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In the previous paper K-S [12] we have considered P1(C)-bundles over
compact Kahler-Einstein manifolds to obtain non-homogeneous Kahler-Einstein
manifolds with positive Ricci tensor. The purpose of this paper is to give more
examples of non-homogeneous compact Kahler-Einstein manifolds, more precisely,
compact almost homogeneous Kahler-Einstein manifolds with disconnected
exceptional set. By [1] and [8], the structure of orbits of almost homogeneous
projective algebraic manifolds with disconnected exceptional set have been
investigated, but no explicit examples were given in [1] and [8] except complex
projective spaces. To construct these examples, we start again with P^C^-bund-
les over Kahler C-spaces and consider compact complex manifolds obtained from
these P^CJ-bundles by blowing down. Note that compact complex manifolds
obtained from projective algebraic manifolds by blowing down are not Kahler in
general as an example of Moisezon [14] Chap. 3, section 3 shows. We construct
our compact complex manifolds in section 3 and prove that our compact almost
homogeneous complex manifolds are Kahler and have positive first Chern class
(Theorem 4.1). But in general these almost homogeneous manifolds may be
homogeneous. We give a sufficient condition for these Kahler manifolds being
non-homogeneous (Theorem 5.1). In section 6 we show that for each positive
integer d there are compact Kahler-Einstein manifolds which have cohomogen-
eity d. We follow the notation in Kobayashi-Nomizu [11] which is slightly dif-
ferent from the one in [12],

1 Kahler C-spaces and Dynkin diagrams

We recall known facts on compact simply connected homogeneous Kahler
manifolds, called Kahler C-spaces (cf. Takeuchi [18]).

Let Π be a Dynkin diagram and Π0 a subdiagram of Π. The pair (Π, Π0)
is said to be effective if Π0 does not contain any irreducible component of Π.
Let Σ be the root system with the fundamental root system Π. Choose a
lexicographic order > on 2 such that the set of simple roots with respect to >
coincides with Π. Take a compact semi-simple Lie algebra Qu with the root



934 N. Koiso AND Y. SAKANE

system 2 and let t be a maximal abelian subalgebra of gM. Denote by g and ϊj
the complexification of Qu and t respectively. We identify a weight of g relative
to the Cartan subalgebra ξ) with an element of v^T* by the duality defined by
the Killing form ( , ) of g. In particular, the root system Σ of g relative to ϊj is
a subset of V— It. Let {ΛΛ}ΛeΠC\/IΓγt be the fundamental weights of g

corresponding to Π :

Π 1) 2(Λ,, β) = I l

^ ' ' (β,β) I 0(β,β) 0 if a Φ β .

Let 2+ be the set of all positive roots and {Π0}z the subgroup of \/— It genera-
ted by Π0. Put Σo^Σ Π {Π0}z We define a subalgebra u of g by

(1.2) u = 5+ Σ g.

where Q# is the root space of g for α^Σ. Let G be a simply connected complex
Lie group whose Lie algebra is g, and let U be the connected (closed) complex
subgroup of G generated by u. Put M=G/U. Then it is known that the
complex manifold M=G/U is compact, simply connected and admits a homo-
geneous Kahler metric. Let Gu be the compact connected subgroup of G
generated by Qu. Put K=GU Π U. Then K is connected, Gu acts on M transi-
tively and M=G/U=GU/K as a smooth manifold. This homogeneous complex
manifold M is s said to be associated to the pair (Π, Π0) of Dynkin diagrams.

We define a subspace c of \/— It by

(1.3) c

Then \/— 1C coincides with the center of the Lie algebra ϊ of K. We also
define lattices Z of \/— It and Zc of c by

(1.4) Z = {λe \/IΓϊt 1 2(λ, α)/(α, α) is an integer for each ct eΣ}

and

(1.5) Zc = Z Π c .

Let m be the orthogonal complement of ϊ in Qu with respect to the Killing
form ( , ); g^ϊ+tn. The subspace m is ^-invariant under the adjoint action
and identified with the tangent space T0(M) of M at the origin o^M. Put

We define ^-invariant subspaces m* of g by

(1.7) m±= Σ g
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Then the complexification mc of m is the direct sum:

mc = tn++nr .

We denote by X-* X the complex conjugation of g with respect to the real form
Qu. Then m+^tn*. We choose EΛ^QΛ for #^Σ with the following properties
and fix them from now on:

(1.8) [£„£-,]= -a, (EΛ9E-Λ) = -1, EΛ = E.Λ for α<ΞΣ .

Let {ω^es be the linear forms on g dual to {£"«}Λ€=2, that is, linear forms
defined by

( ω ft) = {0}

(1-9) ( 1 if a = β

( «"(30 = I 0 if « Φ / 3 .

Let T be the total subgroup of Gu generated by t. The tangent space

Te(T) of T at the identity element e is identified with t. Let S\T} denote the
space of Γ-invariant real 1-forms on T. Then we have natural linear isomor-
phisms:

(1.10) l-+V=T*(T)-*J\T)-* H\T,R).

We identify t with H\T, R). Then we have

(1.11) _Λ_z=H\T,Z}.

It is known that the inclusion c: T-*K induces an injective linear map
^*: Hl(K,R)-+Hl(T,R) with ι*H\K, R) = \\(2π >/^T)c and t*H\K, Z) =
ί/(2πV—l)Zcy and that the transgression for the principal bundle K-*G-*M

defines a linear isomorphism τ: Hl(K,R)'-+H*(M, R) with r(H\K, Z)) =
H\M, Z). We define a linear map r: C-*H2(M, R) by

τ(λ) = -τ(\l(2π\/^Λ)) for λec,

where H\K, R) is identified with l/(2τr\/^T)c through ι*. Then τ(Zc) coin-
cides with H2(M, Z] (cf. Borel-Hirzebruch [4]).

We define a cone c+ in c by

(1.12) c+ = {λec|(λ, α)>0 for each αeΠ— Π0}

and put Z%=Z Γ) c+. Then we have
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(1.13) c* = Σ Λ+ΛΛ,

(1.14) Ze

+ = Σ Z+A*.
αeΠ-Π0

Moreover, the cone c+ is characterized by

c+ = {λec|(λ, α)>0 for each

Lemma 1.1 (Takeuchi [18]). Let S2

Gu(M) be the space of closed G ̂ -in-
variant real 2-forms on M and Jtt2(M, g) the space of real harmonic 2-forms on
M with respect to a Gu-invariant Riemannian metric g on M. Then <ίGu(M)=
M\M,g).

Let λec. Regarding each ω* a Gκ-invariant C-valued 1-form on Gu, we
define a Gα-invariant C-valued 2-form ι?(λ) on Gu by

(1.15) — >
2πV— lαeΣ^

We define a complex linear form λ on Qu by

= (λ, --Y) for

and regard λ as a Ga-invariant C-valued 1-form on Gu. Thus l/(2τr
regarded as a G^-invariant Λ- valued 1-form on Gu. Then we have

and ^(λ) can be pulled down to a unique form in <32

Gu(M). Thus the corres-
pondence \-*η(\) defines a linear map η: c-*J2

Gu(M).

Lemma 1.2 (Takeuchi [18]). Let ψ» fo ίAβ natural map assigning
ω^JGu(M) to the de Rham class [ω] in H\M, R). Then τΰe have the following
commutative diagram consisting of linear isomorphisms :

(1.16) c --> H\M, R)

\ Λ

We define elements δm, δ of V— It by

(1.17) δm = -1

respectively. It is known that 2δmeZ^ and δ= Σ
Now we recall the following facts. α<Ξ
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FACT 1 (cf. Borel-Hirzebruch [4], Takeuchi [18]). Let M=G/U=GU/K
be the compact homogeneous complex manifold associated to an effective pair
(Π, Π0) of Dynkin diagrams. Then we have the followings.

1)

(1.18)

defines a Gu-invariant real covariant symmetric tensor field of degree 2 on M, and

the correspondence λ— >#(λ) gives a bίjection from c+ to the set of Gu-invariant

Kάhler metrics on M.
2) The first Chern class cλ(M) of M is given by c1(M)=τ(-2SJ. For

the Kάhler metric g corresponding to λec+, the Kάhler form ω (defined by

ω(X, Y)=g(X, JY), where J is the almost complex structure of M), the Ricci
tensor r and the Ricci form p are given by

(1.19) ω
«€EΣ+

(1.20) r = 4πg(28m) = 2 Σ (2δm, αJαΓ'-iF3,
«eΣm

(1.21) p = 4πη(28m) = -2 V=T Σ (2δ, a)ω~Λ

FACT 2 (cf. Ise [9]). For each ΛeZc, there is a unique holomorphic character

%Δ of U such that

%Λ (exp H) = exp (Λ, H) for each H&$ .

Let LA denote the holomorphic line bundle on M associated to the principal bundle

U-+G-+M by the character %Λ. The correspondence Λ->LΛ induces an isomor-

phism from Zc onto the group H\M, θ*) of all holomorphic line bundles on M.

Moreover, under this isomorphism the subset — Zc

+ corresponds to the set of all very

ample holomorphic line bundles on M. The first Chern class cλ(L^ of LΛ contains

a unique Gu-ίnvariant 2-form

(1.22)

onM.
^

2 Kahler C-spaces as projective bundles

Let £ be a holomorphic vector bundle of rank r over a complex manifold

N. The complex projective bundle P(E) associated to E is defined as follows.

Let C* act freely on E— (0-section) by scalar multiplication. Then P(E) is the
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quotient complex manifold

P(E) = £-(0-section)/C* .

Thus a point of P(E) over x&N represents a complex line in the fiber Ex of

E at x. We organize various spaces and maps by the following diagram:

(2.1) P(E)

9

Using the projection φ\ P(E)-+N, we pull back the bundle E to obtain the
vector bundle φ*E of rank r over P(E). We define the tautological line bundle

L(E) over P(E) as a subbundle of φ*E as follows. The fiber L(E)ξ at £eP(£)
is the complex line in Eφφ represented by ξ . Note also that if L is a holomor-

phic line bundle over N, then P(E) is canonically identified with P(E®L) as

complex manifolds and L(E®L)—L(E)®φ*L as holomorphic line bundles.

Let Π be a Dynkin diagram and Π0 a subdiagram of Π such that Π0 is of

type Al.l (Π0=0 if /=!). Consider also a subdiagram Πj such that Γ^ contains
Π0 as a subdiagram and Πj is of type At. Put Σ!=Σ Π {ΠJ Z. We define a Lie

subalgebra t> of g by

(2.2) ϊ = 1)+ Σ 9.

as in section 1. We denote by G/U,G/P the Kahler C-spaces associated to the

pairs (Π, Π0), (Π, Πj) of Dynkin diagrams respectively. Put {a^^Tίi— Π0 and

Λ0=ΛΛoeZ. We define a subalgebra g(l) of p by

(2.3)

and let G(l) be the complex subgroup of G generated by g(l). Then there

is an irreducible representation pΛo: G(l)— >GL(FΛo) of G(l) with the highest

weight Λ0. The representation pΛo can be uniquely extended to an irreducible
representation of P, which is also denoted by pΛo: P-» GL(FΛo). Note also that

We denote by £?ΛO the homogeneous vector bundle over G/P defined by the

representation pΛo: P->GL(FΓ

Λo) and by P(£Ά0) ^e complex projective bundle
over G/P associated to the vector bundle £"Λ(). Then G acts on £"ΛO and P(£Λo)
in natural ways. We denote by [g, v] the element of £ΛO defined by (g, v)^

Gx VAQ and let/>: EAQ— (0-section)-»P(£Λo) be the projection. Take a highest

weight vector VAQ of pΛo: P->GL(Pr

Λo), that is, vAo is a non-zero vector of FΛo

such that
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(24) f /%(fl>Λ0 = (Λ0> # K0 for

= 0 for

and fix it.

Lemma 2.1. We have an identification: P(EAQ) = G/U.

Proof. At first note that G acts on P(EAo) transitively, since G(l) acts on
P(VΛO) transitively. Put 0— p([e, vAo]). Consider the isotropy subgroup G0 of
G at o^P(EAQ). Then we have G0^ {g e G | £€ΞP, PΛ0(£K0=M£K0 for some
λ(#) e C —(0)} . Thus the Lie algebra Q0 of G0 is given by

(2.5) β.

Hence 0β=u. Since the normalizer of the parabolic subgroup [7 coincides
with U, we see that U=G0 and P(EAo) = G/G0=G/U. q.e.d.

Now we consider the homogeneous vector bundle EAo over G/P. Then

Ej^— (0-section) is a C* -bundle over P(EAo). Let i(£Ά0)
 be the tautological line

bundle over P(EAQ) associated to the vector bundle EAo over G/P. Then we
have an identification: EAo— (Q-secuon)=L(EAo)— (0-section).

Lemma 2.2. The tautological line bundle L(EAo) is the holomorphic line
bundle LAo over P(EAQ)=GIU associated to the principal bundle [7->G-^G/t7 by
the character %ΛO of U.

Proof. Since (Λ0, a) = Q for each αreΣ0, pΛQ(E«)vΛ0

 = Q f°r each <^
Thus pΛo induces a representation pΛo: U-*GL(CvAQ), which is identified with
the character %ΛO of U, since ρAo(exp H)vAo=exp(A0, H)vAo for ίfet). Note
that by Lemma 2.1 each element of L(EAo) can be written as [£, λ^ΛJ (g^G,

Now let [g, λ^Λo], [g', μvAQ] be elements of L(EAo). Then [g, λϋΔo]=

] in ^(^ΛO) if and only if g'=gu (u<= U) and ρAQ(u)μvAo=\vAQ. Thus
we get our claim. q.e.d.

Now we recall the following general formula for the canonical line bundle
of a projective bundle. Let φ: E-*N be a holomorphic vector bundle of rank
r over a complex manifold N and let KP(iE^ KN denote the canonical line bundle
on P(£), N respectively. Then

(2.7) KPίE) = φ*(KN®det E*)®L(E)r

r

where det E* denotes the holomorphic line bundle /\E*.
We apply this formula to compute the first Chern class of P(EAo)=G/U.
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Lemma 2.3. The element — 2δmeZc

+ corresponding to the first Chern class

of P(EAQ)=G/U is given by

(2.8) -2δm= -(/+1)Λ0+ Σ -nΛKΛ for some n
αeΠ— Πj

Proof. Since 2δmeZ^, it is of the form

Since KG/P®dεtE%Q is a holomorphic line bundle over G/P, the Chern class of

φ*(KG/P® det E*Q) contains a unique Gu -invariant 2-form ^(Λ^ with

Λ! = Σ w*ΛΛ (

By Lemma 2.2 and Fact 2, the first Chern class c^^E^)) of L(EAo) contains

a unique Gu -invariant 2-form rj(AQ). Since EAo is a holomorphic vector bundle

of rank /+ 1, we see that

by the formula (2.7) and Fact 2, and hence we get our claim. q.e.d.

REMARK. We may prove Lemma 2.3 by a computation on root systems

as follows. Put U0={aiιy •••, α^.j . Since Π0 is of type At,l9 we have

Σ α = (/-lK

where Σί=
Since E^ is of type yl; and Π1— Πo={Qr0}, we may assume that

o> 1 0, ,yΓ- — — 1, -7 - r- = 0 for 2<ι<l— 1.
o> <*o) («o» «o) ~ J~

Thus we see that

Σα=-(/-l)Λβ+ Σ
αeΣ

Hence we have

2δm = 28- Σ a = 2( Σ ΛΛ)+(/-l)Λ0 - Σ
αeΠ-{«0}

Σ ^ΛΛ-(/+l)Λ0+ Σ nΛ

where w^eTV for each δeΠ — Πx, since 2

3 P1(C)-bundles over Kahler C-spaces and blowing down

Let Nl9 N2 be compact complex manifolds and consider holomorphic vector
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bundles Eγ of rank /+1>2 over Nί9 E2 of rank k+\>2 over N2. We also
assume that the total spaces P(E1) and P(E2) of projective bundles coincide as
complex manifolds, which is denoted by M, and that there are holomorphic line
bundles L{ over Nλ and L2 over N2 such that the tautological line bundles

1) over P(El®L{'1) and L(E2®L2~
1) over P(E2®L'2~

2) satisfy
)"1=L(£'2®L2~1), more precisely, there is a holomorphic bundle iso-

morphism L(E1 ® Lί ~ )~1 -> L(£"2 ® £2" ) compatible with the identification :
P(E1®Lί~1)^P(E1)^P(E2)^P(E2®L'2~

1). We also consider the P1(C)-bundle
P(l®L(E1®Lί~1)) = P(L(E2®L'2~

1)®l) over M=P(E1®L'1~
l) = P(E2®L'2~\

whose total space is denoted by X. Note that complex submanifolds Mί9 M2 of
X defined by the 0-section of L(£Ί(g)Lί~ ) and 0-section of L(E2®L2~ ) are
identified with M=P(El®L{~1) and M=P(E2®L/

2~
1) respectively.

We organize various spaces and maps by the following diagram:

X = P(l^L(E1®Li~1)) = P(L(Ej®Lί~*)®\)

(3.1) M = P(E1®Li ) = P(E2®L2" )

l \<P2

, N2

Now the following lemma is a special case of Nakano [16], Fujiki-Nakano
[6] (cf. Moisezon [14]).

Lemma 3.1. There exists a complex manifiod Y containing Nlt N2 as complex
submanifolds and a holomorphic map Φ : X-> Y in such a way that (X3 Φ) is a com-
position of monoidal transforms from Y with centers N19 N2 and MX=Φ" (Λ^),

M2=Φ~\N2), that is, Y is a complex manifold obtained from X by blowing down
M1=P(E1®Li~l) to N, and M2=P(E2®L/

2~
l) to N2.

Proof. Note that the normal bundle of P(£1®Lί~1) is the line bundle
). Thus the condition in Fujiki-Nakano [6] is satisfied. q.e.d."

REMARK. Note that the tautological line bundle L(E) over a projective
bundle P(E) is obtained from E by blowing up the 0-section of E to P(E). Note
also that P(lφL(£l

1®Lί" )) is a union of complex submanifolds
and L(E2®L'2~

l) with the intersection ^E^Li'^Π^E^L^
(Q-section)=L(E2®L2~1) — (0-section). Thus Y is a union of the canonically
imbedded complex submanifolds E&Lί'1 and E2(S)L'2~

l with the intersection
£1®LΓ1n^2®iΓ1=^ι®iί"1-(0-section)=J?2®LΓ1-(0-se(Λio^^ which is also
L(ί:ι®LΓ1)--(0-section)-:L(£'2®LΓ1)-(0-section).

Now we consider the triples (Π, Πi, Π0), (Π, Π?, Π0) of Dynkin diagrams
which are one of the followings.

(a) The Dynkin diagram Π is connected, Π0 is a subdiagram of Π and
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of type -4/-J, and subdiagrams Π}, Π? of Π are of type Al and contain Π0 as a

subdiagram.
(b) The Dynkin diagram Π has two connected components Π(l) and Π(2),

and Π0 is a subdiagram of Π which has also two connected components Π0(l) of
type AI- L and Π0(2) of type Ak^. Subdiagrams Πl, Πf of Π have also two

connected components Π}(1) and Π}(2), Π?(l) and Π?(2) respectively, and we
assume they satisfy the following conditions:

(1) Π}(1) is a subdiagram of Π(l), of type Al and contains Π0(l) as a
subdiagram, and Π}(2) conicides with Π0(2).

(2) Π?(2) is a subdiagram of Π(2), of type Ak and contains Π0(2) as a sub-

diagram, and Π?(l) conicides with Π0(l).

EXAMPLES 3.1. The vertices contained in Π0, Πj—Π0, Π—Π{ of a Dynkin

diagram Π are denoted by O, D, x for ι=l, 2 respectively.

(a) (Π, Πl, Π0) x— D—o—o—o—o—x—x
(Π, Π?, Π0) x—x—o—o—o—o—D— x

(b) (Π, Πl, Π0) x—D—o—o—x x—o—o—o— x—x
(Π, Πi, Π0) x — x—O—O— x x—O—O—O—D— x

Put {α0(0}=Πι—ΠQ and Λ0(i)=Λ-oCί) for ί=l, 2.
We consider Kahler C-spaces associated to pairs of Dynkin diagrams and

P^CJ-bundles over Kahler C-spaces.

Case (a). We denote by G/C7, G/Ply G/P2 the Kahler C-spaces associated to

the pairs (Π, Π0), (Π, Π}), (Π, Π?) respectively, and by Ely E2 the homogeneous

vector bundles -EAoα), ^A0C2) over G/P^ GjP2 respectively. By Lemma 2.1, we
have M=P(E1)=P(E2)=GUy and I^E^L^^ L(E2)=LAo,2yby Lemma 2.2.
Put L1H=LAQ<il) and L2=LAo(2). Note that there is a holomorphic line bundle

Lί (resp. L2) over Nl=G/P1 (resp. over N2 = G/P2) such that φfL{ = L2 (resp.

φϊL'^LJ, where φι: M=G/U-^N1=G/P1 (resp. φ2: M=G/U-*N2=GIP2) is

the projection. We thus have L(E1®Lι~ί)=I^®L21=L(E2®L2'ί)~l. Note also
that the P1(C)-bundle X is given by P(l®L1(8)Lr1).

Case (b). We denote by GJUly GJP19 G2/U2, G2/P2 the Kahler C-spaces
associated to the pairs (Π(l), Π0(l)), (Π(l), Πi(l)), (Π(2), Π0(2)), (Π(2), Π?(2))

respectively and by El9 E2 the homogeneous vector bundles £Ά0α)> ^Λ0(2) °v^r
Gi/Pj, G2/P2 respectively. We regard the vector bundle Eλ over G^P! (resp. E2

over G2/P2) as a vector bundle over ΛΓ1=G1/P1xG2/f/2 (resp. N2=G1/U1xG2/P2)y

which is also denoted by E1 (resp. E2). By Lemma 2.1, we have M=P(E1)=

P(E2)=G1/U1xG2/U2ί and L(ff1)=LAo(l) and L(E2)=LAoC2) by Lemma 2.2. Put
Ll=LA(^l) and L2 = LΛ()(2). Note that there is a holomorphic line bundle L{

(resp. L2) over Λ^ (resp. over N2) such that φfL{=L2 (resp. φξL2=L^, where
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φλ: M-^Nl (resp. φ2: M->N2) is the natural projection. We thus have

L(El®LΓί)=Ll1S)Lϊl=L(E2(S)L2~l)~l. Note also that the Px(C)-bundle X is
given by P(l ξ&L^Lϊ1). Put G=G1X G2 and U= ί/j X U2.

In case (a) and (b), we call X the P\C)-bundle associated to the triples

(Π, Πl, Π0), (Π, Π?, Π0) of Dynkin diagrams. We also call Y obtained as in
Lemma 3.1 the compact complex manifold obtained from X by blowing down

associated to the triples (Π, Πi, Π0), (Π, Π?, Π0) of Dynkin diagrams. Note that

in this case Y is almost homogeneous with respect to the complex Lie group G,
since £Ί®Lί~ — (0-section)— L^Z/Γ1 — (0-section) is an open G-orbit in Y, and
Y has a disconnected exceptional set which consists of two G-orbits Nly N2.

Note also that N19 N2 are Kahler C-spaces associated to the pairs (Π, Π}),

(Π, Π?) respectively.

4 Almost homogeneous Fano manifolds

A compact complex manifold is called Fano if its first Chern class is positive.
In this section we prove the following.

Theorem 4.1. Let (Π, Π}, Π0) and (Π, Π?, Π0) be triples of Dynkin dia-
grams, as in section 3, X the Pl(C)-bundle associated to these triples of Dynkin

diagrams and Y the compact complex manifold obtained from X by blowing down
associated these triples of Dynkin diagrams. Then Y is a Kahler manifold with
positive first Chern class.

First we recall the notation of K-S [12]. Let π: L-*M be a holomorphic
line bundle over a compact Kahler manifold M with a hermitian metric h.

Denote by L the open set L — (0-section) of L. Let t be a function on L which

depends only on the norm s of h and increases for the norm. Then the

horizontal lift X of a vector field X of M to L with respect to the canonical

hermitian connection of L is characterized by

(4.1) **X=X, X[t] = (JX)[t] = 0

where / is the almost complex structure of the total space of L. We decompose

the group C* into S1xR+ and define holomorphic vector fields 5, H on L
generated by ^-action, .β+-action respectively so that

(4.2) exp2w5' = ώί> H = -?S ,

If we denote by ρL the Ricci form of L, then we have

(4.3) [X, Ϋ]-{X^Y] = -pL(X, Y)S .

Define a hermitian 2-form B on M, the Ricci tensor of L, by
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(4.4)

where / is the almost complex structure of M.

We also cinsider a riemannian metric g on L of the form

(4.5)

where {gt} is a one-parameter family of riemannian metrics on M. Define a

positive function u on L depending only on t by

(4.6)

Then, by Lemma 1.1 of K-S [12], the metric g on L is a Kahler metric if and

only if each gt is a Kahler metric on M and - gt=—u(i)B. We also assume
that the range of t contains 0. Put

(4.7)

then we have

(4.8)

We put

(4.9) u(t) = acos— with t^(——a9—a] for
a \ 2 2 /

and define U(t) by (4.7). Take a Kahler metric gQ on M and assume that each

gt defined by (4.8) is positive definite. We condider the Kahler metric g on L
of the form (4.5) satisfying (4.6). Then we have

(4.10) 17(0 = a2 sin— +b.
a

We may assume that the range of U is (—(/+!), Λ+l) for given positive in-
tegers k and /, by changing the origin of U and a>0 if necessary. Thus we
have

(4.11) α° = l(/+*+2), b = ±(k-l).

Lemma 4.2. Let s be the norm of the hermitian line bundle π\ L->M.

Then on L

by replacing t(s) by t(cs) for a positive constant c if necessary.
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Proof. Note that, in terms of polar coordinates (r, θ) on C*, the natural
complex structure J on £7* is given by

dr r dθ Qθ Qr

and that if s=?r for a constant c>0, / =—s . Note also that the restric-
oθ ds

tion to a fiber C* of the C*-action on L coincides with the group action of C*.
Thus the vector field H restricted to a fiber C* satisfies

3s ds dt

and thus

s— = u(t) = a cos— .
ds a

Since I secxdx=log tanί —+ —j
* \ T 2* I

, we see that

Λ 2a/ l—tzn(t/2a) \ 2

for some positive constant c, and tan(£/2#)—(cs— l)/(cs+l). Thus we have

In general, let p: E-* N be a holomorphic vector bundle over a compact
complex manifold N9 φ\ P(E)-*N the associated projective bundle over N and
π: L(E)-*P(E) the tautological line bundle over P(E). Denote by E the open

set E— (0-section) of E. Let h^ be a hermitian metric on E. Since E=L(E)
=L(E) — (0-section), a metric Λx on E defines a hermitian metric h on L(-E): for

x^P(E) and z>, w^L(E)=E with ττ(^)= πr(^)-=Λ:, Ax(z;, ^)=(Aι)^>(^, «?).

REMARK. In general a fiber metric on L(E) does not define a hermitian
metric on E. There is a natural one-to-one correspondence between complex
Finsler structures in E and hermitian structures in L(E). See Kobayashi [10].

Corollary 4.3. Let Nly N2) Elt E2ί L{ and L2 be as in (3.1) with M Kάhler.
Assume that there are hermitian metrics hλ on E^Lί" and h^ on E2®L,2~ with
the following properety : If we denote the hermitian metric on L=L(El®LΊ~ )
induced from h± by h and the norm of h by s, the norm s2 of the hermitian metric
on L (E2 ®L2 ) induced from h2 depends only on s, under the identification :

1). Assume further that we can construct a Kάhler metric
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g on L in the above way, that is, each gt in (4.8) is positive definite. We choose
the function ΐ in such a way that the range (—(/+!), k+l) of U is 7+1= rank El=
codimension Nλ in Y and &+l=rankE2 =

 codimension N2 in Y. Then the

function U on the open set L of the compact complex manifold Y is extended to
a smooth function U on Y such that the range of U on the complex submanifold

ί'1 is [—(/+!), k+l) and the range of U on E2®L2~
l is (—(/+!), k+l].

In general, for a Kahler metric g the corresponding Kahler form is denoted

by ωg. We now seek the condition that the metric g on L=L(E1(S)Lί~1)=

L(E2®L2" ) can be written as

0 = (φ2oπ)*ω2-2V^ϊd'd"f0.

where ω, is a Kahler form of a Kahler metric g{ on N{ for i=l, 2 and/o,/*, are

smooth functions on L depending only on t.

Lemma 4.4. Under the assumptions in Corollary 4.3, if the Kahler metric
gQ on M=P(El®Lί" )— P(E2®L2~ ) and the hermitian form B on M satisfy that
go+(l+l)B=φ$g1 where & is a Kahler metric on Nλ and g0—(k+l)B=φfg2

where g2 is a Kahler metric on N2ί then there are smooth functions /0: El®L{~l-*R

andf^: E2®L2~ ->R such that on L

(4.13) ω; = (φl°π)**>l^2^/=ld'd'% = (φfπ}*ω2-2^^Λd'd"f«> .

Proof. We use the notation 9Λ, 95 (Q<a<n) used in K-S [12]. We may
/\ /s

assume that QΛt= dst=0 (\<a<n) on a fiber. First we consider a function /
o _ ^ /S

on L satisfying ω£=(φl°π)*ω1—2\/—ld'd"f. Since ^oo^δ^o/, we have

(4.14) 2M2-"

by Lemmas 1.2 and 1.3 of K-S [12]. As (2.15) in K-S [12], we put φ(U)=u\
Then the equation (4.14) is given by

(4,5) '

By solving this equation, we have

(4.16) _ff = 2U+C for some constant

Now φ(U)=u2=a! cos2 — = a2( l-sin2(— )). By (4.10) and (4.11), we see that
a \ \ α //
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(4.17) φ(U) = —(a2+b-U)(a2-b+U) = —Λk+1- £/)(/+! + U).
a a

Let/o denote a solution of (4.16) with C=2(/+l). Then the equation (4.16)

is given by

dfo _ 2a2

Jΰ ~
and hence /0= — 2a2 log (k+ ! — £/)+ C' (C'eΛ) and/0 is extended to a smooth
function on £Ί®Lί" . Similarly we have a solution

/„ - -2α2log(/+l + t/)+C" (C"6ΞΛ)

of (4.16) with C=— 2(^+1), which is a smooth function on E2®L,2~ . By
K-S [12] Lemma 1.3, we have

Since φ(U)-= U+l+1 by (4.17) and (4.18), we have
2 dU

Thus ωj = (9?ι°π )*ω1 — 2\/~^\d'dlff^ on L. Similarly, ωj = (φz ° π)*ύ>2 —

» on L. q.e.d.

Corollary 4.5. Under the same assumption of Corollary 4.3 ami Lemma 4.4,

Zλtf Ktihler metric g on L can be extended to a Kάhler metric on the complex
manifold Y.

Proof. Note that by (4.11) and (4.12) we have k+l-U=l+k+2 where s2

is the square of the norm of the hermitian metric hλ on £Ί®Lί" . Thus we have

(4.20) /o = 2a*log(l+s2)-2a*log(k+l+2)+C' .

Let^: £Ί®Lί" ->7Vi be the projection. It is easy to see that

(4.21) pf ω1-4a2V^ίd'd// log (ί+s2)

is the Kahler form of a Kahler metric on a neighborhood of 0-section of

pίi E^Li^-^N^ Since ρ1=φ1oπ on ̂ (gLί"1— (0-section)=L, the metric g on

L can be extended to a Kahler metric



948 N. Koiso AND Y. SAKANE

on E^Lί'1. Similarly the metric g on L can be extended to a Kahler metric

on E2®L2~ and hence to a Kahler metric on Y. q.e.d.

Corollary 4.6. Under the same assumption of Theorem 4.1, the compact

complex manifold Y is Kahler. More precisely a Kahler metric g on L=L1®Lj1 —

(0-section) can be extended tc a Kahler metric on Y, which is also denoted by g.

Proof. Let gQ be the Gu -invariant Kahler metric on M=G/U=

P(El®L{" }=P(E2®L'2~ ) corresponding to 8τrδm as in Fact 1 in section 1 and

h a G^-invariant hermitian metric on the homogeneous line bundle L =

L(£Ί®LΓ )=L(E2®L'2~*yl over M. Since we are in GM-invariant situation,

the first assumption in Corollary 4.3 is satisfied. And the hermitian form B on M

is Gu -invariant and corresponds to 4τr(— Λ0(l)+Λ0(2))ec by Fact 2 in section 2.
Thus£, is G^-invariant and corresponds to 4τr{2δm+Z7(ί)(Λ0(l)— Λo(2))}, which

belongs to c+ by Lemma 2.3. So the second assumption in Corollary 4.3 is

satisfied. In the same way we see that gQ+(l-\-l)B= φfSi where gl is a Gu-
invariant Kahler metric on the Kahler C-space JVi associated to the pair (Π, Π})

and£0— (k-i-l)B=<pfg2 where g2 is a Gu -invariant Kahler metric on the Kahler

C-space N2 associated to the pair (Π, Πf). Thus the Kahler metric g on L can

be extended to a Kahler metric on Y. q.e.d.

From now on we assume further that the eigenvalues of B, regarded as a

hermitian form on a holomorphic tangent space of M, with respect to g0

are constant on M. Note that the assumption in Lemma 4.4 implies that

— — (resp. - j is an eigenvalue of B with respect to gQ with multiplicity /

(resp. k) because φ\S\ (resp. φfS2) is a positive semi-definite hermitian form of

nullity / (resp. k). Thus the function det(^1^r

ί)— Q(U) on L is given by

(4.22) Q(U) =

where Q^U) is a polynomial of U such that ρι(C7)φO on [—(/+!),

Here also ^o"1^ and g$lB are regarded as endomorphisms on homolorphic

tangent spaces of M.

Theorem 4.7. Under the assumption above, together with assumptions in

Corollary 4.3 and Lemma 4 A, if the Riccί tensor r0 of the Kahler metric gQ on M

is equal to gQ, then the first Chern class c±( Y) of Y is positive. More precisely, let
β be the Ricci form of the Kahler metric g on Y, then there is a C°° function F(U)

of U on [-(/+!), k+l] such that



NON-HOMOGENEOUS KAHLER-ElNSTEIN METRICS ON COMPACT COMPLEX MANIFOLDS II 949

(4.23) p-ωj = -2\f=\d'd"F .

Proof. By Lemmas 1.2, 1.3 and 1.4 in K-S [12], we see that the equation

(4.23) is equiavlent to the equation

(4.24) φj log(φQ)+2U+φ = 0 .

By solving this equation,

(4.25) F = -log (φQ)-2 \*LdU.
J φ

By (4. 17) and (4.22),

(4.26) log (<?>£>) = (/+l)log(/+l + tO+(*+l)log(A+l-t7)+logρl+C1

where C^R.

By (4.11) and (4.17),

φ (k+l-U)(l+l + U) k+l-U l+l + U

and hence

(4.27) 2 -dU = -(k+1) log (k+1- E7)-(/+l) log (/+1 + E7).

Thus J?=-log a+C2 (C2e=Λ).
Since ρι([/)φO on [—(/+!), k+1], F is a smooth function on [-(/+!), k+1]
and hence, it is smooth on Y. q.e.d.

Proof of Theorem 4.1. Since g0 and B in Corollary 4.6 are Gu -invariant,
the eigenvalues of B with respect to gQ are constant. By (1.20) we have r0=gQ.
Note that the assumptions in Corollary 4.3 and Lemma 4.4 are astisfied as
in the proof of Corollary 4.6. Thus our theorem follows from Theorem 4.7.

q.e.d.

REMARK. Note that, under the assumption in Theorem 4.1, by taking

L^LjφLΓ1, L= y, M=P(E1)=P(E2)=G/U and the metric g on Y as in
Corollray 4.6, the following assumptions A) and B) in K-S [12] are satisfied for

a Kahler metric g on L of the form (4.5).

Assumption A). Let (min ί, max t) be the range of t. The function t ex-
/\

tends to a continuous function on L with range [min t, max £], and the subset
/s

•^min (resp. Mmax) of L defined by t = mint (resp. ί = maxί) is a complex

submanifold of L with codimension Dmin (resp. Dmax) Moreover the Kahler
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metric g extends to a Kahler metric on L, which is also denoted by g.

Assumption B). (1) The Kahler form of the metric g on L is cohomo-
logous to the Ricci form β of g. (2) The eigenvalues of the Ricci tensor rQ

of gQ with respect to gQ are constant on M.

5 Non-homogeneous Kahler-Einstein metrics

Let 7Γ: L-*M be a hermitian holomorphic line bundle over a compact

Kahler manifold M. As above we consider a Kahler metric g on L of the form
(4.5). We also assume that the eigenvalues of B with respect to a Kahler metric

gQ on M are constant and a compactification L of L satisfies the assumptions A)
and B). By Lemma 2.2 of K-S [12], we may assume that the range of U is

[-Anin,Anax].

Now we give a necessary condition for a Kahler-Einstein metric on L of

the form (4.5) being homogeneous.

Theorem 5.1. Under the above situation, assume further that the Ricci

tensor r of the Kahler metric g of L of the form (4.5) is equal to g. If g is riemann-
ian homogeneous, the followings hold.

(1) // the codimensions DmiΛ=Dmax=l, then B=0.
(2) If one of the codimensions -Dmin, Dmax is equal to 1 and the other >•!, then

the non-zero eigenvalues of g$lB are all equal.
(3) If both codimensions Dmin, DmΛX>l) then the number of distinct non-

zero eigenvalues of g$lB are 2.

First we recall the following.

Lemma 5.2. Every complete totally geodesic submanίfold of a homogeneous

riemannian manifold is homogeneous.

Proof. See K-N [11] Chap. 7, Corollary 8.10.

Proof of Theorem 5.1. Since the closure S2 of each fiber C* is a totally

geodesic submanifold of (L, g) and g is homogeneous, it is a riemannian homo-
geneous manifold by Lemma 5.2. We use the notations in K-S [12]. Note
that the induced metric gΰQ=2u2 is an Einstein metric on S2, since S2 is 2-di-
mensional. Thus we have

(5.1) — 3o90(log (2u2)) = c 2u2 where c is a constant.

Note that ι?=φ, u— =φ — . By Lemma 1.3 of K-S [12], we see that the
dt dU

equation (5.1) is given by
j j

(5.2)
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and hence

(5.3) ^ = -cU+ constant.
dU

Thus φ is a quadric polynomial of U. On the other hand φ vanishes at U~
— Anim Dmax. Therefore φ is of the form

φ = c'(U+Dmin) (C/-Dmax) for some c'^R ,

By (4.1.5) in K-S [12], the first term of Taylor expansion of φ(U) at U=—Dmin

is given by 2(U+Dmin). Thus φ is given by

(5-4) φ = ~2 (U+Dmln)(U-DmΛX) .
•^Λnin ~T~ ^max

Since r — g, the polynomial Q of U satisfies the equation

(5.5)
V '

Q dϋ

by Lemma 2.2 in K-S [12]. By (5.4) and (5.5), we have

A. loε O =
dϋ **

= l-Z)min l-Dmax

U+Dmiα U-D^ '

Thus we have

log Q = -(l-A»in) log (C/+Z)min)-(l-Z)max) log I U-D

and thus we have

(5.6) Q = C(U+Dmίn)
D

mίn-\Dmax- U)"—-1 .

Since Q—dtt(l—UgQ1B)J we get our claim. q.e.d.

Now we recall the following theorem in K-S [12].

Theorem 5.3 (Theoerm 4.2 in K-S [12]). Let M be α compact Kahler-
Einsteίn manifold whose Kάhler form represents the first Chern class c^M) and L
a hermitian holomorphίc line bundle over M. Assume that there is a Kάhler metric

g on a compactification L of L of the form (4.5) with gQ Kάhler-Einstein, whose

Kάhkr form is cohomologous to the Ricci form of L and that the eigenvalues of the
/s

Ricci form B of L with respect to g0 are constant. Then the complex manifold L
admits a Kάhler-Einstein metric if and only if the integral
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(5.7) F(L)=\ UQ(U)dU
-*min

vanishes.

Now let (Π, Π0) be an effective pair of Dynkin diagrams as in section 1 and
M=G/U the Kahler C-space associated to (Π, Π0). Consider the Kahler-
Einstein metric g0 on G\U corresponding to 8ττδmec+ with rQ=g0 and a holo-
morphic line bundle LA on G/U for ΛeZc with a Gu -invariant hermitian metric.
Note that a unique Gκ-invariant form in the first Chern class c^LjJ is given by
η(A) of (1.22). Let B be the Ricci tensor of LΛ which is the Gu -invariant
hermitian form on M corresponding to —

Lemma 5.4. Under the assumption above , zΰe have

(5.8) e(*) = det(l-^*)= Π
m, α

Proof. Straightf orwards by ( 1 . 1 8) .

Let p be an automorphism of Dynkin diagram Π such that ρ2=id and
It is known that if Π is irreducible and it admits such an automorphism p, then
Π is of type An (n>2), Dn (n>4) or E6 (cf. [5]). Note also that if Π has two
connected components Π(l)= {aly •••, an}> Π(2) = {β19 •••, βn} and Π(l), Π(2)
are isomorphic by the map ai-^βίy then the map p: Π-^Π defined by p(α;)=
βi> p(βi)=&i (for each i) is such an automorphism of Π, and from now on we
consider this automorphism p exclusively in the case when a Dynkin diagram Π
is reducible. A pair (Π, Π0) of Dynkin diagram is said to be admissible for p if

p(Πo)=Πβ.

Lemma 5.5. Let (Π, Π0) be an admissible pair of Dynkin diagrams for an
automorphism p and assume that ΛeZc satisfies p(Λ)=— Λ. Then

is an even function of x.

Proof. We use notation in section 1. Since p induces the bijections
p:Σ+-*Σ+ and p:Σo~-»Σo, it also induces the bijection p:Σm-» Σm Since
2δm= Σ α, we have p(2δm)=2δm. Note that (Λ, p(α))=(p(Λ), α)=-(Λ,α).

Thus if p(α)=α, (Λ,α)=0. For αeΣ£, αφp(α),

(2δm,α) (2δm,p(α)) / \(2δm, a)

Thus we get our claim. q.e.d.
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Corollary 5.6. Let G/U be a Kahler C-space associated to an admissible pair

(Π, Π0) for an automorphism p. Put 2δm— Σ tf*Λ* Let LA be a holomorphic

line bundle over G/U such that p(Λ) = —Λ and Λ— Σ ^A* with \bΛ\<aΛ

for each αeΠ—Π0. Then the P\C)-bundle P(l<g)LΛ) over G/U admits an
Kahler-Einstein metric.

Proof. Note that by the assumption for Λ the absolute values of eigen-
values of B are less than 1. By Theorem 5.4 in K-S [12], it is sufficient to
see that the integral

ri

vanishes. Since
get our claim.

is an even function of U by Lemma 5.5, we
q.e.d.

EXAMPLES 5.1. In the following cases the P1(C)-bundle P(1®Z,Δ) over a
Kahler C-space G\U admits an Kahler-Einstein metric. The vertices con-
tained in Π0, Π—Π0 of a Dynkin diagram Π are denoted by O, x respectively.

(1) (Π,

2δm=2(Λ-1+ Λ^). Put Λ=Λβll-Λ-3. Then p(A)= -Λ. In this case the asso-
ciated P^ίTJ-bundle P(10LΛ) is the Example 5.10 in K-S [12].

(2) (Π, Π0)

= 2ΛΛl+4Λflί2+4Λ.5+2ΛΛ6. Put Λ-
— Λ. In this case G=SL(7, C) and U is given by

,2—Λ*5—ΛΛ6. Then p(Λ)=

(3) (Π, Π0)

U =

/ * * * * * * *
0 * * * * * *o o * * * * *
0 0 * * * * *
0 0 * * * * *
0 0 0 0 0 * *

\ 0 0 0 0 0 0 */
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2δm=4Λβ3+2Λ(,4+2Λ(,5. Put Λ=Λ-4-Λ-i. Thenp(Λ)=-Λ.

P

(4) (Π, Π0)

2δm=2Λ-1+4Λβ3+4Λβ5+2Λβ6. Put Λ=Λβ3-Λ-5. Then p(Λ)=-Λ.

(5) (Π,Π0) I I p
o ;> x

A &

2δm-4Λflί2+4Λβ2. Put Λ=Λ,2-Λβ2. Thenp(Λ)=-Λ.

Now we consider triples (Π, Π}, Π0), (Π, ΠΪ, Π0) of Dynkin diagrams as in
section 3. These triples are said to be admissible for an automorphism p of
Dynkin diagram Π if p(Π0)=Π0, and p(a0(l))=aQ(2). Note that the holomorphic
line bundle Ll®Lζl=L(El®L'1~

1)=L(E2®L'2~
l)~ί over M=G/U is given by

LΛ, where Λ— ΛO(!)— Λ0(2) and thus p(Λ)= — Λ. By Lemma 2.4 Λ satisfies the
assumption in Corollary 5.6. Recall that the P^C^-bundle X is given by X=

Corollary 5.7. Let (Π, Π}, Π0), (Π, Πf, Π0) be admissible triples of Dynkin

diagrams for p. Then both the P\C)-bundle X associated to these triples of

Dynkin diagrams and the compact complex manifold Y obtained from X by blowing

down associated to these triples of Dynkin diagrams admit Kάhler -Einstein metrics.

Proof. By the last Remark in section 4 and Theorem 5.3, it is enough to
see that the integral (5.7) vanishes. Since Dmsίy.=Dmίn and O(U) is an even
function of U by Lemma 5.5, we get our claim. q.e.d.

REMARK. As in K-S [12], X and Y admit a Kahler-Einstein metric if and
only if Futaki's integral F(H) of the holomorphic vector field H vanishes. We
can explain Corollaries 5.6 and 5.7 as follows. The automorphism p of the
Dynkin diagram induces automorphisms γx and <yr of the complex manifolds
X and Y respectively, such that v*H=—H. Thus FutakΓs integral F(H)
vanishes, because it is invariant under complex automorphisms (cf. Futaki [7]
Theorem 2.1). However the existence of such an automorphism γ is not
necessary to the existence of a Kahler-Einstein metric. See Example 5.3 (2)
and Example 6.4 in [17].
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Corollary 5.8. Under the same notation as in Corollary 5.7, if the number
of elements in Π— Π0>3, then the Kάhler-Einstein metric on Y is non-homogene-
ous.

Proof. Since Π— (Π} U Πι)φ0 by our assumption, we can take an element

αeΠ-(ΠiUΠϊ). Note that Πl=Π0U {α0(l)> andΠ?=Π0U {<*0(2)}. We may
assume that there is a connected subdiagram Π' of Π such that a and aQ(l) are
terminal vertices of Π' and tf0(2) is not a vertex of Π', taking p(a) instead of a
if necessary. Note that γ= Σ β is a positive root (cf. Bourbaki [5] Chap. 6,

£eΠ'
Prop. 19 Cor. 3 b)) and hence γeΣm Put Λ=ΛΛoCl)— ΛΛo(2). Since (Λ, γ)=
(Λ, αβ(l)) and (2δm, <y)>(2δm, α0(l)), we see that

(Λ, α0(l)) (Λ, 7) >Q> (Λ, α0(2))

(2δm, tfo(l)) (2δm, 7) (2δm,

and hence the number of distinct non-zero eigenvalues of g0

1B are greater than
or equal to 3, by Lemma 5.4. Thus we get our claim by Theorem 5.1. q.e.d.

EXAMPLES 5.2. In the following cases the blowing down Y admits a non-
homogeneous Kahler-Einstein metric. The vertices contained in Π0, ΠJ—Π0,
Π—Πί of a Dynkin diagram Π are denoted by O, D, x for ι=l, 2 respectively
as in section 3.

(i) (π,πί,π0) f^~?3 (π,π?,π0) β-fe-ff3

P P

Note that Λ=Λβίl—Λ-3.

^ΓT FT2 ΓT ^ ai a2 a

p (11, Hi, HQ) x—-o-

Note that Λ = Λ Λ - Λ Λ .

(3) (Π, Π}, Π0)
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(Π, Πί, . . . cc5 a6
x x O Π x

Note that Λ^Λ*— ΛΛ .

I r————ϊ 1

(4) (Π, Πi, Π0) <*! α3 α4 α5 αG
Γj—o—O—O—x

(Π, Πi, Π0)v
— o — o — α

Note that Λ=ΛΛ l—

(5) (π,πi,π0)
«ι

i, πl, π,) I
O-

A

Note that Λ=AΛ2—Λβ2.

Now we give examples of Y being homogeneous.

?1 <*2
EXAMPLES 5.3. (1) (Π, Πl, Π0) (Π,Πϊ,Π0)

t P.

In this case Λ=ΛΛ l—ΛΛ 2, compact Kahler manifolds Λ^, ΛΓ2 are P2(C), M is the
flag manifold 5L(3, C)/B where S is a Borel subgroup of 5L(3, C), ^ is the
P^CJ-bundle P(lφLΛ) over M and Y is the complex quadric Q\C).

(2) (Π, Πi, Π0)

(Π, Π?, Π0)

«ι or2 αΛ
D—O—O O—O

«ι «2 αΛ
x—o—O O—O

A A A
x—O—O O—O

A A Aπ—o—o o—o
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In this case Λ=Λ f l l l— Λft, compact Kahler manifolds N19 N2 are Pm(C), P*(C)
respectively, M is P"(C)xPm(C), X is the P^-bundle P(10LA) over M and

Y is the complex projective space P*+m+1(C).

6. Remarks

A riemannian manifold N is said to have cohomogeneity d if the codimension
of the principal orbits for the action of the isometry group is dy and d is denoted
by cohomg(JV). For a given positive integer d we give examples of Kahler-
Einstein manifolds which have cohomogeneity d.

Lemma 6.1. Let Mly M2 be Fano manifolds of ^-dimension and ^-dimen-
sion (nlt n2>2) and let Fly F2 be holomorphίc line bundles on Mly M2 respectively
such that cJFJX) and c*(F2)>Q. Then Jff1(Λf1xM2,

Proof. By Runneth formula, H\Ml X M2, F, ®F^) = Σ H'(M19
= 0,1

ΎhwH\MlxM29

-P'i®-Pi2'1)=(0). Also we get H\Ml X M2, Fϊl®F2}^(ϋ) by the same way. Since

End(lθίi

1®Fr1)=10(ίi®FF1)θ(Fr1®F2)ei and Λ^, M2 are simply
conected, we get our claim. q.e.d.

In general, for a compact complex manifold X let Aut0(^Γ) denote the

identity component of the group of all holomorphic automorphisms of X. Let

£ be a holomorphic vector bundle of rank r over a compact complex manifold

M and P(E) the associated projective bundle over M. By a theorem of Blan-

chard [3], we see that Aut0(P(£")) coincides with the identity component of all

fiber preserving automorphisms of P(E). Thus the projection π: P(E)->M in-

duces a homomoiphism π: Aut0(P(£'))->Aut0(M). Note also that the group of
all fiber preserving holomorphic automorphisms of P(E) is naturally isomorphic
to the group of all fiber preserving holomorphic automorphisms of the principal
fiber bundle P(M, PGL(ry C), π) associated to the bundle π: P(E)->M.

Lemma 6.2. Under the assumption as in Lemma 6.1, the homomorphism
π: Aut0(P(l®JF1(g)Fi'1))->Aut0(M1xM2) is surjectίve.

Proof. By Proposition 2 in [15] and Proposition 9 in [2], it is enough to

show that ff^A^xMg, End(lφF1®FF1)) — (0). Thus we get our claim by
Lemma 6.1. q.e.d.

We consider a holomorphic line bundle L over a compact complex mani-
fold M and the P^C^-bundle P(lφL) over M. We assume that M has a
Kahler-Einstein metric g0 with r0=g0 and that L has a hermitian fiber metric
such that the eigenvalues of the Riccί tensor B are constant on M and their ab-
solute values are less than 1 . We also assume that
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Γ U det(l-UgϊlB)dU=Q.
J-i

Thus P(10L) admits a Kahler-Einstein metric by Theorem 5.4 in K-S [12].
Now we recall the following.

Proposition 6.3. In the above situation, if the homomorphism π: Aut0(P(10
L))-* Aut0 (M) is surjective and B is non-trivial on each irreducible factor of the
Kάhler manifold M, then the Ktihler-Eίnsteίn manifold P(\®L) is irreducible and
cohomg (P(10Z,))=cohomg (M)+ 1.

Proof. See K-S [12] Proposition 5.6. Note that the homomoprhism π:
Isom0(P(10L))-^Isom0(M) is surjective by a theorem of Matsushima [13],

q.e.d.

Let N0=Pn(C), H the holomorphic line bundle over P"(C) corresponding to
a hyperplane and L0=Hm for \<m<n. Then we have r1(L0)=(m/(w+l))ί:1(Λ70)
and we get an almost homogeneous Kahler-Einstein manifold P(L00L0) of
cohomogeneity one. Let Λιr/=P(L00L0), π:N'->N0xN0 the projection and
£=L(L00Z,0) the tautological line bundle over N'. Then we have

Thus, if n+ί—m is even, there exists a holomorphic line bundle L' over N'
such that c1(L')-(l/2)c1(A/r/).

Now we construct a Kahler-Eintein manifold of cohomogeneity d for each
given positive integer d. If d is even, put d=2k, and iί d is odd, put d= 2k+l
(we may assume d>2). Consider the product Mί=N'x χNf of d— 1 copies
of N' and the product F1=L'® ®L/ of d—l holomorphic line bundles on Mλ

induced from L' on N'. Then c1(F1)=(l/2yι(M1). If d is even, consider the
complex projective space M2 of (2w + 1) (d — 1) dimension. Then c1(M2) =
((2n+l)(d-l)+l)c1(H). Put F2=Hl where /=((2n+l)(d-l)+l)/2. If d is
odd, consider the complex quadric M2 of (2n+l)(d— 1) dimension. Then
c1(M2) = (2n+ί)(d— l)q(ίf) for a holomorphic line bundle if over M2. Put
J?2=H' where /=(2n+l)(rf-l)/2. Consider the P^CJ-bundle PQφF&Fϊ1)
over Ml X M2. Then, by Lemma 6.2 and Proposition 6.3, we see that
P(\®Fl®F2

l) has cohomogeneity d.
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