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1. Introduction

Let π—π(D) be a finite projective plane coordinatized by a semifield D of
order q. Let A be the collineation group of all elations with axis [°o] and B

the collineation group of all elations with center (oo). We denote by P(π) the
collineation group generated by A and B. Set P = P(π). Then P has the
following properties :

(i) P=AB, |P I =<73, where q is a power of a prime p, and A and B are

elementary abelian normal subgroups of P of order q2.
(ii) ab=ba implies a^A ΓϊB or b^AΠB for all a^A and

A p-group P is called a p-group of semifield type if it satisfies (i) and (ii)
as above. This is the same as a Γ-group satisfying that all a^A—AΓ\B and

all b^B—AΓ\B are regular, defined in [1].
In the paper [1], A. Cronheim has proved as pait of a more general theo-

rem that a finite semifield can be constructed for the group P and the ordered
pair (A,B). We denote the semifield by D(A, B) and the set of all such order-
ed pairs (A, B) by VP. Let WP denote the set of all abelian subgroups of P
of order q2. Then one of the following holds (Lemma 4.1).

(i) £-2 and |FP|=2.
(ii) p>2 and VP={(A9B)\A*B, A,BtΞWP}.
In this paper we will study the semifields constructed for all (A, B) in

VP.
Let (A, B) and (A, B'} be elements in VP. Then D(A, B) and D(A', B1}

aie isotopic if and only if there exists an automorphism f of P which maps A
onto A' and B onto B' (Lemma 4.2). Therefore, we will consider the action of
Aut(P) on the set WP and will prove the following.

Theorem 4.8. Let P be a p-group of semifield type of order p3n for an odd
prime p and a positive integer n and assume |TFP |>2. Set L = Aut(P), G =
CL(Z(P)) and W= WP. Then

( i ) I W\ = 1 Jrpr for a positive divisor r of n.
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(ii) PSL(2,pr)<Gw<Lw<PΓL(2,pr) in the natural doubly transitive re-
presentation. Moreover, three-point stabilizer of Gw is the identity subgroup.

As an application of the theorem, we will prove the following.

Corollary 5.2. Let πl or π2 be a non-Desarguesian semίfield plane and let
P1 or P2 be its collineatίon group generated by all elatiυns, respectively. Then Pλ

and P2 are isomorphic as obstruct groups if and only if πλ is isomorphic to τr2 or its
dual.

This implies that, as an abstract group, the group P (=P(π)) characterizes

the semifield plane n up to its dual.
For the most part we shall use the notation of [2] and [3]. All set, planes

and groups will be finite. Throughout this paper, p will stand for a prime.

2. p-groups constructed for semifields

Let D be a set with two binary operations + and . Z)=Z>(+, •) is called
a finite semifield (also called a division ring, as in [3]) if the following condi-
tions are satisfied:

( i ) D(-\~) is a group with identity element 0.
(ii) ab=0 implies a=0 or b=0 for all a, b€ΞD.
(iii) If a, by c&D, then (a-}-b)c= ac+bc and c(a+b)=ca-\-cb.
(iv) There exists an element 1 &D— {0} such that \x— xl=x for all x&D.
A semifield is an elementary abelian p-group for some prime p with re-

spect to the operation + (Exercise 7.2 of [3]).
Let D be a semifield of order q (=pn). We define P(D) to be the set of all

ordered triples (#, y, z) for x,y, zEϊD. On P(D), we define the multiplication

for Xi,yi,
Let (xhyhZi)^.P(D) and set ai=(xi,yi,zi) for l</<3. Then

). Hence (a^a^a^a,}. Clearly (*, y, z) (0, 0, 0)=(0, 0, 0) (x, y, z)=
(x,y, z) and (x,y, z) (—x, —y, —z+yx)=(~~x) —y, — z+yx) (x,yy *)=(0, 0, 0)
for all (x9y, z)G=P(D). Thus we have the following.

Lemma 2.1. // D is a semifield, then P(D) is a group of order q3 with iden-
tity element (0, 0, 0).

Set P=P(D), A = {(x, 0, z) \x, z<ΞD} and B = (0,y, z)} \y, z(=D}. Then
the following holds.

Lemma 2.2. (i) P=AB, \P\=q3 and A and B are elementary abelian
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normal subgroups of P of order q2.
(ii) ab=ba implies a<=Af}B or b^AΓ\Bfor all a^A and b<=B.

Proof. Since (x, y, z) = (x, 0, z— yx) (0, y , 0) e A B for every (#, y, #) e P,

we have P = AB. As (#, y, <2r)-1=(— #, —y, —z+yx), [(x^y* zj, (x2,y2, z2)]=

(— #!, —yly — *ι+j>ι#ι) (—x2, —y2y —z2+y2x2) (xl9 yly zλ) (x29 y2, z2) = (0, 0, y2xl —
y&2) and (Xiyylyz1)(x29y2ίz2)-1 = (x1—x2ίy1—y2ίzl—z2+y2x2—y2x1). Hence it

follows that A and B are abelian normal subgroups of P of order q2. More-
over (*, 0, *γ=(px, 0, />*)=(0f 0, 0) and (0, y, *)'=(0, £y, ̂ )=(0, 0, 0). There-
fore (i) holds.

Let α =(#!,(),#!) e -4, i = (0,^y2, z2)&B and assume ab — ba. Then 1 —

α~16"1α6=[(^1, 0, ^J, (0,j2> ^2)]=(0> 0*^2^1) and so j2Λι===0, whence ^ = 0 or
3;2=0. Therefore αe^[ Π J5 or 6e^ Π£ and so (ii) holds.

EXAMPLE 2.3. Let D=GF(pn) and let / be a mapping from P(D) into
PSL(3,ρn) such that

1 0 0
x 1 0 . Then f(ab) =f(a)f(b) for all α,

^ 1.

Therefore P(̂ )) is isomorphic to a Sylow ^-subgroup of P5L(3, />M) in this case.

Two semifields Dl and D2 are said to be isotopic if there exists a triple
(α, /3, 7) of nonsingular additive mappings α, /S, Ύ from Dx onto Z>2 such that

γ(xy)=β(x)a(y) for all x,y&D. Almost as an immediate consequence of the
definition we have

Lemma 2.4. Let D1 and D2 be semifields. If Dλ is isotopic to Z>2, then
P(D1) is isomorphic to P(D2).

Proof. Let (α, β, γ) be an isotopism from Dl to D2. We define a map-

ping from P(A) to P(D2) in such a way that f ( x , y, z) = (a(x), β(y), 7(z)) for

l). Clearly / is a bijection. On the other hand, f(xl9 yl9 zj

( ι̂)) (α(*2), ^(y2), 7(ar2)) =/( ,̂ ̂ , ^)/(Λ:2, j2, ar2). Thus P(A) is
isomorphic to P(D2).

DEFINITION 2.5. Let Z) be a semifield of order q and let π=π(D) be a
semifield plane of order q coordinatized by D as defined in [3]. We define an

action of every element (x, y, z)^P(D) on π(D) in the following way:

(oo)<** > = (oo) , (α)<* > '> = (α+y) , (α, δ)<"> > - (α+*, ft+.yα+Λ) ,

[oo](* >^) = [oo] , [aγ* y * == [α+jc] , [α, &]<*•>••> = [α-j, b+(a—y)x+z]

for α,
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Set A = {(x, 0, z) I x, z^D} and B-= {(0, y, z) \y, z<=D] . Then A or B is
a collineation group which consists of elations with axis [<χ>] or center (°°),
respectively. Since \A\ = \B\ = q2 and the order of π(D) is q, A or B is the

collineation group of all elations with axis [oo] or center (°°), respectively.
If D is not a field, P(D)=AB is a normal subgroup of the full collineation group

of π(D) by Lemma 8.5 of [3].

DEFINITION 2.6. A ^-group P=AB is called a p-group of semifield type

if it satisfies the conditions of Lemma 2.2. Let VP denote the set of all such
pairs (A, B). Let WP denote the set of all abelian subgroups of P of order
q2.

3. Properties of p-groups of semifield type

Throughout this section let P be a p-group of semifield type of order q

with q=pn for a prime p and let (A, B)^VP. Set Z=Af\B. Since A is an
elementary abelian p-group, A=AλxZ for a subgroup Aλ of A. Similarly

B=Bl X Z for a subgroup Bl of B. By a definition, | A1 \ = \ Bl \ = \ Z \ = q. We
can then write each element x of P uniquely in the form x=abz for

l and

Lemma 3.1. The following hold.

(i) [P,P]=Z(P)=Z.
(ii) [xy, z] = [x, z] [y, z], [x,yz] = [x,y] [x, z] for x,y,ztΞP and

[xy y]ij for all integers i, j.
(iii) Ifu^P—A and v^P—B, then Z= {[al9 u\\a^A^ = {[v, ft

(iv) Ifx<=P-Z, then \ CP(x) \ =q2. Moreover {g~lxg \g<EΞP} =xZ.

Proof. Since P=AB and CB(A)= Z, CP(A) = A. Similarly CP(B)=B.

Thus Z(P) < CP(A) Π Cp(J5)-:̂  Π β=Z. Since P/A and P/£ are abelian, [P, P]
< A Π B - Z. On the other hand, since | {[a, b]\b<EΞB}\ = \ B/CB(a) \ = | Z | ,
[β> S]=Z for αe^4— Z. Therefore (i) holds and (ii) follows immediately from
Theorem 2.2.1 and Lemma 2.2.2 of [2].

Let v^P—B. Then v=ab for suitable a<=A— Z and b^B. As above,

Z=[α, 5] = b, β]==[v, SJ. Similarly Z=[A19 u\ for u<EΞP-A. Thus (iii) holds.
Let JceP— Z. Then x^P—A or x^P—B. Hence [xyP]=Z by (i) and

(ii), so that I CP(ΛT) | - | P/[x, P \]=q2. Thus (iv) holds.

DEFINFTION 3.2. Let a^Al— {1} and b^Bl— {1} and let Z) be any
set of symbols with cardinal q such that 0, l^Z), Oφl. Let D3 be the set of
all ordered triples (x,y, z) with x, y, z^D. We define a mapping s fiom Z)3

onto P in the following way.

(i) j(0, 0, 0)=1, *(1, 0, 0)=0o and j(0, 1, 0)=00.
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(ii) s maps the set {(x, 0, 0) |#eZ), #ΦO, 1} onto ^ίj— {1, α0} in an arbi-

trary manner.

(ϊii) Let χθ, 0, *) = [X*, 0, 0), χθ, 1, 0)] (cf. Lemma 3.1 (iii)).
(iv) Let χθ, y, 0) be a unique element in Bl such that s(0, 0, y)=[s(l9 0, 0),

XO, y, 0)] (cf. Lemma 3.1 (iii)).

(v) Set s(x9y9 *)=χθ, 0, z)s(0,y, Q)s(x, 0, 0).
We define binary operations of addition + and multiplication into D:

For α, fteZ), a+b and a b denote elements of D such that s(a, 0, θχft, 0, 0)=

s(a+b9 0, 0) and χθ, 0, 6α) = [j(α, 0, 0), χθ, ft, 0)], respectively.
By definition, D(+) is isomorphic to A19 hence it is an abelian group with

identity element 0.

Lemma 3.3. The following hold.

(i) s(a9 0, b)s(c, 0, d)=s(a+c, 0, b+d)for α, ft, c, d<=D.
(ii) j(0, α, 6)ί(0, c, d)=ί(0, α+c, b+d)for a, ft, c,

Proof. J(Λ, 0, ft)^(c, 0, rf) = j(0, 0, ft)ί(0, 0, </)J(Λ, 0, θχc, 0, 0) = [j(ft, 0, 0), ft0]

X [>(</, 0, 0), ft0]ί(α+^, 0, Q)=[s(b+d, 0, 0), ft0]i(«+^, 0, 0) (cf. Lemma 3.1 (ii))==

j(0, 0, ft+dχα+έr. 0, Q)=s(a+c, 0, ft+rf). Hence (i) holds. Similarly we have
(ii).

Lemma 3.4. s(xl9 yl9 z^s(x2, y2, z2) = s(xλ + x2, y x+ y2> %ι + %2 +y2Xι) far
triples (x^y^z^ (x2,y2, z2)<=D3.

Proof. By definition 3.2 and Lemma 3.3, s(xl9yl9z1)s(x29y2yz2)=s(0909Zι)

Xs(0,yl9 0)s(xl9 0, 0X0, 0, z2)s(09 y29 ϋ)s(x29 0, 0) = ί(0, 0, *χ + *2χθ, yι+y29 0)
s(xl9 0, 0) [s(xl9 0, 0), j(0, Λ, 0)]ί( ,̂ 0, 0) = <0, 0, *1 + z2+y2xl)s(09 y,+y2, 0)

2? 0, Q)=s(xι-{-x29yί-\-y29 ^1+^2+^2^1)- Hence the lemma holds.

We define a multiplication into D3 in such a way that (xι,yί9 Z1)(x29y29 %2) =

(Xι~}-x2, y \-\-y 2) ^1+^2+^2^1)- Then we have

Proposition 3.5. (i) Z>— Z)(+, •) is a semίfield.
(ii) D3=P(D) and D3 is isomorphic to P.

Proof. D(+) is an abelian group with identity element 0 as stated earlier.
By Definition 3.2 (iii) (iv), Ix=x9 yl=y for all ,r,jeZ). Hence 1 is iden-

tity element with respect to multiplication.

Let α, fteZ) and assume ab=0. Then [s(b9 0, 0), s(Qy a, 0)]=<0, 0, 0) = 1

and so s(ft, 0, 0)eZΠΛ=l or *(0, α, 0)eZn-Bι=l. Thus a= 0 or ft— 0.
Let α, ft, ceD. Then ί(0, 0, (a+b)c)=[s(c9 0, 0), ί(0, α+ft, 0)]= [s(c9 0, 0),

j(0, *, 0X0, ft, 0)] - IX*, 0, 0), χθ, α, 0)] [X*, 0, 0), χθ, ft, 0)] = s(Q, 0, ac+bc) by
Lemma 3.1 (ii). Hence (a+b)c= ac+bc. Similarly c(a+b) = ca+cb. Thus

we have (i), and (ii) follows immediately from (i) and Lemma 3.4.
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The definition of O(-f, •) depends on the choice of the direct factors Aly

Bl and the elements aQ^Aly b0^Bly whence we will denote it by D(Aly Bly aQy b0).

Lemma 3.6. The definition of <D(+, •) is independent of the choice of
Aly Bly aQ^Al~ {1} and bQ^B2— {1} and uniquely determined up to isotopίsm.
(We denote Z>(+, •) by D(Ay B).)

Proof. Let A = AfxZ, B = BfXZ, α ze^ t-{l}, i. ej?,— {!}, />,- =

D(Aiy Bh ah hi) and let s{ be the isomorphism from P(Z)t ) onto P defined in
Definition 3.2 for ι = 1,2. Set Aλ = <cly c2, — , cw> and B^ζd^ d2y - y dny.
Since A=A1Z=A2Z and B = B1Z = B2Zy A2 = ζc1uly c^, ••-, cnuny and J52 =
(d1vlyd2v2y •••, dnvny for suitable elements uiyVi^Zy \<ί<n. Let £ be a

mapping from P onto itself defined by ^(Π ^Λ Π rf/> #)=Π cf* Π ^Λ Π wΛ'
ί y i y »

Π ί /y ^ for integers x^y^ l<iyj<n and z£ΞZ. It is easily verified that g is
y

an automorphism of P. Set h=S2lg$ι. Then A is an isomorphism from P(Dl)
to P(D2).

We now define three mappings α, /?, 7 in such a way that (a(x)y 0, 0) =

h(Xy 0, 0), (0, /8(y), 0)=Λ(0, y, 0) and (0, 0, 7(ar))=A(0, 0, ar). Then A(*, y, ar)=
A(0, 0, *)h(0,y9 0)h(xy 0, 0)=(0, 0, γ(*))(0, /9(y), 0)(α(^), 0, 0) = (α(Λ), /9(y), Ύ(^)).
Since A(^, jx, ^) (Λ?2, v2, 5r2) — h(xl9 yly arj A(Λ?2, J2, 5r2), (a(^ + Λ2), /β^i + jy2),

(a(*1)+a(^2), /8(yι)+/9(y2), ίy(arι)+'y(^)+^(>2)α(Λι)) for all
y2, z2^Dl. Therefore μ(x+y) = μ(x)+ μ(y) for μ e {α, -^, T} and

Λ?)— β(y)a(x) for all x^y^D^ Hence (α, /S, 7) is an isotopism from D1 onto
Z)2 and so the lemma holds.

Lemma 3.7. Let P = AB be a p-group of semίfield type with (Ay B)<=VP

and let x be an automorphism of P which fixes A and B and centralizes Z—A Π B.
If x centralizes a nontrίvίal element of the factor group P\Z, then x centralizes P/Z.

Proof. Let Z^puZ^CP/z(x). Then u=ab for suitable a^A and
Since Z Φ uZy a φ Z or b φ Z. We may assume a&Z. Then [abZy 6J = [abZ, ij*

~[abZ, 6J* for every b^B. Hence \abZ,b^lbi]==\ by Lemma 3.1 (ίi), and
so b^bf&Z as b^bf&B and a^A—Z. This implies that b^^Cp/zx) for

all b^B. Therefore B\Z<CPlz(x\ and similarly A/Z<CP/z(x). Thus we
have the lemma.

4. The action of Aut(P) on the set WP

Throughout this section, let P=AB be a p-group of semifield type of
order q3

y q=pn, p a prime and let VP and WP be as in Definition 2.6. Clearly

(AyB)y (ByA)£ΞVP and A, B^WP. Furthermore, for each C<EΞWPy C is a
normal subgroup of P which contains Z=A Γ\B by Lemma 3.1 (i) (iv).
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Lemma 4.1. The following hold.
(i) Ifp=2,thenVP={(A,B),(B,A)}.
(ii) Ifρ>2, then VP={(A',B')\A'*B', A'y B'<=WP}.

Proof. Set D=D(A, B). By Proposition 3.5, D is a semifield and P is
isomorphic to P(D). Let Ce WP— {A, B}. For (x,y, z)^P(D) and a positive
integer w, (#,3>, z)m — (mx, my, mz+(l-}-2 + \-(m—l))yx). Hence C is an
elementary abelian p-group if ^>>2, while C is a homocyclic 2-group of ex-
ponent 4 if p=2. In particular Vp= {(A, B), (B, A)} if p-=2.

Let A',B'<=WP with ^'Φ#' and suppose ρ>2. Then ^4' and £' are
elementary abelian normal ^-subgroups of P of order q2 which contain Z. By
Lemma 3.1 (iv), A'Γ}B'=Z. Therefore A'B'=P. Let α'e-4', i'eJ?' and
assume a'b' = b'a'. If α'φZ, then i' e CP(α') Π JJ' = ̂ ' Γi 5' = Z. Thus
μ',£')GEFP.

Lemma 4.2. Let (A,B) and (A',B'}<=VP. Then D(A, B) is isotopic to
D(A'y Bf) if and only if there exists an automorphism f of P which maps A onto
A' and B onto B'.

Proof. Set D1 = D(AίB)y D2 = D(A',B') and let s{ be the isomorphism
from P(Di) to P defined in Definition 3.2 for i=l, 2.

Suppose Dl is isotopic to D2 and let (α, /3, *y) be an isotopism from Dl to

D2. Let A be a mapping from P(A) onto (̂̂ 2) such that h(x, y, z) =
(α(Λ?), /S(^), 7(5r)) for x, y, z <Ξ A. For (̂ , jx, arj and (#2, j^

A(»ι, ^i, »ι) (2, J?, ^2) = («(Λ?I + *2), /S(<y1+j2), Ύ^i + ^2 + ̂ 2^1)) == (
/%ι)+/3(;y2), T(^ι)+Ύ(^2)+/5(j2)«(^ι))=A(^,Jι,^ι)^^ Hence A is an
isomorphism from P(Dl) onto P(D2). Set f=s2hsϊl. Then / is an automor-
phism of P which maps A onto A' and J3 onto B''.

Conversely, let / be an automorphism of P which maps A onto A' and
B onto B'. We set h=s2

lfs1 and define three mappings α, /3, 7 from D1 onto
Z)2 in such a way that A(#,y, #)=(cφc), β( y), Ύ(#)) for #,3;, z^D^ By a similar
argument as in the proof of Lemma 3.6, (α, /9, 7) is an isotopism from Dl onto
D2. Thus we have the lemma.

Let D be a semifield and let Nh Nm or Nr be its left, middle or right nucleus,
respectively (cf. [3]). We note that Nly Nm and Nr are fields and that Nf=Nr

if D is commutative.

Proposition 4.3. Let P—AB be a p-group of semifield type with (A, B) e VP.
Then the following hold.

(i) D(A, B) is isotopic to a commutative semifield if and only if \ WP\ >2.
(ii) Suppose D(A, B) is isotopic to a commutative semifield DQ and set Q =

P(DQ). Then Q is isomorphic to P and WQ={Ck\k<=NM(J °°}, where Nm is the
middle nucleus of DQ and Ck= {(#, kx, z)\x, ^eZ)0}, Coo= {(0,j>, z)\y,
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Proof. To prove (ii) and "only if" part of (i), we may assume that D=

D(A,B) is commutative and P = P(D) by Lemmas 2.4, 4.2 and Proposition

3.5 (ii). Then A = {(#, 0, z)\xy z(=D} and B= {(0, j, z)\y, z<=D}. Let

k^Nm — {0} and set Ck= {(x, kx, z)\x, z&D}. Since k^Nm and D is com-

mutative, [(xy kx, z), (xf, kx', z')]=(0y 0, (kx')x— (kx)x')~l and so Ck is an abelian
subgroup of order q2. In particular | WP \ >2. Conversely, let Ce WP— {A9B} .

Since C(M3= {(0, 0, z)\z^D}} there is a unique element k^D such that

(1, k, 0) eC. By Lemma 3.1 (iv), C=Cχi, A, 0)= {(#, A#, jar) | #, z£ΞD} . There-
fore 1 = [(#,**,*), (x',kx',z')]=(Q,09(kx')x-(kx)xf) and hence (te>= (**)*'

for all x, x' eZ>. Thus k(ΞNm.

We now assume \WP\>2 and let C e JFP, C ±A9 B. Let c^C-Z. Then
there are #0e./4 and bQ^B such that c=a0b0. Since C ΓiA=C ΓiB=Zt neither

#0 nor 60 is contained in Z. Hence we can choose subgroups Aλ of A and -Bj

of B such that tf0^A> b0^Blf A=-AλxZ and B = BlχZ. Set Z)0 =
Z)̂ , jδj, <20, i0). By Lemma 3.6, D is isotopic to Z>0. Let s be an isomorphism

from P(A>) onto P defined in Definition 3.2. Since s~1(c)=s~1(a0)s~1(bQ) =

(1, 0, 0) (0, 1, 0)=(1, 1, 1), s-\c)=s-\CP(C))=Cf(DQ)(l, 1, 1)- {(x, x, z) \ x, z<ΞD0} .
Therefore {(x, x, z) \x, z^D0} is abelian and so 1 = [(χ9 x, z), (x'y x', z')] =

(0, 0, x'x— xxf) for all x, x'^DQ. Hence x'x=xx' for all x9 x'^D0y so that Z)0

is commutative.

Theorem 4.4. Let D be a semifield of order q and set π=π(D), P=P(D).

Then the following conditions are equivalent.

( i ) π is a Desarguesian plane of order q.

(ii) \WP\=q+\.
(lϊi) CP(x) is abelian for all x<EΞP-Z(P).

Proof. Suppose (i). By Lemma 2.4, we may assume that Z) is a field.

Clearly the middle nucleus of D is equal to D. Using Proposition 4.3, | WP \ —

\Nm\+l= \D\+l=q+l, so (i) implies (ii).

Suppose(ii). SetZ=Z(P). Then \P-Z\/\A-Z\=q+l = \WP\ for AtΞWP.
By Lemma 3.1 (iv), A(1B=Z for all A, B<=WP (A*B). Hence U A—Z=

P-Z. Thus (ii) implies (iii). A^p

Suppose (iii). Then, obviously \WP\>2 and so, by Proposition 4.3 (ii),
D is isotopic to a commutative semifield DQ. Hence P is isomorphic to P(D0)

by Lemma 2.4 and Proposition 3.5. Let k be any element in Z)0. Since

(1, A, 0)$Z(P(Z>0)), Cpα>0)(l, A, 0)= {(x, kx, z) I x, z<=D0} isa belian. From this,

1 = [(#, kx, z\ (x', kx', z'}] = (0, 0, (kx')x-(kx)xr) and so (kx')x = (kx)xf for all
x, X'^DQ. As DQ is commutative, this implies that k is an element of the mid-
dle nucleus of D0 for all k^D0. Therefore D0 is a field and so π=π(D0) is
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a Desarguesian plane of order q. Thus (iii) implies (i).

Let P=AB be a p-group of semifield type. By Proposition 4.3, | WP \ =
1 Jrpr for a non negative integer r. Since automorphic images of abelian sub-
groups are also abelian, the automorphism group of P induces a permutation
group on WP. We denote by Aut(P) the automorphism group of P.

Lemma 4.5. Let DQ be a commutative semifield of odd order and let Nm

or Nr be the middle or right nucleus of Z)0, respectively. For a, b, c, d^Nm with

Q^ad—bc^Nrί we define a mapping /=/<βf* fCfrf) from P(D0) into itself in the
following way:

f(x, j, z) = (ax+by, cx+dy, {x(acx)Jry(bdy)}/2J

Γx(bc)y-}-(ad—bc)z) .

Then the following hold.
( i ) / is an automorphism of P(DQ) .
(ii) Let CkJ k&Nm\J°o be as defined in Proposition 4.3 (ii). The action

o = ( . < < > °» W is equivalent to that of [^]eGL(2, Nm) on PG(1, Nm)=

Proof. Let (xl9ylyz^9(x2,y29z^P(D^ and set xQ = x1+x2) y0=y1+y2,

*o = #ι+#2+.y2*ι τhen f(χι> y\> *ι)f(χ2y y2, ^2) = (axQ+byo, cχo+dy<» ^') Here

zf = {x1(acx1)+yl(bdyl)}l2+xl(bc)y1+(ad—bc)z1+ {x2(acx2)+y2(bdy2)} /2+x2(bc)y2

+(ad—bc)z2+(cx2+dy2) (ax^byj = {x^acxj) +2x1(acx2) +x2(acx2)} /2+ {y1(bd)y1

+ 2yl(bdy2) +y2(bd)y2} β + {^(δφΊ + X2(bc)y2 + x2(bc)yl + Xι(bc)y2} + {— Xι(bc)y2

+xl(ad)y2+(ad—bc)(zl+z2)} = {xQ(acx0)+y0(bdy0)}l2 + xQ(bc)yQ+(ad—bc)z0 be-

cause a, b, cy d^Nm and ad—bc^Nr=Nlt Hence we have f(xly yl9 %ι)f(x2,y2) %2)

—f(xι>yι> %ι) (X2>y2y £2) and so/ is a homomorphism. Assume f(x,y, #)=1 for
some (xy y, z)^P(DQ). Then ax+by=Q and cxj

rdy=0. Since ayb9c9d^Nm

and ad—bc^FU, we have x= jy— 0 and so (ad— bc)z=Q. Hence (x,y,z)= (0,0,0).
Therefore (i) holds.

Let Ck, k^Nm U °° be as defined in Proposition 4.3 (ii). Then/(#, kx, 2)==

((a+bk)xy (c+dk)x, zr) and /(O, y, z)=(by, dy, sf) for some *', z"€ΞD0. Hence
/(Q = C*/, k' = (c+dk)/(a+bk). Here we set (c+doo)/(a + boo) = d/b and
u/Q=:oo. Then (ii) holds.

Lemma 4.6. Let p be an odd prime and let P be a p-group of semifield
type of order q\ q=ρn. Suppose \WP\>2 and set \ WP\ = l+pr (r>l). Then
there exists an automorphism group M of P which has the following properties:

( i ) M fixes every element of Z(P) .

(ii) The restriction of M on WP is isomorphic to PSL(2y pr) in its natural
permutation representation on PG(lyp

r).
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Proof. By Propositions 3.5 and 4.3, we may assume that P=P(D0) for
a commutative semifield D0. We apply Lemma 4.5 to Z>0. Let notations be
as in Lemma 4.5 and let M denote the group generated by all/(βΛc></) such that
ay b, c, d&Nm and ad—bc=\. Then M satisfies (i) and (ii) of the lemma.

Lemma 4.7. Let P be a p-group of semifield type for an odd prime p. Let
f be an autom orphism of P which fixes each element of Z(P) and fixes three distinct
elements of WP. Then f acts trivially on WP.

Proof. Suppose Af=A, Bf=B, Cf=C for A,B, C<=ΞWP with
CΦA Let x<=A-Z. By Lemma 4.1, AΓlB=BΓ(C=C Γ(A=Z. Hence,
there is b&B—Z such that xb(=C—Z. Then 1 = [xby (xb)f] = [b, xf] [x, bf] =
[b,xf][x,bfY~l and so [b, xf] = [b, a/"1]. Hence xf£Ξxf~lZ for x£ΞA~Z.
Similarly y f & y f ~ Z for y&B—Z. Thus/2 centralizes P/Z. By Lemma 3.7,
/=! or /inverts P/Z and so the lemma holds.

NOTATION: Let X be a group which acts on a set S. We denote by
Xs the restriction of X on S.

Using Lemma 4.7, we now prove the following.

Theorem 4.8. Let P be a p-group of semifield type of order p3n for an odd
prime p and a positive integer n and assume \ WP \ >2. Set L = Aut (P),
G=CL(Z(P))andW=WP. Then

( i ) I W\ = 1 +pr for a positive divisor r of n.
(ii) PSL(2,pr)<Gw <LW <PΓL(2,pr) in the natural doubly transitive

representation. Moreover, three-point stabilizer of Gw is the identity subgroup.

Proof. Since | WP \ >2, we can apply Proposition 4.3 and Lemmas 4.6
and 4.7. Let M, D0, Nm and Ck be as in them. Since Z>0 is a vector space
over Nm, \W\=\-\-pr for a positive divisor r of n by Proposition 4.3. By
Lemma 4.6, Gw>Mw=PSL(2,pr) and so Gw is doubly transitive. Let H be
the stabilizer of C0 and C1 and set N=MΠH. By a property of PSL(2,pr),
N has exactly two orbits on W— {C0, Cj}. By Lemma 4.7, \HW:NW\=1 or
2, so that \GW:MW\ = 1 or 2. Hence LW>[GW, GW] = MW = PSL(2, /).
Therefore Lw is a normal extension of PSL(2, pr). By a property of P5L(2, /),
we have the lemma.

5. Correspondence between semifields and p-groups of semifield
type

Let D=D(+y •) be a semifield. A dual semifield D*=D(+, ~ ) of D is
defined in such a way that
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a+b = a+b , α 6 = ό α, for α,

We note that the equation ma+b=k is equal to (— «)•(— #*) + (— k)=— b. Let
T be a mapping from the dual plane τr(Z>)* of ττ(Z>) onto τr(Z)*) defined in the
following manner:

τ(oo) == [oo] , r(ά) = [— α] , τ(α, ό) = [-α, -£] , τ[oo] =(oo) ,

r[m] — (—m) , τ[m, k] = (—m, —k) , for a, b, m, k&D .

Then T is an isomorphism from π(D)* onto τr(Z)*).

Let P=AB be a ^-group of semifield type and set D = D(A,B). Then
;r(Z>)* is isomorphic to π(D(B,A)). Hence Z>* = Z)(̂ ί, £)* is isotopic to

D(B,A) by Theorem 8.11 of [3]. Therefore we have the following theorem

as a result of Lemma 4.2 and Theorem 4.8.

Theorem 5.1. Let P=AB and P'=A'B' be p-groups of semifield type

for a prime p. Then P is isomorphic to P' if and only if one of the following holds.

( i ) D(A, B) and D(A ', B f ) are isotopic.
(ϋ) Wp= {A, B}, WP= {A', B'} and the dual of D(A,B) is isotopic to

Proof. Suppose that the groups P and P' are isomorphic and deny (i).

We may assume P=P' and (A, B), (A', B')tΞVP. By Lemma 4.2 and Theo-

rem 4.8, we have | WP \ =2. Then VP= {(A, B\ (B, A)} and so A'^B, B'=A.

Therefore the dual of D(A, B) is isotopic to D(A' ', B'). It follows from Pro-
position 4.3 that Wp= {A, B}y for otherwise D(A, B) is isotopic to its dual.
Hence (ii) holds.

Conversely, suppose (i) or (ii) and set D1 = D(AyB), D2 = D(B,A), D3 =
D(A',B'). Then, by Proposition 3.5 (ii), P, P(D1) and P(D2) are isomorphic.

Similarly P' and P(D3) are isomorphic. Since D3 is isotopic to Z>! or Z>2, P is

isomorphic to P' by Lemma 2.4.

By Theorem 5.1 and by the fact that we have seen in Definition 2.5, we

obtain the following.

Corollary 5.2. Let π1 or π2 be a non-Desarguesian semifield plane and let
P1 or P2 be its collineation group generated by all elations, respectively. Then Pl

and P2 are isomorphic as abstract groups if and only if πl is isomorphic to π2 or its
dual.
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