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0. Introduction

This note is intended as “The equivariant Whitehead torsions of equivari-
ant homotopy equivalence between the unit spheres of representations II”,
Therefore, we shall use the notations in [11]. In this note, restriction maps in
Whitehead groups play an importnat role. To illustrate this, we begin with
an example pointed out by M. Masuda. Let C, and D, be the cyclic group and
dihedral group of order # and 27 respectively. As we remarked in [11], a gen-
erator of Wh(C;) appears as the reduced equivariant Whitehead torsion of any
Cs-homptopy equivalence

f: S(V:@V,) — S(V,.@V).

where V, (a=1, 2, 3) denotes the complex Cs-module C with g C; acting as mul-
tiplication by exp 2zia/5 and S(V') denotes the unit sphere of Cs-module V.
Since the torsion does not depend on the choice of f, we can assume that f is
the map due to T. Petrie (see §2). By the complex conjugation, Cs-modules
V, can be regarded as Ds-modules. Then the Petrie’s map f turns out to be a
Ds-homotopy equivalence. The reduced equivariant Whitehead torsion 7, (f)=
Px7o,(f) of f as a Ds-homotpoy equivalence lies in Why, (*)=Wh(D;) where py:
Why (S (V3D V3))— Whp(*) is the induced map by the obvious map p: S(V;BV,)
—s%, It is obvious that the restriction map from D; to C; sends the torsion to the
generator of Whe (¥)=WHh(Cs). 'Therefore the restriction map induces an iso-
morphism of the Whitehead groups because Wh(D;) is a free abelian group of
rank 1 (see [3], [21], [19], [20] and [17]). Moreover we see that the torsion is a
generator of Wh(D;). Our main result (Theorem A) is a generalization of this
observation.

Theorem A. The restriction map induces an isomorphism

ReSlC):: Whrep(Dn) - VVhrep(Cn) ’
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where Wh,,(G) denotes the subgroups of Wh(%) generated by the reduced torsions
of G-homotpoy equivalences between the unit spheres of G modules.

By the Thorem A, the same conclusion as [11, Theorem C] holds for dihed-
ral groups.

Corollary B. Wh,(D,) is of finite index in Why (%) if and only if n=
8,9,12,16, 18, p or 2p for odd prime integers p.

In §1, we discuss the restriction maps of Whitehead groups from dihedral
groups to cyclic groups. We give a sufficient condition for the restriction map
being an isomorphism. In §2, we investigate the C,-homotopy equivalences
between the unit spheres of C,-modules due to T. Petrie. In §3, we state the
main results and prove them. We also exhibit an example concerning genera-
tors of Whitehead groups of dihedral groups in §3.

The author owes to Professors Shor6 Araki and Mikiya Masuda by useful
discussions and advices, and would like to express here his hearty thanks to
them.

1. The restriction maps from dihedral group to cyclic group

In this section, we shall investigate the restriction map of Whitehead groups
from a dihedral group to a cyclic group. First, we consider the standard involu-
tion on Whitehead groups. Let G be a finite group. The assignment “gi—g™"”
in G induces a conjugation ~: Z[G]— Z[G]. This conjugation induces the
standard involution ~: Wh(G)—Wh(G). The following lemma is fundamental
in our investigation.

Lemma 1.1. Let G be an abelian group. Then, each element of (Z[G)*|+G
is represented by a unit us(Z[Q))* such that u=n. In particular, if Wh(G) is
torsion free, each element of Wh(G) is represented by a unit us(Z[G])* such that
u=u.

Proof. It is well known that the standard involution on Wh'(G)=Wh(G)|
torsion is trivial (see [24], [2] or [16]). According to the proof of [2] for this fact,
for each ue (Z[G])*, there exists g,& G such that u-(#)'=+g, Applying the
augmention map Z[G]—Z to both sides of the identity, we see u-(%) '=g,.
Here, we consider an involution §: G—G, 0(g)==g,¢"". If we put u=33a,g
(a,€Z), the identity u-(%)"'=g, implies

a, = ag, foreach geG.

Therefore, § must have a fixed point because 3} a,==+1. The fixed point of
0, say g€ G, satisfies g°=g,. If we put v=g ', v is a required element because

v=u in (Z[G])*/4-G and
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v=glu=glgu=g0=0. QE.D.

NoraTioN 1.2.

D,: the dihedral group of order 2n generated by two elements s and ¢
with relations t"=s*=1 and sts=¢"".

C,: the cyclic subgroup of D, generated by .

In later sections, we shall consider the equivariant Whitehead group of D,
(called the generalized Whitehead group of D, by Rothenberg). Therefore, we
shall treat the classical Whitehead groups and the equivariant Whitehead groups
at the same time. To do this, we need the following lemma.

Lemma 1.3. Wh, (¥)=@,, Wh(D,)
and the following diagram commutes

Res2~
Whp (¥) — Whe ()
/ PRese: '

Bain Wh(Dy) —> " B aWh(Cy) .

Proof. For a subset 4 of D,, we denote by <A4> the subgroup generated
by A. Since {st*, st">={t*"" st"> in D,, any subgroup of D, has a form {t*>
or {t*, st">. On the other hand,

(R sty if mois odd,

{t*, st™> is conjugate to { . ]
g {th,s> if m is even.

Moreover, if n is odd, <#, st> is conjugate to <{t* s>. Therefore, C(D,), the
conjugacy classes of the subgroups of D,, is
{ { (<), (&4, D) | d|n} if » is odd,
{(Kt), Kt ), (<%, s£)| d|n} if mis even.
Moreover, we have

N<t%> = D,, W<t = NHKt?y = Dy,

(GRS if d is odd, 1 if dis odd,
N2, s> W<, sy =
= % s> if d is even, = , if d is even,
{t?, sty if dis odd, { 1 ifdis odd,
N<, sty = W<, ts> = .
<, st {<t‘” 2 st> if d is even, Rl C, ifdiseven,

where NH denotes the normalizer of HCD, in D, and WH denotes NH|H.
Since Wh(C,)=0, we have

Why (*) = @ uecw,y Who,(*, (H)) = Bwecw, Wh(WH)
= @y, Wh(WE) = Dy, Wh(Dy).
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By the definition of Res@z: Wh;, (*)— Wh, (%), we have the commutative diagram

Dy
Why, (+) Resc: Whe (%)
) i
Whp, (%, ({t))) —> Whe,(*, (<t2))
b= Res2? b
Wh(Dd) _— Wh(cd) .
This completes the proof. Q.E.D.

Lemma 1.4. Resl:: Wh(D,)—Wh(C,) and Res@z: Why, (¥)—>Whe (*) are
monomorphisms.

Proof. By Lemma 1.3, it is sufficient to show that Resgz: Wh(D,)—Wh(C,)
is a monomorphism. We note that Wh(D,) and Wh(C,) are free abelian groups
of the same rank by [21], [19], [20] and [17]. Moreover

Resg? Ind2r y = 3* for each yeWh(C,).

Therefore Ind2:: Wh(C,)—WHh(D,) is a monomorphism and its image is a sub-
group of finite index. So, for each x& Wh(D,), there exixt me Z adn y& Wh(C,)
such that x"=Ind¢? y. Suppose that Res?? x=1, then

1 = (Resl? x)" = Res2? ™ = Resg? Ind27y = »*.
Since Wh(C,) and Wh(D,) are torsion free, we have y=1 and x=1. 'This com-
pletes the proof. Q.E.D.

Now we shall observe the classical restriction homomorphism of the unit
groups. The point of our observation is to consider C,, and D, parallelly.
Let r be a generator of C,,. Identifying t=#? we can regard C, as a subgroup
of Cy,. Because each element of Z[D,] can be expressed by a-+sb, a, be Z[C,],
we can define a homomorphism

(Z[D.)* — (Z[C.]*
a-+sb — aa—bb .

Similarly, we can define a homomorphism

(Z[Cu))* — (Z[C])*
a---rb = a?—th?.

The above two homomorphisms are the classical restriction homomorphisms
in the following sense.

Lemma 1.5. The following diagrams commute.
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(ZD)* — (ZICD*
M U ez

Wh(D,) — Wh(C,).
) (Z[Cu))* —> (Z[CD)*
( ) i Resgin i’
Wh(Cy) —— WHEC,).
Proof. If we regard a+sbe(Z[D,])* as a Z[C,]-isomorphism Z[D,]—
Z[D,] and take basis 1 and s of Z[D,] as a Z[C,]-module, then a-sb is ex-

b a )

Since
b -
det (“ ) — aa—bb,
b a
we have the commutativity of (1) by the definition of ReséZ. By the same argu-
ment, we have the commutativity of (2). Q.E.D.

Using the above lemma, we have the following.

Proposition 1.6. If Resér: Wh(C,,)—WHh(C,) is an epimorphism, Res2::
Wh(D,)—Wh(C,) is an isomorphism.

Proof. By lemma 1.4, it is sufficient to show that Res2? is an epimorphism,
i.e., for each x& Wh(C,), there exists y& Wh(D,) such that Res2* y=x. By the
assumption, there exists a y’'& Wh(C,,) such that Res¢? y'=x. According to
Lemma 1.1, 3 is represented by a unit a-+rb& (Z[C,,])* such that a-rb=a-rb.
Since the condition @+rb=a-rb implies a=a and E:brzzbt, it is easy to see
that a+sb is a unit of Z[D,]. By lemma 1.5, Res?” sends a+sb to aa—bb=
a*—tb? at the unit level. On the other hand Res$?* sends a+7b to a*—itb%.
Therefore a+sb represents the required y. Q.E.D.

ExampLE 1.7. Res& Wh(C,,)—Wh(C,) is an epimorphism in the following
cases.
(1) n: odd.
(2) n=8or12.
But if n=2%k=4), Res&?" is not an epimoephiam.

Corollary 1.8. If n is odd or n=8,12, Resl:: Wh(D,)—Wh(C,) and
Resr: Why (*¥)—>Whe (%) are isomorphisms.

Proof of Example 1.7. In the case (2), since the generator of Wh(C,) is
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known (see [11]), a direct computation shows that Res¢? is an epimorphism.

By the following Lemma 1.9, it follows from [5, Theorem 3] that Resg?" is an

epimorphism if # is odd. The example that Resé is not an epimorphism is

given by [9, Theorem 1.1]. Q.E.D.

Lemma 1.9. The following are equivalent to each other:
(1) Resém: Wh(C,,,)—Wh(C,) is an epimorphism.
(2) tr: (Re, )| £ Con—>(Re,)*| £ C,, is an epimorphism where R, = Z [C,]/(Z¢ec, &)
(see [5] and [9] for the definition of tr).
(3) Any free C,-action on S** (k=2) extends to a free C,,,-action.

Proof. [5, Theorem 4] shows that (2) and (3) are equivalent to each other.
To show (1)« (2), we note that there exists a split extension

4
1 — Wh(C,) = (Rc,)*/+-C, — (Z/nZ)*| L1 > 1

where A: (R¢ )*/£C,—(Z|nZ)*|+1 is induced by the augmentation. Moreover
we have the commutative diagram
1 = Wh(C,,) = (Re, )*|F-Chpn — (Z|mn Z)*[+1 — 1
| ResGr  tr J
1 — Wh(C,) — (R;)*|+C, —(Z/nZ)*|4+-1—1

where (Z/mn Z)*|4-1—(Z|n Z)*|4-1 is the natural map. A simple diagram
chasing shows that (1) and (2) are equivalent to each other. Q.E.D.

2. The Petrie’s maps
In this section, we shall discuss an interesting example of maps between

C,-modules due to T. Petrie.

NoTATION 2.1.

V,: The complex C,-module C with g&C, acting as multiplication by
exp 2mialn.
Let a and & be integers which are relatively prime and prime to #n. Choose
integers p, ¢ such that —ap-bg=1. It is well known that the Petrie’s map

f: VaEDVb g VleaVab
(x,9) = (3 2"+
is a C,-homotopy equivalence. This induces a C,-homotpoy equivalence
h: S(V,BVs) — SV, BVyu)
*y) = fENNfE I
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which will be also called Petrie’s map.

Lemma 2.2. Let V and V' be complex C,-modules such that C, acts freely
on S(V) and S(V'). If S(V) and S(V') are C,-homotopy equivalent, then one
can choose a C,-homotopy equivalence as composition of suitable suspension of
Petrie’s maps, inverse of Petrie’s maps, and a complex conjugation.

j
Proof. Let @ V,, be a direct sum decomposition of ¥ to irreducible C,-

modules. Since C, acts freely on S(V), each a; is prime to n. Relacing a;
with a;,+mn, we can assume g; (i=1, -+, ) are mutually distinct prime integers.
Now we have a composition of Petrie’s maps

f: S(V) = S(Val@Vaz@"'@Va,‘) - S(Vl@Valaz@Vaa@"'@Vaj)
— S(VI@VI@VaIazaa@"'@Va,‘) —> > S(V1$"'@V1@Varnag) .

Similarly for V'= e_"a Vs,, we have a composition of Petrie’s maps
f:8V)—=> SV DDV DVs,.p,) -
Since S(V') and S(V’) are C,-homotopy equivalent, we have
j=k and ay-a; = £b--b; (mod n)

In case a;*+-a;=b,--b; (mod ), f""'o f is a required C,-homotpoy equivalence.

In case a-+-a;=—b,-++b; (mod #), f'~'o cof is a required one where
c: SV DBV, DV,0;) > S(V DDV D Vs,..05)
(xl)"'9xj) = (xly "'7xj)
is a suspension of a complex conjugation. Q.E.D.

Since D,=C,X|C,, V, can be considered as a real D,-module on which
s€C, acts by complex conjugation. The following lemma was pointed out by
M. Masuda.

Lemma 2.3. The Petrie’s map
h: SV, V) —> SV, DVay)
is a D,-homotopy equivalence.

Proof. A direct computation shows that % is a D,-map. Therefore it is
sufficient to show tkat % is homotopy equivalence on the fixed point set of each
subgroup H of D,. We shall show that

iR - R
(%, y) > (&7 %, 2*+)°)
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has degree +1. This is sufficient because i is C,-homotopy equivalence.
To calculate the degree of f, we consider the image of S'={(cosf, sinf)E R?|
0<60=<2z} by f. Weput S; g¢,={(cos0,sinf)|0,<0=<6,}. Then S'=S} ;U
StpaUSx sepUSep e We shall distinguish the following four cases.

(1) a:odd, b:even, p:odd and gq: even.

(2) a:even, b:odd, p:even and g¢: odd.

(3) a:odd, b:o0dd, p:even, and g: odd.

(4) a:o0dd, b:odd, p:odd, and g: odd.

We note that the other cases do not occur by the choice of a, b, p and g. Since
the arguments for the cases (1), (2), (3) and (4) are similar, we shall only discuss
the case (1). In this case,

F(Sb.2,) is a loop at (0, 1) in {(x, y)|x=0, y=0},

F(Sip) is aloop at (0, 1) in {(x, y)|x<0, y=0},

F(SLsep) is a path from (0, 1) to (0, —1) in {(x, y)|x*=<0} and

F(Siass,2) is 2 path from (0, —1) to (0, 1) in {(x, y)|x=0}.

Therefore f must have degree 1. Q.E.D.

Using the above lemma, we have

Propisition 2.4. Let U and U’ be real C,-modules such that S(U) and
S(U’) are C,-homotopy equivalent. Then there exist real D,-modules V and V'
such that

1 Res2"V=U and Res2:V' =U’,
(2) S(V) and S(V') are D,-homotopy equivalent.
Proof. We write
U= ®pec, UH) and U’ = Dycc, U'(H)

where U(H) and U’(H) collects the irreducible submodules of U and U’ res-
pectively which have kernel H. It is well known that S(U) is homotopy equi-
valent to S(U’) if and only if S(U(H)) is homotopy equivalent to S(U’'(H)) for
each HCC,. Therefore, it is sufficient to show this lemma for each U(H) and
U'(H). In case H=C, or the subgroup of index 2, it is obvious. Since C,/H
acts freely on S(U(H)), we may assume that C, acts freely on S(U) and S(U").
If we can choose a C,-homotopy equivalence S(U)—S(U’) as a Petrie’s map
(or its suitable suspension), the Petrie’s map itself gives a D,-homotopy equiva-
lence by Lemma 2.3.  Of course, the complex conjugation gives a D,-homotopy
equivalence. This together with Lemma 2.2 completes the proof. Q.E.D.

3. Main results

Finally, we state our main results which are easy consequences of previous
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sections.
Theorem A. Res@:: Whyop(D,)—>Wh,(C,) is an isomorphism.

Proof. Since Wh,(D,) and Wh,(C,) are subgroups of Wh, (¥) and
Whe (%) respectively, Lemma 1.4 shows the injectivity. On the other hand
Proposition 2.4 shows the surjectivity because the reduced torsion depends only
on G-modules if Wh(%) is 2-torsion free. Q.E.D.

Using [11, Theorem C], we have a corollary to Theorem A.

Corollary B. Wh,,(D,) is of finite index in Why (%) if and only if n=
8,9, 12,16, 18, p or 2p for odd prime integers p.

We shall conclude this note by referring the generators of Whitehead
group of dihedral groups.

ExampLE. The generators of Wh(D;), Wh(Ds) or Wh(D,;) are given by
the reduced torsions of D;-homotopy equivalences between the unit sphere of
D;-modules. The units which represent the generators of Wh(D;), Wh(Ds)
and Wh(D,;) are
1) 14@+t)—(BFt75)+s(—24(*+17%) in case Wh(D;),

(2) —14+F+tD)+s@E——t'+27%) in case Wh(Dy),
(3) 4+2(+t N —(B+t)— @+t — (P25 —2°
+sQB+t—P—P—t'— P — 18—t — 117+ 3¢7Y)  in case Wh(D,,).

Proof. We note that the generators of Wh(Cs), Wh(Cs) and Wh(Cy,) ap-
pear as the reduced torsions of the Petrie’s maps S(V,PV3)—S(V,BV)),
S(WV,@Vs)—=S(V,@&V;) and S(VsDV,)—=S(V,@V,) respectively (see [11]).
Therefore the reduced torsions of the above Petrie’s maps (as D,-homotopy eq-
uivalences) represent each generator of Wh(D;), Wh(Dg) and Wh(D,,). Using
the method of Proposition 1.6, we can find the elements of (1), (2) and (3).

Q.E.D.
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