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In the previous paper K-S [12] we have considered PYC)-bundles over
compact Kahler-Einstein manifolds to obtain non-homogeneous Kihler-Einstein
manifolds with positive Ricci tensor. The purpose of this paper is to give more
examples of non-homogeneous compact Kihler-Einstein manifolds, more precisely,
compact almost homogeneous Kihler-Einstein manifolds with disconnected
exceptional set. By [1] and [8], the structure of orbits of almost homogeneous
projective algebraic manifolds with disconnected exceptional set have been
investigated, but no explicit examples were given in [1] and [8] except complex
projective spaces. 'To construct these examples, we start again with P'(C)-bund-
les over Kuhler C-spaces and consider compact complex manifolds obtained from
these P!(C)-bundles by blowing down. Note that compact complex manifolds
obtained from projective algebraic manifolds by blowing down are not Kiahler in
general as an example of Moisezon [14] Chap. 3, section 3 shows. We construct
our compact complex manifolds in section 3 and prove that our compact almost
homogeneous complex manifolds are Kahler and have positive first Chern class
(Theorem 4.1). But in general these almost homogeneous manifolds may be
homogeneous. We give a sufficient condition for these Kahler manifolds being
non-homogeneous (Theorem 5.1). In section 6 we show that for each positive
integer d there are compact Kihler-Einstein manifolds which have cohomogen-
eity d. 'We follow the notation in Kobayashi-Nomizu [11] which is slightly dif-
ferent from the one in [12].

1 Kahler C-spaces and Dynkin diagrams

We recall known facts on compact simply connected homogeneous Kihler
manifolds, called Kahler C-spaces (cf. Takeuchi [18]).

Let IT be a Dynkin diagram and II, a subdiagram of II. 'The pair (II, II,)
is said to be effective if II, does not contain any irreducible component of II.
Let = be the root system with the fundamental root system II. Choose a
lexicographic order > on 3 such that the set of simple roots with respect to >
coincides with II. Take a compact semi-simple Lie algebra g, with the root
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system 3, and let t be a maximal abelian subalgebra of g,. Denote by g and b
the complexification of g, and t respectively. We identify a weight of g relative
to the Cartan subalgebra ) with an element of /—1t by the duality defined by
the Killing form ( , ) of g. In particular, the root system 3, of g relative to b is
a subset of \/—1t. Let {A}senCV/—1t be the fundamental weights of g
corresponding to II:

(1.1) 2(As B) ={ 1 %f a=pg
8, 8) 0 if a=+p.

Let =* be the set of all positive roots and {II,} , the subgroup of \/—11 genera-
ted by II,. Put 3,=3N{Il;},. We define a subalgebra u of g by

(1.2) u=h+ 3> g,
aEEOUE‘”

where g, is the root space of g for a€X. Let G be a simply connected complex
Lie group whose Lie algebra is g, and let U be the connected (closed) complex
subgroup of G generated by u. Put M=G/U. Then it is known that the
complex manifold M=G/U is compact, simply connected and admits a homo-
geneous Kihler metric. Let G, be the compact connected subgroup of G
generated by g,. Put K=G,NU. Then K is connected, G, acts on M transi-
tively and M=G/U=G,/K as a smooth manifold. This homogeneous complex
manifold M is s said to be associated to the pair (11, I1,) of Dynkin diagrams.
We define a subspace ¢ of /1t by

(1.3) c= 3 RA,.
acll-II,

Then \/—1¢ coincides with the center of the Lie algebra t of K. We also
define lattices Z of v/ —1t and Z; of ¢ by

(1.4) Z = {rneVv—1t]2(\, a)/(a, a) is an integer for each a €3}
and
(1.5) Ze=ZNec.

Let m be the orthogonal complement of f in g, with respect to the Killing
form (, ); g,=!+m. The subspace m is K-invariant under the adjoint action
and identified with the tangent space T,(M) of M at the originoe M. Put

(1.6) =325, Zn= 3.
We define K-invariant subspaces m* of g by

(1.7) mt= 3 g.,.

+
aezm
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Then the complexification m€ of m is the direct sum:
mé=m+4+m-.

We denote by X — X the complex conjugation of g with respect to the real form
g,. Then m¥=mz*. We choose E,Eg, for « €3, with the following properties
and fix them from now on:

(1.8)  [En,E.]=—a, (E,E,=—1, E,=E, for acx.

Let {©"},es be the linear forms on g dual to {E,},cs, that is, linear forms
defined by

(1.9) 1 if a=8

0 if a%48.

( ") = {0}
{ ww(Ep) = {

Let T be the toral subgroup of G, generated by t. The tangent space
T,(T) of T at the identity element e is identified with t. Let JYT') denote the
space of T-invariant real 1-forms on 7. Then we have natural linear isomor-

phisms:
(1.10) t—>t*=T¥T)—-> JI(T)— HYT, R).

We identify t with H(T, R). Then we have

1 —
(1.11) o2 =HT, 2).
It is known that the inclusion ¢: T—K induces an injective linear map
*: H(K, R)— HY(T, R) with *HYK, R)=1/(2z/—1)¢ and *HYK, Z)=
1/2e\/—1)Z,, and that the transgression for the principal bundle K—G— M
defines a linear isomorphism 7: HY(K,R)— H*(M, R) with ~(HYK, Z))=
H*M, Z). We define a linear map r: c—=H?*(M, R) by

T(A) = —7(M[(2z/—1)) for A Ec,

where H(K, R) is identified with 1/(2z+/—1)c through ¢*. Then 7(Z,) coin-
cides with H*(M, Z) (cf. Borel-Hirzebruch [4]).
We define a cone ¢* in ¢ by

(1.12) ¢t = {rec|(n, a)>0 for each asII—II}

and put Z;=Z Nc¢*. Then we have



936 N. Koiso anp Y. SAKANE

(1.13) ¢t= 31 R*A,,
aEl’I—Ho

(1.14) Zi= X3 Z*A,.
acll-II,

Moreover, the cone c* is characterized by
¢t = {rec|(\, @)>0 for each acZ} .

Lemma 1.1 (Takeuchi [18]). Let 9% (M) be the space of closed G, -in-
variant real 2-forms on M and 9*(M, g) the space of real harmonic 2-forms on
M with respect to a G,-invariant Riemannian metric g on M. Then 9% (M)=
M, g)-

Let A€c. Regarding each »” a G,-invariant C-valued 1-form on G,, we
define a G,-invariant C-valued 2-form %(A) on G, by

(1.15) ,;(7»)=§”—<}—__—_1 S @)o* AaE.

acszy
We define a complex linear form X on g, by
AX) =\ X) for Xeg,,

and regard X as a G,-invariant C-valued 1-form on G,. Thus 1/(2zv/—1)\is
regarded as a G,-invariant R-valued 1-form on G,. Then we have

7(\) = —d(1/2=v/=1)A),

and »(\) can be pulled down to a unique form in 9%, (M). Thus the corres-
pondence A—>7(\) defines a linear map %: c—=J9% (M).

Lemma 1.2 (Takeuchi [18]). Let +» be the natural map assigning
wE I (M) to the de Rham class [w] in HX(M, R). Then we have the following
commutative diagram consisting of linear isomorphisms :

(1.16) ¢ —> H*(M, R)

n\ /\P

Ie (M) .

We define elements 8, 8 of \/—1t by
(1.17) 8 =L S a, 5=

respectively. It is known that 28, €Z¢ and 8= 3] A,.
Now we recall the following facts. acsl
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Facr 1 (cf. Borel-Hirzebruch [4], Takeuchi [18]). Let M=G/U=G,/K
be the compact homogeneous complex manifold associated to an effective pair
(I1, II,) of Dynkin diagrams. Then we have the followings.

1) For rec,

(1.18) V=1L 3 o et
27 ae}:;;

defines a G,-invariant real covariant symmetric tensor field of degree 2 on M, and
the correspondence N — g(\) gives a bijection from c* to the set of G,-invariant
Kahler metrics on M.

2) The first Chern class ¢(M) of M is given by c¢(M)=1(—29,). For
the Kahler metric g corresponding to NEc*, the Kdhler form o (defined by
o(X, Y)=g(X, JY), where J is the almost complex structure of M), the Ricci
tensor r and the Ricci form p are given by

(1.19) 0 =10 = —(V=I/2x) T O @)™ AT,
ey
(1.20) r= 47rg(28m) =2 3 (28m, o0,
aeza
(1.21) p= 47:7;(28m) ==2vV—-1 2 (25, 2)o™"No~"*.
aezg

Fact 2 (cf. Ise [9]). For each A€ Z,, there is a unique holomorphic character
Xa of U such that

Xa(exp H) =exp(A, H)  for each HEY.

Let L, denote the holomorphic line bundle on M associated to the principal bundle
U—G— M by the character X,. The correspondence A— L, induces an isomor-
Dphism from Z. onto the group HYM, 0*) of all holomorphic line bundles on M.
Moreover, under this isomorphism the subset —Z ! corresponds to the set of all very
ample holomorphic line bundles on M. The first Chern class c,(L,) of L, contains
a unique G ~invariant 2-form

(1.22) ”(A) = =5 L ) ;QL &(A, @)~ Ao=*

on M.

2 Kaihler C-spaces as projective bundles

Let E be a holomorphic vector bundle of rank 7 over a complex manifold
N. The complex projective bundle P(E) associated to E is defined as follows.
Let C* act freely on E—(0-section) by scalar multiplication. Then P(E) is the
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quotient complex manifold
P(E) = E—(0-section)/C* .

Thus a point of P(E) over x&N represents a complex line in the fiber E, of
E at x. We organize various spaces and maps by the following diagram:

(2.1) P(E) — E—(0-section) G E
P / ?

Using the projection @: P(E)— N, we pull back the bundle E to obtain the
vector bundle @*E of rank r over P(E). We define the tautological line bundle
L(E) over P(E) as a subbundle of *E as follows. The fiber L(E); at E€P(E)
is the complex line in E, represented by £. Note also that if L is a holomor-
phic line bundle over N, then P(E) is canonically identified with P(EQL) as
complex manifolds and L(E @ L)=L(E)®¢*L as holomorphic line bundles.

Let IT be a Dynkin diagram and II, a subdiagram of IT such that IT, is of
type 4,-, (II,=0 if /I=1). Consider also a subdiagram II, such that II, contains
II, as a subdiagram and II, is of type 4;,. Put =,=3=N{II,},. We definea Lie
subalgebra b of g by

(2.2) p=0+ X2 g

acsZ, U+
as in section 1. We denote by G/U,G/P the Kihler C-spaces associated to the
pairs (II, II,), (II, I1,) of Dynkin diagrams respectively. Put {a,} =II,—II, and
Ay=A,,EZ. We define a subalgebra g(1) of p by

(23) g(l) =b+ > g,

ace,

and let G(1) be the complex subgroup of G generated by g(1). Then there
is an irreducible representation p, : G(1)—GL(V,,) of G(1) with the highest
weight A,. The representation p,, can be uniquely extended to an irreducible
representation of P, which is also denoted by p,,: P—>GL(V,). Note also that
dimg Vi =1+1.

We denote by E, the homogeneous vector bundle over G/P defined by the
representation p, : P—GL(V,) and by P(E,,) the complex projective bundle
over G/P associated to the vector bundle E,,. Then G acts on E, and P(E,,)
in natural ways. We denote by [g, v] the element of E,  defined by (g, v)E
GXxV,,and let p: E, —(0-section)—P(E, ) be the projection. Take a highest
weight vector vy, of py: P—>GL(V,,), that is, v, is a non-zero vector of V,,
such that
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(24) { PAo(H)vAo = (Ao, H)?)Ao for HEﬁ

Pag(Ea)Va, =0 for E,eg,, aex*
and fix it.
Lemma 2.1. We have an identification: P(E,)=G|U.

Proof. At first note that G acts on P(E,)) transitively, since G(1) acts on
P(V,,) transitively. Put o=p([e, v,,]). Consider the isotropy subgroup G, of
G at o€P(E,). Then we have G,={g €G|gEP, py,(g)va,=Mg)? s, for some
AMg)eC —(0)}. Thus the Lie algebra g, of G, is given by

(2.5) go = {XEpIpAo(X)‘vAoE C’UAO}
= b‘l’ 2l Qs = b"‘ PN Os -
(Ap, @) >0, US* aeX,UB+

Hence g,=u. Since the normalizer of the parabolic subgroup U coincides

with U, we see that U=G, and P(E,)=G/G,=G/U. q.e.d.

Now we consider the homogeneous vector bundle E,, over G/P. Then
E,,—(0-section) is a C*-bundle over P(E,). Let L(E, ) be the tautological line
bundle over P(E, ) associated to the vector bundle E, over G/P. 'Then we
have an identification: E, —(0-section)=L(E, )—(0-section).

Lemma 2.2. The tautological line bundle L(E,) is the holomorphic line
bundle Ly, over P(E\)=G]|U associated to the principal bundle U—~>G—G|U by
the character X, of U.

Proof. Since (Ay, @)=0 for each a €3, p, (E,)vs,=0 for each aEZ,.
Thus p,, induces a representation p, : U—>GL(Cv,,), which is identified with
the character X, of U, since p, (exp H)vp,=exp (Ao, H)v,, for HE). Note
that by Lemma 2.1 each element of L(E,) can be written as [g, Av,,] (£ EG,
AEC). Now let [g, Av, ], [, nv,a,] be elements of L(E,,). Then [g, Avp]=
[g'y nva,) in L(E, ) if and only if g'=gu (€ U) and pp (u)pvs,=Avs,. Thus
we get our claim. q.e.d.

Now we recall the following general formula for the canonical line bundle
of a projective bundle. Let @: E—N be a holomorphic vector bundle of rank
r over a complex manifold N and let K, Ky denote the canonical line bundle

on P(E), N respectively. Then
(2.7) Ky = p*(KyQdet E¥)QL(E)

where det E* denotes the holomorphic line bundle /r\E *,
We apply this formula to compute the first Chern class of P(E,)=G/U.
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Lemma 2.3. The element —28 € Z; corresponding to the first Chern class
a(P(Ey,)) of P(En)=G|U is given by

(2.8) =28, = —(IH+NDA+ X —mA,  for some n,EN.
acll-II,;
Proof. Since 28,27/, it is of the form
28, = 21 mA, (n,eN).
acsll-II,

Since K¢/p@det EX is a holomorphic line bundle over G/P, the Chern class of
@*(K¢/p@det EX ) contains a unique G,-invariant 2-form 5(A;) with

A= > m,A, (m,eZ).

By Lemma 2.2 and Fact 2, the first Chern class ¢,(L(E,,)) of L(E,,) contains
a unique G,-invariant 2-form n(A,). Since E,  is a holomorphic vector bundle
of rank /41, we see that

28, = A H(I4-1)A,
by the formula (2.7) and Fact 2, and hence we get our claim. q.e.d.

ReMARK. We may prove Lemma 2.3 by a computation on root systems
as follows. Put Il,={a;, -, a;,_}. Since I, is of type A,_,, we have
2 a=(I-Va;,+-+jl—j)a;~4-+(1—-e;,_,,
aczf
where S§=3*NZ3,.
Since II, is of type 4, and IT,—II,= {a,}, we may assume that

2(ety, ;,

2(cty, .
= —— = <l-1.
(o, ) 0 for 2<;5<I

—1 —
’ (ao, ao)

Thus we see that

D a=—((-DA+ X m,A, (m,eZ)
aEXf acsIl—{a}
Hence we have
28, =20— 3 a=2( 3 A)+(I-1DA— 2 mA,
acsll

aexy acsTl—{ay}

=(+DAt+ 2 mA,=+DA+ 3 mA,,
acll—{ay} acll—

1,

where n,EN for each §&II—1II,, since 25, EZ/ .

3 PY(C)-bundles over Kihler C-spaces and blowing down

Let N,, N, be compact complex manifolds and consider holomorphic vector
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bundles E; of rank [+1>2 over N, E, of rank k+41>2 over N,, We also
assume that the total spaces P(E;) and P(E,) of projective bundles coincide as
complex manifolds, which is denoted by M, and that there are holomorphic line
bundles L{ over N, and Lj over N, such that the tautological line bundles
L(E,QL{™) over P(E,QL{™) and L(E,QL;™") over P(E,QL;™) satisfy
L(E,QL{ ™) '=L(E,QL4™"), more precisely, there is a holomorphic bundle iso-
morphism L(E, ® L{™")'— L(E,® L") compatible with the identification:
P(E,®L{™")=P(E,)=P(E,)=P(E,QL}”). We also consider the P'(C)-bundle
POI®LE,QL; ™) =PL(E,QL; Y®1) over M=PEQL;™)=P(EQL;™),
whose total space is denoted by X. Note that complex submanifolds M, M, of
X defined by the O-section of L(E,®L{™") and O-section of L(E,QL}™") are
identified with M=P(E,QL;"") and M=P(E,Q L") respectively.
We organize various spaces and maps by the following diagram:

X = PUDLERL,™) = PILERQL; YP1)

V4 T
(3.1) M= PEQL;™) = P(E,®L;™)
P1 P2
N, N,

Now the following lemma is a special case of Nakano [16], Fujiki-Nakano
[6] (cf. Moisezon [14]).

Lemma 3.1. There exists a complex manifiod Y containing N,, N, as complex
submanifolds and a holomorphic map ®: X —Y in such a way that (X, ®) is a com-
position of monoidal transforms from Y with centers N,, N, and M,=® (V)
M,=®~\(N,), that is, Y is a complex manifold obtained from X by blowing down
M,=P(E,QL;™") to N, and M=P(E,QL}™") to N,.

Proof. Note that the normal bundle of P(E,®L{™") is the line bundle
L(E1®L{_l). Thus the condition in Fujiki-Nakano [6] is satisfied. q.e.d.

ReEMARK. Note that the tautological line bundle L(E) over a projective
bundle P(E) is obtained from E by blowing up the O-section of E to P(E). Note
also that P(I@L(E,QL,™)) is a union of complex submanifolds L(E,®L!{™)
and L(E,®L}™") with the intersection L(E,QL{™") N L(E,Q L} ) =L(E,QL{™")—
(0O-section)=L(E,®L;™")—(0-section). Thus Y is a union of the canonically
imbedded complex submanifolds EI<Z)L{_1 and E.A,(X)Lé'1 with the intersection
EQ®L;' NE,QL}'=EQL] ™" —(0-section)=E,QLj} ™" — (0-section), which is also
L(E,®L{™")—(0-section)=L(E,®L}™")—(0-section).

Now we consider the triples (II, II}, II,), (II, II}, II,) of Dynkin diagrams
which are one of the followings.

(a) The Dynkin diagram II is connected, II, is a subdiagram of IT and
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of type A4,.,, and subdiagrams I}, II} of II are of type 4, and contain II, as a
subdiagram.

(b) The Dynkin diagram IT has two connected components IT(1) and I1(2),
and II, is a subdiagram of IT which has also two connected components IT,(1) of
type A4,-, and IIy(2) of type A,-,. Subdiagrams IIi, II{ of IT have also two
connected components ITj(1) and IIi(2), I13(1) and I1}(2) respectively, and we
assume they satisfy the following conditions:

(1) 1Ii(1) is a subdiagram of II(1), of type A4, and contains I (1) as a
subdiagram, and IIj(2) conicides with IT,(2).

(2) Ii(2) is a subdiagram of II(2), of type 4, and contains II(2) as a sub-
diagram, and IT;(1) conicides with II,(1).

ExampLes 3.1. The vertices contained in II,, IT{—1II,, IT—II} of a Dynkin
diagram IT are denoted by O, [J, x for =1, 2 respectively.

(a) (I, I3, II,) x —[J—0—0—0—0—x—x
(11, 113, 11,) X — X —0~—0~—0=—0~—[J—x

(b) (I, M, IT,)  x—0—0—0—x  x—O—O0—O—x—x
(11, 11}, II,) X = X e OO X X e Qe O Q[ —

Put {a(2)} =I1{—TII, and Az )=Ayy for i=1, 2.
We consider Kihler C-spaces associated to pairs of Dynkin diagrams and
P'(C)-bundles over Kihler C-spaces.

Case (a). We denote by G/U, G/P,, G|P, the Kahler C-spaces associated to
the pairs (II, I1,), (II, II}), (IT, II}) respectively, and by E,, E, the homogeneous
vector bundles E, ), E5 ) over G/P,, G|P, respectively. By Lemma 2.1, we
have M=P(E\)=P(E,)=GU, and L(E,)=L,), L(E,)=L,, by Lemma 2.2.
Put L H=L,y) and L,=L,,,. Note that there is a holomorphic line bundle
L (resp. L3) over N,= G/P, (resp. over N,= G|P,) such that ¢¥L{= L, (resp.
@FLi=L,), where @,: M=G|U—->N,=G|/P, (resp. @p,: M=G|U—->N,= G|P,) is
the projection. We thus have L(E,QL{)=L,QL:;'=L(E,QL; ")”". Note also
that the P(C)-bundle X is given by P(1L,QL3").

Case (b). We denote by G,/U,, G,/P,, G,/U,, G,/P, the Kidhler C-spaces
associated to the pairs (II(1), II,(1)), (II(1), ITi(1)), (IX(2), I1,(2)), (TI(2), ITi(2))
respectively and by E,, E, the homogeneous vector bundles E, ), Ej ) over
G,/P,, G,/P, respectively. We regard the vector bundle E, over G,/P, (resp. E,
over G,/P,) as a vector bundle over N,=G,/P, X G,/ U, (resp. N,=G,|U, X G,|P,),
which is also denoted by E, (resp. E,). By Lemma 2.1, we have M=P(E,)=
P(E,)=G,/U, X G,|U,, and L(E,)=L,, and L(E,)=L,, by Lemma 2.2. Put
L=L and L,=L, ;. Note that there is a holomorphic line bundle L]
(resp. L3) over N, (resp. over N,) such that p¥L{=L, (resp. p¥Li=L,), where
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@1 M— N, (resp. @,: M—N,) is the natural projection. We thus have
LEQL{ =L QL:'=L(E,QL3™")™". Note also that the P{(C)-bundle X is
given by P(1PL,QL;"). Put G=G,XG, and U=U, X U,.

In case (a) and (b), we call X the PYC)-bundle associated to the triples
(11, 11}, IL,), (I, I1%, IL,) of Dynkin diagrams. We also call Y obtained as in
Lemma 3.1 the compact complex manifold obtained from X by blowing down
associated to the triples (I, IIi, I1,), (I, 11}, I1,) of Dynkin diagrams. Note that
in this case Y is almost homogeneous with respect to the complex Lie group G,
since E1®L{_1—(0-SCCtiOD):L1®L2_1—(O-SCCtiOD) is an open G-orbit in Y, and
Y has a disconnected exceptional set which consists of two G-orbits N, N,.
Note also that N,, N, are Kihler C-spaces associated to the pairs (II, II}),
(I1, II3) respectively.

4 Almost homogeneous Fano manifolds

A compact complex manifold is called Fano if its first Chern class is positive.
In this section we prove the following.

Theorem 4.1. Let (I1, II}, IL,) and (11, I13, I1,) be triples of Dynkin dia-
grams, as in section 3, X the PC)-bundle associated to these triples of Dynkin
diagrams and Y the compact complex manifold obtained from X by blowing down
associated these triples of Dynkin diagrams. Then Y is a Kdhler manifold with
positive first Chern class.

First we recall the notation of K-S [12]. Let »: L—M be a holomorphic
line bundle over a compact Kihler manifold M with a hermitian metric A.

Denote by L the open set L—(0-section) of L. Let ¢ be a function on L which
depends only on the norm s of %4 and increases for the norm. Then the

horizontal lift X of a vector field X of M to L with respect to the canonical
hermitian connection of L is characterized by

(1) mX =X, Xif=U%M=0

where [ is the almost complex structure of the total space of L. We decompose

the group C* into S'XR* and define holomorphic vector fields S, H on L
generated by S'-action, R*-action respectively so that

(4.2) exp2zS=id, H= —JS, H[t]>0.
If we denote by p, the Ricci form of L, then we have

. Ve el
(43) [X’ Y]_—[X’ Y] = ’_PL(X, Y)S .

Define a hermitian 2-form B on M, the Ricci tensor of L, by
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(44) B(X, Y) = puX, JY),

where J is the almost complex structure of M.
We also cinsider a riemannian metric § on L of the form

(4.5) § = dt+(dto J)*+n*g,

where {g,} is a one-parameter family of riemannian metrics on M. Define a
positive function % on L depending only on ¢ by

(4.6) u(t) = gH, H) .
Then, by Lemma 1.1 of K-S [12], the metric § on L is a Kahler metric if and

only if each g, is a Kihler metric on M and ig,——u(t‘)B We also assume
that the range of ¢ contains 0. Put

4.7) U@t) = S: u(z)dt,
then we have
(4.8) & =8—U®B.
We put
(4.9) u(t) = a cos % with ¢ G(—% a, %—a) for a>0,

and define U(¢) by (4.7). Take a Kihler metric g, on M and assume that each

g defined by (4.8) is positive definite. We condider the Kahler metric Z on L
of the form (4.5) satisfying (4.6). Then we have

(4.10) U(t) = a*sin L +b.
a

We may assume that the range of U is (—(/+1), k+1) for given positive in-
tegers k and I, by changing the origin of U and a>0 if necessary. Thus we
have

(4.11) @ = %(l—l—k+2), b— %(k—l).

Lemma 4.2. Let s be the norm of the hermitian line bundle n: L—M.
Then on L

(@ +b)s'+(0—a)
4.12) U(t) = N

by replacing t(s) by t(cs) for a positive constant ¢ if necessary.
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Proof. Note that, in terms of polar coordinates (r, ) on C*, the natural
complex structure J on C* is given by

R

or r 00’

and that if s=2&r for a constant £>0, J —667= —s—:—. Note also that the restric-
s

tion to a fiber C* of the C*-action on L coincides with the group action of C¥.
Thus the vector field H restricted to a fiber C* satisfies

He _Js—o @ _sdt 0
Os ds Ot
and thus
sﬁ-— u(t) = acos—t—
ds a

Since S sec xdx=log

m  t\ _ 1+4tan(/2q) _ma_,_ma
“_tan<4+2a> 1—tan (1/2a) (-5 =<t<%)

tan (—Z« + %) I, we see that

for some positive constant ¢, and tan(#/2a)=(cs—1)/(cs+1). Thus we have

P 4 . 2tan(t/2a 2 (cs)2—1

Ut)y=a sm;—|—b=a ﬁ_ﬁg(%—l—b=a ECT;’—]—_I_H). q.e.d.
In general, let p: E—> N be a holomorphic vector bundle over a compact
complex manifold N, @: P(E)—N the associated projective bundle over N and
n: L(E)—>P(E) the tautological line bundle over P(E). Denote by E the open
set E—(O-section) of E. Let k, be a hermitian metric on E. Since E= L(E)
=L(E)—(0-section), a metric 4, on E defines a hermitian metric % on L(E): for

x€P(E) and v, we L(E)=E with 7(v)=7r(w)=x, k,(v, 0)=(k)ecs(v, ).

ReMARK. In general a fiber metric on L(E) does not define a hermitian
metric on E. There is a natural one-to-one correspondence between complex
Finsler structures in E and hermitian structures in L(E). See Kobayashi [10].

Corollary 43. Let N, N,, E,, E,, L! and L} be as in (3.1) with M Kahler.
Assume that there are hermitian metrics h, on E,QL{™" and h, on E,QL4™" with
the following properety: If we denote the hermitian metric on L:L(E1®L{'1)
induced from hy by h and the norm of h by s, the norm s, of the hermitian metric
on L(E,QL% ) induced from h, depends only on s, under the identification:
L(E QL™= L(E QLS.  Assume further that we can construct a Kahler metric
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gon L in the above way, that is, each g, in (4.8) is positive definite. We choose
the function t in such a way that the range (—(I+1), k+1) of U is [4+1=rank E,=
codimension N, in Y and k-+1=rank E,= codimension N, in Y. Then the
function U on the open set L of the compact complex manifold Y is extended to
a smooth function U on Y such that the range of U on the complex submanifold
E®L{™ is [—(141), k+1) and the range of U on E,QL}™ is (—(I+1), k+1].

In general, for a Kihler metric g the corresponding Kihler form is denoted
by w,. We now seek the condition that the metric § on L=L(E,QL{ )=
L(E,®L}™") can be written as

w; = (prom)¥w,—2v/ _1d'd"fy = (p,om)*w,—2\/—1d'd"’f.,

where o; is a Kahler form of a Kihler metric g on N; for =1, 2 and f,, f.. are
smooth functions on L depending only on ¢.

Lemma 4.4. Under the assumptions in Corollary 4.3, if the Kdhler metric
2o on M=P(E,QL{ " \=P(E,QL4™") and the hermitian form B on M satisfy that
&+ (+1)B=gptg, where & is a Kdahler metric on N, and g,—(k+1)B=gig,
where & is a Kdhler metric on N,, then there are smooth functions f,: E,QL}"'—R
and f..: EZ®L£—1—>R such that on L

#13) w7 = (prow)*o—2v/—1d'd"fy = (pyom)*w,—2+/—1d'd"f...

Proof. We use the notation 5,,, 53 (0<a<mn) used in K-S [12]. We may
assume that 5mt=8,2t=0 (1<a<mn)on a fiber. First we consider a function f
on L satisfying w;=(p,om)*w,—2v/—1d'd"f. Since g5o=2050,f, we have

sy 4, Y
(4.14) 2ut — udt(u 4 )
by Lemmas 1.2 and 1.3 of K-S [12]. As (2.15) in K-S [12], we put o(U)=1".
Then the equation (4.14) is given by
d d

d i\
4.15 2=_< )4, d_,d
(+.15) au\PWgp ) sinee o =uap

By solving this equation, we have

df _2U+C

for some constant C€R.
au  o(U)

(4.16)

Now p(U)=w*=a* cos* L- =a2(1—sin2(i)). By (4.10) and (4.11), we see that
a a
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(#17)  @(U) = (@ +b—U)@—b+U) = S+1-U)(I+1+ D).
Let f, denote a solution of (4.16) with C=2(/+1). Then the equation (4.16)
is given by

df, 24°
18 dafy . 20°
(+18) dU  k+1-U

and hence fy=—24%log (k+1—U)+C’ (C'ER) and f, is extended to a smooth
function on E1®L{_1. Similarly we have a solution

fo= —2alog(I+1+U)+C” (C"ER)

of (4.16) with C= —2(k+1), which is a smooth function on E,QL}™". By
K-S [12] Lemma 1.3, we have

(4.19) A A 1 _df 1 df
3.0pf = —Lu¥p = _Loan4 ..
sf 5 U Bas > P(U) 77 Bas

Since %¢(U)%= U+141 by (4.17) and (4.18), we have

(g— UB)+%¢(U)%B = &+(IH+1)B = of4, .

Thus w; = (@,07)*e,— 2/ =1d'd"f, on L. Similarly, w; = (p,°z)*w, —
2\/—1d'd"f.. on L. q.e.d.

Corollary 4.5. Under the same assumption of Corollary 4.3 and Lemma 4.4,
the Kdhler metric § on L can be extended to a Kdhler metric on the complex
manifold Y.

Proof. Note that by (4.11) and (4.12) we have k+1—U= l_;’f:iz where

is the square of the norm of the hermitian metric 4, on E,QL!™". Thus we have

(4.20) Jo = 2alog (14+5*)—2a? log (k+1+2)+C" .
Let p,: E,QL{™ — N, be the projection. It is easy to see that

(4.21) pro—4a*/Z1d'd" log (1++°)

is the Kihler form of a Kihler metric on a neighborhood of O-section of
P EQL{™ = N,. Since p=e@,om on E1®L{-l—(0-section)=f,, the metric § on
L can be extended to a Kahler metric
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p¥o,—4d®\/—1d'd" log (1+5%)

on E®L{™". Similarly the metric # on L can be extended to a Kahler metric
on E,®L;™" and hence to a Kahler metric on Y. q.e.d.

Corollary 4.6. Under the same assumption of Theorem 4.1, the compact
complex manifold Y is Kdhler. More precisely a Kahler metric § on L=L,Q®L:'—
(0-section) can be extended tc a Kdhler metric on Y, which is also denoted by g.

Proof. Let g, be the G,-invariant Kihler metric on M=G/U=
P(E1®L{—l)=P(E2®L£—1) corresponding to 873 as in Fact 1 in section 1 and
h a G,-invariant hermitian metric on the homogeneous line bundle L=
L(E,®L™)=L(E,®L}™")™ over M. Since we are in G,-invariant situation,
the first assumption in Corollary 4.3 is satisfied. And the hermitian form B on M
is G,-invariant and corresponds to 4z(—Ay(1)+Ay(2))Ec by Fact 2 in section 2.
Thus g, is G,-invariant and corresponds to 4z {28+ U(t)(A«(1)—A4(2))}, which
belongs to ¢t by Lemma 2.3. So the second assumption in Corollary 4.3 is
satisfied. In the same way we see that g,+(/4+1)B=¢pfg, where &, is a G,-
invariant Kahler metric on the Kihler C-space N, associated to the pair (II, IT3)
and g,—(k+1)B=gp%g, where &, is a G,-invariant Kihler metric on the Kihler
C-space N, associated to the pair (I, I1}). Thus the Kahler metric § on L can
be extended to a Kihler metric on Y. q.e.d.

From now on we assume further that the eigenvalues of B, regarded as a
hermitian form on a holomorphic tangent space of M, with respect to g,
are constant on M. Note that the assumption in Lemma 4.4 implies that
—1
I+1
(resp. k) because @i, (resp. p¥g,) is a positive semi-definite hermitian form of
nullity / (resp. k). Thus the function det(gs'g,)=0Q(U) on Lis given by

(resp. k_—_li_—l) is an eigenvalue of B with respect to g, with multiplicity /

“22) Q) =det(1-UgB) = (1+- L) (1— LY o)

' ° I+1 k+1/
where Q,(U) is a polynomial of U such that Q,(U)=#0 on [—(I+1), k+1].
Here also gi'g, and g5'B are regarded as endomorphisms on homolorphic
tangent spaces of M.

Theorem 4.7. Under the assumption above, together with assumptions in
Corollary 4.3 and Lemma 4.4, if the Ricci tensor r, of the Kdhler metric g, on M
is equal to g, then the first Chern class ¢(Y) of Y is positive. More precisely, let
p be the Ricci form of the Kdhler metric § on Y, then there is a C* function F(U)
of U on [—(I+1), k+1] such that
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(4.23) f—wz; = —2+/—1d'd"F .
Proof. By Lemmas 1.2, 1.3 and 1.4 in K-S [12], we see that the equation
(4.23) is equiavlent to the equation

4,24 =1 +2U49p=—=0.
( ) @ T 0g (¢Q)+2 P Tik 0

By solving this equation,
(4.25) F = —log(p0)—2 g_ du.
By (4.17) and (4.22),
(426)  log(9Q) = (I-+1) log (I+-1+ U)+(k-+1) log (k-+1— U)-+log 0,4,
where C,ER.
By (4.11) and (4.17),
U _ . U _ Rl 141

2 U _ -
o REI—U)(+1+0)  kt1-U 414U

and hence

“427) 2 S %dU: — (k1) log (k-+1—U)—(I-+1) log (14+-11-U) .

Thus F=—log 0,+C, (C,ER).
Since Q,(U)=#0 on [—(/+1), k+1], F is a smooth function on [—(I+1), k+1]
and hence, it is smooth on Y. q.e.d.

Proof of Theorem 4.1. Since g, and B in Corollary 4.6 are G,-invariant,
the eigenvalues of B with respect to g, are constant. By (1.20) we have r,=g,.
Note that the assumptions in Corollary 4.3 and Lemma 4.4 are astisfied as
in the proof of Corollary 4.6. Thus our theorem follows from Theorem 4.7.

q.e.d.

RemMARK. Note that, under the assumption in Theorem 4.1, by taking
L=L,Q®L;', L=Y, M=P(E)=P(E,)=G/U and the metric § on Y as in
Corollray 4.6, the following assumptions A) and B) in K-S [12] are satisfied for
a Kahler metric & on L of the form (4.5).

Assumption A). Let (min# max¢) be the range of 2. The function ¢ ex-
tends to a continuous function on L with range [min ¢, max ], and the subset
M (resp. M,,.,) of L defined by t=min ¢ (resp. £=max?) is a complex
submanifold of L with codimension D,in (resp. Dyayx). Moreover the Kihler



950 N. Koiso anDp Y. SARANE

metric 7 extends to a Kihler metric on E, which is also denoted by 2.

Assumption B). (1) The Kihler form of the metric g on £ is cohomo-
logous to the Ricci form g of . (2) The eigenvalues of the Ricci tensor 7,
of g, with respect to g, are constant on M.

5 Non-homogeneous Kihler-Einstein metrics

Let z: L—M be a hermitian holomorphic line bundle over a compact
Kahler manifold /. As above we consider a Kihler metric g on L of the form
(4.5). We also assume that the eigenvalues of B with respect to a Kihler metric
8o on M are constant and a compactification L of L satisfies the assumptions A)
and B). By Lemma 2.2 of K-S [12], we may assume that the range of U is
[——Dmim Dmax]‘

Now we give a necessary condition for a Kihler-Einstein metric on L of
the form (4.5) being homogeneous.

Theorem 5.1. Under the above situation, assume further that the Ricci
tensor 7 of the Kdhler metric § of L of the form (4.5) is equal to §. If § is riemann-
ian homogeneous, the followings hold.

(1) If the codimensions D ;n=D,,.x=1, then B=0.

(2) If one of the codimensions Dy, D,,., is equal to 1 and the other =1, then
the non-zero eigenvalues of gi'B are all equal.

(3) If both codimensions D.;,, Dy..>>1, then the number of distinct non-
zero eigenvalues of gi'B are 2.

First we recall the following.

Lemma 5.2. Every complete totally geodesic submanifold of a homogeneous
riemannian manifold is homogeneous.

Proof. See K-N [11] Chap. 7, Corollary 8.10.

Proof of Theorem 5.1. Since the closure S? of each fiber C* is a totally
geodesic submanifold of (L, £) and § is homogeneous, it is a riemannian homo-
geneous manifold by Lemma 5.2. We use the notations in K-S [12]. Note

that the induced metric §5,=2u? is an Einstein metric on S? since S? is 2-di-
mensional. Thus we have

(5.1) —5550(log (24%)) = c-2u? where ¢ is a constant.
Note that #*=g, u%t =¢‘% . By Lemma 1.3 of K-S [12], we see that the

equation (5.1) is given by

(5.2) —p L p-L(l0gp) = c-p
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and hence

(5.3) Z‘Z = —cU+ constant.

Thus @ is a quadric polynomial of U. On the other hand @ vanishes at U=
—Dyiny Dpax-  Therefore @ is of the form

@ = ¢'(U4D,nin) (U—Dppoy) for some c'ER.
By (4.1.5) in K-S [12], the first term of Taylor expansion of @(U) at U=—Dy;,
is given by 2(U+D,,,). Thus ¢ is given by

5.4 = %
(5:4) ?=D. T Dmax(U +Dinin) (U—Dinay) -

Since 7=4, the polynomial Q of U satisfies the equation

d 40
5.5 — P ey _
(5.5) dU<p+2U+Q i

by Lemma 2.2 in K-S [12]. By (5.4) and (5.5), we have

d lOg Q —— (2U+Dmin max) U(Dmax+Dm1n)
dU (U+Dm1n) (U Dmax)
_ 1_l)min _ 1_Dmax

U+ Dmin U—Dmax .

Thus we have
log O = —(1—Dpiy) 10g (U+Dinia) —(1—Dinax) log | U—Dimax| +-¢”
and thus we have
(5.6) 0 = C(U+D )i D — UPrac”
Since Q=det (1— Ugy'B), we get our claim. q.e.d.
Now we recall the following theorem in K-S [12].

Theorem 5.3 (Theoerm 4.2 in K-S [12]). Let M be a compact Kdihler-
FEinstein manifold whose Kdahler form represents the first Chern class ¢(M) and L
a hermitian holomorphic line bundle over M. Assume that there is a Kdhler metric
& on a compactification L of L of the form (4. 5) with g, Kahler-Einstein, whose
Kdhler form is cohomologous to the Ricci form of L and that the eigenvalues of the
Ricci form B of L with respect to g, are constant. Then the complex manifold L
admits a Kahler-Einstein metric if and only if the integral
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(5.7) F(L) = SD"’“ UQ(U)dU

~Dmin

vanishes.

Now let (II, II,) be an effective pair of Dynkin diagrams as in section 1 and
M=G|U the Kihler C-space associated to (II, II,). Consider the Kihler-
Einstein metric g, on G/U corresponding to 8z8,&c* with 7,=g, and a holo-
morphic line bundle L, on G/U for A€ Z; with a G,-invariant hermitian metric.
Note that a unique G,-invariant form in the first Chern class ¢,(L,) is given by
n(A) of (1.22). Let B be the Ricci tensor of L, which is the G,-invariant
hermitian form on M corresponding to —4zA Ec.

Lemma 5.4. Under the assumption above, we have

B o (A, )
(5.8) O(x) = det (1—xg5"B) *a£3+( t 2o @) )

Proof. Straightforwards by (1.18).

Let p be an automorphism of Dynkin diagram IT such that p*=id and p=id.
It is known that if I is irreducible and it admits such an automorphism p, then
ITis of type A, (n>2), D, (n>4) or E; (cf. [5]). Note also that if IT has two
connected components II(1)={a,, '+, @,}, [I(2)={B,, -**, B} and II(1), II(2)
are isomorphic by the map a;—@;, then the map p: II—-II defined by p(a;)=
Bi, p(B:)=a; (for each i) is such an automorphism of II, and from now on we
consider this automorphism p exclusively in the case when a Dynkin diagram II
is reducible. A pair (II, II,) of Dynkin diagram is said to be admissible for p if
p(Ilp) =1L,

Lemma 5.5. Let (I1, I1,) be an admissible pair of Dynkin diagrams for an
automorphism p and assume that A€ Z, satisfies p(A)=—A. Then

. (A @) ,
Q=) = ( tm

is an even function of x.

Proof. We use notation in section 1. Since p induces the bijections
p:=t—>3* and p: 3§ —>3=§, it also induces the bijection p: Zj—=5. Since

28= 22 a, we have p(28,,)=28,. Note that (A, p(a))=(p(A), @)=—(A, @).
acx},

Thus if p(a)=a, (A, a)=0. For aEZ;, akp(a),

() (o ) 1~ { )

Thus we get our claim. q.e.d.
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Corollary 5.6. Let G/U be a Kahler C-space associated to an admissible pair

(11, I1,) for an automorphism p. Put28,= > a,A,. Let L, bea holomorphic
acsll-II
line bundle over G|U such that p(A)=—A and A= > bA, with |b,| <a,
asll—II
for each acIl—1I1,. Then the PYC)-bundle P{1Q® L,) over G/U admits an

Kéhler-Einstein metric.

Proof. Note that by the assumption for A the absolute values of eigen-
values of B are less than 1. By Theorem 5.4 in K-S [12], it is sufficient to
see that the integral

1

| vowyaw = j‘ U -det (1— Ugs*B)dU

-1 -1
vanishes. Since det(1— Ugy'B) is an even function of U by Lemma 5.5, we
get our claim. q.e.d.

ExampLEs 5.1. In the following cases the P'(C)-bundle P(1L,) over a
Kihler C-space G/U admits an Kihler-Einstein metric. The vertices con-
tained in II,, IT—TII, of a Dynkin diagram IT are denoted by O, x respectively.

o QA
X X

) (I, 1)
P

28m=2(A,,+A,,;). Put A=A, —A,,. Then p(A)=—A. In this case the asso-
ciated PY(C)-bundle P(1L,) is the Example 5.10 in K-S [12].

(2 (1, L) T“T‘U_XT_T

28m=2Ag A4 +4A,4+2A,,. Put A=A, +A,—A,—A,,. Then p(A)=

—A. In this case G=SL(7, C) and U is given by

6"

)k %k ok % ok % %

0 % % % % % %

00 % % % % %

U= 00 % % % % %

00 % % % % %

00000 * *

000000 =

3 (I, 1) o “3/ ]
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28;m=4A4+20,,+2A,,. Put A=A, —A,,. Then p(A)=—A.

P

(4) (H’ HO) a, a; oy as ag

X—=Xe—(Q=— X — X

o)
Qa,

28m=2Ay+4My, 40, +2A,, Put A=A, —A,. Then p(A)=—A.

a,
O X

(5) (11, II,) g:j:Ix P
B B

28m:4Anz+4Aﬂz‘ Put A:Aﬁz_Aﬂz‘ Then P(A):_A

Now we consider triples (II, I1i, IT,), (II, IIf, IT;) of Dynkin diagrams as in
section 3. 'These triples are said to be admissible for an automorphism p of
Dynkin diagram IT if p(I1)=1II,, and p(ay(1))=a(2). Note that the holomorphic
line bundle L,QL;'=L(E,QL, )=L(E,QL;™")™" over M=G/U is given by
L,, where A=Ay(1)—Ay(2) and thus p(A)=—A. By Lemma 2.4 A satisfies the
assumption in Corollary 5.6. Recall that the P(C)-bundle X is given by X=
P(1®Ly).

Corollary 5.7. Let (11, I}, I1,), (I1, I1%, I1,) be admissible triples of Dynkin
diagrams for p. Then both the PYC)-bundle X associated to these triples of
Dynkin diagrams and the compact complex manifold Y obtained from X by blowing
down associated to these triples of Dynkin diagrams admit K dhler-Einstein metrics.

Proof. By the last Remark in section 4 and Theorem 5.3, it is enough to
see that the integral (5.7) vanishes. Since D,,,x=Dyin and Q(U) is an even
function of U by Lemma 5.5, we get our claim. q.e.d.

ReEMARK. As in K-S [12], X and Y admit a Kahler-Einstein metric if and
only if Futaki’s integral F(H) of the holomorphic vector field H vanishes. We
can explain Corollaries 5.6 and 5.7 as follows. The automorphism p of the
Dynkin diagram induces automorphisms 7y and ¢y of the complex manifolds
X and Y respectively, such that yo.H= —H. Thus Futaki’s integral F(H)
vanishes, because it is invariant under complex automorphisms (cf. Futaki [7]
Theorem 2.1). However the existence of such an automorphism ¢ is not

necessary to the existence of a Kihler-Einstein metric. See Example 5.3 (2)
and Example 6.4 in [17].
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Corollary 5.8. Under the same notation as in Corollary 5.7, if the number
of elements in T1—11,>3, then the Kdhler-Einstein metric on Y is non-homogene-

Ous.

Proof. Since II—(IT] UII})#=@ by our assumption, we can take an element
a€—(MMUII;). Note that IT}=II,U {a,(1)} and II{=TT,U {ory(2)}. We may
assume that there is a connected subdiagram IT’ of II such that o and a,(1) are
terminal vertices of IT’ and @,(2) is not a vertex of I1’, taking p(c) instead of &
if necessary. Note that y= ﬂZﬂ B is a positive root (cf. Bourbaki [5] Chap. 6,

S

Prop. 19 Cor. 3 b)) and hence yE3;. Put A=A, g)—Asw- Since (A, v)=
(A, ay(1)) and (28, v)>(28m, (1)), we see that

(A, afl) o (A, ) (A, ay2))
280 1)) 28ms 7) =0= (28m, ao(2))’

and hence the number of distinct non-zero eigenvalues of g5'B are greater than
or equal to 3, by Lemma 5.4. Thus we get our claim by Theorem 5.1. q.e.d.

ExampLEs 5.2. In the following cases the blowing down Y admits a non-
homogeneous Kihler-Einstein metric. The vertices contained in IT,, IT{—II,,
II—II} of a Dynkin diagram IT are denoted by O, [, X for /=1, 2 respectively
as in section 3.

o A, a a, o, a
(1) (I, I, 1) gty (I, I}, ) x>’
p P
Note that A=A, —A,,.
& 2!
@ @umm) %%% | () A% %S|
\\
as a5
Note that A=A, —A,,.
P

G (LI I) & d 7 & a

l

o
(22
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P

2 { ]
(IL, I, I1y) &, a; a, as ag .
X—x —O—[—x

o
a,

Note that A=A,,—A,,.

J v |
4 (11, 113, I1,) 0‘1 az Q, as 4]

(11, I3, ) a a3 o a5 a.

X = O—0—0—0]
!
A,
Note that A=A, —A,,.
al a3 a; a, Qa3
o X yTx
(5) (11, II, I) I I I P I, 1,1) T 1 T »p.
o = OO~
By /5’2 Bs B B By
Note that A=A,,—As,.
Now we give examples of Y being homogeneous.
Exameiss 5.3. (1) (I, T, TL) % (I, IT4, I0L) g—‘———o—(z}w
= oote ( ) ’ 1y 0 T T ) 1y 0 .
P P

In this case A=A, —A,,, compact Kidhler manifolds V,, N, are P*C), M is the
flag manifold SL(3, C)/B where B is a Borel subgroup of SL(3, C), X is the
PY(C)-bundle P(1PL,) over M and Y is the complex quadric Q%C).

2) M) LEono—dr BB B
1 az a, 181 :32 Bm

a
(11, 113, I1,) X ——0=20+se0—0 00+ ++:0—0
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In this case A=A, —Ag,, compact Kahler manifolds N,, N, are P™(C), P*(C)
respectively, M is P"(C)x P"(C), X is the P(C)-bundle P(1dL,) over M and
Y is the complex projective space P**"*1(C).

6. Remarks

A riemannian manifold NV is said to have cokomogeneity d if the codimension
of the principal orbits for the action of the isometry group is d, and d is denoted
by cohomg(N). For a given positive integer d we give examples of Kihler-
Einstein manifolds which have cohomogeneity d.

Lemma 6.1. Let M,, M, be Fano manifolds of n,-dimension and n,-dimen-
sion (ny, n,=>2) and let F,, F, be holomorphic line bundles on M,, M, respectively
such that ¢,(F)>0 and ¢,(F;)>0. Then H (M, X M,, End(1®F,QFz'))=(0).

Proof. By Kunneth formula, HYM, X M,, F, @ F3') = .§1Hi(M17 F)®

HY (M, F3'). Since ¢,(Fz')<0,H’(M,, F3')=(0) for j<nm,. Thus H(M,x M,,
FIQFz")=(0). Also we get H(M, X M,, FT'®F,)==(0) by the same way. Since
End(1®F,QF:")=1P(F,QF;)D(FI'QF,)®1 and M,, M, are simply
conected, we get our claim. q.e.d.

In general, for a compact complex manifold X let Aut,(X) denote the
identity component of the group of all holomorphic automorphisms of X. Let
E be a holomorphic vector bundle of rank » over a compact complex manifold
M and P(E) the associated projective bundle over M. By a theorem of Blan-
chard [3], we see that Auty(P(E)) coincides with the identity component of all
fiber preserving automorphisms of P(E). Thus the projection z: P(E)—M in-
duces a homomoiphism z: Aut,(P(E))—>Aut,(M). Note also that the group of
all fiber preserving holomorphic automorphisms of P(E) is naturally isomorphic
to the group of all fiber preserving holomorphic automorphisms of the principal
fiber bundle P(M, PGL(r, C), =) associated to the bundle z: P(E)— M.

Lemma 6.2. Under the assumption as in Lemma 6.1, the homomorphism
n: Auty(P(1DF,QF7'))—Auty(M, X M,) is surjective.

Proof. By Proposition 2 in [15] and Proposition 9 in [2], it is enough to
show that HYM,x M,, End (1 F,Q F3'))=(0). Thus we get our claim by
Lemma 6.1. q.e.d.

We consider a holomorphic line bundle L over a compact complex mani-
fold M and the PYC)-bundle P(1PL) over M. We assume that M has a
Kihler-Einstein metric g, with 7y=g, and that L has a hermitian fiber metric
such that the eigenvalues of the Ricci tensor B are constant on M and their ab-
solute values are less than 1. We also assume that
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g’ U-det (1—Ugs'B)dU = 0.
-1

Thus P(1pL) admits a Kihler-Einstein metric by Theorem 5.4 in K-S [12].
Now we recall the following.

Proposition 6.3. In the above situation, if the homomorphism m: Aut,(P(1D
L))—Aut, (M) is surjective and B is non-trivial on each irreducible factor of the
Kahler manifold M, then the Kahler-Einstein manifold P(1QL) is irreducible and
cohomg (P(1p L))=cohomg (M)+1.

Proof. See K-S [12] Proposition 5.6. Note that the homomoprhism z:
Isom, (P(1@L))—Isom, (M) is surjective by a theorem of Matsushima [13].
q.e.d.

Let N,=P"(C), H the holomorphic line bundle over P*(C) corresponding to
a hyperplane and Ly=H" for 1<m<n. Then we have ¢,(Ly)=(m/(n+1))c,(N,)
and we get an almost homogeneous Kihler-Einstein manifold P(L,@L,) of
cohomogeneity one. Let N'=P(L,PL,), w: N'->NyX N, the projection and
E=L(L,®PL,) the tautological line bundle over N’. Then we have

a(N') = (n+1—m)a*(ey(H)De(H))+2¢,(8) -

Thus, if n+1—m is even, there exists a holomorphic line bundle L’ over N’
such that ¢;(L")=(1/2)c,(N").

Now we construct a Kihler-Eintein manifold of cohomogeneity d for each
given positive integer d. If d is even, put d=2k, and il d is odd, put d=2k-}1
(we may assume d>2). Consider the product M;=N’X+-+ X N’ of d—1 copies
of N’ and the product F;=L'®---@QL’ of d—1 holomorphic line bundles on M,
induced from L’ on N'. Then ¢,(F,)=(1/2)c,(M,). If d is even, consider the
complex projective space M, of (2n+ 1) (d—1) dimension. Then ¢(M,)=
(2n+41)(d—1)+1),(H). Put F,=H' where I=((2n+1)(d—1)+1)/2. If d is
odd, consider the complex quadric M, of (2n+ 1)(d—1) dimension. Then
(M) = (2n+1)(d—1)c,(H) for a holomorphic line bundle H over M, Put
F,=H' where I=(2n+1)(d—1)/2. Consider the P}C)-bundle P(1F,QF;")
over M; X M, Then, by Lemma 6.2 and Proposition 6.3, we see that
P(1@F,®F;") has cohomogeneity d.
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