oplus T_2$$
 with $T_1 \neq \{0\}, T_2 \neq \{0\}$.

Furthermore assume that there are a linear map $A^{(1)}: N_1 \rightarrow \text{Sym}(T_1)$ and different vectors $\eta_2, \eta'_2 \in N_2$ such that

$$A_{\xi_1+\xi_2} = (A_{\xi_1}^{(1)} + \langle \xi_2, \eta_2 \rangle I_{T_1}) \oplus \langle \xi_2, \eta_2' \rangle I_{T_2} \quad \text{for any} \quad \xi_1 \in N_1, \xi_2 \in N_2.$$

Then $A^{(1)} = 0$.

Proof. For any $\xi_2 \in N_2$, $\xi_2 \neq 0$, we have

$$A_{\xi_2} = \langle \xi_2, \eta_2 \rangle I_{T_1} \oplus \langle \xi_2, \eta_2' \rangle I_{T_2},$$

with $\langle \xi_2, \eta_2 \rangle \neq \langle \xi_2, \eta'_2 \rangle$, and hence p=2. We fix an arbitrary $\xi_1 \in N_1, \xi_1 \neq 0$.

First we assume that the eigenvalues $\lambda_1, \dots, \lambda_k, k \ge 1$, of $A_{\xi_1}^{(1)}$ are all nonzero. Then, for $\xi = \alpha \xi_1 + \xi_2$ with $\xi_2 \in N_2$, $\xi_2 \neq 0$, and sufficiently small nonzero $\alpha \in \mathbf{R}$, the numbers $\alpha \lambda_1 + \langle \xi_2, \eta_2 \rangle, \dots, \alpha \lambda_k + \langle \xi_2, \eta_2 \rangle, \langle \xi_2, \eta_2' \rangle$ are different each other, and hence $\nu(\xi) = k+1$. Thus, by (1.1) we get k=1, i.e., $A_{\xi_1}^{(1)} = \lambda_1 I_{T_1}, \lambda_1 \neq 0$. Take $\xi_2 \in N_2$, $\xi_2 \neq 0$, and $\beta \in \mathbf{R}$ with

$$eta\lambda_1+\langle\xi_2,\eta_2
angle=\langle\xi_2,\eta_2
angle.$$

Then, for $\xi = \beta \xi_1 + \xi_2 \neq 0$, we have $A_{\xi} = \langle \xi_2, \eta'_2 \rangle I$, and hence $\nu(\xi) = 1$. This is a contradiction to p = 2.

We next assume that $A_{\xi_1}^{(1)}$ has eigenvalue 0, together with possible nonzero

eigenvalues $\lambda_1, \dots, \lambda_k, k \ge 0$. Then, for $\xi = \alpha \xi_1 + \xi_2$ with $\xi_2 \in N_2, \xi_2 \neq 0$, and sufficiently small $\alpha \neq 0$, one has $\nu(\xi) = k+2$. Thus, by (1.1) we get k=0, i.e., $A_{\xi_1}^{(1)}=0$. q.e.d.

Since $\xi_1 \in N_1$, $\xi_1 \neq 0$, is arbitrary, we obtain $A^{(1)} = 0$.

Lemma 1.5. Assume that both N and T have orthogonal decompositions:

$$N = N_1 \oplus N_2$$
 with $N_1 \neq \{0\}, N_2 \neq \{0\},$
 $T = T_1 \oplus T_2$ with $T_1 \neq \{0\}, T_2 \neq \{0\},$

and there are linear maps $A^{(1)}: N_1 \rightarrow \text{Sym}(T_1)$ and $A^{(2)}: N_2 \rightarrow \text{Sym}(T_2)$ such that

 $A_{\xi_1+\xi_2} = A_{\xi_1}^{(1)} \oplus A_{\xi_2}^{(2)}$ for any $\xi_1 \in N_1, \xi_2 \in N_2$.

Then A=0.

Proof. We fix arbitrary $\xi_1 \in N_1$, $\xi_1 \neq 0$, and $\xi_2 \in N_2$, $\xi_2 \neq 0$.

Case (a): Both $A_{\xi_1}^{(1)}$ and $A_{\xi_2}^{(2)}$ have only nonzero eigenvalues $\lambda_1, \dots, \lambda_k, k \ge 1$, and $\mu_1, \dots, \mu_l, l \ge 1$, respectively. Then, for $\xi = \xi_1 + \alpha \xi_2$ with sufficiently small $\alpha \neq 0$, one has $\nu(\xi) = k + l$. On the other hand, one has $\nu(\xi) = k + 1$. Thus, by (1.1) we get l=1. In the same way we get k=1. It follows that p=2 and $A_{\xi_1}^{(1)} = \lambda_1 I_{T_1}, A_{\xi_2}^{(2)} = \mu_1 I_{T_2}$ with $\lambda_1, \ \mu_1 \neq 0$. Now, for $\xi = \mu_1 \xi_1 + \lambda_1 \xi_2$, we get $A_{\xi} =$ $(\lambda_1 \mu_1)I$. This is a contradiction to p=2.

Case (b): One of the $A_{\xi_i}^{(i)}$, say $A_{\xi_1}^{(1)}$, has only nonzero eigenvalues $\lambda_1, \dots, \lambda_k$, $k \ge 1$, and the other $A_{\xi_2}^{(2)}$ has eigenvalue 0 together with possible nonzero eigenvalues $\mu_1, \dots, \mu_l, l \ge 0$. Then, for $\xi = \alpha \xi_1 + \xi_2$ with sufficiently small $\alpha \neq 0$, one has $\nu(\xi) = k + l + 1$. Together with $\nu(\xi_2) = l + 1$, we get k = 0. This is a contradiction to $k \ge 1$.

Case (c): Both $A_{\xi_1}^{(1)}$ and $A_{\xi_2}^{(2)}$ have eigenvalue 0, together with possible nonzero eigenvalues $\lambda_1, \dots, \lambda_k, k \ge 0$, and $\mu_1, \dots, \mu_l, l \ge 0$, respectively. Then, for $\xi = \xi_1 + \xi_1 + \xi_2 + \xi_1 + \xi_2 +$ $\alpha \xi_2$ with sufficiently small $\alpha \neq 0$, one has $\nu(\xi) = k + l + 1$. Together with $\nu(\xi_1) = k + l + 1$. k+1, $\nu(\xi_2)=l+1$, we get k=l=0, i.e., $A_{\xi_1}^{(1)}=0$ and $A_{\xi_2}^{(2)}=0$.

Thus we conclude that A=0.

q.e.d.

2. **Proof of Theorem**

We first explain some terminologies. The Riemannian metric of \overline{M} will be denoted by $\langle \cdot, \cdot \rangle$. A connected submanifold M of \overline{M} is called an *extrinsic* sphere, if the mean curvature normal η of M is nonzero and parallel (with respect to the normal conncetion in NM), and moreover each shape oparator A_{ξ} is the scalar operator $\langle \xi, \eta \rangle I$. A submanifold of a space form \overline{M} is said to be strongly full, if it is full in \overline{M} , and further it is not contained in any extrinsic sphere of M of codimension 1.

Let now M be a symmetric submanifold as in Theorem, and suppose that M^{e} is a proper Dupin hypersurface.

156

First we assume that M is not full in \overline{M} . Then there exists a complete totally geodesic hypersurface \overline{M}^{n-1} of \overline{M} with $M \subset \overline{M}^{n-1}$. Applying Lemma 1.3 to the shape operator $A^{(1)}$ of $M \subset \overline{M}^{n-1}$ and $\eta_2 = 0$, we see that $A_{\xi_1}^{(1)} = \langle \xi_1, \eta_1 \rangle I$ for any normal vector ξ_1 to $M \subset \overline{M}^{n-1}$. Here η_1 is the mean curvature normal of $M \subset \overline{M}^{n-1}$, which is parallel since the second fundamental form of $M \subset \overline{M}$ is parallel (cf. Naitoh-Takeuchi [4]). Thus M is a complete totally geodesic submanifold or a complete extrinsic sphere of \overline{M} . Since the first case is excluded from the assumption, we obtain the case (i) in Theorem. In this case, the principal curvatures of M^e at $f^e(u), u \in U(NM)$, are calculated by Lemma 1.1 as follows.

$$\frac{\langle u, \eta \rangle}{1 - \langle u, \eta \rangle \varepsilon} \text{ and } -\frac{1}{\varepsilon} \text{ for } \overline{M} = E^{n},$$

$$\frac{\sin \varepsilon + \langle u, \eta \rangle \cos \varepsilon}{\cos \varepsilon - \langle u, \eta \rangle \sin \varepsilon} \text{ and } -\cot \varepsilon \text{ for } \overline{M} = S^{n},$$

$$\frac{-\sinh \varepsilon + \langle u, \eta \rangle \cosh \varepsilon}{\cosh \varepsilon - \langle u, \eta \rangle \sinh \varepsilon} \text{ and } -\coth \varepsilon \text{ for } \overline{M} = H^{n},$$

where η is the nonzero mean curvature normal of $M \subset \overline{M}$. Thus $M^{\mathfrak{e}}$ is a non-isoparametric Dupin cyclide in \overline{M} .

Next we assume that M is full, but not strongly full. Then there exists a complete extrinsic sphere \overline{M}^{n-1} of \overline{M} of codimension 1 such that M is a strongly full submanifold in \overline{M}^{n-1} . Applying Lemma 1.3 to the shape operator $A^{(1)}$ of $M \subset \overline{M}^{n-1}$ and the mean curvature normal η_2 of $\overline{M}^{n-1} \subset \overline{M}$, we see that M is a totally geodesic submanifold or an extrinsic sphere of \overline{M}^{n-1} . This is a contradiction to that M is strongly full in \overline{M}^{n-1} .

Thus it remains to determine M in the case where M is a strongly full symmetric submanifold of \overline{M} . We will use the classification of such submanifolds in Takeuchi [10] (see also Naitoh-Takeuchi [4]).

(I) Case $\overline{M} = E^n$: One has $M = E^{n_1} \times M' \subset E^{n_1} \times S^{n_2}(r) \subset E^{n_1} \times E^{n_2+1} = E^n$, n_1 , $n_2 \ge 1$, $n_1 + n_2 = n - 1$, where M' is a symmetric submanifold of the hypersphere $S^{n_2}(r)$ with radius r > 0 in E^{n_2+1} such that $M' \subset E^{n_2+1}$ is substantial. Applying Lemma 1.4 to the shape operator $A^{(1)}$ of $M' \subset S^{n_2}(r)$, we see that M' is totally geodesic in $S^{n_2}(r)$. This is a contradiction to that $M' \subset E^{n_2+1}$ is substantial.

(II) Case $\overline{M} = H^n$: We regard H^n as

$$H^{n} = \{(x_{i}) \in \mathbb{R}^{n+1}; -x_{1}^{2} + x_{2}^{2} + \cdots + x_{n+1}^{2} = -1, x_{1} > 0\}.$$

Then $M = H^{n_1}(r_1) \times M' \subset H^{n_1}(r_1) \times S^{n_2}(r_2) \subset H^n$, $n_1, n_2 \ge 1$, $n_1 + n_2 = n - 1$, $r_1, r_2 > 0$, $r_1^2 - r_2^2 = 1$, where

$$H^{n_1}(r_1) = \{(x_i) \in \mathbf{R}^{n_1+1}; -x_1^2 + x_2^2 + \cdots + x_{n_1+1}^2 = -r_1^2, x_1 > 0\},\$$

and M' is a symmetric submanifold of $S^{n_2}(r_2) \subset \mathbb{R}^{n_2+1}$ such that $M' \subset \mathbb{R}^{n_2+1}$ is

substantial. In the same way as in (I), we see that M' is totally geodesic in $S^{n_2}(r_2)$, which leads to a contradiction.

(III) Case $\overline{M} = S^n$: In this case, M is a symmetric R-space and the inclusion $M \subset S^n$ is induced from the substantial standard embedding $M \subset \mathbb{R}^{n+1}$ (Ferus [2]). If M is a reducible symmetric R-space, one has $M = M_1 \times M_2 \subset S^{n_1}(r_1) \times S^{n_2}(r_2) \subset S^n$ with $n_1, n_2 \ge 1$, $n_1 + n_2 = n - 1$, $r_1, r_2 > 0$, $r_1^2 + r_2^2 = 1$. Let one of the M_i , say M_1 , be equal to $S^{n_i}(r_i)$. Then, applying Lemma 1.4 to the shape operator $A^{(1)}$ of $M_2 \subset S^{n_2}(r_2)$, we see that M_2 is totally geodesic in $S^{n_2}(r_2)$. This is a contradiction to that $M \subset \mathbb{R}^{n+1}$ is substantial. Otherwise, one has dim $M_1 < n_1$ and dim $M_2 < n_2$. Since the shape operator of $M \subset S^{n_1}(r_1) \times S^{n_2}(r_2)$ also satisfies (1.1), we can apply Lemma 1.5 to the shape operators $A^{(i)}$ of $M_i \subset S^{n_i}(r_i)$ to see that both M_i are totally geodesic in $S^{n_i}(r_i)$. This is also a contradiction to that $M \subset \mathbb{R}^{n+1}$ is substantial.

Thus it remains to consider an irreducible symmetric R-space M. For this we recall the construction of the standard embedding of M (cf. Ferus [2], Takeuchi [10], [11]). Let

$$\mathfrak{g} = \mathfrak{g}_{-1} + \mathfrak{g}_0 + \mathfrak{g}_1, \quad [\mathfrak{g}_p, \mathfrak{g}_q] \subset \mathfrak{g}_{p+q}$$

be a simple symmetric graded Lie algebra over \mathbf{R} , with a Cartan involution τ satisfying $\tau g_p = g_{-p}$, $-1 \le p \le 1$. The characteristic element $e \in g_0$ is the unique element with

$$\mathfrak{g}_p = \{x \in \mathfrak{g}; [e, x] = px\}, \quad -1 \le p \le 1.$$

Let

$$\mathfrak{g}=\mathfrak{k}+\mathfrak{p}, \hspace{0.2cm} \mathfrak{g}_{\mathfrak{0}}=\mathfrak{k}_{\mathfrak{0}}+\mathfrak{p}_{\mathfrak{0}} \hspace{0.2cm} ext{with} \hspace{0.2cm} e\!\in\!\mathfrak{p}_{\mathfrak{0}}$$

be the Cartan decompositions associated to τ . We denote by K the compact connected subgroup of $GL(\mathfrak{p})$ generated by $\mathrm{ad}_{\mathfrak{p}}\mathfrak{k}$, and set

$$K_0 = \{k \in K; k \cdot e = e\}.$$

Then we have identifications: $\mathbf{t} = \text{Lie } K$ and $\mathbf{t}_0 = \text{Lie } K_0$. Making use of the Killing form B of g, we define a K-invariant inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{p} by

$$\langle x, y \rangle = \frac{1}{2 \dim \mathfrak{g}_{-1}} B(x, y) \quad \text{for } x, y \in \mathfrak{p},$$

to identify \mathfrak{p} with the euclidean space \mathbb{R}^{n+1} , $n = \dim \mathfrak{p} - 1$. Then *e* is in the unit sphere S^n of \mathbb{R}^{n+1} , and

$$M = K/K_0 = K \cdot e$$

gives the required embedding. Let \mathfrak{a} be a maximal abelian subalgebra in \mathfrak{p} including e, and set $r=\dim \mathfrak{a}$. Then one has $\mathfrak{a}\subset\mathfrak{p}_0$. Let $W=N_K(\mathfrak{a})/Z_K(\mathfrak{a})\subset O(\mathfrak{a})$

be the Weyl group of g, where

$$N_{K}(\mathfrak{a}) = \{k \in K; k \cdot \mathfrak{a} = \mathfrak{a}\},\$$
$$Z_{K}(\mathfrak{a}) = \{k \in K; k \cdot h = h \text{ for any } h \in \mathfrak{a}\}.$$

We define g to be a half of the cardinality #W of W. Denote by $\Sigma \subset \mathfrak{a}$ the root system of g relative to a, and set

$$\Sigma_1 = \{\gamma \in \Sigma; \langle \gamma, e \rangle = 1\}.$$

Let \mathfrak{p}_1 be the orthogonal complement to \mathfrak{p}_0 in \mathfrak{p} . Then one has

$$T_e M = \mathfrak{p}_1 = \sum_{\mathbf{\gamma} \in \mathfrak{T}_1} \oplus \mathfrak{p}^{\mathbf{\gamma}},$$

where \mathfrak{p}^{γ} is the subspace of \mathfrak{p} defined by

$$\mathfrak{p}^{\gamma} = \{x \in \mathfrak{p}; [h, [h, x]] = \langle h, \gamma \rangle^2 x \text{ for any } h \in \mathfrak{a} \}.$$

Thus the normal space $N_e M$ to $M \subset S^n$ at e is given by

$$N_e M = \mathfrak{a}_0 \oplus \mathfrak{q}_0,$$

where q_0 and a_0 are the orthogonal complement to a in \mathfrak{p}_0 and the one to $\mathbf{R}e$ in a, respectively. The shape operator A of $M \subset S^n$ at e can be calculated by the same way as in Takagi-Takahashi [8] to get

(2.1)
$$A_{h}x = -\langle h, \gamma \rangle x$$
 for $h \in \mathfrak{a}_{0}, x \in \mathfrak{p}^{\gamma}, \gamma \in \Sigma_{1}$.

Now we come back to our problem. If r=1, one has $M=S^n$. This case is excluded because of $\operatorname{codim} M>1$. If $r\geq 2$, one has $\sharp\Sigma_1>1$, since $\sharp\Sigma_1=1$ would imply r=1. Therefore, if we denote the orthogonal projection $\mathfrak{a}\to\mathfrak{a}_0$ by ϖ , we have $\sharp\varpi(\Sigma_1)>1$, noting that $\varpi(\gamma)=\gamma-e$ for each $\gamma\in\Sigma_1$. It follows that if $r\geq 3$ there exist $h, h'\in\mathfrak{a}_0-\{0\}$ such that

$$\#\{-\langle h, \gamma \rangle; \gamma \in \Sigma_1\} \neq \#\{-\langle h', \gamma \rangle; \gamma \in \Sigma_1\}.$$

This is a contradiction to Corollary 1.2 by virtue of (2.1). Thus we must have r=2. In this case, by the classification of irreducible symmetric *R*-spaces (Kobayashi-Nagano [3], Takeuchi [9]) we see that only the following four cases are possible.

(a) Case $g=3: M=P_2(\mathbf{F})$, the projective plane over $\mathbf{F}=\mathbf{R}, \mathbf{C}, \mathbf{H}$ or $\mathbf{0}$, and the standard embedding $P_2(\mathbf{F}) \subset \mathbf{R}^{3d+2}$ is the generalized Veronese embedding (Tai [7]).

Case g=4:

(b) M is the complex quadric of complex dimension 3:

$$Q_{3}(C) = \{ [z] \in P_{4}(C); \, {}^{t}zz = 0 \},$$

M. TAKEUCHI

and \mathfrak{p} is identified with the space $A_5(\mathbf{R})$ of real alternating 5×5 matrices with inner product:

$$\langle X, Y \rangle = -\frac{1}{2} \operatorname{tr}(XY) \quad \text{for} \quad X, Y \in A_{5}(\boldsymbol{R}).$$

Any $[z] \in Q_3(C)$ can be written as

$$z = x + \sqrt{-1y}$$
 with $x, y \in S^4 \subset \mathbb{R}^5, \langle x, y \rangle = 0.$

The map $[z] \mapsto x^t y - y^t x$ is the standard embedding.

(c) M is the Lie quadric of dimension $m+1, m \ge 2$:

$$Q^{m+1} = \{ [z] \in P_{m+2}(\mathbf{R}); -z_1^2 - z_2^2 + z_3^2 + \dots + z_{m+3}^2 = 0 \},\$$

and \mathfrak{p} is identified with the space $M_{m+1,2}(\mathbf{R})$ of real $(m+1)\times 2$ matrices with inner product:

 $\langle X, Y \rangle = \operatorname{tr}({}^{t}XY) \quad \text{for } X, Y \in M_{m+1,2}(\mathbf{R}).$

Any $[z] \in Q^{m+1}$ can be written as

$$z = \begin{pmatrix} x \\ y \end{pmatrix}$$
 with $x \in S^1 \subset \mathbb{R}^2, y \in S^m \subset \mathbb{R}^{m+1}$.

The map $[z] \mapsto y^t x$ is the standard embedding.

(d) M is the unitary symplectic group of degree 2:

$$Sp(2) = \{z \in M_2(H); t\bar{z}z = 1_2\},\$$

 $M_2(H)$ being the space of quaternion 2×2 matrices, and \mathfrak{p} is identified with $M_2(H)$ with inner product:

$$\langle X, Y \rangle = \frac{1}{2} \operatorname{Re} \operatorname{tr}({}^{t}\overline{X}Y) \quad \text{for } X, Y \in M_{2}(H).$$

The inclusion $Sp(2) \subset M_2(H)$ is the standard embedding.

In these cases, any tube around M is obtained as M^e with $0 < \varepsilon < \pi/g$, and each M^e is a homogeneous isoparametric hypersurface of S^n with g principal curvatures. In order to show this, first note that K acts on U(NM) transitively. In fact, since the semisimple part of \mathfrak{g}_0 has rank 1, K_0 acts on the unit sphere in $\mathfrak{a}_0 \oplus \mathfrak{q}_0 = N_e M$ transitively. We choose a unit vector $f \in \mathfrak{a}_0$, and thus $f \in U_e(NM)$. Then the stabilizer Z_0 of f in K is given by

$$Z_0 = Z_{K_0}(f) = Z_K(\mathfrak{a}).$$

Now for each $\varepsilon \in \mathbb{R}$ the map $f^{\varepsilon}: U(NM) \to S^{n}$ is K-equivariant, and hence $M^{\varepsilon} = f^{\varepsilon}(U(NM))$ is the K-orbit in S^{n} through

$$h^{\mathfrak{e}} = (\cos \varepsilon) e + (\sin \varepsilon) f.$$

160

Note that $h^{\mathfrak{e}}$ is W-regular if and only if $\mathfrak{E} \oplus (\pi/g) \mathbb{Z}$. It follows that $M^{\mathfrak{e}} = M^{\mathfrak{e}'}$ if and only if $h^{\mathfrak{e}}$ and $h^{\mathfrak{e}'}$ are W-conjugate, and that $f^{\mathfrak{e}}$ is an embedding if and only if $M^{\mathfrak{e}}$ is a regular K-orbit in S^n , which is the same as that $h^{\mathfrak{e}}$ is W-regular. Moreover, any regular K-orbit is a homogeneous isoparametric hypersurface in S^n with g principal curvatures (Takagi-Takahashi [8], Ozeki-Takeuchi [5]). These imply our claim.

It is known (Pinkall [6]) that an isoparametric hypersurface $\tilde{M} \subset S^n$ is an irreducible Dupin hypersurface, if $\operatorname{Aut}(\tilde{M}) \subset O(n+1)$ acts irreducibly on \mathbb{R}^{n+1} . But, $\operatorname{Aut}(M^{\mathfrak{e}})$ for our tube $M^{\mathfrak{e}}$ acts irreducibly on \mathbb{R}^{n+1} , because the subgroup K of $\operatorname{Aut}(M^{\mathfrak{e}})$ acts on \mathfrak{p} irreducibly by virtue of simplicity of \mathfrak{g} . Thus we get the last assertion in Theorem.

We finally note that a Dupin cyclide as in case (i) is always a reducible Dupin hypersurface.

References

- [1] T.E. Cecil-P.J. Ryan: Tight and taut immersions of manifolds, Res. Notes Math. 107, Pitman, London, 1985.
- [2] D. Ferus: Immersions with parallel second fundamental form, Math. Z. 140 (1974), 87–93.
- [3] S. Kobayashi-T. Nagano: On filtered Lie algebras and geometric structures I, J. Math. Mech. 13 (1964), 875–907.
- [4] H. Naitoh-M. Takeuchi: Symmetric submanifolds of symmetric spaces, Suguku Exp. 2 (1989), 157–188.
- [5] H. Ozeki-M. Takeuchi: On some types of isoparametric hypersurfaces in spheres II, Tohoku Math. J. 28 (1975), 7-55.
- [6] U. Pinkall: Dupin hypersurfaces, Math. Ann. 270 (1985), 429-440.
- [7] S.S. Tai: On minimum imbeddings of compact symmetric spaces of rank one, J. Diff. Geom. 2 (1968), 55-66.
- [8] R. Takagi-T. Takahashi: On the principal curvatures of homogeneous hypersurfaces in a sphere, Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo, 1972, 469–481.
- [9] M. Takeuchi: Cell decompositions and Morse equalities on certain symmetric spaces, J. Fac. Sci. Univ. Tokyo. Ser. I, 12 (1965), 81-192.
- [10] M. Takeuchi: Parallel submanifolds of space forms, Manifolds and Lie Groups, in honor of Y. Matsushima, Birkhäuser, Boston, 1981, 429–447.
- [11] M. Takeuchi: Basic transformations of symmetric R-spaces, Osaka J. Math. 25 (1988), 259–297.

Department of Mathematics College of General Education Osaka University Toyonaka, Osaka 560 Japan