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SELF MINI-INJECTIVE RINGS
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Let R be a ring. We have studied rings whose projective modules have
the extending property of simple modules in [3] and [5]. In this note, we shall
further study those rings when R is an artinian ring and give some relations
between those rings and mini-injectivity (see §1).

If R is a QF-ring [8], every projective has the extending property of direct
decompositions of the socle [3]. In order to characterize artinian rings with
above property, we have defined the condition (** 2) in [3]. We shall introduce
new concepts: (weakly) mini-injective module and (weakly) uni-injective module.
We shall show, for a left and right artinian ring R, that R is a QF-ring if and only
if R is mini-injective as a both left and right R-module and if and only if R is
uni-injective as a right R-module and right QF-2. When R is right artinian, we
shall show that the above extending property for right R-projectives is valid if
and only if R is right QF-2 and right R mini-injective.

We can consider the dual property, namely the lifting property of simple
modules. However, when R is right artinian, every R-projective P has the
lifting property of simple modules and further the lifting property of direct
decompositions of P/J(P) [5], where J(P) is the Jacobson radical of P.

1 Definitions

Throughout this note, R is a ring with identity and every module M is a
unitary right R-module. We shall denote the Jacobson radical, an injective enve-
lope and the socle of M by J(M), E(M) and S(M), respectively. If for any
simple (resp. uniform) submodule 4 of M there exists a (completely indecom-
posable) direct summand M, of M such that S(M,)=A (resp. 4 is an essential
submodule of M), then we say that M has the extending property of simple modules
(resp. wuniform submodules). Futhermore, if for any direct decomposition of
S(M): S(]W):EI @Ay (resp. any independent set of uniform submodules B,

such that 2} @B, is essential in M) there exists a direct decomposition M=
I

23 DM, of M such that S(M,)=A, (resp. B, is an essential submodule in M,)

I

for all @€ 1, then we say that M has the extending property of direct decompositions
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of S(M) (resp. direct sum of uniform submodules).

In this note, we consider only artinian rings and so from now on we under-
stand that a ring R is always right artinian. We note that most results in this
note are true for left and right perfect rings. Let

n_p(d)
R = :;,: ,2=1 @De; ;R

be the standard decomposition, namely the e;; are primitive idempotents and
e;jR~e;R, e;Raze; R if i%j. If S(e;R) is simple for each 7, then we say R
is right QF-2 [3] and [9]. If E(R) is right R-pojective, R is called a right QF-3
ring [7] and [9]. Finally if ¢;R is a serial module for each 7, we call R a right
generalized uniserial ring [8] and [5].

First we shall generalize the concept of injectivity. Let M be an R-module
and I a right ideal in R. We take an R-bomomorphism f of I to M. Put
M,=im f and consider a diagram:

1
00— I—R
/41‘
f h’//,l
‘r
Ml IIII/ h
!
s !
l‘f’»"

M

We shall introduce two conditions.

(I) There exists heHomg(R, M) such that hi=f.

(II) There exists either hHomyg (R, M) or h'&Homyg (M, R) such that
hi=f or if '=h'| M, provided f is an monomorphism.

If M satisfies (I) (resp. (II)) for every minimal right ideal I in R and any
f in Homg(I, M), we say R is right (resp. weakly) mini-injective. Similarly if
M satisfies (I) (resp. (II)) for every uniform right ideal I in R and any f in
Homg (I, M), then we say M is right (resp. weakly) uni-injective.

It is clear that every injective is uni-injective and uni-injective is mini-
injective. The converse is not true in general (see Example 5 below). Every
semi-simple module is weakly mini-injective, but not mini-injective. If R is
a right QF-2 ring, every uni-injective is injective (see the proof of 7)—1) in
Theorem 13 below).

2 Mini-injective modules

We shall study some elementary properties of the mini-injective modules.
From the definitions and the standard argument [1], we have

Proposition 1. Let M be an R-module and M=M,PM,. Then
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1) M is mini-injective (resp. uni-injective) if and only if so is ecah M.
2) If M is weakly mini-injective (resp. weakly uni-injective), then so is each
M.

Theorem 2. Let R be a right artinian ring and M an R-module. Then M
s mini-injective (resp. umi-injective) if and omly if amy minimal (resp. uniform)
right ideal I in e,R and any f in Homg(I,M), f is extendable to an element in
Homyg (e;R, M), where e; runs through all primitive idempotents.

Proof. “If” part. First we take a minimal right ideal I in R=i} De;R.
i=1

Let f be in Homg (I, M) and #;: R—¢;R projection. We may assume I;=
7i(I) =+ 0 for i <some ¢ and I;=0 for j>¢t. Since =,|I is an monomorphism,
put fi=f(m,|I)"'. 'Then there exists F, in Homg(e;R, M) such that F,|I,=f, by
the assumption. Put F;=0 (€Homg(e,;R, M)) for j=1and F=3)F;. Letx
be in I and x= i} 7ix). Then F(x)=23] Fim\(x)=f(m|I) 'm(x)=f(x). If

i=1

I is uniform, ﬂ ker (z;|I)=0implies that some 7| I is an monomorphism. Hence,

we can use the same argument in this case, too.

3 Self mini-injective rings
Let R be a right artinian ring. We assume that every idempotent in this

note is always primitive and we denote it by e. We put R//=R and & means the
residue class of e in R, where J=J(R).
First we shall study the extending property for R-projectives.

Theorem 3. Let R be right artinian. Then

1) Every projective has the extending property of simple modules if and only
if R is right QF-2 and R is weakly mini-injective as a right R-module (cf. [3],
Theorem 2).

2) Every projective has the extending property of direct decompositions of the
socle if and only if R is right QF-2 and mini-injective as a right R-module.

Proof. 1) We assume that every projective has the extending property of
simple modules. Then R is right QF-2. Let R:,.E:l @e;R with e; primitive
and let z;: R— ¢;R be the projection. We take two minimal right ideals K,
and K, and assume f: K,—K, is an isomorphism. We assume K;C ;Z;GBI,-’ i)

where I;;;=m;»(K;)=0. Since I;;;~ K, for all ¢, j, from [6], Corollary 8
we can find minimal one among ;)R with respect to the order <* in [6], say
e;oR=e,R and i=1. We consider p,=mn,fri': Iy—>¢,R. If ket {2(1),2(2), -+,
2(t,)}, p»=0. Hence, since e,R is minimal, there exists F,EHomg(eR, ¢,R)
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such that Fy|I,,=p, by [6]. Corollary 8. Put k= (kzm F)r,e Homg (R, R).
=1

Then h|K1=((§;} F,,)7r1)|K1=(¥ mf)|K,=f. If the minimal one above ¢;;R

is equal to e;» R, we take f~! in the above. Then we can find 2’€Homg(R, R)
such that #’|K,=f"!. The converse is clear from [6], Corollary 8.
2) We can similarly show it by making use of [6], Corollary 20 instead of

Corollary 8. R
Let S(R)=2] DS, and the S, simple. If S;a&S; for any j=*1, S, is called
i=1

1solated. From the similar argument to the above we have

Theorem 3’ Let R be as above. Then R has the extending property of direct
decompositions of the socle (resp. of simple modules) as a right R-module if and only
if R is right QF-2 and (1) (resp. (11)) is satisfied for non-isolated minimal right
ideals.

For the uni-injective case, we have

Theorem 4. Let R be right artinian. Then

1) Ewvery projective has the extending property of uniform submodules if and
only if R is right QF-2 and weakly uni-injective as a right R-module.

2) Ewvery projective has the extending property of direct sums of uniform sub-
modules if and only if R is right QF-2 and uni-injective as a right R-module.

Proof. First we note that every uniform submodule in a projective module
P is finitely generated. Let P=2) PP, and P,~e;a»R and U a uniform sub-
I

module. Letx=*0bein U. Then x:Zn}pa,. ; ey E Poy. Hence, UN i BP,,=+0
i=1 i=1
and so UN E)@Pﬂz(). Accordingly, U is isomorphic to a submodule of

I- (o

2" @P,,. Furthermore, U~n,(U) for some i, where z;: P—P,, is the projec-
i=1

tion. Therefore, we can apply the same argument given in the proof of Theorem
3 by making use of [6], Theorems 10 and 22.

Next we shall study self (resp. weakly) mini-injective rings.

Theorem 5. Let R be right artinian and mini-injective as a right R-module.
Then

1) If eR=<e,R, no minimal submodule in e,R is isomorphic to any minimal
one in e,R.

2) S(e;R)=e,]J* and every minimal submodule in e,R is isomorphic to one
another.

3) r(J)21()) and J=Z(R).
Where J=J(R), the e; are primitive idempotents, 1(])= {xE R| Jx=0} and
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1I(J)={x€R|xJ=0}. Z(R) is the right singular ideal of R.

Proof. Let e,RA¢,R and I; a minimal right ideal in ¢;R for i=1, 2. If

I,~1I,, there exist y in e,Re;=e, Je, and z in e, Je, such that I,=ylI,, I,==zI, by
the assumption. Hence, I,==2yl, and zy< J, which is a contradiction. There-
fore, {I;}7., is the representative set of minimal R-modules. Let S be a minimal
right ideal in ¢,R. Then S must be isomorphic to I, from the above. Let
e,J*+0 and e, J**'=0. We take a minimal right ideal K in ¢, J*. Since K~S,
there exists x in eRe, such that S=xK Ce,J*. Hence, S(¢,R)=e, J*. We
have obtained 1) and 2). "
3) We take I, in S(eR). Let ;=xR and x=eR. Now JxC Zle,-]x=
Z’:e;]elx. If e;RAe\R, ¢, JexR=0 by 1). If ¢,R~e,R, we take z in eRe;
which induces an isomorphism of ¢;R to e;R. 'Then ze; Je,xRCe, Je,xR=0 by 2).
Hence, ¢; JexR=0. Therefore, Jx=0 and 1(J)=S(Rg)<r1(J). Furthermore,
Z(R)={xSR|x1(J)=0} 2 J and so Z(J)=], since every ideal properly contain-
ing J contains a projective submodule.

Proposition 6. Let R be a right artinian ring. Then R is mini-injective as
a right R-module if and only if R is weakly mini-injective as a right R-module and

1Ner()).

Proof. “If” part. We assume I,~I, for minimal right ideals I; in ¢R.
Then there exists an element x in either e,Re, or ¢,Re, which induces an isomor-
pism between I, and I,, Hence, xé J by the assumption. Therefore, x in-
duces an isomorphism between ¢,R and e,R. Accordingly, R is mini-injective
for Homg(e;R, e;R)=e;Re;. The converse is clear from Theorem 5.

Similarly to the above

Proposition 7. Let R be right artinian. Then R is uni-injective as a right
R-module if and only if R is weakly uni-injective as a right R-module and 1(J)<r(]).

Proof. Since uni-injective is mini-injective, the “Only if” part is clear
from Theorem 5. Let U; be a uniform submodule of ¢;R and f: U,—U, a
homomorphism. If ker f=0, f is extendable to an element in Homg(e,R, e,P) by
the assumption. We assume ker f=0. We know from Proposition 6 that R is
mini-injective as a right R-module. Hence, e,R~¢e,R by Theorem 5. Therefore,
f and f7! are extendable to elements in Homg(e,R, ¢,R) and Homg(e,R, ¢;R),
respectively. Thus R is uni-injective by Theorem 2.

The author can not find an artinian ring which is self mini-injective but not
self uni-injective
We consider algebras over a field.
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Proposition 8. Let K be a field and R a K-algebra with finite dimension.
If R is mini-injective as a right R-module, then R is right QF-2.

Proof. Let I, be a minimal right ideal in ¢,R, where ¢, is primitive. We
assume I,~e,/R. Since I,Ce J* and e, J4*'=0, each element in eRe, gives
an element in Homg (1}, e,R) (=Homg (I}, S(e;R)) via the left multiplication and
Homg (I, e,R)=e,Re, as a K-module by the assumption. Put I,=x&,/R and
consider an isomorphism f of I, by setting f(x)=xa for ace,Re,. Then f is
extendable to an element in Homg (e, R, ¢,R) by the assumption. Hence, xa=bx
for some b in ¢Re,. This relation gives us a K-monomorphism of ¢,/Re,” to
eRe;. Hence, [e,Re;: K]>[e,/Re;: K]. Repeating those arguments, we obtain
a chain of primitive idempotents e, ¢, «++, ¢/, «+- such that a minimal right ideal
I; in ¢/R is isomorphic to e;.,’R and [e/Re/: K]>[e;1)/Re;\,’: K]. We may
assume ¢, R~e ;R for some i<<j. Then I,-_lze,-'Rzﬁzlj_l. Hence, ¢;_/R~
e;_y'R by Theorem 5. Therefore, ,R~e¢/R for some k. Accordingly,
[e.Re,: K]=[e/Re,: K]=[e/Re,’: K]. Hence, Homg(I;, e,R)=e, Re;. Let S be
a minimal right ideal in ¢,R. Then there exists b in e,Re, such that ;=.S by
the assumption. However, since Homg(Z,, e,R)=e, Re, as above, there exists
a in e/Re; such that bx=xa. Hence, S=bl,=bxR=xaR < I,. Therefore,
S(e,R) is simple.

Remark. If Endg(eR) is given by the multiplication of the central elements
in R for each idempotent e, Proposition 8 is valid for such artinian rings from
the above proof.

Proposition 9. Let R be a K-algebra as above. We assume [eRe: K]=
[e'Re’: K] for any primitive idempotents e and e¢’. Then every projective has the
extending property of simple modules (resp. direct decompositions of the socle) if and
only if R is right QF-2 and if S(e,R)~ S(e;R), either e,RS(e,R)= S(e;R) or
e,RS(e,R)=S(e,R) (resp. e;RS(e;R)=5(e;R)), where the e; are primitive.

Proof. “If” part. Since R is right QF-2, e, Je,S(e,R)=0. Hence, I,=
S(e;R) is a left e,Re;-module. We assume I;~¢,R and so Endg(l))~ e,Re,.
Since I, is a left e,Re;-module, each element x in e,Re; induces an element in
Endg(I,) by the left multiplication. Now, [e,Re;: K]=[e,Re;: K] from the
assumption. Hence, we may assume Endp(I;)=e,Re,, Let I;=S(e;R) and
I~I,. If ¢;RI,=I,, yI, =1, for some yEe,Re,. Then g: I, — I, given by setting
g(x)=yx; x<1I,is an isomorphism. Let f be any isomorphism of I, to I,. Then
£ f €Endg(l,))=e,Re,. Hence, f(x)=yzx for some z in e,Re,. Therefore, f is
extendable to an element in Homg(eR, ;R). Thus, every projective has the
extending property of simple modules (resp. direct decompositions of the socle)
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by [3], Theorem 2 (resp. [6], Coroilary 20).

Since the extending property is preserved by Morita equivalence, if R/J is a
simple ring, we may assume R is a local ring.

Proposition 10. Let R be a right artinian and local ring. Then every pro-
Jective has the extending property of uniform submodules if and only if R is a QF-

ring.

Proof. If R has the extending property, R is right QF-2. Since every
projective is a direct sum of copies of R, R is a QF-ring by [6], Theorem 10.

Proposition 11. Let R be a right artinian and local ring. We assume that
every monomorphism of R[] into itself as a field is an isomorphism. Then every
projective has the extending property of simple modules (and hence of direct decom-
positions of the socle) if and only if R is right QF-2.

Proof. “If” part. Since R is local QF-2, S(R)=1I is a unique minimal
right ideal and a left ideal in R. Let /=xR. Then since JI=0, for any ele-
ment a in R, there exists b in R such that ax=xb. Hence, the correspondence
o: a—b gives us a monomorphism of R into R. Therefore, o is onto by the
assumption, which means that R is right mini-injective. Accordingly, every
projective has the extending property of direct decompositions of the socle by
Theorem 3.

Finally we shall give an additional result to [5].

Proposition 12. Let R be a right artinian, generalized uniserial and right
QF-3 ring. Then every R-projective module has the extending property of simple
modules.

Proof. Let S(R)= ﬁ @S, and S;=85(¢e;R). We assume S;~S,~--~S;

and S;&S, for j>i. Since R is right QF-3, E(S,) is isomorphic to some ¢,R.
Hence, ¢,R is isomorphic to some submodule of e,R for p<i. Now &R is
serial and injective by the assumption. Hence, each submodule of ¢,R is a
character submodule and Endg(S,) is extendable to Endg(e,R). Therefore,
every R-projective has the extending property of simple modules by [3], Theorem
2.

4 QF-rings

We shall give some characterizations of QF-rings in terms of extending
property of projectives.

Theorem 13. Let R be left and right artinian. Then the following condi-
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tions are equivalent.

1) Ris a QF-ring.

2) Every right (and left) R-projective has the extending property of direct
decompositions of the socle.

3) Every right R-projective has the extending property of direct decomposi-
tions of the socle and r( J)<1(]).

4) Every right R-injective E has the lifting property of direct decompositions
of E[J(E) and R is a right QF-2 (see [4]).

5) R is right and left QF-2 and mini-injective as a right R-module.

6) R is mini-injective as a left and right R-module.

7) R is uni-injective as a right R-module and right QF-2.

Proof. 1)—2)~7), 2)—1) and 5)—1). They are clear from Theorems 3
and 5, [2], Theorem 3, [3], Theorem 2 and [8].
3)—1). It is sufficient to show that R is left QF-2 ,since R is right QF-2 and
R-mini-injective by Theorem 3. We take a unique minimal right ideal x,R in
e,R. We may assume x, Ee,Re,’ as the proof of Proposition 8. Since r(J)21()),
Jx,=0. Hence, Rx, is semi-simple. On the other hand, since Rx,=Re,,
Rz, is a minimal left ideal in Re,’. Let Rx, be another minimal one in Re,” and
x,Ee/Re). Then S(e,R)=xR~e, R~x,R=S(e;/R) since r(J)S1(J) by the
assumption. Hence, ;R ~ e;/R by Theorem 5. Noting that x,R is minimal, we
obtain an isomorphism f: x,R—x,R with f(x,)=x;. f is extendable to an element
yEHomg(e,R, e R) by [6], Corollary 20. Hence, x,=yx, and so Rx,=Rx,. The
above correspondence e,—>¢,” gives a permutation of the set {e;;}7~! by Theorem
5. Hence, R is left QF-2.
4)—1). We know from [2], Theorem 3 that there exists the representative set
{eqaR[eqA;} -1 ) of indecomposable injectives. Since R is artinian, #(7)=1 for
all Z by [4], Theorem 2. ¢;;R is uniform by the assumption. Hence, E(e;;R)~
e RlejA;, for some j. We consider a diagram, where e¢,=e,,, 4,=A4,, and ¢ is
the natural epimorphism:

0 —— ¢,R—> E(e;R)~e;R/e;A;
EiR/e,'Ai 7

Since e;R/e;A; is injective, we obtain an epimorphism k: e;R/e;A;—e;R[e;A;.
Hence, i=j and ¢;4,=0. Since #({)=1 for all 7, p=n. Therefore, R=
n_ P

M FZ} @e;;R is self injective as a right R-module.

i=1 j=1

6)—1). We assume that R is self mini-injective. Let xR be a minimal right ideal
in e,R, where e, is primitive. Then xR=wxe,/R and x=e,Re,. Since Jx=0
by Theorem 5, Rx is minimal in Re,” as above. Therefore, for any element b
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in ¢,Re, there exists a in e;/Re,’ such that bx=xa as the proof of Proposition 8
for R is left mini-injective. Again using the same argument, we know xR=
S(e,R). Hence, R is QF-2. Therefore, R is a QF-ring by Theorem 5 and
[8].

7)—1). We shall show that R is self-injective as a right R-module. We can use
the standard argument [1]. Let I be a right ideal in R and f&Homg(Z, R).
We can find a maximal one among the set of extensions of f by Zorn’s Lemma,
say (I, fo: I,—>R). We assume Iy==R. Then there exists a primitive idempotent
e such that ecl,, Put K=eRNI, and I,=1I+eR. We take an extension f,
of fy|K from the assumption. We put g(x)=fo(x:)+fi(er), where x,E I, and
rER. Then geHomg (I, R), which contradicts the assumption of f,. Hence,
I,=R and R is self-injective.

Theorem 14. Let R be a K-algebra with [R: K]<<co. Then the following
conditions are equivalent.

1) R s a QF-ring.

2) R is mini-injective as a right R-module and r( ])=1(]).

3) R is uni-injective as a right R-module.

Proof. It is clear from Proposition 8 and Theorem 13.

5 Examples

Let K be a field.
1. Put
K 0 O
‘'R=|K K 0
K 0 K/.

Then Homg(S(exR), S(exR)) is not extendable to Hompg(exR, e;R). Hence, R
is right generalized uniserial, but does not have the extending property of simple
modules as a right R-module (cf. Proposition 12).

2. We shall give an example, where artinian and right self mini-injective
rings are not right QF-2 in general. Let x be an indeterminate and Q a field.
Put L=0(x) and K=Q(x*). Then we have an isomorphism ¢ of L onto K and
[L: K]=2. Let R=L1®Lu be a left vector space over L. We put (Lu)’=0
and w/=o(l)u for IEL. Then R is a ring and [R: L]=2 as a left L-module
and [R: L]=3 as a right L-module. Hence, R is a left and right artinian ring.
J=Lu contains minimal right ideals Ku and xKu. Let I be a minimal right
ideal in J. Then I=al; a=Iu and End,(Ku)=K. Therefore, R is self right
mini-injective (and uni-injective). We note that End(J) as a left R-module 2
{the right multiplications of R} and R is left QF-2. Furthermore, R satisfies the
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conditions in Theorem 5 as a left R-module. However, R is not left mini-
injective (cf. Theorems 13 and 14).

In case of QF-rings, right artinian and right self-injective rings satisfy
the same conditions on the left side. However, this fact is not true for self
mini-injective rings from this example.

3. Let K and L be as in Example 2. Put

L L
k{0 2
0 L).
Then R is right weakly mini-injective. However R is not right QF-2 and hence

not right mini-injective. e,R is weakly uni-injective, but not mini-injective.
(cf. Proposition 8).

4. Put
la b ¢
R= {lo d ella~ecK
0 0 a

Then R is weakly mini-injective but not weakly uni-injective for f: e;,R—e,, J?
is not extendable.

5. Put
K uK+9K K
R=1|0 K K
0 0 K

and ey, (uk,+vky)esks= e13(RiR3+kok;) for kR;€K. Then e,R is mini-injective. On
the other hand, e;R contains two isomorphic uniform modules (0, uK, K),
(0,2K, K). The above isomorphism is not extendable to an element in
Homy (e, R, e,R). Hence ey R is not uni-injectcetve.
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