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ON WEAKLY TRANSITIVE TRANSLATION PLANES
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1. Introduction

Let τr/o9 be a translation plane of order pr with p a prime. Let G be a
subgroup of the translation complement and Δ a subset of /« with |Δ| =p+l.
π is said to be Δ-transitive if the following conditions are satisfied (V. Jha [4]):

( i ) G leaves Δ invariant and acts transitively on /oo-Δ.
(ii) G fixes at least two points of Δ.
(iii) G has a normal Sylow ^-subgroup.
On Δ-transitive planes, V. Jha has proved the following theorem.

Theorem (V. Jha [4]). If πl°* is ^-transitive with |Δ|=p+l, then π
has order p2 and Δ=τr0 Π /«, where π0 is a subplane of order p.

If (τr/oβ, Δ, G) satisfies the conditions (i) and (ii) above, π is said to be
weakly transitive.

In his paper [4], V. Jha has conjectured that weakly transitive planes are
the Hall planes of order p2, the Lorimer-Rahilly plane of order 16 and the John-
son-Walker plane of order 16.

In this paper we prove the following theorems on weakly transitive planes.

Theorem 1. Let πl"> be a translation plane of order pr with p a prime and
Δ a subset of /«, with |Δ| =ρ-\-l. If a subgroup G of the translation complement
of π leaves Δ invariant and acts transitively on /oo-Δ, then one of the following
holds.

(i) OP(G) is semίregular on Δ-{^4} for some point A eΔ.
(ii) π has order p2.
(iii) π has order p3 and G is transitive on Δ.

The Lorimer-Rahilly plane of order 16 and the Johnson-Walker plane
of order 16 are examples of the case (i). The Hall planes of order p2 and the
plane of order 25 constructed by M.L. Narayana Rao and K. Satyanarayana in
[6] are examples of the case (ii). The desarguesian plane of order 27 is an
example of the case (iii).

As an immediate corollary we have the following.
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Theorem 2. Suppose (π1-, Δ, G) with \Δ\=p+l is weakly transitive.
If OP(G) Φ1, then π has order p2 and Δ=F(OP(G)) Π L.

We note that if τr/o° is Δ-transitive, then it satisfies the assumption of
Theorem 2.

2. Proof of Theorem 1

We prove Theorem 1 by way of contradiction. Assume that (πl°», Δ, G) is
a counterexample such that pr+ \ G \ is minimal. Therefore r>3 and OP(G)Φ1.

Throughout the paper we use the following notations.
T: the group of translations of π
M(=OP(G)): the maximal normal p-subgroup of G
F(H): the fixed structure consisting of points and lines of π fixed by a

nonempty subset H of G.
np: the highest power of a prime p dividing a positive integer n
T: /.-A.
Other notations are taken from [1] and [2].

Lemma 1. F(M) is a subplane of π of order p and Δ=F(M) Π /«>.

Proof. Let K be the pointwise stabilizer of Δ in G and assume that
M^K. We denote by G the restriction of G on Δ. Clearly G>Afφl and
as |Δ| =p+l, M is a Sylow^-subgroup of G. By the Schur-Zassenhaus' theo-
rem (Theorem 6.2.1 of [1]), there is a subgroup L of G such that K<L and
\G:L\=p, G=ML.

Set N=MΓ(K. We have ΛΓΦ1, for otherwise π satisfies (i) of Theorem
1, contrary to the minimality of π. As Gΐ>K, G[>N. It follows from the
transitivity of G on Γ that N is ^-transitive on Γ.

Let Ψ be the set of ΛΓ-orbits on Γ. Since there is no nontrivial homology
of order p, N acts faithfully on Γ. As ΛΓΦ1 and | Γ | p=p, | ψ | = | Γ | lp=pr~l

— 1. Hence Ψ coincides with the set of M-orbits on Γ.
Since G=ML, L is transitive on Ψ by the last paragraph. Hence L is

transitive on Γ as N<,L. From this (τr/o°, Δ, L) satisfies (ii) or (iii) of Theorem
1 by the minimality of (πl™y Δ, G). Therefore (τr/o°, Δ, G) also satisfies (ii)
or (iii) of Theorem 1. This is a contradiction. Thus M<K.

Since F(M)ΠT=φ, F(M)Γ\L=Δ, so that F(M) is a subplane of π of
order p.

Lemma 2. If p=2, then r is even.

Proof. Assume p=2. Let x be an involution in M. Since F(x) contains

Δ by Lemma 1, F(x) is a subplane of π. By a Baer's theorem (Thoerem 4.3
of [2]), F(x) is of order \/2? Thus r is even.
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Lemma 3. Let t be a prime p-primίtive divisor of pr~l—l and let x be a
nontrivial t-element of G. If x centralizes M, then F(x) Π Δ= φ.

Proof. Let A^F(x)f\Δ and set U=T(A), the set of translations of T
with center A. Clearly \U\=ρr. By Lemma 1, \Cu(Άί)\=p as [/is regular
on the set of affine points on the line OA. Set .R=<#>. Since R normalizes
Cu(M) and tjfp—l, Cu(R) contains CV(M).

If Cu(R}*Cu(M\ R acts trivially on U/C^R) as | U/C^R) \ <pr~l and t
is a ^-primitive divisor of pr~l—1. Hence [R, U]—l by Theorem 5.3.2 of
[1]. Therefore x is a homology with axis OA and so t\(pr~l—l9 pr—l)=p—l,
a contradiction. Thus CU(R) = CU(M).

By Theorem 5.2.3 of [1], U=CΌ(R)x[U,K\. Since M centralizes R
and normalizes C7, it also normalizes [E7, K\. Hence lφC[£/)J?](M)<Oί/(M)=
Cu(R), a contradiction. Thus F(x) Π Δ^φ.

Lemma 4. // r=3, ίAew ̂  = — 1 (mod 4).

Proof. By a Baer's theorem and Lemma 1, ^>Φ2 and |M|=p as r=3.
Assume /> = ! (mod 4) and let t be an odd prime dividing />+!. Clearly t is
a prime ^-primitive divisor of pr~l— l=p2— 1. Since |M|=/> and tXp— 1,
a Sylow ί-subgroup R of G centralizes M. Applying Lemma 3, 72 is semi-
regular on Δ. As p+l \ \ G \ and t is arbitrary, the length of each G-orbit on
Δ is divisible by (p+l)/2. Since π is a counterexample of Theorem 1, G has
two orbits of length (p+l)/2 on Δ.

Let S be a Sylow 2-subgroup of G and let ^eΞF(S) Π Δ. Set πϋ=F(M),
SQ=S(Qtloo ) and K—GM the pointwise stabilizer of Δ in G. Since M is a non-
trivial normal subgroup of G, π0 is G-invariant and isomorphic to PG(2,p).
The restriction of Aut(PG(2, p)} on the line at infinity is isomorphic to PGL
(2yp) in its usual 2-transitive permutation representation. Hence GjK is
isomorphic to a subgroup of PGL(2,p). As \G/K\ is divisible by (p+l)/2,
G/K is isomorphic to a subgroup of the dihedral group of order 2(p-\-l) by
a Dickson's theorem (Theorem 14.1 of [5]). Since G/K is not transitive on Δ,
\GIK\=(ρ+l)/2 or p+1. Therefore |5:5n^|=l or 2. Hence SΓ(K is
semiregular on F(M) Π (OX— {O, X}) and so |Sn.K| |(ρ—1)2. From this,
\S\<2(p-l)2. But, a s S Π j f i Γ Φ l , 5 0 Φlandso |5/50| > |Γ|2=2(/>-l)2. This
implies |S| >4(p—1)2, a contradiction.

Lemma 5. Let S be a 2-group acting faithfully on an elementary abelίan
p-group W of order pr with pr= — l (mod4). If an element x^S inverts W,
then S=ζx}xS1for a subgroup Sλ of S.

Proof. We may assume that S<GL(r,p) and x=—I, where / is the
unit matrix of degree r. Since r is odd, det(#)—(— l)r— — 1 and so xt£SL(r,p).
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Since 2\p—ί and 4Xp— 1, <X> X SL(r, p) is a normal subgroup of GL(r,p)
of odd index. Thus 5=<*>χSί, where 3Ί=5 ΓΊ SL(r,p).

Lemma 6. Let S be a Sylow 2-subgroup of G. If r=3, then the length

of every S-orbit on Δ is divisible by | Δ12.

Proof. By Lemma 4, p = — l (mod4). Since G is transitive on Γ, |Γ| =
p(f—l)\ \G\ and so 2(p+l)2| \ S / S 0 \ , where S is a Sylow 2-subgroup of G

and 5Ό=5(o,/00). Hence \SX\ >2χ |50| for some point XeΔ. Here Ŝ  denotes
the stabilizer ~of X in 5. Let Y<=F(SX) Π (Δ- {A».

First we show that *S0Φ1. Assume that S0=l and let u be an involution
in Z(SX). By a Baer's theorem, any involution in S is a homology. Hence
either w is a (JίΓ, OY)-homology or u is a (F, O^Q-homology. In either case

Cs(u)<S*. As u^Z(Sx), Cs(u)=Sx. In particular | Sx \ >4.

We note that either S(XtOY) = \ or ^c^or) —1> for otherwise AS0Φ1 by Lemma
4.22 of [2]. Let A^{X, Y} such that S(B>OA} = \, where {B} = {X, Y}-{A}.
Then Sx acts faithfully on T(A). In particular every involution in Sx fixes
no affine point on OA— {O}. Therefore every involution in Sx inverts T(A).
From this Sx has exactly one involution. But, by Lemma 5, Sx contains a
subgroup isomorphic to Z2xZ2, a contradiction. Thus /SΌΦ1.

Let # be an involution in SQ. Since O is the only affine fixed point of #,
# inverts T. As (p—1)2—2, <5r)> is a unique Sylow 2-subgrouρ of G(0tloo).

Set Γ^AS^. If V(XtOY) = l, then F acts faithfully on T(Y) and moreover
^ inverts T(Y). By Lemma 5, V contains a subgroup £7 such that #et/ and
ί/ is isomorphic to Z2xZ2. By Lemma 4.22 of [2], we obtain a contradiction.

Hence F(j?)θr)φl.
Let u be an involution in V(X>OY). Then, as u^Z(V), we have Cs(u)=V.

Assume |F|>4. Γ=Γ/<tt> normalizes Γ(Y) and ar inverts T(Y). Hence

F=<i>χi for a subgroup L of V with weL by Lemma 5. Since L(0>/oo) = l
and u^L, L acts faithfully on T(X) and w inverts T(X). Hence L=<w>χZ
for a subgroup Z of L by Lemma 5. As |L| 2^4, Z contains an involution.
Therefore Z(0,/oo) φ 1 or Z(r>OA:) φ 1, a contradiction. Thus | V \ =4.

As V<SY and F(V)nL={X, Y}> we have F=5r. Since V is isomor-
phic to Z2χZ2 and Cs(w)=F, 5 is dihedral or semidihedral by a lemma of [7].
Therefore any involution in S is 5-conjugate to an involution in V. Hence,

if SQΦ1 for some QeΔ, then Q=XS or Ys for some s^S. Thus 13^1 = 171=4.
Therefore |QS| >2|Γ|2/4=(/>+l)2 for all Q<ΞΔ.

Lemma 7. rΦ3.

Proof. Assume that r=3. Let ί be an odd prime dividing p-\-l. Then
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t is a prime ^-primitive divisor of p2— 1. Let R be a Sylow ί-subgroup of G.

Since G is transitive on Γ,ρ(p 2—l)= |Γ| | |G| and so ΛΦ1. By Lemma 1,
\M\-p as r=3. Hence Λ centralizes M. Applying Lemma 3, Λ acts semi-
regularly on Δ. Since t is arbitrary, using Lemma 6 we have that G acts transi-
tively on Δ. As π is a counterexample, this is a contradiction. Thus we
we have the lemma.

Lemma 8. There exists a prime p-primitive divisor t of pr"1—1 such that
t\\G\ andtX\CG(M]\.

Proof. |G| is divisible by ρr~l— 1 as |Γ | | |G| . By Lemmas 1 and 7,
r—1>3 and by Lemma 2, (py r— 1) Φ (2, 6). It follows from a Zsigmondy's
theorem (Theorem 6.2 of [5]) that there exists a prime ^-primitive divisor t of
p'->-l.

Assume t \ \ CG(M) \ and let R be a Sylow ^-subgroup of CG(M). By Lemma
3, R is semiregular on Δ. Hence t \p-\-l and so t\p2—l. Since £ is a ̂ -primi-
tive divisor of pr~l—1, we have r—1—2, contrary to Lemma 7.

Lemma 9. Each M-orbit on Γ is of length p.

Proof. Since p \ \ Γ |, J?X \ Γ | and M is ^-transitive on Γ, using Lemma 1
each M-orbit on Γ has length p.

Proof of Theorem 1.
Let t be a prime as in Lemma 8 and let R be a Sylow ^-subgroup of G.

By Lemma 8, jRΦl and acts faithfully on M. Since t is a ^-primitive divisor
of pr~l— 1, we have |Λf | ^jp'-1. Hence, by Proposition 6.12 of [3], pr=l6.
From this, ρ=2, #=7 and |M| >8.

Let A(ΞΓ and set N=MA. By Lemma 1, ^(Λ^^ΔU {^4}. Therefore
F(N) is a subplane of order 4. Let B(ΞL—F(N)Γ(L. Clearly F(NB)=π
and so Λ^-l. By Lemma 9, |M:ΛΓ|^2and |ΛΓ :JV5 |^2. Hence |Af|=4,
a contradiction. Thus we have Theorem 1.
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