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1. Introduction

Let ¢, v, k and A be positive integers with v >k>1. A t—(v, k, \) design
is a pair consisting of a v-set Q and a family B of k-subsets of Q, such that
each 7-subset of Q is contained in A elements of B. Elements of Q and B are
called points and blocks, respectively. A t—(v, k, \) design is called nontrivial
provided B is a proper subfamily of the family of all k-subsets of Q, then
t<k<<v. In this paper, we assume that all designs are nontrivial. For a t—
(v, k, \) design D we use \; (0<K¢<(t) to represent the number of blocks which
contain a given set of 7 points of D). Then we have

v—1
_(t—') _ (v—i) (v—i—=1) - (v—t}1]) _
M (k—zﬁf = (=) (ki) (=it O<i<-
t—1

A t—(v, k, \) design D is called block-schematic if the blocks of D form an
association scheme with the relations determined by size of intersection (cf.
[3]). In §2, we prove the following theorem which extends the result in [1].

Theorem 1. (a) For each n>1 and N> 1, there exist at most finitely many
block-schematic t— (v, k, \) designs with k—1=n and 1>3.

(b) Foreach n=1 and N\>2, there exist at most finitely many block-schematic
t—(v, k, \) designs with k—t=n and t>2.

ReEMARK. Since there exist infinitely many 2—(v, 3, 1) designs and since
every 2—(v, k, 1) design is block-schematic (cf. [2]), Theorem 1 does not hold
for A=1 and t=2.

For a Elock B of a t—(v, k, \) design D we use x;(B) (0<:<k) to denote
the number of blocks each of which has exactly 7 points in common with B. If,
for each ¢ (=0, ---, k), x;(B) is the same for every block B, we say that D is
block-regular and we write ; instead of x;(B). We remark that if a #—(v, k, \)
design D is block-schematic then D is block-regular. For any #—(v, &, 1) design
or any ¢—(v, t41, \) design, either of which is block-regular (cf. Lemma 1),



788 M. YosHIZAWA

every x; depends only on 7, ¢, v, k or i, t, v, A respectively (cf. Lemma 1). And
Gross [5] and Dehon [4] respectively classified the t—(2, k, 1) designs and the
t—(v, t+1, A) designs both of which satisfy x,=0. But for a block-regular
t—(v, k, 1) design, x; depends not only on 7, ¢, v, k, » but also on others in
general (cf. Lemma 1). In §3, we prove the following theorem.

Theorem 2. Let ¢ be a real number with ¢>2. Then for each n>1 and
1>0, there exist at most finitely many block-regular t—(v, k, \) designs with k—t=
n, v=ct and x; <1 for some 1 (0<i<t—1).

The author thanks Professor H. Enomoto for giving the direct proof of
Lemma 5.

2. Proof of Theorem 1

Lemma 1. Let D be a block-regular t—(v, k, \) design. Then the following
equality holds for i=0,+-- k—1.
(=1 /7 k i k-1 /4 ivi
a= S (o () G e,

wherex,.<w,-<(x—1)(§) (< j<k—1) and w,=(n—1)(}).

Proof. Let B be a block of D. Counting in two ways the number of the
following set

{(B', {a,**,a,})|B’ a block (=#B),B'NB3ay, -, a;,aj+ay if j+j'} gives
xi—l‘(z—t'—l)xi+l+"'+(:‘)xt+'"+(k71)xk—1=(7\'i—1)<};> for =0, -, 11,
and xi—|—<ltl>xi+1+---+(k?l>xk_1<(x——l)<];) for i=t, -, k—1. Let w(t<
i<k—1) be the left hand of the above inequality, where w,=(7x—1)(]:>. Let

A=(a;;) be the square matrix with a; ,=<Jz> (0<7,j<k—1). Then we have

X (2—1) (g)
A% = (7"-1—1)<tfl>.
Xp-1 Wr—1

Let us set A™'=(b;;) (0<7,j<k—1). Since Z"(-1)f+"'<;f)(7],;>=3mm we have
j=m
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bij= (-Z.)(—l)"*" . Hence we get the desired result.

Lemma2. Let Dbeat—(v,k,\) designwith ¢, x>2. If v=k, then there
exi:t three blocks By, B,, B; of D such that |B,N\B,|=t—1, |B,NB;| >t and
IBlﬂB3|=t——2.

Proof. Let B be a block of D. Counting in two ways the number of the
following set

{B’, ay, -, a)} |B" a block (#B), B'NB3ay, *, a, a; Fay if j=*j'} gives
+(B) +(’t1)x‘“(3)+'" +<k7l)xk_l(B)=(x—1)(':>. Since A>—2, there is
an integer ¢ (t<<q<<k—1) with x,(B)=+0. Hence, we may assume that there
exist two blocks B,, B, such that ¢<|B,N B;|=q. Let a; be a point of B,—B;
and o, ++,0;-; be i—2 points of B,N B;. Set S={B|B a block, B2 {a,, ",
a;_.}}, where |S| —k:tiih Then we have
[{BES| |BNB,| >t or |BNBy| =>t—1} | SMk—t+1)+N(k—1+2).

Hence, if k_t:::17\.>7\(k—t—i—1)—|—7\,(k—t+2) then there exists a block B, in
S such that |B,N B,|=¢—1 and |B;NB;|=t—2. On the other hand, ‘v_tii
>(k—t+1)4(k—t+2) holds if v>&%  So, the proof of Lemma 2 is completed.

Proposition. Let D be a block-schematic t—(v, k, \) design with 1, A>2.

k 2
Then ‘v<7uk3<[k}) holds.
2

Proof. By Lemma 1, we have

512> 0= 1) (o)~ D =) () - e—1) (x-l)(@z.

= (= AR}

(k—t+2) (k—t+1) E—t+1
and
k

Xy (”k—zk)zx—(:—1)vx<[§J)—kx([§])z.
. k E\2
x,_2>%x—km(@>—kx([§]) : (1)

Hence we have
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Again by Lemma 1, we have

x,_1<x,_1( F 1>—|-(k—-t) (x—l)([g])z.

So,

k k \?
x,_1<%x ([lﬂ)—}—(k—l)x (@) . (2)

From now on, we may assume that v>%°. By Lemma 2, there exist three blocks
B, B,, B, of D such that |B,NB,|=t—1, |B,NB;|=q (:<¢g<k—1), and
| ByNB;|=t—2. By Lemma 1, we have

%, < (A —1) <§><x<[§]) : (3)

Hence, by (1), (2) and (3), we have
k k

v frown (- () () e )

Thus, we have that

k \? k\3
Xy g— 21X >v—27x—7»2 kEllo—E\Y [k
t—2 t-1%4 2 l:é] [Q] .

k\?
Hence, *;_,—x;_,%,>0 holds if v>k3<[k]) . (4)
2

Let B,, B,, B, -*+, B, be the blocks of D. Let 4, (0<Ak<Ek) be the A-
adjacency matrix of D of degree ), defined by

.. 1 if |B;NB;|=h,
Ay, 1) = !
5.1 {O otherwise.
Since D is block-schematic, we have
A4 =3V uli 5 DA, (06 j<R),

where u(z, 7, h) is a non-negative integer. Let @ be the all-1 vector of degree
Ao Then,

Ada— hﬁ w(i, i, h)Asa .

k
Hence we have x;x;=>u(i,j,h)x,. In particular,
h=0
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.
Sty = 2 i1, 4, ), (5)
where pu(t—1, g,t—2) is a positive in.eger, because | BN B,| =t—1, | B,N B;| =¢
k 2
and |B,N B;|=t—2. Hence, by (4) and (5), we have v<k3<[lg]) 2.
2
Lemma 3. For each n>1, there is a positive integer Ny(n) satisfying the

Sollowing : If Dis a t—(v, k, \) design with k—t=n and t>N(»), then there
exist two blocks B, and B, of D such that |B,NB,| =t—1.

Proof. Let D bea t—(v, k, \) design with k—¢t=n. Let B be a block of
D. Counting in two ways the number of the following set

{(B', {ar, ~+, a})|B' a block (+B), B'NBDay, - apa;+ay if j+i?
gives x,(B)—l—(H—l)x,H(B)—}— +(k l)x,,_l(B)z(x-l)(:).

(:>0), we have

(L e+ D@+ + (T Drea@<i-n (B). (o)

Counting in two ways the number of the following set
{(B’, {at, **,a;-1})|B’ a block (£B), BNB3ay, -, a;_y, a; +ay if j+j'}
gives 5 ,(B)+(, L Ju®+ (T B+ () ma®)

=) (%) (7)
By (6) and (7), we have

51a(B)> =) (2 )—t()\—l) (’j) and
) B>'z) t—1—1 (n+t) _(nt)--t 1 (n—|—t)-~-t.
%i-i(B) (n+1)' CES IR
Since D is a nontrivial de81gn, v>k-+t>2t+n. Hence we have

1+n+1)-t (t+mn)--t
x“‘(B)><( (:+2)! B :)' )7“‘

Set f(t)—(ttnj:zl)) ' t__(t—l—n)'m !, Then there is a positive integer N,(7) such
n!
that f(#)>0 holds if 2>Ny(n). Hence, the proof of Lemma 3 is completed.

Lemma 4. For each n>1, there is a positive integer Ny(n) satisfying the
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following: If D is a t—(v, k, \) design with k—t=n and t>Ny(n), then there
exist three blocks B,, B,, B; of D such that |B,N B,|=t—1, |B,NB;|=t—1 and
,BI ﬂB3|=t-—n-—2.

Proof. Let D be a t—(v, k, A) design with k—f=n. We may assume
t>N\(n), where Ny(n) is a positive integer obtained in Lemma 3. Therefore,
there exist two blocks B, and B; of D with |B,NB;|=t—1. Let ay, *,
be n+1 points of B,—B; and «a,,,, -**, a;_; be t—n—2 points of B,NB;. Set

S={B|B ablock, B2 {ay, -**, a;_;}}, where |S|= _tiix Then we have

|{BES||B,NB| >t or | BN B| >t—n—1} | <ME—#+1)+ME—t-+n+2).

Hence, if Z;—:i—ix>x(n+l)+x(2n+2), then there exists a block B, in S such

that |B;N B;|=t—1 and | B, N B;| =t—n—2. On the other hand, since v >k--¢
=2t4n, we have that v_j_—;_1>(n+1)+(2n+2) holds if ¢>3(n+1)2.. Thus,
n

Lemma 4 holds if Ny(n)=max{N,(n), 3(n+1)%}.

Proof of Theorem 1. First, let us suppose that D is a block-schematic
t—(v, k, \) design with k—¢=n and ¢, A>2. By Proposition, we may as-
sume that > N,(n), where Ny(n) is a positive integer obtained in Lemma 4. By
Lemma 1 we have

WSS VRN s 2 (i (5")- 2(:—31'—2)’”(1?”)’

where ( t-+n ):(v—t-{—n—}—Z)---(v—t—{—l)h.(t—i—n)---(t—n—l)
rA\E—n—2 (ntn+2)-(n+1) Cnt2)l
t-1 -+ |
> 2)" (tjn)q DN l(t(tnn)Z)'
— (n+1 )(v t+n+1) - (v—t4+1) (t+n)!
(ntnt1)(ntl) (—n—2)!

and k( i z)*(t+'l)< (t(_sz—n)Z)'

Hence we have

(7} . t)n+2(t___n_ 1)2n+2
((2n+-2)!Y

Again by Lemma 1, we have

S () () ()

i=t

Ryoyz> A—(v—1+n+1)"(tn)+2n . (8)
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21 <(v—t+1) t+n)""NA-nt+n)""\ .

Hence we have

w1 <(v—t+n+1)4(t+n)"2z. (9)
By (8) and (9), we have
2 (o=t (t—n—1)" —D(p— 1)+ 2n+2y 2
Xp_yog—Xe—1 > @12y A—2(v—t4+n41)"(t++n) 02 .
—_ A n+2, (F__ap__ 1\28+2__ n n
Set  f(t)= ((_Z'TJ;——Z)!)J o (t—n— 12" 2202 (t++n+ 1) (t4-m)? 2

Then there is a positive integer N(n, A) (=N,(n)) such that f(#)>0 holds if
t=N(n,)\). Since v—t>t, we have that

%y_p_p—%?_1>0 holds if 1>N(n, ). (10)

By the similar argument as in the proof of Proposition, we have

k
w1 =2 p(t—1, t—1, by, (11)

where w(t—1, t—1, h) is a non-negative integer. Moreover, since ¢=>N,(n)
u(t—1, t—1, t—n—2) is a positive integer by Lemma 4. Hence, by (10) and
(11), we have t<N(nm, \). Therefore, k<N(n, A)+n. Hence by Proposition,
the proof of Theorem 1 is completed on condition that A<C2.

Next, let us suppose that D is a block-schematic t—(v, &, ) design with
k—t=n and t>3. (The proof of the case A=1 is similar to that of the case
A>2. Then, we give an outline of it.) By Theorem in [1], we may assume
that ¢>N,(n), where N,(n) is a positive integer obtained in Lemma 4. By
Lemma 1, we get

>(‘U'_‘t)”+2(t_n—1)2”+2
((2n+2)1)?
Hence, there is a positive integer N(n) (= N,(n)) such that x,_,_,—x7_; >0 holds
p
if £2=N(n). On the other hand, the following equation holds:

2
Xpp-2—Xt—1

—2(v—t+n+1)"*"(t-+n)+2,

#y = D u(t—1, t—1, ), ,
k=0

where u(t—1, t—1, k) is a non-negative integer and u(z—1, t—1, t—n—2) is
positive. Therefore, we have ¢< N(n), and so k< N(n)+n. Hence by Theorem
in [1], the proof of Theorem 1 is completed on condition that A=1. Thus,
Theorem 1 is proved.
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3. Proof of Theorem 2

Lemma 3. Let D be ablock-regular t— (v, k, \) design. Then the following
equality holds for 1=0, .-, t—1.

k
B x(,-) {(Zj) +(_1),+,-+1*gl(t—i_ql+q) (v—k—ﬁrq)}

R
=)
+o=n 8 () (§) o (Dm-n,

where a;<w;<(A—1) (’;) (1< j<k—1) and w,=n—1) (%).
(The essential part of Lemma 5 is [5, Lemma 6].)

Proof. In this proof, we use the following three combinatorial identities:
(i ()= (57,

@ 2 () ey =cv(l,) @,

i) 3 (f) (.2 ,) =(“T?) @>0).

By Lemma 1, we have
5= 2 (1) u=1 (8) (o5 ({14,
where x;<w,<(A—1) (’;) (t<j<k—1).
e 5 > () - rsen () (o
+33 (§Jmi—1y+,

=) _G))
—J/ _ \R—J <i<t—
)y T
t—j k—1
Hence, in order to prove Lemma 5, it is sufficient to show that the following
equality holds for =0, -+, k—1.

(0o -1(8)

where A} =
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_ @

) (v_t){(Zi’;‘-)+<—1>‘*"“’,‘22;’(t"'*q’”q) e BN
k—t
First suppose that t<i<k—1. Then,
) - E O wo
= (—(3=%)- (cf. (i)
Hence, the right hand of (12)=0=the left hand of (12).
Let A=(a,,) be the square matrix with a,s=<:) (0<r, s<k—1). Since

det(d) +0, A‘1=<C> (—1)'+s) (0<r, s<k—1) and (12) holds for i=t, -+, k—1,
we have that (12) holds for =0, ---,k—1 if the following holds for /=0, ---,z—1.

k
S0 ) oi-nt.
k—t (13)
s ()(5)=(4) ().

k
the left hand of (13)= (Z@t) 3| <11::;){(Z:?>
t

+Hy () (k) (14
vow, 5 55) (75 =2 (G2 G2)

=S (2t e=i-

_ <z:f>—1. (ck. (iii)) (15)

On the other hand,
T TP [ Te)
e BTy
S o G Do (i GO TER VRN C RO
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()
(h=j—i)

e, ) ()0 o

=Sy (PR ki<

-6

= (1, Ok -G Gk G

=1-(371). (16)

Hence by (14), (15) and (16), we have that

k
the left hand of (13) = (v(i)t){@::f)—lJr'l—(Z:;)}
k—t
— <§EZ>_1 (’f) — the right hand of (13).
(i=1)

Thus, Lemma 5 is proved.

Lemma 6. For each k=2 and 1>0, there exist at most finitely many block-
regular t—(v, k, \) designs with x;<1 for some i (0<i<t—1).

Proof. In order to prove Lemma 6, it is sufficient to show the following:
For each k>2, 1>0, t (1<t<k) and 7 (0<<7<¢), there exist at most finitely many
block-regular #—(v, k, \) designs with x; <<l

Let &, [, t and ¢ be integers with k>2, [>0, 1<t<k and 0<i<t, and let
D be a block-regular t—(v, k, \) design with x;,</. By Lemma 1, we have

= 500 (e
where x,-<w,~<(7»—1)<j> (j=t, ---, k—1). Therefore,
(G ey O 2050

“HH)oa-n(j)--
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In the above expression, if we suppose that &,/,¢ and 7 are constants, and that
v and A are variables with v >k and A>1, then we can obtain the following:

The right hand of the expression =\« f(v)+A-g(v)+d, where f(v) is a
polynomial in v of degree t—i with the leading coefficient of f(2)>0, g(v) is a
polynomial in v of degree t—i—1, and d is a constant. Hence, there exists
a constant C(&, [, ¢, ©)>0 such that x;,—I1>0 holds if v>C(%, , ¢, 7). Namely,
if x;<I, then v<C(&, [, t, 7).

2n+((2n+-2)!)?
c—2

+2n. Let D be a block-regular t—(v, t+n, \) design with v>ct, t>

2ni((—znz—’——z))Z—I—Zn and x»; <</ for some ¢ (0<<i<71—1). Set v=mt (m>c), where
c—

m is not always integral. By Lemma 5, we have

7L(’:Jﬂl) (m—1)t—n —z—l—l—q (m—1)t—n+q
WK ey IC VA (Rl ()

n

Proof of Theorem 2. By Lemma 6, we may assume that >

+0-) S (D (F) 0 S (mi—1, (17)
where x,.gw,.<(x—1)(t+”) (t<j<k—1).
Now, v—1) 2 (1) (F") 0+ (Dm0
=~ E (D ()= B (-1

> —2\(n+1) ('t(;L"))' (18)
On the other hand,

7\(Hl_n) (m—1)t—n t—i—1+4q\((m— l)t n+
(- nt){( i L (R ol

n

7”(Hrn) (m—1)t—n\ _(t-+n—i\((m—1)t

>((m 1)t>{< t-|-n—t> ( n >< n )}

%
AMe+n) ! (m—1)t—n)! (m—1)t—n)! _A(t+m)! (19)

(t+n—i) (m— D)) (t+n—i) (m—2)t—2n+3)!  3l(t—i)!
By (17), (18) and (19), we have
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%l (t—1)! {(m—1)t—n)}*(t—7)!
(E+n)!In " (E+n—i) ) (m—1)t)! (m—2)t— 2n—|—z)'

ilt—i)l !
Em)n S

(m—1)t—mn) -+ (m—2)t—2n+i+1) 5y,
((m——l)t) (m—1)t—n+1)(t+n—10) - (t—i+1) (t+n—1)!
m—1)t—n—1 m—1)t—2n
Hence, x;>((m—1)t—n) ( (o )l)t) (()m ((l)t n)-l—l) )
((m=1) —2n—1)-((m—1)t—3n)
(t+n—z)-- (t—i41)
((m—1)t—3n—1)--- ((m—2)t—2n-+i+2) (m—2)t—2n+i+1 5y,
(t+n—i)-- (2n+3) (2n+-2)!

Then since <1, we have

holds if t—i>n-+3, and
(m—1)t—n—1) - (m—1)1—2n)
R L B T 17 e )
(n—1)t—2n—1) - (m—2)t—2ni+1)
(@nD)F

holds if 2<¢t—i<n+2,

(m—)t—n—1)-(m=1)1—20) 1 o
(m—1)2) -+ (m—1)t—n+1) ((n+1)!)

and x;>((m—1)t—mn) (

holds if t—i=1.
2n+((2n4-2)1)?
c—2

In any case, since > +2n, we have

. (m—2)t. 1
e e 1T RV
((c—1)t—n)( c—2\"
T @D N

—5n.

Therefore, there exists a positive integer N(c, 7, l)< @M—I—Zn) such

that x;—/>0 holds if > N(c,n,[). Namely, if x,</, then t<N(c,n,1). Hence
by Lemma 6, the proof of Theorem 2 is completed.
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