Kono, A. and Ōshima, H.
Osaka J. Math.
28 (1991), 129-139

CODEGREE OF SIMPLE LIE GROUPS-II

Akira KONO and Hideaki ŌSHIMA

(Received December 19, 1989)

0. Introduction

In [19] the n-th codegree (number) $\operatorname{cdg}(X, n) \in \boldsymbol{Z}$ and its stable version ${ }^{s} \operatorname{cdg}(X, n) \in \boldsymbol{Z}$ were defined for every pair of a path-connected space X and a positive integer n. In [18], ${ }^{s} \operatorname{cdg}_{p}(G, 3)$, the exponent of a prime p in ${ }^{s} \operatorname{cdg}(G, 3)$, was determined for some simply connected simple Lie groups G. The purpose of this paper is to continue computing ${ }^{(s)} \operatorname{cdg}(G, n)$ for some (G, n). We use notations in [19] and [18]. Our results are the following.

Theorem 1. If $r \geqq 3$, then

$$
\begin{aligned}
& r \leqq{ }^{s} \operatorname{cdg}_{2}(\operatorname{Spin}(n), 3) \leqq r+1 \quad \text { for } \quad 2^{r} \leqq n \leqq 2^{r}+6 \\
& { }^{s} \operatorname{cdg}_{2}(\operatorname{Spin}(n), 3)=r+1 \quad \text { for } \quad 2^{r}+7 \leqq n \leqq 2^{r+1}-1
\end{aligned}
$$

Theorem 2. ${ }^{s} \operatorname{cdg}_{3}\left(E_{6}, 3\right)={ }^{s} \operatorname{cdg}_{3}\left(F_{4}, 3\right)=2$.
Theorem 3. (1) $\operatorname{cdg}(S U(3), 3)=2^{2}$ and $\operatorname{cdg}(S U(3), 5)={ }^{s} \operatorname{cdg}(S U(3), n)$ $=2$ for $n=3,5 ;\left[S U(3), S^{3}\right]=\boldsymbol{Z} \oplus \boldsymbol{Z}_{2} ;\left\{S U(3), S^{3}\right\}=\boldsymbol{Z} ;\left[S U(3), S^{5}\right]=\{S U(3)$, $\left.S^{5}\right\}=\boldsymbol{Z}$.
(2) ${ }^{s} \operatorname{cdg}(S U(4), 3)=2^{2} \cdot 3|\operatorname{cdg}(S U(4), 3)| 2^{5} \cdot 3^{2} ; \operatorname{cdg}(S U(4), 5)={ }^{s} \operatorname{cdg}(S U$ (4), 5) $=2 ; \operatorname{cdg}(S U(4), 7)={ }^{s} \operatorname{cdg}(S U(4), 7)=2 \cdot 3$.
(3) $\operatorname{cdg}\left(G_{2}, 11\right)={ }^{s} \operatorname{cdg}\left(G_{2}, 11\right)={ }^{s} \operatorname{cdg}\left(G_{2}, 3\right)=2^{2} \cdot 3 \cdot 5\left|\operatorname{cdg}\left(G_{2}, 3\right)\right| 2^{5} \cdot 3^{2} \cdot 5$.
(4) $\operatorname{cdg}(S \operatorname{pin}(n), 11)=\operatorname{cdg}(S O(n), 11)=2^{3} \cdot 3 \cdot 5$ for $n=7,8 ; \operatorname{cdg}(S O(7) / S O$ $(5), 11)=2^{3}$.
(5) $\left.2^{5} \cdot 3\right|^{s} \operatorname{cdg}(S p(3), 7)|\operatorname{cdg}(S p(3), 7)| 2^{8} \cdot 3$.

Proposition 4.

$$
\begin{aligned}
& 2^{3} \cdot 3^{2} \cdot 5 \mid \operatorname{cdg}(\operatorname{Spin}(9), 7), \\
& 2^{4} \cdot 3^{2} \cdot 5 \mid \operatorname{cdg}(\operatorname{Spin}(9), 11), \\
& 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \mid \operatorname{cdg}(\operatorname{Spin}(9), 15), \\
& 2^{3} \cdot 3 \mid \operatorname{cdg}(S U(5), 5), \\
& 2^{2} \cdot 3 \mid \operatorname{cdg}(S U(5), 7), \\
& 2^{7} \cdot 3 \cdot 5 \cdot 7 \mid \operatorname{cdg}\left(F_{4}, n\right) \text { for } \quad n=11,15, \\
& 2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \mid \operatorname{cdg}\left(F_{4}, 23\right) .
\end{aligned}
$$

1. Proof of Theorem 1

Let $g: V_{2 n-1}=S O(2 n+1) / S O(2) \times S O(2 n-1) \rightarrow \Omega S \operatorname{Sin}(2 n+1)$ be the generating map for $\operatorname{Spin}(2 n+1)(n \geqq 3)$ (see [2]). Let $g^{\prime}: \Sigma \Omega \operatorname{Spin}(2 n+1) \rightarrow$ Spin $(2 n+1)$ be the canonical map. Then $\left(g^{\prime} \circ \Sigma g\right)_{*}: \pi_{3}\left(\Sigma V_{2 n-1}\right) \cong \pi_{3}(\operatorname{Spin}(2 n+1))$, hence

$$
\begin{align*}
& \left.{ }^{s} \operatorname{cdg}\left(V_{2 n-1}, 2\right)\right|^{s} \operatorname{cdg}(\operatorname{Spin}(2 n+1), 3), \tag{1.1}\\
& \left.{ }^{s} \operatorname{cdg}^{K}\left(V_{2 n-1}, 2\right)\right|^{s} \operatorname{cdg}^{K}(\operatorname{Spin}(2 n+1), 3) .
\end{align*}
$$

We will calculate the 2 -components of these numbers.
The inclusions $U(n) \subset S O(2 n)=S O(2 n) \times I_{1} \subset S O(2 n+1), S O(2 n+1)=S O$ $(2 n+1) \times I_{2} \subset S O(2 n+3)$, and $U(n)=U(n) \times I_{1} \subset U(n+1)$ induce maps:

$$
\begin{aligned}
\sigma_{n} & : P\left(\boldsymbol{C}^{n}\right)=U(n) / U(1) \times U(n-1) \rightarrow V_{2 n-1} \\
& \tau_{n} \\
& : V_{2 n-1} \rightarrow V_{2 n+1} \\
\tau_{n}^{\prime} & : P\left(\boldsymbol{C}^{n}\right) \rightarrow P\left(\boldsymbol{C}^{n+1}\right)
\end{aligned}
$$

such that $\tau_{n} \circ \sigma_{n}=\sigma_{n} \circ \tau_{n}^{\prime}$. Let L_{n} be the canonical complex line bundle over the complex projective ($n-1$)-space $P\left(\boldsymbol{C}^{n}\right)$, and let $a_{n} \in H^{2}\left(P\left(\boldsymbol{C}^{n}\right) ; \boldsymbol{Z}\right)$ be the first Chern class of L_{n}. Then

$$
\tau_{n}^{\prime *}\left(a_{n+1}\right)=a_{n} .
$$

As is easily seen (e.g., [2]), we have

$$
\begin{gathered}
H^{*}\left(V_{2 n-1} ; \boldsymbol{Z}\right)=\boldsymbol{Z}\left[x_{n}, y_{n}\right] /\left(x_{n}^{n}-2 y_{n}, y_{n}^{2}\right) \\
\operatorname{dim}\left(x_{n}\right)=2, \quad \operatorname{dim}\left(y_{n}\right)=2 n \\
\sigma_{n}^{*}\left(x_{n}\right)=a_{n} \\
\tau_{n}^{*}\left(x_{n+1}\right)=x_{n}
\end{gathered}
$$

Hence

$$
\begin{align*}
& \sigma_{n}^{*}: H^{i}\left(V_{2 n-1} ; \boldsymbol{Z}\right) \cong H^{i}\left(P\left(\boldsymbol{C}^{n}\right) ; \boldsymbol{Z}\right) \quad \text { for } \quad i \leqq 2 n-2, \tag{1.2}\\
& \tau_{n}^{*}: H^{i}\left(V_{2 n+1} ; \boldsymbol{Z}\right) \cong H^{i}\left(V_{2 n-1} ; \boldsymbol{Z}\right) \quad \text { for } i \leqq 2 n-2, \\
& H^{*}\left(V_{2 n-1} ; \boldsymbol{Q}\right)=\boldsymbol{Q}\left[x_{n}\right] /\left(x_{n}^{2 n}\right), \\
& \tau_{n}^{*}: H^{i}\left(V_{2 n+1} ; \boldsymbol{Q}\right) \cong H^{i}\left(V_{2 n-1} ; \boldsymbol{Q}\right) \quad \text { for } \quad i \leqq 4 n-2 . \tag{1.3}
\end{align*}
$$

Recall from Clarke [4] that

$$
\begin{equation*}
K\left(V_{2 n-1}\right)=\boldsymbol{Z}\left[X_{n}, Y_{n}\right] /\left(X_{n}^{n}-2 Y_{n}-X_{n} Y_{n}, Y_{n}^{2}\right) \tag{1.4}
\end{equation*}
$$

Hence

$$
K\left(V_{2 n-1}\right) \otimes \boldsymbol{Q}=\boldsymbol{Q}\left[X_{n}\right] /\left(X_{n}^{2 n}\right)
$$

By the construction of $X_{n}([4])$, we have

$$
\begin{aligned}
& \sigma_{n}^{*}\left(X_{n}\right)=L_{n}-1 \\
& \tau_{n}^{*}\left(X_{n+1}\right)=X_{n}
\end{aligned}
$$

The Chern character of X_{n} is given by
Lemma 1.5. $\operatorname{ch}\left(X_{n}\right)=\exp \left(x_{n}\right)-1$.
Proof. We have

$$
\begin{aligned}
& \sigma_{2 n}^{*}\left(\operatorname{ch}\left(X_{2 n}\right)\right)=\operatorname{ch}\left(\sigma_{2 n}^{*}\left(X_{2 n}\right)\right) \\
& \quad=\operatorname{ch}\left(L_{2 n}-1\right)=\exp \left(a_{2 n}\right)-1=\sigma_{2 n}^{*}\left(\exp \left(x_{2 n}\right)-1\right) .
\end{aligned}
$$

Hence $\operatorname{ch}\left(X_{2 n}\right) \equiv \exp \left(x_{2 n}\right)-1 \bmod x_{2 n}^{2 n}$ by (1.2), thus $\operatorname{ch}\left(X_{n}\right)=\exp \left(x_{n}\right)-1$ by (1.3). This proves 1.5.

Proposition 1.6. (1) ${ }^{s} \operatorname{cdg}^{K}{ }_{2}\left(V_{2 n-1}, 2\right)=r$ if $2^{r-1}<n \leqq 2^{r}$.
(2) ${ }^{s} \operatorname{cdg}_{2}\left(V_{2 n-1}, 2\right)=r$ if $2^{r-1}<n<2^{r}$, $r \leqq{ }^{s} \operatorname{cdg}_{2}\left(V_{2 n-1}, 2\right) \leqq r+1$ if $n=2^{r}$.

Proof. Put $D={ }^{s} \operatorname{cdg}\left(V_{2 n-1}, 2\right)$. Let $f: V_{2 n-1} \rightarrow S^{2}$ be a stable map such that the induced homomorphism $f_{*}:{ }^{s} \pi_{2}\left(V_{2 n-1}\right)=\boldsymbol{Z} \rightarrow^{s} \pi_{2}\left(S^{2}\right)=\boldsymbol{Z}$ is multiplication by D. Let $\beta \in \tilde{K}\left(S^{2}\right)=\boldsymbol{Z}$ be a generator. For simplicity, we set $X=X_{n}, Y=Y_{n}$ and $x=x_{n}$. Set

$$
f^{*}(\beta)=\sum_{1 \leq i<n} a_{i} X^{i}+Y \cdot \sum_{0 \leq i<n} b_{i} X^{i}=\sum_{1 \leq i<2 n} a_{i} X^{i}
$$

in $\tilde{K}\left(V_{2 n-1}\right) \otimes \boldsymbol{Q}$, where $a_{i} \in \boldsymbol{Z}(1 \leqq i<n), b_{i} \in \boldsymbol{Z}(0 \leqq i<n)$, and $a_{i} \in \boldsymbol{Q}(n \leqq i<2 n)$. Then

$$
\begin{aligned}
& D \cdot \sum_{i \geqq 1}\left((-1)^{i-1} / i\right)\left(e^{x}-1\right)^{i}=D \cdot \log \left(e^{x}-1+1\right) \\
& \quad=D \cdot x=f^{*} \operatorname{ch}(\beta)=\operatorname{ch}\left(f^{*}(\beta)\right)=\sum_{i \geqq 1} a_{i}\left(e^{x}-1\right)^{i}
\end{aligned}
$$

Hence $a_{i}=D \cdot(-1)^{i-1} / i(1 \leqq i<2 n)$. We then have

$$
\begin{aligned}
f^{*}(\beta)= & \sum_{1 \leqq i<n} a_{i} X^{i}+(2 Y+X Y) \sum_{n \leqq i<2 n} a_{i} X^{i-n} \\
= & \sum_{1 \leq i<n}\left(D(-1)^{i-1} / i\right) X^{i}+Y \cdot 2 D(-1)^{n-1} / n \\
& +Y \cdot \sum_{n \leqq i \leqq 2 n-2}\left\{D(-1)^{i-1} / i+2 D(-1)^{i} /(i+1)\right\} X^{i-n+1} .
\end{aligned}
$$

Thus
(1.7) $D / i(1 \leqq i<n), 2 D / n$, and $D / i-2 D /(i+1)(n \leqq i \leqq 2 n-2)$ are in \boldsymbol{Z}.

Let $r \geqq 1$ be an integer such that $2^{r-1}<n \leqq 2^{r}$. Then the relation $D / 2^{r}-2 D /$ $\left(2^{r}+1\right) \in \boldsymbol{Z}$ implies that $2^{r} \mid D$. Conversely, if $2^{r} \mid D$, then (1.7) with \boldsymbol{Z} replaced by its 2 -localized ring $\boldsymbol{Z}_{(2)}$ holds. Therefore ${ }^{s} \operatorname{cdg}^{K}{ }_{2}\left(V_{2 n-1}, 2\right)=r$. This proves (1).

A map $V_{2 n-1} \rightarrow K(\boldsymbol{Z}, 2)$ which represents x_{n} factorizes as $V_{2 n-1} \rightarrow P\left(\boldsymbol{C}^{2 n}\right) \subset$ $K(\boldsymbol{Z}, 2)$. Hence $\left.{ }^{s} \operatorname{cdg}\left(V_{2 n-1}, 2\right)\right|^{s} \operatorname{cdg}\left(P\left(\boldsymbol{C}^{2 n}\right), 2\right)$ so that $r={ }^{s} \operatorname{cdg}^{K}{ }_{2}\left(V_{2 n-1}, 2\right) \leqq{ }^{s} \operatorname{cdg}_{2}$ $\left(V_{2 n-1}, 2\right) \leqq{ }^{s} \operatorname{cdg}_{2}\left(P\left(\boldsymbol{C}^{2 n}\right), 2\right)$. By [18], we have ${ }^{s} \operatorname{cdg}_{2}\left(P\left(\boldsymbol{C}^{2 n}\right), 2\right)={ }^{s} \operatorname{cdg}_{2}(S U(2 n), 3)$ which is $r+1$ or r according as $n=2^{r}$ or $2^{r-1}<n<2^{r}$. Hence we have (2).

Corollary 1.8. $\quad{ }^{s} \operatorname{cdg}^{K}{ }_{2}(\operatorname{Spin}(2 n+1), 3) \geqq r$ if $2^{r-1}<n \leqq 2^{r}$.
Proof. This follows from 1.1 and 1.6.
Proof of Theorem 1. The complexification induces isomorphisms of representation rings:

$$
R O(S p i n(m)) \cong R(S \operatorname{pin}(m)) \quad \text { if } \quad m \equiv 0,1,7 \bmod 8
$$

(see [7, p. 193]). By the proof of [18, 4.4], we then have

$$
{ }^{s} \operatorname{cdg}^{K O}(S \operatorname{pin}(m), 3)=2 \cdot{ }^{s} \operatorname{cdg}^{K}(S p i n(m), 3) \quad \text { if } \quad m \equiv 0,1,7 \bmod 8 .
$$

Thus, by 1.8 , we have

$$
{ }^{s} \operatorname{cdg}_{2}(\operatorname{Spin}(2 n+1), 3) \geqq r+1 \quad \text { if } \quad n \equiv 0,3 \bmod 4 \text { and } 2^{r-1}<n \leqq 2^{r}
$$

On the other hand, if $n \geqq 2$, then the canonical homomorphism

$$
\boldsymbol{Z}=\pi_{3}(S \operatorname{pin}(2 n+1)) \rightarrow \pi_{3}(S O(2 n+1)) \rightarrow \pi_{3}(S U(2 n+1))=\boldsymbol{Z}
$$

is multipliaction by 2 , so that

$$
{ }^{s} \operatorname{cdg}_{2}(S \operatorname{pin}(2 n+1), 3) \leqq 1+{ }^{s} \operatorname{cdg}_{2}(S U(2 n+1), 3) .
$$

The latter number is $r+2$ or $r+1$ according as $n=2^{r}$ or $2^{r-1}<n<2^{r}$, by [18]. Hence

$$
{ }^{s} \operatorname{cdg}_{2}(\operatorname{Spin}(2 n+1), 3)=r+1 \quad \text { if } \quad n \equiv 0,3 \bmod 4 \text { and } 2^{r-1}<n<2^{r}
$$

In particular, if $r \geqq 3$, then ${ }^{s} \operatorname{cdg}_{2}\left(\operatorname{Spin}\left(2^{r}-1\right), 3\right)=r$ and ${ }^{s} \operatorname{cdg}_{2}\left(\operatorname{Spin}\left(2^{r}+7\right), 3\right)=$ ${ }^{s} \operatorname{cdg}_{2}\left(\operatorname{Spin}\left(2^{r+1}-1\right), 3\right)=r+1$. Hence, if $r \geqq 3$, then

$$
\begin{aligned}
& r \leqq{ }^{s} \operatorname{cdg}_{2}(\operatorname{Spin}(n), 3) \leqq r+1 \quad \text { for } \quad 2^{r} \leqq n \leqq 2^{r}+6 \\
& { }^{s} \operatorname{cdg}_{2}(\operatorname{Spin}(n), 3)=r+1 \quad \text { for } \quad 2^{r}+7 \leqq n \leqq 2^{r+1}-1
\end{aligned}
$$

This proves Theorem 1.

2. Proof of Theorem 2

The relations ${ }^{s} \operatorname{cdg}_{3}\left(E_{6}, 3\right)={ }^{s}{ }^{\operatorname{cdg}}{ }_{3}\left(F_{4}, 3\right) \geqq 2$ were proved in [18]. We will prove ${ }^{s} \operatorname{cdg}_{3}\left(F_{4}, 3\right) \leqq 2$. By [6] and [12], there exist a mod $3 H$-space X of dimension 26 and a mod 3 homotopy equivalence

$$
F_{4} \simeq_{3} X \times B_{5}(3)
$$

where $B_{5}(3)$ is the total space of an S^{11}-bundle over S^{15} [15]. It follows from [3] that the top cell of the localized space $X_{(3)}$ splits off stably, that is, $X \simeq_{3} X^{(23)} \vee$ S^{26} (stably), where $X^{(23)}$ is the 23 -skeleton of X, and it follows from [5] that $X^{(23)}{ }_{(3)}$ is stably homotopy equivalent to $X_{1} \vee X_{2}$ where X_{2} is 17-connected and $H^{*}\left(X_{1} ; \boldsymbol{Z}_{3}\right)=\boldsymbol{Z}_{3}\left\{1, x_{3}, x_{7}, x_{8}, x_{18}, x_{19}, x_{23}\right\}$ such that $\operatorname{dim}\left(x_{i}\right)=i, \mathscr{P}^{1} x_{3}=x_{7}, \beta x_{7}=$ $x_{8}, \beta x_{18}=x_{19}$, and $\mathscr{P}^{1} x_{19}=x_{23}$.

Lemma 2.1. $\quad X_{1}=S^{3}{ }_{(3)} \cup e^{7}{ }_{(3)} \cup e^{8}{ }_{(3)} \cup e^{18}{ }_{(3)} \cup e^{19}{ }_{(3)} \cup e^{23}{ }_{(3)}$.
In the rest of this section we work in the stable homotopy category of mod 3 local spaces. For simplicity we omit the notation "(3)".

Proof of 2.1. Let

$$
S^{3} \rightarrow X_{1} \rightarrow Y_{1} \rightarrow \Sigma S^{3} \rightarrow \Sigma X_{1}
$$

be a cofibre sequence such that Y_{1} is 6-connected. Then $X_{1}=S^{3} \cup C \Sigma^{-1} Y_{1}$. Inductively we have cofibre sequences

$$
\begin{aligned}
S^{7} & \rightarrow Y_{1}
\end{aligned} \rightarrow Y_{2} \rightarrow \Sigma S^{7} \rightarrow \Sigma Y_{1},
$$

and

$$
\begin{aligned}
& Y_{1}=S^{7} \cup C \Sigma^{-1} Y_{2}, \\
& Y_{2}=S^{8} \cup C \Sigma^{-1} Y_{3}, \\
& Y_{3}=S^{18} \cup C \Sigma^{-1} Y_{4}, \\
& Y_{4}=S^{19} \cup C \Sigma^{-1} Y_{5}=S^{19} \cup e^{23}
\end{aligned}
$$

where the last equality follows from the fact that $Y_{5}=S^{23}$. Therefore we have

$$
X_{1}=S^{3} \cup C\left(S^{6} \cup C\left(S^{6} \cup C\left(S^{15} \cup C\left(S^{15} \cup e^{19}\right)\right)\right)\right)
$$

This proves 2.1.
Proof of Theorem 2. Put $Y=S^{3} \cup e^{7} \cup e^{8} \cup e^{18} \cup e^{19} \cup e^{23}$. Then ${ }^{s} \operatorname{cdg}_{3}\left(F_{4}, 3\right)$ $={ }^{s} \operatorname{cdg}_{3}(X, 3)={ }^{s} \operatorname{cdg}_{3}(Y, 3)$. Let $\alpha_{i} \in^{s} \pi_{4 i-1}\left(S^{0}\right)(1 \leqq i \leqq 5)$ be the element of order 3 defined in [20, p. 178]. Let $\alpha_{i}^{\prime}: S^{4 i-1} \cup_{3} e^{4 i} \rightarrow S^{0}$ and $\alpha_{1}^{\prime \prime}: S^{4} \rightarrow S^{0} \cup_{3} e^{1}$ be an extension of α_{i} and a coextension of α_{1} respectively. The 8 -skeleton $Y^{(8)}$ of Y is equivalent to the mapping cone $C\left(\Sigma^{3} \alpha_{1}^{\prime}\right)=S^{3} \cup C\left(S^{6} \cup_{3} e^{7}\right)$ and $Y / Y^{(8)}$ is equivalent to $C\left(\Sigma^{15} \alpha_{1}^{\prime \prime}\right)=S^{18} \cup_{3} e^{19} \cup e^{23}$. Hence we have a cofibre sequence

$$
C\left(\Sigma^{3} \alpha_{1}^{\prime}\right) \rightarrow Y \rightarrow C\left(\Sigma^{15} \alpha_{1}^{\prime \prime}\right) \xrightarrow{h} C\left(\Sigma^{4} \alpha_{1}^{\prime}\right) \xrightarrow{k} \Sigma \Sigma .
$$

Let $g: C\left(\Sigma^{4} \alpha_{1}^{\prime}\right) \rightarrow S^{4}$ be an extension of $3: S^{4} \rightarrow S^{4}$. As is easily seen, we have an exact sequence

$$
\begin{aligned}
& { }^{s} \pi^{3}\left(S^{18} \cup_{3} e^{19}\right)=Z_{3}\left\{\alpha_{4}^{\prime}\right\} \xrightarrow{\alpha_{1}^{\prime \prime *}}{ }^{s} \pi^{3}\left(S^{22}\right)=\boldsymbol{Z}_{3}\left\{\alpha_{5}\right\} \\
& \quad \rightarrow{ }^{s} \pi^{4}\left(S^{18} \cup_{3} e^{19} \cup e^{23}\right) \rightarrow{ }^{s} \pi^{4}\left(S^{18} \cup_{3} e^{19}\right)=\boldsymbol{Z}_{3} \rightarrow 0 .
\end{aligned}
$$

Since $\alpha_{1}^{\prime \prime *}\left(\alpha_{4}^{\prime}\right) \in\left\langle\alpha_{4}, 3, \alpha_{1}\right\rangle=\alpha_{5}$, it follows that ${ }^{s} \pi^{4}\left(S^{18} \cup_{3} e^{19} \cup e^{23}\right)=\boldsymbol{Z}_{3}$ and $3 g \circ h$ $=0$. Hence there exists a map $r: \Sigma Y \rightarrow S^{4}$ such that $r \circ k=3 g$, so that r has degree 9 on the bottom sphere S^{4} and ${ }^{s} \operatorname{cdg}_{3}(Y) \leqq 2$. Hence ${ }^{s} \operatorname{cdg}\left(F_{4}, 3\right)=2$ as desired.

3. Proof of Theorem 3

Lemma 3.1. Given an integer $n \geqq 2$ and a connected finite $C W$-complex X such that
X and its ($n-1$)-skeleton Y are simply connected;
$\pi_{n-1}(X)=0$;
$\pi_{n-1}(Y)=Z_{m} ;$
$\operatorname{rank}\left(\pi_{n}(X / Y)\right)=\operatorname{rank}\left(\pi_{n}(X)\right)=1$,
then we have $\operatorname{Cdg}(X, n) \subset m \cdot \operatorname{Hom}\left(\pi_{n}(X), \pi_{n}\left(S^{n}\right)\right)$. If moreover Cdg is surjective for $(X / Y, n)$, then $\operatorname{Cdg}(X, n)=m \cdot \operatorname{Hom}\left(\pi_{n}(X), \pi_{n}\left(S^{n}\right)\right)$.

Proof. By a theorem of Blakers-Massey, the collapsing map induces an isomorphism $c_{*}: \pi_{n}(X, Y) \cong \pi_{n}(X / Y)$. From the assumptions and the homotopy exact sequence of the pair (X, Y), it follows that $c_{*}: \pi_{n}(X) / \operatorname{Tor}=\boldsymbol{Z} \rightarrow \pi_{n}(X / Y)=$ \boldsymbol{Z} is multiplication by m. Hence the assertion follows from the commutative diagram

$$
\begin{gathered}
{\left[X / Y, S^{n}\right] \rightarrow \operatorname{Hom}\left(\pi_{n}(X / Y), \pi_{n}\left(S^{n}\right)\right)=\boldsymbol{Z}} \\
\downarrow c_{*}^{*}=m \\
c^{*} \downarrow \\
{\left[X, S^{n}\right] \rightarrow \operatorname{Hom}\left(\pi_{n}(X), \pi_{n}\left(S^{n}\right)\right)=\boldsymbol{Z}}
\end{gathered}
$$

since c^{*} is surjective.
Proof of Theorem 3(1). We shall use notations and results in [20]. The group $S U(3)$ has a cell structure: $S U(3)=S^{3} \cup_{\eta_{3}} e^{5} \cup_{f} e^{8}$. As noticed in [14, p. 475], we have $\Sigma f=j_{*}\left(\nu_{4} \circ \eta_{7}\right)$ from [9, 3.1], where $j: S^{4} \subset S^{4} \cup e^{6}$. Let $h: S^{3} \cup e^{5}$ $\rightarrow S^{3}$ be a map having degree 2 on S^{3}. We have

$$
\begin{aligned}
2 \iota_{4} \circ \nu_{4} & =2 \nu_{4}+\left[\iota_{4}, \iota_{4}\right], \quad \text { by }[22, \mathrm{XI}], \\
& =4 \nu_{4}-\Sigma \nu^{\prime}, \quad \text { by }[20, \text { p. } 43] .
\end{aligned}
$$

Hence $\Sigma(h \circ f)=2 \iota_{4} \circ \nu_{4} \circ \eta_{7}=-\Sigma \nu^{\prime} \circ \eta_{7}=\Sigma\left(\nu^{\prime} \circ \eta_{6}\right)$, so $h \circ f=\nu^{\prime} \circ \eta_{6}$, since Σ is injec-
tive on $\pi_{7}\left(S^{3}\right)=\boldsymbol{Z}_{2}\left\{\nu^{\prime} \circ \eta_{6}\right\}$. It follows that $2 \iota_{3} \circ h$ can be extended to $S U(3)$ and that $\operatorname{cdg}(S U(3), 3)=2^{2}$. By the same method as $[18,4.3(1)]$, we can prove that $\operatorname{cdg}(S U(3), 5)={ }^{s} \operatorname{cdg}(S U(3), n)=2$ for $n=3,5$. By applying the functor $\left[, S^{3}\right]$ to the cofibre sequence $S^{7} \rightarrow S^{3} \cup e^{5} \subset S U(3)$, we have [$\left.S U(3), S^{3}\right]=\boldsymbol{Z} \oplus \boldsymbol{Z}_{2}$. Other assertions of (1) can be proved easily.

Proof of Theorem 3(2). By [13] there is a stable homotopy equivalence $S U(4) \simeq \Sigma P\left(C^{4}\right) \vee Y$, where Y is a 7 -connected finite $C W$-complex. Hence, for $n=3,5,7$, we have ${ }^{s} \operatorname{cdg}(S U(4), n)={ }^{s} \operatorname{cdg}\left(P\left(C^{4}\right), n-1\right)$ which can be easily determined by using the cell structure of $P\left(\boldsymbol{C}^{4}\right)$ (see [17, 1.15]).

By using a cell structure of $S U(4)$ and known structures of $\pi_{*}\left(S^{3}\right)$ and ${ }^{s} \pi_{14}\left(S^{3}\right)$ (see [20]), we can construct a map $S U(4) \rightarrow S^{3}$ which has degree $2^{5} \cdot 3^{2}$ on S^{3}, hence $\operatorname{cdg}(S U(4), 3) \mid 2^{5} \cdot 3^{2}$. On the other hand we have $2^{2} \cdot 3={ }^{s} \mathrm{cdg}$ $(S U(4), 3) \mid \operatorname{cdg}(S U(4), 3)$ by $[18,3.3]$ and $[19,3.4(3)]$.

Taking $(X, n)=(S U(4), 5)$ in 3.1, we have $\operatorname{Cdg}(S U(4), 5) \subset 2 Z$. By the homotopy exact sequence of the principal $\mathrm{Sp}(2)$-bundle $q: S U(4) \rightarrow S^{5}$, we have $\operatorname{Cdg}(q)=2$, so $\operatorname{cdg}(S U(4), 5)=2$. By [19, 4.2(1)], $\operatorname{cdg}(S U(4), 7)=6$. This completes the proof of (2).

Proof of Theorem 3(3). Using a stable duality map $S^{14} \rightarrow G_{2^{+}} \wedge G_{2+}$ (see [3]), we can prove ${ }^{s} \operatorname{cdg}\left(G_{2}, 11\right)={ }^{s} \operatorname{cdg}\left(G_{2}, 3\right)$ which is $2^{3} \cdot 3 \cdot 5$ as proved in [18]. The group G_{2} has a cell structure: $G_{2}=S^{3} \cup e^{5} \cup e^{6} \cup e^{8} \cup e^{9} \cup e^{11} \cup e^{14}$. Hence $G_{2} / Y=$ $S^{11} \vee S^{14}$, where Y is the 9 -skeleton of G_{2}, so Cdg is surjective for $\left(G_{2} / Y, 11\right)$. Consider the exact sequence:

$$
\pi_{11}\left(G_{2}\right)=\boldsymbol{Z} \oplus \boldsymbol{Z}_{2} \rightarrow \pi_{11}\left(G_{2}, Y\right)=\boldsymbol{Z} \rightarrow \pi_{10}(Y) \rightarrow \pi_{10}\left(G_{2}\right)=0
$$

By $[16,4.2], \pi_{10}(Y)=\boldsymbol{Z}_{120}$. Taking $(X, n)=\left(G_{2}, 11\right)$ in 3.1, we have $m=2^{3} \cdot 3 \cdot 5$ and $\operatorname{cdg}\left(G_{2}, 11\right)=2^{3} \cdot 3 \cdot 5$. Since Sq^{2} is trivial on $H^{6}\left(G_{2} ; \boldsymbol{Z}_{2}\right)$ by [1], the attaching map of the 8-dimensional cell of G_{2} factorizes as $S^{7} \rightarrow S^{3} \cup e^{5} \subset S^{3} \cup e^{5} \cup e^{6}$. Using this fact and the additive structures of $\pi_{*}\left(S^{3}\right)$ and ${ }^{s} \pi_{13}\left(S^{3}\right)$ (see [20]), we can construct a map $G_{2} \rightarrow S^{3}$ which has degree $2^{5} \cdot 3^{2} \cdot 5$ on S^{3}, hence $\operatorname{cdg}\left(G_{2}, 3\right) \mid 2^{5} \cdot 3^{2} \cdot 5$. This proves (3).

Proof of Theorem 3(4). Applying $\pi_{*}()$ to the following commutative diagram

we have $p_{*}=15: \pi_{11}(S O(7)) /$ Tor $=\boldsymbol{Z} \rightarrow \pi_{11}\left(V_{7,2}\right) / \mathrm{Tor}=\boldsymbol{Z}$. Hence

$$
\operatorname{cdg}(S O(7), 11) \mid 3 \cdot 5 \cdot \operatorname{cdg}\left(V_{7,2}, 11\right)
$$

The space $V_{7,2}$ has a cell structure: $V_{7,2}=S^{5} \cup e^{6} \cup e^{11}$, Let $q: V_{7,2} \rightarrow S^{11}$ be the collapsing map. By [8, 2.8 and 2.9], we have an exact sequence $\pi_{9}\left(S^{5}\right)=\boldsymbol{Z}_{2} \rightarrow$ $\pi_{10}\left(S^{5} \cup e^{6}, S^{5}\right) \rightarrow \pi_{5}\left(S^{5} \cup e^{6}\right)=Z_{2} \rightarrow 0$, hence the order of $\pi_{10}\left(S^{5} \cup e^{6}, S^{5}\right)$ is at most 4, so that the order of $\pi_{10}\left(S^{5} \cup e^{6}\right)$ is at most 8 because $\pi_{10}\left(S^{6}\right)=Z_{2}$ by [20]. Since $\pi_{10}\left(V_{7,2}\right)=0$, it then follows from the homotopy exact sequence of the pair $\left(V_{7,2}, S^{5} \cup e^{6}\right)$ that $\operatorname{Coker}\left[q_{*}: \pi_{11}\left(V_{7,2}\right) \rightarrow \pi_{11}\left(S^{11}\right)\right] \cong \pi_{10}\left(S^{5} \cup e^{6}\right)$, so that the last group is cyclic. Hence by the commutative diagram

$$
\begin{aligned}
& {\left[S^{11}, S^{11}\right] \rightarrow \operatorname{Hom}\left(\pi_{11}\left(S^{11}\right), \pi_{11}\left(S^{11}\right)\right)=\boldsymbol{Z}} \\
& q^{*} \downarrow q_{*}^{*} \\
& {\left[V_{7,2}, S^{11}\right] \rightarrow \operatorname{Hom}\left(\pi_{11}\left(V_{7,2}\right), \pi_{11}\left(S^{11}\right)\right)=\boldsymbol{Z}}
\end{aligned}
$$

$\operatorname{cdg}\left(V_{7,2}, 11\right)$ is the order of $\pi_{10}\left(S^{5} \cup e^{6}\right)$, since q^{*} is surjective. Thus $\operatorname{cdg}\left(V_{7,2}, 11\right)$ $\mid 2^{3}$. On the other hand, $\operatorname{cdg}\left(G_{2}, 11\right) \mid \operatorname{cdg}(\operatorname{Spin}(7), 11)$ by use of the principal G_{2}-bundle $\operatorname{Spin}(7) \rightarrow S^{7}$. Hence $2^{3} \cdot 3 \cdot 5=\operatorname{cdg}\left(G_{2}, 11\right)|\operatorname{cdg}(\operatorname{Spin}(7), 11)| \operatorname{cdg}(S O$ (7), 11)|3.5•cdg $\left(V_{2,2}, 11\right) \mid 2^{3} \cdot 3 \cdot 5$, therefore these numbers are equal and cdg $\left(V_{7,2}, 11\right)=2^{3} . \quad$ Then $[19,3.7(2)$ and 4.4] complete the proof of (4).

Proof of Theorem 3(5). The groups $\mathrm{Sp}(2)$ and $\mathrm{Sp}(3)$ have cell structures: $S p(2)=S^{3} \cup_{g} e^{7} \cup e^{10}$ and $S p(3)=S^{3} \cup_{g} e^{7} \cup e^{10} \cup e^{11} \cup e^{14} \cup e^{18} \cup e^{21}$. They contain quasi-projective spaces $Q_{2}=S^{3} \cup_{g} e^{7}$ and $Q_{3}=S^{3} \cup_{g} e^{7} \cup e^{11}$ respectively. The inclusions induce isomorphisms $\pi_{7}\left(Q_{2}\right) \cong \pi_{7}\left(Q_{3}\right) \cong \pi_{7}(S p(3))$. In $Q_{3,2}=Q_{3} / S^{3}=$ $S^{7} \cup_{h} e^{11}, h$ has order 8 (see [10, p. 38]). Hence the homomorphisms $\left\{Q_{3,2}, S^{7}\right\}$ $=\boldsymbol{Z} \rightarrow\left\{S^{7}, S^{7}\right\}=\boldsymbol{Z}$ and $\left\{Q_{3}, S^{7}\right\}=\boldsymbol{Z} \rightarrow\left\{Q_{2}, S^{7}\right\}=\boldsymbol{Z}$ induced by the inclusions are multiplications by 8 . Let t be the order of the cokernel of the stabilization $\pi_{7}(S p(3))=\boldsymbol{Z} \rightarrow{ }^{s} \pi_{7}(S p(3))=\boldsymbol{Z}$. Consider the following commutative diagram.

$$
\begin{aligned}
& {\left[S p(3), S^{7}\right] \rightarrow \operatorname{Hom}\left(\pi_{7}(S p(3)), \pi_{7}\left(S^{7}\right)\right)=\boldsymbol{Z}} \\
& \begin{array}{c}
\downarrow \\
\left\{S p(3), S^{7}\right\}
\end{array} \rightarrow \underset{t}{\dagger} \operatorname{Hom}\left({ }^{s} \pi_{7}(S p(3)),{ }^{s} \pi_{7}\left(S^{7}\right)\right)=\boldsymbol{Z} \\
& \downarrow \quad \downarrow \simeq \\
& \left\{Q_{3}, S^{7}\right\}=\boldsymbol{Z} \rightarrow \operatorname{Hom}\left({ }^{s} \pi_{7}\left(Q_{3}\right),{ }^{s} \pi_{7}\left(S^{7}\right)\right)=\boldsymbol{Z} \\
& 2^{3} \downarrow \quad \downarrow \cong \\
& \left\{Q_{2}, S^{7}\right\}=\boldsymbol{Z} \rightarrow \operatorname{Hom}\left({ }^{s} \pi_{7}\left(Q_{2}\right),{ }^{s} \pi_{7}\left(S^{7}\right)\right)=\boldsymbol{Z}
\end{aligned}
$$

By the proof of [19, 4.3(1)], the bottom homomorphism is multiplication by $2^{2} \cdot 3$. Hence

$$
t \cdot 2^{5} \cdot 3\left|t \cdot{ }^{s} \operatorname{cdg}(S p(3), 7)\right| \operatorname{cdg}(S p(3), 7)
$$

Let $p: S p(3) \rightarrow X_{3,2}=S p(3) / S p(1)$ be the canonical fibration. Since $\operatorname{Coker}\left[p_{*}\right.$: $\left.\pi_{7}(S p(3)) \rightarrow \pi_{7}\left(X_{3,2}\right)\right] \cong \pi_{6}\left(S^{3}\right)=Z_{12}$, we have $\operatorname{cdg}(S p(3), 7) \mid 2^{2} \cdot 3 \cdot \operatorname{cdg}\left(X_{3,2}, 7\right)$. The space $X_{3,2}$ has a cell structure: $X_{3,2}=S^{7} U_{h} e^{11} U_{v} e^{18}$. Since the order of h
is 8 , there is a map $u: Q_{3,2} \rightarrow S^{7}$ which has degree 8 on S^{7}. Since $u \circ v \in \pi_{17}\left(S^{7}\right)=$ $\boldsymbol{Z}_{24} \oplus \boldsymbol{Z}_{2}$ (see [20]), $2^{3} \cdot 3 u$ can be extended to a map $X_{3,2} \rightarrow S^{7}$ which has degree $2^{6} \cdot 3$ on S^{7}. Therefore $\operatorname{cdg}\left(X_{3,2}, 7\right) \mid 2^{6} \cdot 3$ and so $\operatorname{cdg}(S p(3), 7) \mid 2^{8} \cdot 3^{2}$. On the other hand, $\operatorname{cdg}_{3}(S p(3), 7)=\operatorname{cdg}_{3}(\operatorname{Spin}(7), 7)=1$ by $[19,4.2(2)$ and 4.3(2)]. Hence $\operatorname{cdg}(S p(3), 7) \mid 2^{8} \cdot 3$. This proves (5) and completes the proof of Theorem 3.

4. Proof of Proposition 4

By [19, 2.4], we have
Proposition 4.1 (cf., $[19,3.15(2)])$. If n is odd, $\pi_{n}(X)=\boldsymbol{Z}\{s\} \oplus$ Tor and $H^{n}(X ; \boldsymbol{Z})=\boldsymbol{Z}\left\{x_{n}\right\} \oplus$ Tor, then there exists a map $f: X \rightarrow S^{n}$ such that $\operatorname{cdg}(X, n)=$ $\operatorname{deg}\left(f_{*} s\right)=|A B|$, where integers A and B are defined by $s^{*}\left(x_{n}\right)=A\left[S^{n}\right]$ and $f^{*}\left[S^{n}\right] \equiv B x_{n} \bmod$ Tor respectively. (Here $\left[S^{n}\right]$ is a generator of $H^{n}\left(S^{n} ; \boldsymbol{Z}\right)$.) Stable version also holds.

Hence the next result proves Proposition 4.
Lemma 4.2. In 4.1, $(|A|,|B|)$ is equal to

$\left(3,2^{3} \cdot 3 \cdot 5 \cdot y_{1}\right)$	for	$(\operatorname{Spin}(9), 7)$,
$\left(2^{3} \cdot 3 \cdot 5,2 \cdot 3 \cdot y_{2}\right)$	for	$(\operatorname{Spin}(9), 11)$,
$\left(2^{2} \cdot 3^{2} \cdot 5 \cdot 7, y_{3}\right)$	for	$(\operatorname{Spin}(9), 15)$,
$\left(2,2^{2} \cdot 3 \cdot y_{4}\right)$	for	$(\operatorname{SU}(5), 5)$,
$\left(2 \cdot 3,2 \cdot y_{5}\right)$	for	$(\operatorname{SU}(5), 7)$,
$\left(2^{3} \cdot 5,2^{4} \cdot 3 \cdot 7 \cdot y_{6}\right)$	for	$\left(F_{4}, 11\right)$,
$\left(2^{3} \cdot 3 \cdot 7,2^{4} \cdot 5 \cdot y_{7}\right)$	for	$\left(F_{4}, 15\right)$,
$\left(2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11, y_{8}\right)$	for	$\left(F_{4}, 23\right)$

for some integers y_{i}. In these cases, $B /\left.y_{i}\right|^{s} \operatorname{cdg}(G, n)$.
Proof. We prove the assertion only for ($F_{4}, 11$), because others can be proved similarly. Assertion about A has been known (for example, see [11]). Recall that the type of F_{4} is $(3,11,15,23)$. Let $x_{n} \in H^{n}\left(F_{4} ; \boldsymbol{Z}\right)$ be a generator of the free part for $n \in\{3,11,15,23\}$ (see [1]). Consider the commutative diagram:

$$
\begin{aligned}
& K^{1}\left(S^{11}\right) \stackrel{c h}{=} H^{11}\left(S^{11} ; \boldsymbol{Z}\right) \subset H^{*}\left(S^{11} ; \boldsymbol{Q}\right) \\
& f^{*} \downarrow \\
& K^{1}\left(F_{4}\right) \xrightarrow[c h]{ } H^{*}\left(F_{4} ; \boldsymbol{Q}\right)
\end{aligned}
$$

As is well-known, $K^{*}\left(F_{4}\right)$ is an exterior algebra generated by some elements
$\beta_{1}, \cdots, \beta_{4} \in K^{1}\left(F_{4}\right)$ whose Chern characters were determined in [21]. Let g be a generator of $K^{1}\left(S^{11}\right)$. Let ${ }^{K}$ Dec and ${ }^{H}$ Dec be the groups of decomposable elements with respect to $\left\{\beta_{1}, \cdots, \beta_{4}\right\}$ and $\left\{x_{3}, x_{11}, x_{15}, x_{23}\right\}$, respectively. Express $f^{*}(g) \equiv \Sigma a_{i} \beta_{i} \bmod { }^{K} \operatorname{Dec}$ and $\Sigma a_{i} \operatorname{ch}\left(\beta_{i}\right)=P_{3} x_{3}+P_{11} x_{11}+P_{15} x_{15}+P_{23} x_{23}$, where P_{i} is a polynomial of a_{1}, \cdots, a_{4} with rational coeffiients. Then $\operatorname{ch}\left(f^{*}(g)\right) \equiv \Sigma P_{i} x_{i}$ $\bmod { }^{H}$ Dec. On the other hand, $\operatorname{ch}\left(f^{*}(g)\right)=f^{*} \operatorname{ch}(g)= \pm f^{*}\left[S^{11}\right] \in H^{11}\left(F_{4} ; \boldsymbol{Z}\right)$. Hence $P_{11}= \pm B$ and $P_{3}=P_{15}=P_{23}=0$, then $B=\left|P_{11}\right|=2^{4} \cdot 3 \cdot 7 \cdot\left|a_{3}\right|$ by elementary calculation. This argument can also be applied to stable case. By setting $y_{6}=\left|a_{3}\right|$, we have the desired result.

References

[1] A. Borel: Sur l' homologie et la cohomologie des groupes de Lie compacts connexes, Amer. J. Math. 76 (1954), 273-342.
[2] R. Bott: The space of loops on a Lie group, Michigan Math. J. 5 (1958), 35-61.
[3] W. Browder and E.H. Spanier: H-spaces and duality, Pacific. J. Math. 12 (1962), 411-414.
[4] F. Clarke: On the K-theory of the loop space of a Lei group, Proc. Cambridge Philos. Soc. 76 (1974), 1-20.
[5] G.E. Cook and L. Smith: Mod p decomposition of co H-spaces and applications, Math. Z. 157 (1977), 155-177.
[6] J. Harper: The mod 3 homotopy type of F_{4}, Lecture Notes in Mathematics 418, 58-67, Springer-Verlag, New York, 1974.
[7] D. Husemoller: Fibre bundles, Springer-Verlag, New York, 1975.
[8] I.M. James: On the homotopy groups of certain pairs and triads, Quart. J. Math. Oxford Ser. (2) 5 (1954), 260-270.
[9] I.M. James: On sphere-bundles over spheres, Comment. Math. Helv. 35 (1961), 126-135.
[10] I.M. James: The topology of Stiefel manifolds, London Math. Soc. Lecture Notes Series 24, Cambridge University Press, Cambridge, 1976.
[11] R. Kane and G. Moreno: Spherical homology classes in the bordism of Lie groups, Canad. J. Math. 40 (1988), 1331-1374.
[12] A. Kono: On Harper's mod p H-spaces of rank 2 (in preparation).
[13] H. Miller: Stable splittings of Stiefel manifolds, Topology 24 (1985), 411-419.
[14] M. Mimura: On the number of multiplications on $S U(3)$ and $S p(2)$, Trans. Amer. Math. Soc. 146 (1969), 473-492.
[15] M. Mimura and H. Toda: Cohomology operations and the homotopy of compact Lie groups-I, Topology 9 (1970), 317-336.
[16] M. Mimura, G. Nishida and H. Toda: On the classification of H-spaces rank 2, J. Math. Kyoto Univ. 13 (1973), 611-627.
[17] H. Ōshima: On stable James numbers of stunted complex or quaternionic projective spaces, Osaka J. Math. 16 (1979), 479-504.
[18] H. Ōshima: Codegree of simple Lie groups, Osaka J. Math. 26 (1989), 759-773.
[19] H. Ōshima and K. Takahara: Codegrees and Lie groups, preprint.
[20] H. Toda: Composition methods in homotopy groups of spheres, Ann. of Math. Stud. 49, Princeton University Press, Princeton, 1962.
[21] T. Watanabe: Chern characters on compact Lie groups of low rank, Osaka J. Math. 22 (1985), 463-488.
[22] G.W. Whitehead: Elements of homotopy theory, Springer-Verlag, New York, 1978.

Akira Kono
Department of Mathematics
Kyoto University
Kitashirakawa, Sakyo-ku
Kyoto 606, Japan
and
Department of Mathematics
University of Aberdeen
The Edward Wright Building
Dunbar Street
Aberdeen AB9 2TY, U.K.
Hideaki Ōshima
Department of Mathematics
Osaka City University
Sugimito, Sumiyoshi-ku
Osaka 558, Japan

