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1. Introduction

Let z=n(D) be a finite projective plane coordinatized by a semifield D of
order g. Let A be the collineation group of all elations with axis [co] and B
the collineation group of all elations with center (o). We denote by P(x) the
collineation group generated by 4 and B. Set P=P(z). Then P has the
following properties:

(iy P=AB, |P|=¢ where q is a power of a prime p, and A and B are
elementary abelian normal subgroups of P of order ¢*

(ii) ab=ba implies ac ANB or b AN B for all ac 4 and bEB.

A p-group P is called a p-group of semifield type if it satisfies (i) and (ii)
as above. This is the same as a T-group satisfying that all a€ A—ANB and
all be B—A N B are regular, defined in [1].

In the paper [1], A. Cronheim has proved as pait of a more general theo-
rem that a finite semifield can be constructed for the group P and the ordered
pair (4, B). We denote the semifield by D(4, B) and the set of all such order-
ed pairs (4, B) by V,. Let W, denote the set of all abelian subgroups of P
of order ¢>. 'Then one of the following holds (Lemma 4.1).

(i) p=2and |V,|=2.

(i) p>2 and V,={(4,B)|A*B, A, B€W,}.

In this paper we will study the semifields constructed for all (4, B) in
Vp.

Let (4, B) and (4', B’) be elements in V,. Then D(4, B) and D(A’, B")
are isotopic if and only if there exists an automorphism f of P which maps 4
onto 4’ and B onto B’ (Lemma 4.2). Therefore, we will consider the action of
Aut(P) on the set W, and will prove the following.

Theorem 4.8. Let P be a p-group of semifield type of order p** for an odd
prime p and a positive integer n and assume |Wp|>2. Set L= Aut(P), G=
CL(Z(P)) and W=Wp. Then

(1) |W|=1+p" for a positive divisor r of n.
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(i) PSL(2,p") <GV <LY<PTL(2,p") in the natural doubly transitive re-
presentation. Moreover, three-point stabilizer of GV is the identity subgroup.

As an application of the theorem, we will prove the following.

Corollary 5.2. Let =, or =, be a non-Desarguesian semifield plane and let
P, or P, be its collineation group generated by all elativns, respectively. Then P,
and P, are isomorphic as abstruct groups if and only if =, is isomorphic to r, or its
dual.

This implies that, as an abstruct group, the group P (=P(x)) characterizes
the semifield plane z up to its dual.

For the most part we shall use the notation of [2] and [3]. All set, planes
and groups will be finite. Throughout this paper, p will stand for a prime.

2. p-groups constructed for semifields

Let D be a set with two binary operations + and -. D=D(+4, *) is called
a finite semifield (also called a division ring, as in [3]) if the following condi-
tions are satisfied:

(1) D(+4) is a group with identity element 0.

(ii) ab=0 implies =0 or b=0 for all a, b= D.

(iii) If a, b, ceD, then (a+b)c=ac-+bc and c(a+b)=ca+-cb.

(iv) There exists an element 1 €D — {0} such that lx=x1=x for all x&D.

A semifield is an elementary abelian p-group for some prime p with re-
spect to the operation + (Exercise 7.2 of [3]).

Let D be a semifield of order ¢ (=p"). We define P(D) to be the set of all
ordered triples (x, y, 2) for x,y, z€D. On P(D), we define the multiplication

(xl’ Y 31) (x27 Vo B3) = (x1+x2» Y1 t+Y2 zl‘f‘zz‘f‘yle)
for x;, y;, 2, €D, 1<i<2.

Let (x;, i, ;)€ P(D) and set a; =(x;, y;, ;) for 1<i<3. Then (a;a,)a;=
(%1F%2 Y1FY2 21F2FY2%1) (%3, V3, 23)=((%1+%) 4+ %3, (V1F2)+3 (R1+22+Y2%1)
+ 234 y3(%4%5)) = (01 (%2+%3), Y1+ (VaF9s), 21+ (2e+23+yaxs) (e +ys)%) =
a)(aya;). Hence (aya,)a;=ay(a,a;). Clearly (x,y, 2) (0, 0, 0)=(0, 0, 0) (x, y, 2)=
(x’ Y, 2) and (x, Y, z) (_x’ - _z+yx):(_x’ -, “z+yx) (x’ Y, z):(O, 0’ O)
for all (x, y, 2)€P(D). Thus we have the following.

Lemma 2.1. If D is a semifield, then P(D) is a group of order ¢° with iden-
tity element (0, 0, 0).

Set P=P(D), A= {(x,0, 2)|x, z€D} and B=(0,y, 2)}|y,2€D}. Then
the following holds.

Lemma 2.2. (i) P=AB, |P|=q¢’ and A and B are elementary abelian
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normal subgroups of P of order ¢°.
(i) ab=ba implies ac ANB or b AN B for all ac A and bEB.

Proof. Since (x,y, 2)=(x, 0, z—yx) (0,y, 0)€ 4B for every (x,y,2)EP,
we have P=AB. As (x,9, 2)7'=(—x, —y, —2+yx), [(*1, Y1 21)s (X2, ¥ 22)]=
(=%, —y1, —21+31%1) (— %3 —Y2 —22HY2%) (¥1, Y15 21) (X2 V2r 22) = (0, 0, 32, —
y1%;) and (%, ¥y, 21) (%, Vay 3) 1= (%,— %5, Y1— Yoy 31— 2+ V2%, —2%;). Hence it
follows that 4 and B are abelian normal subgroups of P of order ¢*>. More-
over (x, 0, 2)?=(px, 0, pz)=(0, 0, 0) and (0, y, 2)*=(0, py, p2)=(0, 0,0). There-
fore (i) holds.

Let a=(x,0, 2;)e4, b=(0,y,, 2,)EB and assume ab=ba. Then 1=
a~'b~tab=[(x,, 0, 2,), (0, ¥, 25)]1=(0, 0, y,%,) and so y,x,=0, whence x,=0 or
y,=0. Therefore ac AN B or b AN B and so (ii) holds.

ExampLE 2.3. Let D=GF(p") and let f be a mapping from P(D) into
PSL(3, p") such that

100

flx, y, 2)= {x 1 (l)J_ . Then f(ab) = f(a)f(b) for all a, b&P(D).
2y

Therefore P(D) is isomorphic to a Sylow p-subgroup of PSL(3, p") in this case.

Two semifields D, and D, are said to be isotopic if there exists a triple
(e, B, ¥) of nonsingular additive mappings &, B, ¥ from D, onto D, such that

Y(xy)=RB(x)a(y) for all x,yD. Almost as an immediate consequence of the
definition we have

Lemma 2.4. Let D, and D, be semifields. If D, is isotopic to D,, then
P(D,) is isomorphic to P(D,).

Proof. Let (a, B, ¥) be an isotopism from D, to D,. We define a map-
ping from P(D,) to P(D,) in such a way that f(x,y, 2) = (a(x), B(y), 7(=)) for
(x,y,2) € P(D,). Clearly f is a bijection. On the other hand, f(x,, y,, 2,)
X (%3, Y25 22) = (X1 %3, Y2+ Yoy 31+ 2y T Yo01) = (21 %), B(y1+y2), V(21F 2T yo0y))=

(a(21), B(y1), 7(21)) ((x5), B(Y2)s V(22)) =f(%1, Y1, 2)f(%2, ¥2 25).  Thus P(D,) is
isomorphic to P(D,).

DrrINITION 2.5. Let D be a semifield of order ¢ and let z==(D) be a
semifield plane of order g coordinatized by D as defined in [3]. We define an
action of every element (x, y, 2)EP(D) on z(D) in the following way:

(e0)en9 = (20), (@@ = (a+3), (4 )" = (a+, b+yat),

[oo]erd = [oo], [l = fata], [ 6] = [a—y, b+(a—y)v-+s]
for a, beD .
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Set A={(x, 0, 2)|x, 2D} and B={(0,y, 2)|y, 2€D}. Then A4 or B is
a collineation group which consists of elations with axis [oo] or center (oo),
respectively. Since |A4|=|B|=¢* and the order of #(D) is ¢, A or B is the
collineation group of all elations with axis [oo] or center (oo), respectively.
If D is not a field, P(D)=AB is a normal subgroup of the full collineation group
of z(D) by Lemma 8.5 of [3].

DEFINITION 2.6. A p-group P=AB is called a p-group of semifield type
if it satisfies the conditions of Lemma 2.2. Let V', denote the set of all such
pairs (4, B). Let W, denote the set of all abelian subgroups of P of order
¢*. Clearly 4, B€W,.

3. Properties of p-groups of semifield type

Throughout this section let P be a p-group of semifield type of order ¢
with ¢g=p" for a prime p and let (4, B)&V,. Set Z=ANB. Since 4 is an
elementary abelian p-group, A=A4,XZ for a subgroup 4, of A. Similarly
B=B, X Z for a subgroup B, of B. By a definition, |4,|=|B,|=|Z|=q. We
can then write each element x of P uniquely in the form x=abz for a4,
beB, and 2 7.

Lemma 3.1. The following hold.

(i) [P, P]=4Z(P)=Z.

(i) [xy, 2]=[x, 2] [y, 2], [% yz]=[x, ] [x, 2] for x,y,2EP and [, y']=
[x, y]"/ for all integers i, j.

Gii) If ucP—A and vEP—B, then Z={[a,, u] | a,E A} = {[v, b,] |b,E B}

(iv) If x&P—2Z, then |Cp(x)| =q*. Moreover {g 'xg|gE P} =xZ.

Proof. Since P=AB and Cy(A)=Z, Cp(A)=A. Similarly Cp(B)=B.
Thus Z(P)<CpA)NCp(B)=ANB=Z. Since P/A and P|B are abelian, [P, P]
<ANB=Z. On the other hand, since |{[q,b]|b & B} |=|B/Cy(a)|=1Z],
[a, B]=Z for ac A—Z. 'Therefore (i) holds and (ii) follows immediately from
Theorem 2.2.1 and Lemma 2.2.2 of [2].

Let veP—B. Then v=ab for suitable ac A—Z and b&B. As above,
Z=[a, B]=[v, B]=[v, B,]. Similarly Z=[A4,, u] for u€ P—A. Thus (iii) holds.

Let x&€P—Z. Then x&P—A or x&P—B. Hence [x, P]=Z by (i) and
(ii), so that |Cp(x)| = | P/[x, P|]=¢*. 'Thus (iv) holds.

DerINFTION 3.2. Let ay€4,— {1} and b,B,— {1} and let D be any
set of symbols with cardinal ¢ such that 0, 1D, 0=41. Let D? be the set of
all ordered triples (x,y, 2) with x, y,2€D. We define a mapping s fiom D?
onto P in the following way.

(i) s(0,0,0)=1, s(1, 0, 0)=a, and $(0, 1, 0)=b,.
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(ii) s maps the set {(x,0,0)|xD, x=%0, 1} onto 4,— {1, a;} in an arbi-
trary manner.

(iif) Let (0, 0, x)=[s(x, 0, 0), (0, 1, 0)] (cf. Lemma 3.1 (iii)).

(iv) Let s(0,y, 0) be a unique element in B, such that s(0, 0, y)=[s(1, 0, 0),
5(0, y, 0)] (cf. Lemma 3.1 (iii)).

(v) Set s(x, y, 2)=s(0, 0, 2)s(0, y, 0)s(x, 0, 0).

We define binary operations of addition + and multiplication - into D:
For a,beD, a+b and a-b denote elements of D such that s(a, 0, 0)s(b, 0, 0)=
s(a+b, 0, 0) and (0, 0, ba)=]s(a, 0, 0), s(0, b, 0)], respectively.

By definition, D(+) is isomorphic to 4,, hence it is an abelian group with
identity element 0.

Lemma 3.3. The following hold.
(1) s(a, 0, b)s(c, 0, d)=s(a+c, 0, b+d) for a, b, ¢, d=D.
(it) (0, a, b)s(0, ¢, d)=s(0, a+c, b+d) for a, b, ¢, dED.

Proof. s(a, 0, b)s(c, 0, d) = (0, 0, )s(0, 0, d)s(a, 0, 0)s(c, 0, 0) = [s(b, 0, 0), b,]
X [s(d, 0, 0), by]s(a—+c¢, 0, 0)=[s(b+d, 0, 0), byls(a+c, 0, 0) (cf. Lemma 3.1 (ii))=
5(0, 0, b+d)s(a+-c. 0, 0)=s(a—+c, 0, b+d). Hence (i) holds. Similarly we have
(ii).

Lemma 3.4. s(x;, vy, 21)5(%y Vo Ro) = (%) + X5, Y1+ Vs 21+ 2+ 3,%,) for
triples (xy, y; 21), (%, Vs, 25) E D3,

Proof. By definition 3.2 and Lemma 3.3, s(x,, y1, 21)$(%5, 5, 25)=5(0, 0, 2,)
X 5(0, y1, 0)s(x;, 0, 0)s(0, 0, 2,)s(0, y,, 0)s(x;, 0, 0)=s(0, 0, 2,4+ 2,)s(0, ¥, +7y,, 0)
s(xl’ 07 O) [s(xlr 07 O)) S(O’ Vs 0)]8(.76'7, 01 O)ZS(O) Oy z1+zz +y2xl)s(0’ N +_y2) O)
s(o %5, 0, 0)=s(x,+ %5, y,+ Vs, 21+ 2,+V,%). Hence the lemma holds.

We define a multiplication into D? in such a way that (xy, y,, 2,) (%5, V2, 22)=
(%43, Y1+92, 21+2,+95%,). Then we have

Proposition 3.5. (i) D=D(+, *) is a semifield.
(i) D*=P(D) and D? is isomorphic to P.

Proof. D(+) is an abelian group with identity element O as stated earlier.

By Definition 3.2 (iii) (iv), lx=x, yl=y for all x,y&D. Hence 1 is iden-
tity element with respect to multiplication.

Let a,b€D and assume ab=0. Then |s(b, 0, 0), 5(0, a, 0)]=s(0, 0, 0)=1
and so 5(8, 0,0)eZNA4,=1 or s(0,a,0)€ZNB,=1. Thus a=0 or b=0.

Let a,b,ceD. Then 50,0, (a+b)c)=[s(c, 0, 0), s(0, a+b, 0)]=[s(c, 0, 0),
5(0, a, 0)s(0, b, 0)] = [s(c, 0, 0), s(0, a, 0)] [s(c, 0, 0), (0, b, 0)]=s(0, 0, ac+bc) by
Lemma 3.1 (ii). Hence (a+b)c=ac+bc. Similarly c(a+b)=ca+cb. Thus
we have (i), and (ii) follows immediately from (i) and Lemma 3.4.
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The definition of D(+, +) depends on the choice of the direct factors 4,,
B, and the elements g, 4,, b, B, whence we will denote it by D(A4,, B, ay, b,).

Lemma 3.6. The definition of D(+, +) is independent of the choice of
Ay, By, ay€ A, — {1} and b, B,— {1} and uniquely determined up to isotopism.
(We denote D(+, +) by D(4, B).)

Proof. Let A=A, xZ, B=B,xZ, a,€A;,— {1}, b,€B,—{1}, D;=
D(A4;, B, a;, b;) and let s; be the isomorphism from P(D;) onto P defined in
Definition 3.2 for i=1,2. Set A4,=<¢, ¢, ***,¢,» and B, =<d,, d,, -+, d,).
Since A=A,Z=A,Z and B= B,Z=B,Z, A,=cu, c;tty, ***, c,ut,» and B,=
{dvy, dyvy, +++, d,v,> for suitable elements u;, v,€Z, 1<i<n. Let g be a
mapping from P onto itself defined by g(II ¢/« II 4 z)=11¢,"i I1 4,75 II u;":
IT v;’i = for integers x,, y;, 1<7, j<n and x€Z. It is easily verified that g is

J

an automotrphism of P. Set h=s;'gs;. Then 4 is an isomorphism from P(D;)
to P(D,).

We now define three mappings «, G, 7 in such a way that (a(x), 0, 0)=
h(x, 0, 0), (0, B(y), 0)=A(0, y, 0) and (0, 0, ¥(2))=Hh(0, 0, 2). Then h(x,y, 2)=
(0, 0, 2)A(0, y, 0)h(x, 0, 0)= (0, 0, ¥())(0, (), 0)(a(), 0, 0) = (a(x), BY), (2).
Since  h(xy, y1, 21) (%5, Vaoy 22) = h(x1, Y1, 21) B(%3, Y2y 20), (@14 x2), B(y1+Y2),
V(22 ty%)) =(a(®)+a®y), Br)+B(¥:), Y(2)+7(2:)+B( 2 a(a)) for all
Xy Y1y B1y X3y Vo, 22 ED,.  Therefore p(x+y) = p(x)-+u(y) for pe{a, B, v} and
v(yx)=PB(»)a(x) for all x,yeD,. Hence (&, 8, ) is an isotopism from D, onto
D, and so the lemma holds.

Lemma 3.7. Let P=AB be a p-group of semifield type with (A, B)€V,
and let x be an automorphism of P which fixes A and B and centralizes Z=A N B.
If x centralizes a nontrivial element of the factor group P|Z, then x centralizes P|Z.

Proof. Let Z#uZe&Cp/z(x). Then u=ab for suitable ac 4 and b B.
Since Z=+uZ,acc Zor b Z. We may assume accZ. Then [abZ, b)|=[abZ, b,]"
=[abZ, b)]" for every byeB. Hence [abZ, b7'd"]=1 by Lemma 3.1 (ii), and
so b7'b,"€Z as b7'b,"eB and a=A—Z. 'This implies that 6, Z=Cp/;x) for
all b,B. Therefore B/Z < Cp/z(x), and similarly A/Z < Cp;z(x). Thus we
have the lemma.

4. The action of Aut(P) on the set W,

Throughout this section, let P=AB be a p-group of semifield type of
order ¢, g=p", p a prime and let V, and W, be as in Definition 2.6. Clearly
(4,B), (B,A)eV, and A, BEW,. Furthermore, for each CeW,, C is a
normal subgroup of P which contains Z=/4 N B by Lemma 3.1 (i) (iv).
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Lemma 4.1. The following hold.
(1) If p=2, then V,={(4, B), (B, A)}.
(i) If p>2, then Vy={(A',B')|A'*B', A', B’ Wp}.

Proof. Set D=D(A4, B). By Proposition 3.5, D is a semifield and P is
isomorphic to P(D). Let Ce W,— {4, B}. For (x,y, 2)P(D) and a positive
integer m, (x,y, 2)" = (mx, my, mg+ (14+2+ -+ + (m—1))yx). Hence C is an
elementary abelian p-group if p>2, while C is a homocyclic 2-group of ex-
ponent 4 if p=2. In particular V,= {(4, B), (B, 4)} if p=2.

Let A', B’ W, with A'=#B’ and suppose p=>2. Then 4’ and B’ are
elementary abelian normal p-subgroups of P of order ¢> which contain Z. By
Lemma 3.1 (iv), A'NB'=Z. Therefore A'B'=P. Let a’'€4’, b’eB’ and
assume a'd’'=b'a’. If a’'¢&Z, then b'€Cp(a’)NB' =A'NB'=Z. Thus
(4',BYEV,.

Lemma 4.2. Let (4,B) and (A', B'YeVp,. Then D(A, B) is isotopic to
D(A’, B') if and only if there exists an automorphism f of P which maps A onto
A’ and B onto B’'.

Proof. Set D,=D(A4, B), D,=D(A’, B’) and let s; be the isomorphism
from P(D,) to P defined in Definition 3.2 for i=1, 2.

Suppose D, is isotopic to D, and let (a, B, ¥) be an isotopism from D, to
D, Let h be a mapping from P(D,) onto P(D,) such that h(x, y, 2)=
(a(x), B(), V() for x,y, z€D,. For (x, y;, 21) and (%, ¥, ) E P(D)),
h(xy, 1, 21) (20 oy %2) = (%14 %), B(1+2)s V(211 22+ 32%1)) = (%)) + a(xs),
Bl +B(a)y V(@) () + Bre(®))=h(xs, s, 2)h(xs 32, 5. Hence k is an
isomorphism from P(D,) onto P(D,). Set f=shsi'. Then f is an automor-
phism of P which maps 4 onto 4’ and B onto B’.

Conversely, let f be an automorphism of P which maps 4 onto A’ and
B onto B’. We set h=s3'fs, and define three mappings «, 8, ¥ from D, onto
D, in such a way that h(x, y, 2)=(a(x), B(y), 7(2)) for x,y, z€D,. By a similar
argument as in the proof of Lemma 3.6, («, B, 7) is an isotopism from D, onto
D,. Thus we have the lemma.

Let D be a semifield and let N,, N,, or NV, be its left, middle or right nucleus,
respectively (cf. [3]). We note that N, N, and N, are fields and that N,=N,
if D is commutative.

Proposition 4.3. Let P=AB be a p-group of semifield type with (A, B)EV p.
Then the following hold.

(i) D(A, B) is isotopic to a commutative semifield if and only if |Wp|>2.

(it) Suppose D(A, B) is isotopic to a commutative semifield D, and set Q =
P(Dy). Then Q is isomorphic to P and Wy={C,|kEN, U oo}, where N,, is the
middle nucleus of D, and C,= {(x, kx, 2)|x, 2€Dy}, C.={(0,, 2)|y, 2Dy}
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for kREN,,.

Proof. To prove (ii) and “only if”’ part of (i), we may assume that D=
D(4, B) is commutative and P=P(D) by Lemmas 2.4, 4.2 and Proposition
3.5 (ii). Then A= {(, 0, 2)|x, z&€D} and B={(0, y, 2)|y, 2€D}. Let
keN, — {0} and set C,= {(», kx, 2)|x, 2&D}. Since kEN,, and D is com-
mutative, [(x, kx, 2), (x', kx’, 2")]=(0, 0, (kx")x—(kx)x")=1 and so C, is an abelian
subgroup of order ¢>. In particular | W,|>2. Conversely, let CeW,— {4, B}.
Since CNB= {(0,0, 2)|2 = D}, there is a unique element kD such that
(1, £ 0)eC. By Lemma 3.1 (iv), C=Cy(1, k, 0)={(x, kx, 2)| x, z&D}. There-
fore 1=[(x, kx, 2), (x', kx', 2')]=(0, O, (kx")x— (kx)x") and hence (kx')x=(kx)x’
for all x, x’€D. Thus kEN,,.

We now assume |W,|>2 andlet CEW,, C+A4,B. Letc=C—Z. Then
there are a, A and b, B such that c=ab,. Since CNA=CNB=Z, neither
a, nor b, is contained in Z. Hence we can choose subgroups 4, of 4 and B,
of B such that ey A4,, by B, A=A, XZ and B=B, X Z. Set D,=
D(4,, By, a,, b,). By Lemma 3.6, D is isotopic to D,. Let s be an isomorphism
from P(D,) onto P defined in Definition 3.2. Since s7(c)==s"Y(ap)s (by)=
(1,0,0)(0,1,0)=(1, 1,1), s () =s"(Cp(C))=Crpp(1, 1, 1)= {(x, x, 2) | x, =Dy} .
Therefore {(x, x, 2)|x, 2 € D} is abelian and so 1=[(x, x, 2), (', ", 2")] =
(0,0, x'x—axx") for all x,»’€D,. Hence x'x=xx" for all x, x’€D,, so that D,
is commutative.

Theorem 4.4. Let D be a semifield of order q and set w=nr(D), P=P(D).
Then the following conditions are equivalent.

(i) = is a Desarguesian plane of order q.

(i) | Wpl=q+1.

(iii) Cp(x) s abelian for all x= P—Z(P).

Proof. Suppose (i). By Lemma 2.4, we may assume that D is a field.
Clearly the middle nucleus of D is equal to D. Using Proposition 4.3, | W,| =
| N, | +1=|D|+1=g+1, so (i) implies (ii).

Suppose (ii). Set Z=Z(P). Then |P—Z|/|A—Z|=q+1=|W,| for A& W,.
By Lemma 3.1 (iv), ANB=Z for all A, BEW,(A+B). Hence U A—Z=
P—Z. 'Thus (ii) implies (iii). “SVp

Suppose (iii). Then, obviously |Wp|>2 and so, by Proposition 4.3 (ii),
D is isotopic to a commutative semifield D,. Hence P is isomorphic to P(D,)
by Lemma 2.4 and Proposition 3.5. Let k& be any element in D, Since
(1, &, 0)&E Z(P(Dy)), Cpio(1, &, 0)=1{(x, kx, 2)|x, € D,} isa belian. From this,
1= [(x, kx, 2), (', kx’, 2")]=(0, 0, (kx")x—(kx)x") and so (kx')x==(kx)x’ for all
x, x'€D,. As D, is commutative, this implies that & is an element of the mid-
dle nucleus of D, for all k€D, Therefore D, is a field and so z==(D,) is
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a Desarguesian plane of order ¢. Thus (iii) implies (i).

Let P=AB be a p-group of semifield type. By Proposition 4.3, | W,|=
1+p" for a non negative integer r. Since automorphic images of abelian sub-
groups are also abelian, the automorphism group of P induces a permutation
group on W,. We denote by Aut(P) the automorphism group of P.

Lemma 4.5. Let D, be a commutative semifield of odd order and let N,
or N, be the middle or right nucleus of D,, respectively. For a,b,c,dEN,, with
Ozad—bceN,, we define a mapping f=f .4 from P(Dy) into itself in the
following way:

f(x, v, 2) = (ax+by, cx+dy, {x(acx)-+y(bdy)} |2-+x(bc)y+(ad—bc)z) .

Then the following hold.
(1) fis an automorphism of P(D,).
(ii) Let Cy,, REN,Uocc be as defined in Proposition 4.3 (ii). The action

of f=Fianed n Wotny is equivalent to that of [f g] €GL(2, N,) on PG(1, N,)—

([Jweru[z]).

Proof. Let (x, ¥, %)), (%, ¥ %) EP(D,) and set xy=x,+%,, Yo=Y+ V2
2=2,+2+yx;. Then f(xy, vy, 20)f(%, ¥, 25) = (axy+byy, cxo+dy,, 2'). Here
2" = {xy(acx,)+y:(bdy,)} |2+ x)(be)y,+(ad—be) 2+ {xy(acx,) +-y(bdy,)} |24 x5(be)y,
+(ad—be)z,4-(cxy+dy,) (ax+by,) = {xy(acx;) +2xy(acxy) -+ x(acx,)} |2+ {y1(bd)y,
+29,(bdyy) + yo(bd)yr} 2+ fma(be)ys + b)Y, + wbeys + w(be)y} + {— m(be)y
+ix(adyy,+(ad—be) (,+2)} = {xo(aca)+u(bdyo)} 12+ o(be)yot (ad—be)z, be-
cause a, b, ¢, deN,, and ad—bceN,=N,. Hence we have f(x,, ¥1, 2,)f(%3, V2, 25)
=f(%, ¥1, 21) (¥, Y2, ¥2) and so f is a homomorphism. Assume f(x,y, 2)=1 for
some (x,y, 2)EP(D,). Then ax+by=0 and cx+dy=0. Since a,b,c,deN,,
and ad—bc=+0, we have x=y=0 and so (ad—bc)z=0. Hence (x,y,2)=(0,0,0).
Therefore (i) holds.

Let C;, k&N, U o be as defined in Proposition 4.3 (ii). Then f(x, kx, 2)=
((a+bk)x, (c+dR)x, 2") and f(0, y, 2)=(by, dy, 2”’) for some 2', 2’D,. Hence
f(C)=Cy , k' =(c+dR)[(a+Etk). Here we set (c+doo)/(a+boo)=d[b and
u/0=-co. Then (ii) holds.

Lemma 4.6. Let p be an odd prime and let P be a p-group of semifield
type of order ¢*, q=p". Suppose |Wp|>2 and set |Wp|=1+p" (r=1). Then
there exists an automorphism group M of P which has the following properties:

(1) M fixes every element of Z(P).

(i1) The restriction of M on Wy is isomorphic to PSL(2,p") in its natural
permutation representarion on PG(1, p’).
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Proof. By Propositions 3.5 and 4.3, we may assume that P= P(D,) for
a commutative semifield D,. We apply Lemma 4.5 to D,. Let notations be
as in Lemma 4.5 and let M denote the group generated by all f, ; . 4 such that
a,b,c,deN,, and ad—bc=1. Then M satisfies (i) and (ii) of the lemma.

Lemma 4.7. Let P be a p-group of semifield type for an odd prime p. Let
f be an autom orphism of P which fixes each element of Z(P) and fixes three distinct
elements of Wp. Then f acts trivially on W .

Proof. Suppose A’=A, B/’=B, C’=C for A,B,CeW, with A+B+
C=*+A4. Let x€A—Z. By Lemma 4.1, ANB=BNC=CNA=Z. Hence,
there is b&B—Z such that xb€C—Z. Then 1=[xb, (xb)']=[b, x'][x, b'] =
[6, x1[x, )" and so [b,x']=[b,x’""]. Hence x’ €x’'Z for xc A—Z.
Similarly y/€y/7'Z for yeB—Z. Thus f° centralizes P/Z. By Lemma 3.7,
f=1 or f inverts P/Z and so the lemma holds.

NotatioN: Let X be a group which acts on a set S. We denote by
X? the restriction of X on S.

Using Lemma 4.7, we now prove the following.

Theorem 4.8. Let P be a p-group of semifield type of order p* for an odd
prime p and a positive integer n and assume |Wp|>2. Set L= Aut(P),
GZCL(Z(P)) and W= WP' Then

(1) | W|=1+4p" for a positive divisor r of n.
(ii) PSL(2,p")<G" <L" < PTL(2,p") in the natural doubly transitive
representation. Moreover, three-point stabilizer of G" is the identity subgroup.

Proof. Since |Wp|>2, we can apply Proposition 4.3 and Lemmas 4.6
and 4.7. Let M, D,, N,, and C, be as in them. Since D, is a vector space
over N,, |W|=1+4p" for a positive divisor r of n by Proposition 4.3. By
Lemma 4.6, G¥ >MY=PSL(2, p") and so G¥ is doubly transitive. Let H be
the stabilizer of C, and C; and set N=MNH. By a property of PSL(2,p"),
N has exactly two orbits on W—{C,, C;}. By Lemma 4.7, |H": N¥|=1 or
2, so that |G": M"|=1 or 2. Hence L¥>[G",G"]=M"=PSL(2, p").
Therefore LY is a normal extension of PSL(2, p"). By a property of PSL(2, p"),
we have the lemma.

5. Correspondence between semifields and p-groups of semifield
type

Let D=D(+, -) be a semifield. A dual semifield D*=D(f, %) of D is
defined in such a way that
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atb=a+b, a-b=b-a, for a beD.

We note that the equation ma-+b=~k is equal to (—a)*(—m)%(—k)=—b. Let
T be a mapping from the dual plane z(D)* of z(D) onto z(D*) defined in the
following manner:

(o) = [e0], 7(a)=[—a], 7(a,b) =[—a, 0], T[oo]=(),
T[m] = (—m), 7[m, k] = (—m, —Fk), for a, b, m, keD.

Then 7 is an isomorphism from z(D)* onto z(D¥).

Let P=AB be a p-group of semifield type and set D =D(A4, B). Then
=(D)* is isomorphic to z(D(B, A)). Hence D*=D(A4, B)* is isotopic to
D(B, A) by Theorem 8.11 of [3]. Therefore we have the following theorem
as a result of Lemma 4.2 and Theorem 4.8.

Theorem 5.1. Let P=AB and P'=A'B’ be p-groups of semifield type
for a prime p. Then P is isomorphic to P’ if and only if one of the following holds.

(i) D(A, B) and D(A’, B') are isotopic.

(i) Wp= {4, B}, Wi = {A’, B’} and the dual of D(4, B) is isotopic to
D(A’, B").

Proof. Suppose that the groups P and P’ are isomorphic and deny (i).
We may assume P=P’ and (4, B), (4’, B')€Vp,. By Lemma 4.2 and Theo-
rem 4.8, we have |W,|=2. Then V,={(4, B), (B, A)} and so A'=B, B'=A.
Therefore the dual of D(4, B) is isotopic to D(4’, B’). It follows from Pro-
position 4.3 that W,= {4, B}, for otherwise D(A4, B) is isotopic to its dual.
Hence (ii) holds.

Conversely, suppose (i) or (ii) and set D, = D(A4, B), D,= D(B, A), D;=
D(A’, B'). 'Then, by Proposition 3.5 (ii), P, P(D,) and P(D,) are isomorphic.
Similarly P’ and P(D;) are isomorphic. Since D, is isotopic to D, or D,, P is
isomorphic to P’ by Lemma 2.4.

By Theorem 5.1 and by the fact that we have seen in Definition 2.5, we
obtain the following.

Corollary 5.2. Let =, or 7, be a non-Desarguesian semifield plane and let
P, or P, be its collineation group generated by all elations, respectively. Then P,
and P, are isomorphic as abstract groups if and only if r, is isomorphic to =, or its
dual.
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