ON WEAKLY TRANSITIVE TRANSLATION PLANES

Yutaka HIRAMINE

(Received November 28, 1983)

1. Introduction

Let $\pi^{l_{\infty}}$ be a translation plane of order p^{r} with p a prime. Let G be a subgroup of the translation complement and Δ a subset of l_{∞} with $|\Delta|=p+1$. π is said to be Δ-transitive if the following conditions are satisfied (V. Jha [4]):
(i) G leaves Δ invariant and acts transitively on $l_{\infty}-\Delta$.
(ii) G fixes at least two points of Δ.
(iii) G has a normal Sylow p-subgroup.

On Δ-transitive planes, V. Jha has proved the following theorem.
Theorem (V. Jha [4]). If $\pi^{t_{\infty}}$ is Δ-transitive with $|\Delta|=p+1$, then π has order p^{2} and $\Delta=\pi_{0} \cap l_{\infty}$ where π_{0} is a subplane of order p.

If $\left(\pi^{l_{\infty},}, \Delta, G\right)$ satisfies the conditions (i) and (ii) above, π is said to be weakly transitive.

In his paper [4], V. Jha has conjectured that weakly transitive planes are the Hall planes of order p^{2}, the Lorimer-Rahilly plane of order 16 and the John-son-Walker plane of order 16.

In this paper we prove the following theorems on weakly transitive planes.
Theorem 1. Let $\pi^{l_{\infty}}$ be a translation plane of order p^{r} with p a prime and Δ a subset of l_{∞} with $|\Delta|=p+1$. If a subgroup G of the translation complement of π leaves Δ invariant and acts transitively on $l_{\infty}-\Delta$, then one of the following holds.
(i) $O_{p}(G)$ is semiregular on $\Delta-\{A\}$ for some point $A \in \Delta$.
(ii) π has order p^{2}.
(iii) π has order p^{3} and G is transitive on Δ.

The Lorimer-Rahilly plane of order 16 and the Johnson-Walker plane of order 16 are examples of the case (i). The Hall planes of order p^{2} and the plane of order 25 constructed by M.L. Narayana Rao and K. Satyanarayana in [6] are examples of the case (ii). The desarguesian plane of order 27 is an example of the case (iii).

As an immediate corollary we have the following.

Theorem 2. Suppose $\left(\pi^{l_{\infty}}, \Delta, G\right)$ with $|\Delta|=p+1$ is weakly transitive. If $O_{p}(G) \neq 1$, then π has order p^{2} and $\Delta=F\left(O_{p}(G)\right) \cap l_{\infty}$.

We note that if $\pi^{l_{\infty}}$ is Δ-transitive, then it satisfies the assumption of Theorem 2.

2. Proof of Theorem 1

We prove Theorem 1 by way of contradiction. Assume that $\left(\pi^{l_{\infty},}, \Delta, G\right)$ is a counterexample such that $p^{r}+|G|$ is minimal. Therefore $r \geq 3$ and $O_{p}(G) \neq 1$.

Throughout the paper we use the following notations.
T : the group of translations of π
$M\left(=O_{p}(G)\right)$: the maximal normal p-subgroup of G
$F(H)$: the fixed structure consisting of points and lines of π fixed by a nonempty subset H of G.
n_{p} : the highest power of a prime p dividing a positive integer n
$\Gamma: l_{\infty}-\Delta$.
Other notations are taken from [1] and [2].
Lemma 1. $\quad F(M)$ is a subplane of π of order p and $\Delta=F(M) \cap l_{\infty}$.
Proof. Let K be the pointwise stabilizer of Δ in G and assume that $M \nsucceq K$. We denote by \bar{G} the restriction of G on Δ. Clearly $\bar{G} \triangleright \bar{M} \neq 1$ and as $|\Delta|=p+1, \bar{M}$ is a Sylow p-subgroup of \bar{G}. By the Schur-Zassenhaus' theorem (Theorem 6.2.1 of [1]), there is a subgroup \bar{L} of \bar{G} such that $K<L$ and $|\bar{G}: \bar{L}|=p, \bar{G}=\bar{M} \bar{L}$.

Set $N=M \cap K$. We have $N \neq 1$, for otherwise π satisfies (i) of Theorem 1 , contrary to the minimality of π. As $G \triangleright K, G \triangleright N$. It follows from the transitivity of G on Γ that N is $\frac{1}{2}$-transitive on Γ.

Let Ψ be the set of N-orbits on Γ. Since there is no nontrivial homology of order p, N acts faithfully on Γ. As $N \neq 1$ and $|\Gamma|_{p}=p,|\Psi|=|\Gamma| / p=p^{r-1}$ -1 . Hence Ψ coincides with the set of M-orbits on Γ.

Since $G=M L, L$ is transitive on Ψ by the last paragraph. Hence L is transitive on Γ as $N<L$. From this $\left(\pi^{l_{\infty} \infty}, \Delta, L\right)$ satisfies (ii) or (iii) of Theorem 1 by the minimality of $\left(\pi^{l_{\infty},}, \Delta, G\right)$. Therefore $\left(\pi^{l_{\infty}}, \Delta, G\right)$ also satisfies (ii) or (iii) of Theorem 1. This is a contradiction. Thus $M \leq K$.

Since $F(M) \cap \Gamma=\phi, F(M) \cap l_{\infty}=\Delta$, so that $F(M)$ is a subplane of π of order p.

Lemma 2. If $p=2$, then r is even.
Proof. Assume $p=2$. Let x be an involution in M. Since $F(x)$ contains Δ by Lemma $1, F(x)$ is a subplane of π. By a Baer's theorem (Thoerem 4.3 of [2]), $F(x)$ is of order $\sqrt{2^{r}}$. Thus r is even.

Lemma 3. Let t be a prime p-primitive divisor of $p^{r-1}-1$ and let x be a nontrivial t-element of G. If x centralizes M, then $F(x) \cap \Delta=\phi$.

Proof. Let $A \in F(x) \cap \Delta$ and set $U=T(A)$, the set of translations of T with center A. Clearly $|U|=p^{\prime \prime}$. By Lemma $1,\left|C_{U}(M)\right|=p$ as U is regular on the set of affine points on the line $O A$. Set $R=\langle x\rangle$. Since R normalizes $C_{U}(M)$ and $t X p-1, C_{U}(R)$ contains $C_{U}(M)$.

If $C_{U}(R) \neq C_{U}(M), R$ acts trivially on $U / C_{U}(R)$ as $\left|U / C_{U}(R)\right|<p^{r-1}$ and t is a p-primitive divisor of $p^{r-1}-1$. Hence $[R, U]=1$ by Theorem 5.3.2 of [1]. Therefore x is a homology with axis $O A$ and so $t \mid\left(p^{r-1}-1, p^{r}-1\right)=p-1$, a contradiction. Thus $C_{U}(R)=C_{U}(M)$.

By Theorem 5.2.3 of [1], $U=C_{U}(R) \times[U, R]$. Since M centralizes R and normalizes U, it also normalizes $[U, R]$. Hence $1 \neq C_{[U, R]}(M) \leq C_{U}(M)=$ $C_{U}(R)$, a contradiction. Thus $F(x) \cap \Delta=\phi$.

Lemma 4. If $r=3$, then $p \equiv-1(\bmod 4)$.
Proof. By a Baer's theorem and Lemma $1, p \neq 2$ and $|M|=p$ as $r=3$. Assume $p \equiv 1(\bmod 4)$ and let t be an odd prime dividing $p+1$. Clearly t is a prime p-primitive divisor of $p^{r-1}-1=p^{2}-1$. Since $|M|=p$ and $t X p-1$, a Sylow t-subgroup R of G centralizes M. Applying Lemma 3, R is semiregular on Δ. As $p+1| | G \mid$ and t is arbitrary, the length of each G-orbit on Δ is divisible by $(p+1) / 2$. Since π is a counterexample of Theorem $1, G$ has two orbits of length $(p+1) / 2$ on Δ.

Let S be a Sylow 2-subgroup of G and let $X \in F(S) \cap \Delta$. Set $\pi_{0}=F(M)$, $S_{0}=S_{\left(0, l_{\infty}\right)}$ and $K=G_{\Delta}$, the pointwise stabilizer of Δ in G. Since M is a nontrivial normal subgroup of G, π_{0} is G-invariant and isomorphic to $P G(2, p)$. The restriction of $\operatorname{Aut}(P G(2, p))$ on the line at infinity is isomorphic to $P G L$ $(2, p)$ in its usual 2 -transitive permutation representation. Hence G / K is isomorphic to a subgroup of $P G L(2, p)$. As $|G / K|$ is divisible by $(p+1) / 2$, G / K is isomorphic to a subgroup of the dihedral group of order $2(p+1)$ by a Dickson's theorem (Theorem 14.1 of [5]). Since G / K is not transitive on Δ, $|G| K \mid=(p+1) / 2$ or $p+1$. Therefore $|S: S \cap K|=1$ or 2 . Hence $S \cap K$ is semiregular on $F(M) \cap(O X-\{O, X\})$ and so $|S \cap K| \mid(p-1)_{2}$. From this, $|S| \leq 2(p-1)_{2}$. But, as $S \cap K \neq 1, S_{0} \neq 1$ and so $\left|S / S_{0}\right| \geq|\Gamma|_{2}=2(p-1)_{2}$. This implies $|S| \geq 4(p-1)_{2}$, a contradiction.

Lemma 5. Let S be a 2-group acting faithfully on an elementary abelian p-group W of order p^{r} with $p^{r} \equiv-1(\bmod 4)$. If an element $x \in S$ inverts W, then $S=\langle x\rangle \times S_{1}$ for a subgroup S_{1} of S.

Proof. We may assume that $S \leq G L(r, p)$ and $x=-I$, where I is the unit matrix of degree r. Since r is odd, $\operatorname{det}(x)=(-1)^{r}=-1$ and so $x \notin S L(r, p)$.

Since $2 \mid p-1$ and $4 X p-1,\langle x\rangle \times S L(r, p)$ is a normal subgroup of $G L(r, p)$ of odd index. Thus $S=\langle x\rangle \times S_{1}$, where $S_{1}=S \cap S L(r, p)$.

Lemma 6. Let S be a Sylow 2-subgroup of G. If $r=3$, then the length of every S-orbit on Δ is divisible by $|\Delta|_{2}$.

Proof. By Lemma 4, $p \equiv-1(\bmod 4)$. Since G is transitive on $\Gamma,|\Gamma|=$ $p\left(p^{2}-1\right)\left||G|\right.$ and so $\left.2(p+1)_{2}\right|\left|S / S_{0}\right|$, where S is a Sylow 2 -subgroup of G and $S_{0}=S_{\left(0, l_{\infty}\right)}$. Hence $\left|S_{X}\right| \geq 2 \times\left|S_{0}\right|$ for some point $X \in \Delta$. Here S_{X} denotes the stabilizer of X in S. Let $Y \in F\left(S_{x}\right) \cap(\Delta-\{X\})$.

First we show that $S_{0} \neq 1$. Assume that $S_{0}=1$ and let u be an involution in $Z\left(S_{X}\right)$. By a Baer's theorem, any involution in S is a homology. Hence either u is a $(X, O Y)$-homology or u is a $(Y, O X)$-homology. In either case $C_{S}(u) \leq S_{X}$. As $u \in Z\left(S_{X}\right), C_{S}(u)=S_{X}$. In particular $\left|S_{X}\right| \geq 4$.

We note that either $S_{(X, O Y)}=1$ or $S_{(Y, O Y)}=1$, for otherwise $S_{0} \neq 1$ by Lemma 4.22 of [2]. Let $A \in\{X, Y\}$ such that $S_{(B, O A)}=1$, where $\{B\}=\{X, Y\}-\{A\}$. Then S_{X} acts faithfully on $T(A)$. In particular every involution in S_{X} fixes no affine point on $O A-\{O\}$. Therefore every involution in S_{X} inverts $T(A)$. From this S_{X} has exactly one involution. But, by Lemma $5, S_{X}$ contains a subgroup isomorphic to $Z_{2} \times Z_{2}$, a contradiction. Thus $S_{0} \neq 1$.

Let z be an involution in S_{0}. Since O is the only affine fixed point of z, z inverts T. As $(p-1)_{2}=2,\langle z\rangle$ is a unique Sylow 2 -subgroup of $G_{\left(0, l_{\infty}\right)}$.

Set $V=S_{X}$. If $V_{(X, O Y)}=1$, then V acts faithfully on $T(Y)$ and moreover z inverts $T(Y)$. By Lemma 5, V contains a subgroup U such that $z \in U$ and U is isomorphic to $Z_{2} \times Z_{2}$. By Lemma 4.22 of [2], we obtain a contradiction. Hence $V_{(X, O Y)} \neq 1$.

Let u be an involution in $V_{(X, O Y)}$. Then, as $u \in Z(V)$, we have $C_{S}(u)=V$. Assume $|V|>4 . \quad \bar{V}=V /\langle u\rangle$ normalizes $T(Y)$ and z inverts $T(Y)$. Hence $\bar{V}=\langle\bar{z}\rangle \times \bar{L}$ for a subgroup L of V with $u \in L$ by Lemma 5 . Since $L_{\left(0, l_{\infty}\right)}=1$ and $u \in L, L$ acts faithfully on $T(X)$ and u inverts $T(X)$. Hence $L=\langle u\rangle \times Z$ for a subgroup Z of L by Lemma 5. As $|L| \geqq 4, Z$ contains an involution. Therefore $Z_{\left(o, l_{\infty}\right)} \neq 1$ or $Z_{(Y, O X)} \neq 1$, a contradiction. Thus $|V|=4$.

As $V \leq S_{Y}$ and $F(V) \cap l_{\infty}=\{X, Y\}$, we have $V=S_{Y}$. Since V is isomorphic to $Z_{2} \times Z_{2}$ and $C_{S}(u)=V, S$ is dihedral or semidihedral by a lemma of [7]. Therefore any involution in S is S-conjugate to an involution in V. Hence, if $S_{Q} \neq 1$ for some $Q \in \Delta$, then $Q=X^{s}$ or Y^{s} for some $s \in S$. Thus $\left|S_{Q}\right|=|V|=4$. Therefore $\left|Q^{s}\right| \geq 2|\Gamma|_{2} \mid 4=(p+1)_{2}$ for all $Q \in \Delta$.

Lemma 7. $r \neq 3$.
Proof. Assume that $r=3$. Let t be an odd prime dividing $p+1$. Then
t is a prime p-primitive divisor of $p^{2}-1$. Let R be a Sylow t-subgroup of G. Since G is transitive on $\Gamma, p\left(p^{2}-1\right)=|\Gamma|| | G \mid$ and so $R \neq 1$. By Lemma 1, $|M|=p$ as $r=3$. Hence R centralizes M. Applying Lemma 3, R acts semiregularly on Δ. Since t is arbitrary, using Lemma 6 we have that G acts transitively on Δ. As π is a counterexample, this is a contradiction. Thus we we have the lemma.

Lemma 8. There exists a prime p-primitive divisor t of $p^{r-1}-1$ such that $t||G|$ and $t X| C_{G}(M) \mid$.

Proof. $|G|$ is divisible by $p^{r-1}-1$ as $|\Gamma|||G|$. By Lemmas 1 and 7, $r-1 \geq 3$ and by Lemma $2,(p, r-1) \neq(2,6)$. It follows from a Zsigmondy's theorem (Theorem 6.2 of [5]) that there exists a prime p-primitive divisor t of $p^{r-1}-1$.

Assume $t\left|\left|C_{G}(M)\right|\right.$ and let R be a Sylow t-subgroup of $C_{G}(M)$. By Lemma $3, R$ is semiregular on Δ. Hence $t \mid p+1$ and so $t \mid p^{2}-1$. Since t is a p-primitive divisor of $p^{r-1}-1$, we have $r-1=2$, contrary to Lemma 7.

Lemma 9. Each M-orbit on Γ is of length p.

Proof. Since $p\left||\Gamma|, p^{2} X\right| \Gamma \mid$ and M is $\frac{1}{2}$-transitive on Γ, using Lemma 1 each M-orbit on Γ has length p.

Proof of Theorem 1.
Let t be a prime as in Lemma 8 and let R be a Sylow t-subgroup of G. By Lemma $8, R \neq 1$ and acts faithfully on M. Since t is a p-primitive divisor of $p^{r-1}-1$, we have $|M| \geq p^{r-1}$. Hence, by Proposition 6.12 of [3], $p^{r}=16$. From this, $p=2, t=7$ and $|M| \geq 8$.

Let $A \in \Gamma$ and set $N=M_{A}$. By Lemma $1, F(N) \supset \Delta \cup\{A\}$. Therefore $F(N)$ is a subplane of order 4. Let $B \in l_{\infty}-F(N) \cap l_{\infty}$. Clearly $F\left(N_{B}\right)=\pi$ and so $N_{B}=1$. By Lemma $9,|M: N|=2$ and $\left|N: N_{B}\right|=2$. Hence $|M|=4$, a contradiction. Thus we have Theorem 1.

References

[1] D. Gorenstein: Finite groups, Harper and Row, New York, 1968.
[2] D.R. Hughes and F.C. Piper: Projective planes, Springer-Verlag, Berlin-Heidel-berg-New York, 1973.
[3] V. Jha: On tangentially transitive translation planes and related systems, Geom. Dedicata 4 (1975), 457-483.
[4] V. Jha: On Δ-transitive translation planes, Arch. Math. 37 (1981), 377-384.
[5] H. Lüneburg: Translation planes, Springer-Verlag, Berlin-Heidelberg-New York, 1980.
[6] M.L. Narayana Rao and K. Satyanarayana: A new class of square order planes,
J. Combin. Theory Ser. A 35 (1983), 33-42.
[7] M. Suzuki: A characterzation of simple groups LF (2,F), J. Fac. Sci. Univ. Tokyo Sect. I 6 (1951), 259-293.

Department of Mathematics
College of General Education
Osaka University
Toyonaka, Osaka 560
Japan

