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Introduction

Let f: P— O be a smooth G-map between smooth G-manifolds P, Q where
G is a compact Lie group. The aim of this paper is to give sufficient condi-
tions for f to be equivariantly homotopic to an orthogonally isovariant map,
an isovariant immersion, and an equivariant embedding. We work in the
smooth category. In the PL category with G finite there is a result of Illman
[3]. In the smooth category, when Q is a euclidean representation space,
there are also results of Wasserman [6], Marchow and Pulikowski [4]. As
Illman pointed out in his paper the existence of equivariant PL and equivari-
ant smooth embeddings are questions of completely different natures. In the
PL category, conditions for the dimensions of fixed point sets of each sub-
group of G give a sufficient condition for the existence of equivariant embed-
dings. In the smooth category, however, those are not sufficient. Conditions
also for the normal representations around fixed point sets are needed.

Let G, denote the isotropy subgroup of G at x&P. A G-map f: P—Q
is called isovariant if G, =G for every x&P. Let J(P) denote the set of
isotropy types (i.e., conjugacy classes of isotropy subgroups) on P. For any

(H)eI(P) define
P = {xeP|H is conjugate to a subgroup of G,} ,
Py = {x=P|H is conjugate to G,} .

v(P(zp) denotes the normal bundle of Py in P. The differential df of a smooth
isovariant map f: P— O induces a bundle homomorphism

df: v(Pun) = v(Qu) -

If, for every (H)€J(P), df is a bundle monomorphism (i.e., a monomorphism
on each fibre), f is called orthogonally isovariant.

Our main results are Theorem 7.2, Corollary 7.3 and Corollary 7.4 stated
in section 7. Theorem 7.2 shows that, under conditions for the dimensions
of fixed point sets and also for the normal representations around them, a smooth
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G-map f: P— Q may be equivariantly homotoped to an orthogonally isovariant
map. Corollary 7.3 (resp., Corollary 7.4) shows that, under extra conditions
for the dimensions of fixed point sets, f may be equivariantly homotoped to
an isovariant immersion (resp., an equivariant embedding).

Theorem 7.2 will be proved as follows. Let

I(P) = {(H)), (Hy), -+, (H,)}

be ordered in such a way that if H; is conjugate to a subgroup of H; then j<i.
Assume f is already orthogonally isovariant on a neighborhood of 4=0P U P%v
U--- UP¥i-p, First, using the condition (7.2.1), we show in section 4 that f
may be equivariantly homotoped relative to a neighborhood of 4 to a smooth
G-map g: P—Q which is isovariant on P%?. Next we want to homotope g
to a map which is orthogonally isovariant on a neighborhood of P#). In
section 5 we will introduce obstructions to do so. We see that these obstruc-
tions vanish under the condition (7.2.2). Thus g may be equivariantly homo-
toped relative to a neighborhood of A to a map which is orthogonally isovariant
on a neighborhood of P#2, Thus f is equivariantly homotopic to a map which
is orthogonally isovariant on a neighborhood of 0P UP¥D .. UP#). Con-
tinuing as above, f may be equivariantly homotoped to an orthogonally iso-
variant map, and Theorem 7.2 may be proved. Corollary 7.3 and Corollary
7.4 may also be proved by homotoping an orthogonally isovariant map induc-
tively as above.

1. Preliminaries

G always denotes a compact Lie group. Let P be a smooth G-manifold.
The conjugacy class (G,) of the isotropy subgroup at x& P is called an sotropy
type on P. All smooth G-manifolds considered in this paper have finite iso-
tropy types. If P is compact then P has finite isotropy types. Denote by J(P)
the set of all isotropy types on P. For (H), (K)eJ(P) define (H)<(K) if and
only if H is conjugate to a subgroup of K. Then J(P) becomes an ordered
set with the order <. For (H)eJY(P) define

Pi = {xesP|HC G,},
P,= {x€P|H=G,},
PP = {xeP|(H) < (G},
Py = {x€P|(H) = (G.)} .
Then

P® — GP? = {gx|gEG, x=P"},
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where N(H) is the normalizer of H in G. P#, Py, and P, are N(H)-, N(H)-,
and G-invariant smooth submanifclds of P, respectively. If (H) is maximum
in J(P) then P is also a G-invariant smooth submanifold of P.

Let n: PE—P#|N(H) be the canonical projection. The inverse image
of a connected component of P¥/N(H) by = is called an N(H)-component of
PE. Let {P¥|lasCyum(P?)} be the family of all N(H)-components of PZ.
Let O be another smooth G-manifold, and f: P—Q a G-map. For a€Cyu
(P¥), OF @ denotes the N(H)-component of Q¥ containing f(PZ). If G-maps
f, g1 P—Q are G-homotopic (denote by f==;g), then Qf (=05 @. I HCK
then Q¥ C O¥, and define

(Of @)t = (x€Qf | KCG,} = 0F N OX.

Then, since (Q%)* is a sum of connected components of QF, it is a smooth
submanifold of Q.

The dimensions of fixed point sets P¥, (Q¥%@)¥ and so on are not homo-
geneous, that is, the dimensicns may vary with connected components. If a
manifold }/ has not a homogeneous dimension, we denote by dim M the maxi-
mum of dimensions of M. In this connection note that N(H)-components P,
O7 @ have homogeneous dimensions.

A G-map f: P—Q is called isovariant if G,=G s, for every x&P. Equiv-
ariant embeddings are isovariant. However, equivariant immersions are in
general not isovarijant.

Smooth G-manifolds P, Q considered in this paper have or have not bound-
ary. If P or Q has boundary, immersions and embeddings f: P— Q satisfy
O0P=f"%3Q). Immersions and embeddings in this paper are smooth ones, that
is, we work in the smooth category.

2. Simple case

In this section we consider the case in which P is of one isotropy type,
and prove the following three results.

Theorem 2.1. Let P be a compact smooth G-manifold with only one iso-
tropy type (H), and Q a smooth G-manifold with J(Q) finite and containing (H).
Let f: P—Q be a smooth G-map isovariant on a neighborhood of OP in P. For
any aEC yy)(P¥) suppose that

dim P% <dim Q¥ 4 —dim (Q¥@)*+dim (N(H) N N(K))/H

Sfor any (K)eI(Q) with HS K and with (Qf @) =¢. Then there is a smooth
G-map g: P— Q such that

(1) g is isovariant,

(2) g=f on a neighborhood of 0P in P,
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(3) g==¢ f rel the neighborhood of 0P in P.

Corollary 2.2. In Theorem 2.1, suppose furthermore that f is an isovariant
immersion on a neighborhood of 0P in P, and suppose that

2 dim Pg’<dim Qf @+ dim N(H)/H
Jor any a=Cyu(P¥). Then g may be chosen so as to be an isovariant immersion.

Corollary 2.3. In Theorem 2.1, suppose furthermore that f is an embedding
on a neighborhood of OP in P, and suppose that

2 dim P¥<dim Qf -+dim N(H)/H
for any a€Cyu)(P?). Then g may be chosen so as to be an embedding.
Proof of Theorem 2.1. We proceed by induction on the number
n(Q) = #{K)eJ(Q)|HEK} .
If n(Q)=0, since
fP) = f(Pm) Q™ = O,

then f is isovariant in itself.

Suppose that #(Q)>1 and that the theorem is valid for Q; with #n(Q;)<
n(Q). Let (K) be an isotropy type maximal in J(Q) with HS K. Consider
smooth N(H)-maps

fa=fI1P4: Pf—Qfw, and
IXf2: P — PEXOF @y, x> (%, fH(x).
Passing 1 Xf# to orbit spaces, we obtain a smooth map
1X wun fa: Pa|N(H) = PiX yun Qf @ -

Since (K) is maximal in J(Q), N(H) (O%)¥ is an N(H)-invariant smooth
submanifold of Q¥ ), and we see

N(H) (Q;I(w))KR’N(H) X N NEK) (Qf‘l(w))K .
Thus ’
dim N(H) (O @)* = dim (Qf @)*+dim N(H)/N(H) N N(K) .

PZx v N(H)(QF @)X is a smooth submanifold of PZX ym OF@. If f is iso-
variant on a neighborhood 4 of 9P in P, then

1X ye fa((A N PE)IN(H)) 0 Py X win N(H) (QF @) = ¢ -

From the dimension condition of the theorem we see
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dim P{/N(H)<dim Pg'X yun Qf @—dim PgX yanN(H) (QF @)* -
Thus we obtain a smooth G-map
g1 PgIN(H) = PEX v QF @

such that

(1) ImgNPIX ey NH)(OF ) =,

(2) g&=f on (BNPLY)N(H), where B (CA) is a neighborhood of 0P
in P,
(3) e=1Xyufa rel (BNPL)IN(H).
The canonical projections

P? — PZIN(H), and
PEx Of @ = Pa X xw OF w

are smooth N(H)-fibre bundles. Thus, by the equivariant covering homotopy
property (a relative version of Bierstone [1]), g lifts to a smooth N(H)-map

Py —>PixQf -
This map is followed by the projection
Pex0fw— 0w,
and induces a smooth N(H)-map
& Pa— Qfw

such that

(1) Im g, N N(H)(Qf ) =9

(2) g=f& on CNP, where C (CB) is a G-invariant neighborhood of
9P in P,

() &=w~ufL relCNPL

Performing the same as above over all N(H)-components of P¥, we obtain a
smooth N(H)-map P¥—Qf. Since P~GX y P¥, this map extends equivari-
antly to a smooth G-map

& P—0,

which satisfies

(1) ImgNQ®=¢,

(2) g=fonC,

(3) g frel C.

Let Q;=0—Q®. Then Q, is a smooth G-manifold with n(Q,)=n(Q)
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—1. g is isovariant on a neighborhood of 9P in P, and Im g;CQ,. We may
see that

(Ql)Z(a) CO%w s and
dim (Ql):’la(m) = dim Q}{(u) ’

also see that

((Ql)g(a))K, c (Q?(m))x’ ) and
dim ((Qy)Z ) <dim (QF )"’ .

Thus g5: P— Q, satisfies the hypothesis of the theorem. So, by the hypothesis
of induction, we obtain a smooth G-map

g:P—0,CcQ

such that
(1) g, is isovariant,
(2) g.=gs=f on a neighborhood of 9P in P,
(3) g.=cg:=¢f rel a neighborhood of 9P in P.
Thus g, satisfies the conclusions of the theorem. Q.E.D.

Proof of Corollary 2.2. We may assume f: P— Q is isovariant. Then, by
restricting f a smooth N(H)-map

fu=71P1: Pt = Py~ Q,
is induced. Passing this map to orbit spaces, we obtain a smooth map
fEIN(H): P#IN(H) — QN(H) .

By the hypothesis of the corollary this is an immersion on a neighborhood of
OPY|N(H) in PZ|N(H). For any a<C yup(PH) let

Q8 = 0z N Qf @ »
then
dim Q4 = dim Q% -
Thus, from the hypothesis it follows
2 dim PJ/N(H)<dim Q4 /N(H) .
So f#/N(H) may be homotoped to a smooth map
&: PAIN(H) — Qx/N(H)

such that
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(1) g, is an immersion,

(2) g=f%|/N(H) on a neighborhood of 0P#/N(H) in P¥|N(H),

(3) g=f"|N(H) rel the neighborhood of 0P#/N(H) in P?|N(H).
By the equivariant covering homotopy property (a relative version of Bierstone
[1]) & lifts to a smooth N(H)-map P#¥—Q,. Since P~G X yy) P¥, this map
extends equivariantly to a smooth G-map

& P—0
such that
(1) g, 1s an isovariant immersion,
(2) g,=f on a neighborhood of 8P in P,
(3) gy=¢f rel the neighborhood of 9P in P.
Thus the corollary is proved. Q.E.D.

Proof of Corollary 2.3. This is essentially the same as for Corollary 2.2.
Q.E.D.

3. Technical lemmas

Let us number all the isotropy types on a compact smooth G-manifold P,
j(P) = {(Hl)’ (H2)7 T (Ha)} ’

in such a way that (H;)<(H,) implies j<:. In the following we fix once and
for all such a numbering of J(P). If (H)=(H;)€JI(P), then define

P — P J PED | ... |J PH;-p
= PypUPyU-UPuy,_ .

Lemma 3.1. Let (H) be an isotropy type on a compact smooth G-mani-
feld P, and X a G-invariant neighborhood of 0P U P in P. Then we obtain
G-invariant compact smooth submanifolds M, P of P such that

(1) P=MUP,0M=0PUdP, 0P=MnNP,

(2) dim P=dim M=dim P,

(3) M is contained in Int X and is a neighborhood of 0P U“DP in P.

Proof. Let (H)=(H,;). Then, for any integer j with 1< j <4, consider the
following assertion A(j).

A(j). There are G-invariant compact smooth submanifolds M;, P; of P
such that

(1) P=M,UP;, 0M;=0PU0dP;, oP,=M;NP;,

(2) dim P=dim M;=dim P,,

() M; is containd in Int X and is a neighborhood of 0P U “/P in P.
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A(7) is equivalent to the lemma. We prove all A(j) by induction.
There is a G-invariant collar 9P x [0, 1] of 0P in P which is contained in
Int X. Then

M, =9Px[0,1], and
P, = P—oPx[0, 1)

satisfy the conclusions of A(1).

Assume A(j) is valid. P{7 is a G-invariant smooth submanifold of P;
since P; has no isotropy type larger than (H;). There is a G-invariant closed
tubular neighborhood T of P in P; which is contained in Int X. Let 7°
be the open tubular neighborhood with the same radius as 7, and let

L:Pj_—TD.

Then L is a G-invariant submanifold (with corner) of P;. Take a G-invariant
collar 0L x [0, 1] of 0L in L which is contained in Int X. Then

M, = M;UTUBLX[0,1], and

satisfy the conclusions of A(j+1), that is, A(j-1) is valid.
Thus the lemma is proved. Q.E.D.

Lemma 3.2. Let P, Q be smooth G-manifolds, and P compact. Let M
be a G-invariant compact smooth submanifold of P with 0M COP, and let A be
either a G-invariant open neighborhood of M in P, or M itself. Let f: P—Q
and g: A— Q be smooth G-maps such that

(1) ‘g=f on ANB, where B is a G-invariant neighborhood of 0P in P,

(2) glM=¢f|M rel M NB.

Then we obtain a smooth G-map h: P— Q such that

(1) h=f on a neighborhood of 3P in P,

(2) i A is a neighborhood of M then h=g on a neighborhood of M in P,
and if A=M then h=g on M,

(3) h=¢f rel the neighborhood of OP in P, moreover, if f=g on M then
h= f rel the neighborhood and rel M.

Proof. We prove the case in which 4 is a neighborhood of M. (The
proof for the case A=M is essentially the same (but easier).)

There is a G-invariant collar 9P X [0, 2] of 0P in P which restricts to a
collar 8M x [0, 2] of 0M in M and which is contained in Int B. Let

P’ =P—08Px[0,2), and
M' = MOP = M—3MXx][0, 2).
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There is a G-invariant closed tubular neighborhood T (M), with radius 48>0,
of M in P which restricts to a tubular neighborhood T'(M’) of M’ in P’ and
which is contained in 4. By the hypothesis of the lemma there is a G-homo-

tOpy
H: Mx[0,1]—0Q

such that
(1) Hy=f|M, H=¢|M,
(2) H is constant for t<[0, 1] on M N B.
Define a G-map
h: P —Q

as follows. For any xeT,s(M’) denote by [|x|| the length of x as a normal
vector. If 0<|[|x||<3, define

hy(x) = g(x),
if 3<||«|| <28, define

2

)

hl(x) =g ((
if 26 < ||x]| <38, define |
() = Hiz(x), 31,

where 7: T (M')— M’ is the canonical projection, if 38<||x||<43, define

hy() = f(4— 120,
]

and if x&P'—T4y(M’), define

(%) = f(x) ,
where T',(M’) is the open tubular neighborhood with radius 48. Then #;:
P'—Q is well-defined. Consider the subspace 0P x[1, 2] of P x [0, 2]. By

using the fact that H is a constant homotopy of f=g on 0M X {2} =(0P X {2})
N M, we obtain a G-map

h,: 0PX[1,2]— 0O
such that
(1) h,=fondPx {1},
(2) h,=h, on 0P x {2},
(3) h,=f=gon Ty(M)NdPx[1, 2].
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Define a G-map
hy: P— Q

as hy=f on 0P x [0, 1], A;=h, on OPX[1, 2], and hy;=h, on P'. Then &, is
G-homotopic rel 9P [0, 1] to f, and is smooth on 9P [0, 1)U T§(M). The
desired smooth G-map A: P—Q is obtained by equivariant smoothing of A,
(cf. Wasserman [6; Corollary 1.12]). Q.E.D.

4. Extension of isovariancy (1)

In this section we prove

Theorem 4.1. Let P, Q be smooth G-manifolds with (H)eJ(P)cJI(Q),
P compact, and 9(Q) finite. Let f: P—Q be a smooth G-map isovariant on a
neighborhood of 0P U P in P. For any a € C yy) (P?) suppose that

dim P{<dim Q% —dim (Q% )"+ dim (N(H) N N(K))/H

for any (K)e9(Q) with HSK and with (Q%)) +¢. Then the isovariancy of
f extends over P™), that is, there is a smooth G-map g: P— Q such that

(1) g is isovariant on a neighborhood of 0P U™ P and on P*),

(2) g=f on a neighborhood of 0P U ®P,

(3) g==¢f rel the neighborhood of 0P U *’P.

Proof. Let X be a G-invariant neighborhood of 0P U®P on which f
is isovariant. Let M (CInt X) and P be G-invariant compact smooth submani-
folds of P obtained from Lemma 3.1. The smooth G-map f|P: P—Q is
isovariant on X N P a neighborhood of 9P in P. If P C X then there remains
nothing to be proved, and if not then (H) is maximal in J(P), and P* is a com-
pact smooth G-manifold with the only one isotropy type (H). We may apply
Theorem 2.1 to a smooth G-map f|P¥: P®—(Q, and obtain a smooth G-
map

g P -0

such that
(1) g, 1s isovariant,
(2) g=f on a neighborhood of 0P*) in P,
(3) g=¢f|P" rel the neighborhood.

By Lemma 3.2, f| P and g, give a smooth G-map

§&:P—0

such that
(1) g,=f on a neighborhood of 8P in P,
(2) g,=g, on P, and hence g, is isovariant on P,
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(3) g=cf| P rel the neighborhood of 9P in P.
Define

g:P—0

by g=f on P—Int P, and g=g, on P. Then g is the desired smooth G-map.
Q.E.D.

5. Orthogonal isovariance and obstructions

Let f: P—Q be a smooth G-map isovariant on a G-invariant open subset
X of P. Let 7(P), 7(Q) be the tangent bundles of P, Q, respectively, and df:
7(P)— 7(0Q) the differential of f. Let

d.f=df |7(P): T«P) = 7,(Q)

where 7,(P) and 7,)(Q) are the tangent spaces at x&P and f(x)E(, respec-
tively. For x€X let K=G,=G,. 7.(Pu) and 7,,)(Qw,)) are subvector
spaces of 7,(P) and 7 ,)(Q), respectively, and we see

d. f(TLP&) T 50 (D)) -

So d, f induces a homomorphism of quotient vector spaces,

d, f: 7(P)[7(Pixy) = 750 (D)7 50 (Qui) -

If d,f is injective for any xEX, f is called orthogonally isovariant on X.

Now suppose that P is compact, (H)eJJ(P)CI(Q), and that f: P—Q is
isovariant on P*) and orthogonally isovariant on a G-invariant open neighbor-
hood X of OPU™P in P. In this section we introduce obstructions for ex-
tending the orthogonal isovariancy of f over a neighborhood of P,

By Lemma 3.1 we obtain G-invariant compact smooth sbumanifolds M,
P of P such that

(1) P=MUP, dM=0PU0P, 0P=MN P,

(2) dim P=dim M=dim P,

(3) M is a neighborhood of 3P U ®’P, and M C X.
Since P has no isotropy type larger than (H),

P —= Py .
Let
v(Pi) = (7(P)| Piy)[7(Pup),  and
v(Qun) = (T(Q) 1 Q) [7(Qun)

be the normal bundles of Py in P, and of Q) in Q, respectively. Since f
is isovariant on P“)  then
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df(7(Pu)) C7(Qu) -

So df induces a smooth G-vector bundle homomorphism
df: v(Pu) = v(Qun) -
Then df is a bundle monomorphism over some G-invariant open neighborhood

Y (cX) of 8Py in Py, since f is orthogonally isovariant on a neighborhood
of 0P in P. Let

f(melp(m: 13(11) - Q(u) ’

and consider the induced smooth G-vector bundle

le;I)”(Q(H)) — Py .

If there exist H-monomorphisms from fibres of »(P(y)| P, to fibres of f¥,
v(Qup) | Pyyy over the same points of Py, then denote the set of all those H-

monomorphisms by
Mon*(v(Piwy) | Py, fta(Qun | Pr) -

By the standard manner we may give this a smooth N(H)-fibre bundle structure
over Py. Passing this bundle to orbit spaces, we obtain a smooth fibre bundle

By = Mon®(v(Puy) | Py, f&nw(Qun) | Py)[N(H) — Py[N(H) .

For a nonnegative integer n, denote by By(w,) the associated bundle to By
by the n-th homotopy groups of fibres. (See Steenrod [5; 30.2] for its defini-
tion.) Since df is a bundle monomorphism over Y, df induces a smooth cross

section

Spl Y}I/N(H) - BHI(YH/N(H))

of By on Y /N(H). There is an obstruction theory for extending s, over Py/
N(H) (see [5]). The obstructions are dencted by

oi(f)EH"(Py|N(H), 0Py [N(H); By(m,-1))
(n=1,2, -+, dim P,/N(H))

Note that o%(f) is defined if and only if the following (1), (2) and (3) are satis-
fied:

(1) f: P—Q is isovariant on P¥) and orthogonally isovariant on a G-
invariant open neighborhood of 6P U P in P,

(2) By is defined, that is, there exist H-monomorphisms from fibres of
v(Pp) to fibres of f#,v(Qcyp) over the same points of Py,

(3) for any i with i<n, s}(f) is defined and vanishes.
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Lemma 5.1.  The vanishing of o}(f) for any n with 1 <n<dim Py/N(H) is
a necessary and sufficient condition for the existence of a smooth G-vector bundle
monomorphism

@: v(Pp) = v(Qun)
such that
(1) @ covers fm, )
(2) @=d f over a neighborhood of 3Py in Py).

Proof. If such @ exists, we easily see that all o%(f) vanish. Conversely,
if all o%(f) vanish, then there is a cross section

s: Py/N(H) — By

which coincides with s, on a neighborhood of 8P,/N(H) in Py/N(H). By the
differentiable approximation theorem [5; 6.7] we may assume s is smooth.
s induces a smooth N(H)-cross section

§: Py — Mon™(v(Pu) | Py, [l (Qun) | Pr) »
and § also induces a smooth N(H)-vector bundle monomorphism

pP: V(P(H)) IPH hd V(Q(H))
such that

(1) p covers fun | Py,
(2) p=df on a neighborhood of 9P, in Py.
Since

V(Pin)=G X ym (v(Pun) | Pp)
then p extends equivariantly to the desired smooth G-vector bundle mono-
morphism

@: v(Pip) = v(Qw) - Q.E.D.

Let {V;|j€ J(H)} be a complete set of nontrivial, nonisomorphic, irre-
ducible, real representations of H. For any j& J(H) let

F;=Hom*(V, V)),

which is the reals R, the complexes C, or the quaternions Q. For nonnega-
tive integers m <z denote by V(m, n; F;) the Stiefel manifold of m-frames (not
necessarily orthonormal) in the #n-dimensional vector space nF'; over F,. Note
that V(m, n; F) is (d(n—m-1)—2)-connected, where d;=dimy F;.

The fibre v (Py) of v(P(y)) over x& Py is a representation of H, and splits
into
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Vx(P(H)) gj(___s%g)mx.jVj ’

where m, ; are nonnegative integers. Similarly the fibre »(Qup) of »(Qum)
over y € Qy splits into

v o~ n, .V,

J'(Q(H)) je.%) y,3Y 7>

where 7, ; are nonnegative integers. Note

v(Pup))=v(Pim) | Py -
The fibre of By over [x]€Py/N(H),

Mon®(v(Pup), ¥ 50 (Qun)) »

may be identified with
V(m, ; i F)) .
jegy) (ms, o My0,55 Fj)

For x= Py, let
M (f, ®) = min {d(n;,) ;—m, ;+1)| je J(H), m, ;%0} +dim N(H)/H .
Lemma 5.2. For any x& Py NP, \?(f, x) takes the same value.

According to the lemma, we define AZ(f) to be the same value of A#(f, x)
for any x& P, N PL.

Proof. (1) Suppose that x and y belong to the same connected compo-
nent of Py N PL. Then f(x) and f(y) belong to the same connected component
of Oy NO%a, since f is isovariant on P,. Thus we see that v (P(;) and vy,
(Own), respectively, are isomorphic to v,(Py)) and v ,)(Qy) as representations
of H, This implies M#(f, x)=\4(f, y).

(if) Suppose that x and y belong to distinct connected components of
P,NPZ P,NPI is the space of points whose isotropy subgroups are the
principal isotropy subgroup H on the N(H)-manifold PZ. Since PJ/N(H) is
connected, then PyNPJ/N(H) is so (see Bredon [2; Theorem 3.1, p 179)).
Thus it is sufficient that we only consider the case where y=ax for some ac
N(H). In this case, for any heH and any vEv,(P(y)), we see ahv=1r(h)av
in v,,(Pun), where 4 is the automorphism of H defined by (h)=aha™'. We
also see the similar for v,.,)(Qun) and v, ) (Quwn)=vswn(Qun). These imply

{n'f(x),j—mx,i|je](H)v mx,j:':O} = {nf(ax),j_max,j'jEJ(H)y max,j4:0} .
Thus M(f, x)=X\"(f, ax) follows. Q.E.D.

Proposition 5.3. Suppose dim PL<\I(f) for any acCyu(P?). Then
the bundle By is defined, and
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HY(Py|N(H), 8P4/ N(H); By(m,-)) = 0
for any n>1. Hence all the obstructions o%(f) vanish.
Proof. Since N(H)/H acts freely on Py N PZ,
dim N(H)/H <dim P, N PZ = dim P% .

So the hypothesis of the proposition implies m, ;<ny,, ; for any x&P, N P%
and any j&€ J(H). Thus By may be defined. From

dim P? = dim P,NPE
we see
dim Py/N(H) = max {dim P¥|aeC v (P¥)} —dim N(H)/H .
This and the hypothesis imply
”n—l(je‘];(IH)V(mx,i’ nf(x),j; Fj)) =0

for any # with 1<n<dim Py/N(H). Thus the cohomology groups in question
vanish. Q.E.D.

6. Extension of isovariancy (2)

In this section we prove

Theorem 6.1. Let P, Q be smooth G-manifolds with (H)eJJ(P)CJI(Q),
and P compact. Let f: P—>Q be a smooth G-map which is isovariant on P®
and is orthogonally isovariant on a G-invariant open neighborhood of 0P NP,
Then the vanishing of o%(f) for any n with 1 <n<dim P?—dim N(H)/H is a nec-
essary and sufficient condition for the existence of a smooth G-map g: P— Q such
that

(1) g is orthogonally isovariant on a neighborhood of 0P U ¥ P U P in P,

(2) g=f on P® and on a neighborhood A of 0P UPP in P,

(3) g=cfrel PUA.

Proof. Suppose that such a smooth G-map g: P—Q exists. Then the
differential of g induces a smooth G-vector bundle monomorphism

dg: v(Pun) = v(Qun) »

and this gives ¢ such as in Lemma 5.1. Thus every o%(f) vanishes.

Let X be a G-invariant open neighborhood of 3P NP in P on which f
is orthogonally isovatiant. Let M (CX) and P be G-invariant compact smooth
submanifolds obtained from Lemma 3.1. Suppose, conversely, that

o%(f)€ H"(Py/N(H), 0Py/N(H); By(z,-1))
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vanishes for any z with
1<n<dim P,/N(H) = dim P¥—dim N(H)/H .

Then, from Lemma 5.1 we obtain a smooth G-vector bundle monomorphism

@: v(Pypy) = v(Qun)

such that
(1) @ covers fun=f|Pun: Pu— Quns B
(2) @=df over a neighborhood of 0P, in Py).
Making use of @ and exponential maps, for a G-invariant tubular neighbor-

hood T of P in P, we obtain a smooth G-map

a:T—-0
such that

(1) g is orthogonally isovariant,
(2) @=f on Py and on TN B, where B is a G-invariant neighborhood

of 0P in P.
By Lemma 3.2, f and g, give a smooth G-map
& P—>0
such that
(1) g=f on P and on a neighborhood of 0P in P,

(2) g,=g on a neighborhood of Py in P,
(3) g=cfI|P rel Py and rel the neighborhood of 8P in P.

Define
gP—0
as g=f on M, and g=g, on P. 'Then g is the desired smooth G-map. Q.E.D.

7. Main results

Let f: P—Q be a smooth G-map. Denote by £F the set of smooth G-
maps g: P—Q which are G-homotopic to f and isovariant on P,. For g&&F
and xe Py, we obtain the splittings into irreducible representations of H,

vi(Pun) = @ m.;V;,
Voo (Qun) = B 1y iV
and define
A (f) (g, %) = min {d;(ny,;—m.,;+1)| j € J(H), m, ;0} +dim N(H)/H .
Lemma 7.1. For any g&f and any x=Py NP, \4(f) (g, x) takes the
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same value.

According to the lemma, for a smooth G-map f: P—Q we define A\Z(f)
to be the same value of AZ(f) (g, x) for ge&f and x€ P, N PZ. Note that AZ(f)
may be defined when &7 is not empty.

Proof. In Lemma 5.2 it is already shown that if g is fixed then AZ(f) (g, x)
takes the same value for any xP,NPE Thus it only remains to show that
M(f) (g, )=AE(f) (k, x) for g, ke&F. Since g and k are G-homotopic, g(x)
and k(x) belong to the same connected component of Q7. Thus v,,)(Q¥) and
vy (Q¥) are isomorphic as representations of H. We see

Ve(x) (QH) = V(2) (Q(H))@ V, and

vicn (OF) = vy (Qun) DV
for some representation V' of H. These imply v,(,)(Qwun)=v4(Qun). Hence
NA(f) (g ®)=2"(f) (k, %). Q.E.D.

Now we may state the main results of this paper.

Theorem 7.2. Let P, Q be smooth G-manifolds with J(P)C9(Q), P com-~
pact, and I(Q) finite. Let f: P—Q be a smooth G-map which is orthogonally
isovariant on a neighborhood of 0P. For any (H)eJ(P) and any a<C yup(PF),
suppose that

(7.21) dim PZ<dim Q%—dim (0%)*-+dim (N(H) N N(K))/H for any
(K)eI(Q) with HE K and with (Q% )+,

(7.2.2) dim PE<)\E(f).

Then there exists a smooth G-map g: P— Q such that

(1) g is orthogonally isovariant,

(2) g=f on a neighborhood of dP in P,

(3) g=q f rel the neighborhood of 0P in P.

Corollary 7.3. In Theorem 7.2, suppose furthermore that f is an isovariant
immersion on a neighborhood of 0P, and suppose that

2 dim Py<dim Q%)+dim N(H)/H

for any (H)EI(P) and any a=Cyuy(P?). Then g may be chosen so as to be
an isovariant immersion.

Corollary 7.4. In Theorem 7.2, suppose furthermore that f is an embedding
on a neighborhood of 0P, and suppose that

2 dim P;<dim Q%,+dim N(H)/H
for any (H)EI(P) and any a=C yy)(P?). Then g may be chosen so as to be
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an embedding.

Proof of Theorem 7.2. By repeated applications of Theorem 4.1 and
Theorem 6.1, we may inductively construct the desired smooth G-map g:
P—Q. Q.E.D.

Next we prove Corollary 7.4. Proof of Corollary 7.3 is the same (or
easier) as for Corollary 7.4.

Proof of Corollary 7.4. We may assume f: P—Q is orthogonally iso-
variant. Let

I(P) = {(Hy), (Hy), -, (Ha)}

be numbered in such a way that (H,)<(H;) implies j<i:. For any ¢ with 1<
i<a-1, consider the following assertion:

A(Z). There exists a G-tnvariant open neighborhood U; of 0P UY)P in P,
and exists a smooth G-map g;: P— Q such that

(1) g, is orthogonally isovariant on P, and is an embedding on U,,

(2) g;=f on a neighborhood of 0P in P,

(3) gi=c f rel the neighborhood of 3P in P.
(Here, if i=a+1, consider P=P#0J .-« UP¥a) as HIP.)

Since U,;, must be P, A(a+1) implies the corollary. We prove all A(7)
by induction. Letting g,=f, we see A(1) is valid.

We suppose A(7) is valid, and want to prove A(7+1). As in the proof
of Lemma 3.1, we obtain a G-invariant smooth submanifold M of Q such that

(1) dim M=dim Q,

(2) M is a closed neighborhood of 3Q U QW0 U --- U Q¥i-1),

(3) g7'(M)cU,, (This is possible from the fact that g; is isovariant and
that P is compact.)

(4) g7'(M) is a G-invariant compact smooth submanifold of P. (This
is also possible by making Im g; and 0M intersect transversally.)
Note that g7'(M) is a neighborhood of 9P U #2P. Let

L, = P—Int g7'(M), and
L,=0—Int M,

then both L, and I., are smooth G-manifolds, and satisfy g;(L,)CI, and 0L,=
g7'(0L,). The smooth G-map g;|L,: L,—L, is isovariant on L,, and is an
embedding on a neighborhood of 0L, in L,. If P#>CU, then U, and g;
insure 4(i+1). And if not, then (H;) is maximal in J(L,), and L{¥? is a G-
invariant compact smooth submanifold with the only one isotropy type (H,).
We may apply Corollary 2.3 to
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&L LY — L, .
So we obtain a smooth G-map
hy: L#? — L,

such that
(1) A, is an embedding,
(2) hy=g; on a neighborhood of OL{#? in L{*?,
(3) A= g;|L{"? rel the neighborhood.
We apply Lemma 3.2 to g;| L, and %, and obtain a smooth G-map

hy: L — L,

such that

(1) h,=g;|L, on a neighborhood of 8L, in L,,

(2) hy=h, on L{*?,

(3) hy=;g:|L, rel the neighborhood of 8L, in L,.
Define

hy: P—Q

as hy;=g; on gi'(M), and h;=h, on L,. Then A, is a smooth G-map, and is
an embedding on P¥? and on a neighborhood of aPU¥’P. In virtue of
Proposition 5.3 and the hypothesis of Theorem 7.2, we see that the obstruc-
tions o%,(h;) vanish. So, from Theorem 6.1, we obtain a smooth G-map
hy:P—Q

such that

(1) h, is orthogonally isovariant on a neighborhood 4 of 8PN *:+/P,

(2) h,=h;on P¥ and on a neighborhood B of 9P U ¥:P,

(3) h=¢ hy rel PEIYB.
Since A, is an embedding on P®? and is orthogonally isovariant on a neighbor-
hood of P2, then £, is an embedding on a neighborhood of P®¥9. Further-
more, since A,=h; on B, h, is an embedding on a neighborhood of P U ¥i+)P.
Let P be a G-invariant compact smooth submanifold of P obtained from Lemma
3.1 for the neighborhood 4 of 9P U@:i+)P. Applying Theorem 7.2 to h,|P:
P— O, we obtain a smooth G-map

hs: P— Q
such that
(1)  hs is orthogonally isovariant,
(2) hs=h,| P on a neighborhood of 9P in P,
(3) hs=¢ h,| P rel the neighborhood.
Define
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gin:P—Q

as g;y;=h, on P—Int P, and g;.,=h; on P. Then g;,, has the desired property.
Thus we see that A(7) implies A(i+41), and this completes the proof of Corol-

lary 7.4.

(1]
(2]
[3]
[4]
(3]
[6]

Q.E.D.
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