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0. Introduction

In the paper [8], P. Samuel has developed the theory of p-radical descent
of exponent one by making use of logarithmic derivatives. In this article we
shall give a generalization of his theory to the case of p-radical descent of higher
exponent with the aid of a finite set of higher derivations of finite rank.

In the first section some preparatory results are collected. Let 4 be a
Krull domain of characteristic p>>0 and K be its quotient field. Let D=(D®V,
.-+, D®) be an r-tuple of non-trivial higher derivations D®’s of rank m; on K
which leave A4 invariant. For simplicity we shall abuse the notation D® to
denote the ring homomorphism of K into a truncated polynomial ring of order
m; over K, i.e., K[t;: m]: =K[T;]/TP*" associated to the higher derivation D®.
Let K’ be the intersection of the fields of D®-constants (1<i<r) and let 4': =
ANK'. Let T=(T,, -, T,) be an r-ruple of indeterminates and let #; be the
residue class of T'; modulo T7*' in K[T;]/T?"*'. We shall set &: =(¢,, -+, ,)

and m: =(m,, ---,m,). We shall denote I K[t;: m;]} by K[t: m]. Similarly we
i=1
denote II A[t;: m;] by A[t: m] where A[t;: m;] is a truncated polynomial ring
i=1

of order m; over A. Furthermore we shall define a ring homomorphism D of
K into K[t: m] by D(2)=(D"(2), -+, D?(2)) (2€K). Let L and L} be the
sets of elements defined respectively by

L,= {D(2)/z€K][t: m]|z€K*, D(z)/z€A[t: m]},

Ly = {D)|uluc A*} .

Let j: Div(A") —Div(4) be the homomorphism defined by j(&G)=e(P)P where,
G is a prime ideal of height one in 4’, & is the unique prime ideal of height one
in 4 with PN A'=g and e(%P) is the ramification index of L over G. Then we
can define the homomorphism j: Cl(4’)—Cl(4) induced by j (cf. [8]). Let 9
be the subgroup of Div(4’) consisting of divisors E’s such that j(E) is principal
and let ®,: 9—_L,/-L be the homomorphism defined by ®,(E)= D(x)/x modulo
L4, where E€ 9 and j(E)=div,(x). Let @: Ker(j)=9D|F(A')—>L4/-L4 be the
homomorphism induced by ®, where F(A4’) denotes the subgroup of Div(4")
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generated by principal divisors. Furthermore we put w;=min {j|D{’ =0,
1<j<m} and, n,=min {n|m;<p;p"} where DV = {D{’|0<j<m} (1<j<7).
We denote the Jacobian det(D)(ats))s<i 1<, by J(D: @;s,7) for a=(et, -+, a,) EA’
and 1<s<r. We shall use the notation J(D: @) instead of J(D:@;1,r). Our
main result in §1 is the following:

Theorem (cf. 1.6). Assume that the following two conditions hold:

(1) [K: K=prst.

(2) For each prime ideal P of height one in A, there exists @& in A" such that
the Jacobian J(D: @) is not contained in P.

Then the homomorphism ®: Ker(j)—-L4]-L4 is an isomorphism.

The property (2) in the above theorem will be referred to as ‘“the height
one property”’. When the height one property is not satisfied, & is not neces-
sarily surjective. Even if & is not surjective, we can determine, in some cases,
the cokernel of @ (§2). As a byproduct we get the following:

Theorem (cf. 2.7). Assume that A is a unique factorization domain with
J(D: A):={J(D:a)|lac A} +£{0} and [K:K'|=pmt"t* Let P=cA be a
principal prime ideal of height one in A and let s®(P): =min {s&N|(DD(c)/c)’ €
Alti:m]} for 1<i<r, and s(P): =max {s)(P)|1<i<r}. Then the followings
are equivalent to each other:

(i) @: Ker(Jj)—>-L4/-L4 is an isomorphism.

(i) For each prime ideal P of height one in A, either J(D: A)E P or
e(P)=s(<P) occurs.

If A4 is a unique factorization domain, it turns out that Ker(J) is isomor-
phic to Cl(4’). Therefore, in order to determine Cl(4’), it suffices to know
Ker(j). In the final section some examples of rings are presented whose divisor
class groups are calculated by applying Theorem 1.6.

The autohr is very grateful to Professor Y. Nakai for many valuable sug-
gestions and encouragement during the preparation of this paper.

Each ring appeared in this paper is commutative with identity. Our ter-
minology and notation are as follows:

Let 4 be a Krull domain.

P(A4): the set of prime ideals of height one in A4.

Div(4): the free abelian group generated by elements of P(4). An ele-
ment of Div(4) is called a divisor.

We shall define the divisor div,(a) (e A—{0}) by div,(a)=2]vp(@)P
where the sum is taken over all prime ideals &’s in P(4) and v is the normalized
valuation associated to the prime ideal . Let K be the quotient field of 4
and x be an element of K*. We define div,(x): = div,(a)—div4(d) where
x=alb (a, bE A4, b +0).
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F(A): the subgroup of Div(A4) generated by {div,(x)|x=K*}. We call
an element of F(A) a principal divisor.

Cl(4): =Div(A4)/F(A): the divisor class group of A4.

cl(E): the divisor class of a divisor E.

Supp(E): the support of a divisor E, i.e., the set of all prime ideals £’s in
P(A) such that E=>}n5%P and nge=0.

1. Fundamental theorem

Let A and B be commutative rings with common identity such that ACB.
A higher derivation D= {D;|0<j<m} of rank m of 4 into B is a collection
of additive homomorphisms of 4 into B satisfying the following conditions:

(1) Dfa)=a  for allain A.
(2) Dy(ab) = 23 Dy(@)D,-i(b)

for 0<n<m and a, b€ A4 (cf. [5], [6]).

Let B[t:m] be a truncated polynomial ring of order m over B, i.e.,
B[t: m]=B[T]/T™*'. We can define the ring homomorphism ¢, of 4 into
B[t: m] associated to a higher derivation D by the following manner:

Pp(a) = gD,-(a)t" for acA.

For simplicity we shall abuse the notation D to denote the ring homomorphism
¢p when there is no fear of confusion. If D(a)=a, a is called a D-constant.
We say that D is non-trivial if there exists an element in 4 which is not a D-
constant. For a non-trivial higher derivation D, the smallest integer among
those j such that D; 50 for 1<j<m is denoted by u(D). Let C be a subset of
A. We say that D leaves C invariant if D,(C)CC for 1<j<m. Let D’ be a
higher derivation of rank m; of A into B for 1<i<r. Let T=(Ty, -+, T,) be an
r-tuple of indeterminates T4, -++, T, and let £: =(¢,, -*-, ¢,) where ¢; is the residue

class of T; modulo T7:*' in B[T;]/TV:*'. We shall denote i_IB[t;:m;] by

B[t: m] where m: =(m,, ---,m,). Then B[t: m] is a B-algebra in the usual way.
Let D=(D®, ---, D™) be an r-tuple of higher derivations of rank m of 4 into
B. A ring homomorphism Dof 4 into B[t: m] is defined by D(a)=(D"(a),
-+, D"(a)) (a€A). The intersection of D®-constants for 1<i<r is called the
ring of D-constants. First we shall prove two lemmas:

Lemma 1.1. Let ACB be integral domains of characteristic p>0 and let
D={D;|0< j<m} be a non-trivial higher derivation of rank m of A into B. Set
p:=u(D) and d;: =Dyy. Then d(a’")=0 if s<k and d(a’)=d, ()" if
s>k (a€4, pp’<m).
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Proof. The proof is easy, hence we omit it. Q.E.D.

Lemma 1.2. Let M=(a;;),<i, j<, be a non-singular matrix. Then after a
suitable change of columns we can bring M into the ome such that every
M® (1<k<r) is a non-singular matrix where

gt Ay
M® =
Ay A,y

Proof. Let a;; be the cofactor of a;;. Then det M=ay 0+ a0+
+ay,01,. Since det M does not vanish, a,;»#0 for some j'. Interchanging the
first column with the j'-th column, we may assume ay, +0, i.e., det M@ =0.
Continuing this process we will arrive at the desired situation. Q.E.D.

Let D=(D®™, ---, D) be an r-tuple of non-trivial higher derivations of rank
m=(m, ---,m,). We shall set u;; =u(D®) and n;: =min {nEN|m;<p;p"}
where IV denotes the set of positive integers. Furthermore we shall set n(D)=
n+++mn,. Then D{)is a derivation. We denote the Jacobian det(D{)(ct))
by J(D: a) for a=(a,, -+, a,)€A". Let T=(Ty, -+, T,) be an r-tuple of in-
determinates T, ---, T,. We shall denote (T{“lﬁj, wee, TE?) by T?#t where
‘u:(ll'l) ) /,L,)EZ’.

Proposition 1.3. Let LCF be fields of characteristic p>0 and let D—=(D®,
o, D) be an r-tuple of higher derivations of rank m=(m,, ---,m,) of L into F.
Let L' be the field of D-constants. Suppose that there exists an element a=(a,, ++-,
a,) in L' such that the Jacobian J(D: @) does not vanish. Then we have
[L: L'1>p*®.  Furthermore if the equality holds, then L=L'[a;, -**, @,].

Proof. (I) First we shall prove the Proposition in the case 7:=#=:--=n,.
Let L; be a subfield of L defined by {z&L|D(2)=(z, ++, 2) mod T*#} for
1<j<n. Then we have LyDL;D:+-DL, where we put Ly:=L and L,:=L".
It suffices to show that [L;_,: L;]>p" for 1<j<s. For simplicity we shall set
d{?:=D{)yi. From the definition of L;_,, the restriction of d{2; to L;_, is a
derivation of L;_; for 1<i<r. Let L, , be the intersection of the kernels of
these derivations. Then we have L; ,DL; ,DL;. By Lemma 1.1 we know
J(D|L;_,:a? =J(D: a)?’ ~'+0 and a*’ 'IEL§_1. Hence these derivations are
linearly independent over F. This implies that [L;.:L;,]>p’, hence
[L;j-1: L;]=p". From our argument we get the following sequence:

joael ol
Lj_IDLﬁl =L,v[a‘{j y %y afj ]DLJ

for 1<j<mn. To prove the latter half, assume that [L:L']=p". Then
we have [L;_,: L;]=p". Since d{”;|L} (1<i<7) are linearly independent over
F, [L%: L;]>p". Therefore we see that L; ;=L} for 1<j<m, hence L=
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L'[et;, ++, at,].

(IT) Next we shall prove the general case. Without loss of generality
we may assume that #,<7,<:.--<#,. Moreover by Lemma 1.2 we may assume
that J(D:a;k,r)=+0 for 1<k<r. This implies that for every k there exists an
integer &’ such that d{”(ay) +0 and k<k’'<r. Let #i,<<---<fi, be integers with
the property {m, ---,n,} = {#,, ---, #,} and let r,: =4 {i|m;=#,, 1 <i<r} for
1<A<p. Then we know

rl—i—rz—{—---—i—r,, =r,
Nyt rofig e 1l = M1yt om,

For convenience sake we put 7,: =0, 7i,: =0 and §,:=r,+---+r,. Let K, be
the subfield of L defined by
{z€L|D®(z)=2 mod Ti»"  (1<h<S,),
D¥(2)=z mod T} (w, = wip™, S, <I<r)}

for 1<A<p—1 (note that n,>7#,,>#,). Then we have
Ky:=L>DK,D--DK, ,DK,:=L".
We shall claim the following inequality for 1<A<p:
[Ki-1: Ki]=p"

where &:=(r—0,_,)(a—1#i,_,). Let A® be the restriction of D’ to K,_;. Then
for 1<a<p, A¥ is a higher derivation of K,_, into F of rank m; for §,_,<<¢<$,
and of rank w;—1 for 3,<<i<r respectively. For A=p, A® is a higher deriva-
tion of K,_; into F of rank m; for §,_,<<¢<r. The following five assertions are

easily verified:

r

(1) Ky= (] (the field of A®-constants).

§i=8)\_1t1
(2) wAN)=ppr-1 (8 <i<r).
(3) For 1<A<p,

min {SEN |m,<p,p*r-1+} = #,—#,_, (Or-1<u<syy).
For 1<\ <p,

min {sEN|p, prA< p,p 17} = ty—7, ., (Bi<v<7)
where N denotes the set of positive integers.

4) afeK,., where gq:=p™-1 (8, <i<r).
(5) J(A:a%;8,_,+1,r)=](D:a; 8, ,+1,7) 0 where A=(AD, -+, AV).

p
Therefore we get [K,.,: K]>p**. Furthermore ?_-"15*:”1 + oo 4 n,=n(D).
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Hence we have [L: L']>p"®. In order to prove the latter half, it suffices to
prove the following: K,.,=K, where K,:=K,[a?;8,_.,<i<r] for 1<a<p.
Since [L: L']=p"®, we have [K,_,: K;]=p"*. Applying the step (I) to K, and
AD|R, (8,,<i<r), it is seen that [K,: K,]>p™. Since K, ,DK,DK,, we
have K,_,=K,. Q.E.D.

ReEMARK 1.4. The converse of the latter half of the Proposition 1.3 does not
hold. Let & be a field of characteristic $>>0. Let x, y be indeterminates over
k and let L:=k(x,y). Let D® (i=1,2) be higher derivations on L over k of
rank p—1 and p®—1 defined respectively by

DOx) = x(14+), DV(y)=y+t,
DO(x) = x+t,, DO(y)=y(1+1).

Then n,=1, n,=2 and J(D: (x, y))=xy—1=0. By a simple calculation we see
that L' =k(x?*, y**). Therefore L=L'[x, y], while [L: L']=p*> p"*",

(1.5) Let A be a Krull domain of characteristic p>0 with the quo-
tient field K. Let D=(D®, ---, D®) be an r-tuple of non-trivial higher deriva-
tions of rank m=(m,, ---, m,) on K which leave 4 invariant. Let K’ be the field
of D-constants and 4":=ANK’'. Then A’ is also a Krull domain. Since any
element of X is of the form a/b with ac 4, be 4’, K’ is the quotient field of 4’.
For any prime ideal & in P(4’), there exists only one prime ideal & in P(4) such
that PN A'=G. From this fact we define the homomorphism j: Div(4')—
Div(4) by j(Q)=e(P)P where e(P) stands for the ramification index of L over
G. Since 4 is integral over A’, we can define the canonical homomorphism
J: Cl(4")—>Cl(4) induced by the homomorphism j (cf. [8]).

Let £, and L be sets of elements defined respectively by

L= {D(z)[z€K[t: m]|z=K*, D(z)z€A[t: m]},
Lh:= {D(u)lu|luc A*}

where * denotes the set of invertible elements. Since we have

(D(21)[21)(D(22)[22) = D(212,)[2122
and
(D(x)[z)' = D(z7Y)[z  (2=0),

L, is an abelian group and _£% is its subgroup.

Let 9 be the subgroup of Div(A4’) consisting of divisors E’s such that j(E)
is principal. Then we get Ker(j)=9/F(A’). We shall define the homo-
morphism @, of 9 into .L,/.L% by the following manner: Let E be a divisor
of @ and x be an element of K* satisfying j(E)=div,(x). Then we set ®y(E):
=D(x)/x modulo L. Itis easily seen that @, is well-defined. Moreover if »’
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is in K', ®y(div . (x'))=D(x')[x'=1 where 1=(1, ---, 1) 4", hence the homo-
morphism ® of Ker(j) into L,/-L% induced by the homomorphism @, is also
well-defined. On the other hand, the relation D(x)/x=D(u)/u (x€K*, us A*)
implies D(xu™")[xu"'=1, i.e., 2au"'€K’ and E=div, (xu~). This implies that
@ is injective (cf. [8], p. 86). Set g1 =(u,, -+, p,) and n(D): =n,++--+n, where
wii=u(D) and n;: =min {nEN |m; < p,;p"} (1<i<r).

Theorem 1.6. Let A, K, K', D and n(D) have the same meaning as in
1.5. Assume the following two conditions hold :

(1) [K: K] =p,

(2) For each prime ideal P in P(A), there exists an element & in A" such that
the Jacobian J(D: @) is not contained in P.

Then the homomorphism ®: Ker (j)—-L,/-L} is an isomorphism.

Proof. Since @ is injective, it suffices to prove the following: If D(x)/x is
in L, (x€K™), then there exists a divisor E in 9 such that j(E)=div,(x). Set
n:=max {n, -, n,}. Note that for each prime ideal & in P(4’) there exists a
unique prime ideal in P(4) which contracts to G because A" CA’. Therefore
the surjectivity of @ is seen by showing that if D(x)/x is in L, (x€K¥*), then
e(P) divides vgp(x) for every prime ideal & in P(A) where vg(x) denotes the
normalized valuation of K associated to the prime ideal . Hence by localizing,
we may assume that 4 is a discrete valuation ring with the maximal ideal .
Thus we have only to show the following:

Proposition 1.7. Let A be a discrete valuation ring with the maximal ideal
P and let K, K', D and n(D) have the same meaning as in 1.5. Assume that the
following two conditions hold:

(1) [K:K']=p"®.

(2) There exists an element @& in A" such that the Jacobian J(D:®) is not
contained in P.

If D(x)[x is in L, (xEK?™), then e divides v(x) where we pul e: =e(P) and
v is the normalized valuation of K associated to A.

Proof. Our proof consists of several steps:

(I) First we shall consider the case m;=1 (hence p;=n;=1) for 1<i<r.
We shall set D= {id, D®}. Then D®’s are derivations. We shall define the
higher derivation A= {id, A®} of rank 1 on K in the following way:

1
D®(ay), -+, DI(z), -+, DY(a,)
A(’)(z) e ]_1 det . e
DO(ay), -+, DO(2), -+, DO(ax,)
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for zeK (1<i<r) where J:=J(D:a). Then we have A®(a;)=35; where J;
denotes the Kronecker’s delta (1<7, k<r). Since Jisnotin &, J is a unit of
A, hence AD(4)C A for 1<i<r. Set A:=(AY, -, A"). Since A® is an 4-
linear combination of D*’s and D® is also an A-linear combination of A®’s, we
have the following three assertions:

(1) K is the field of A-constants.

(2) J(A:a)=1.

3) Ax)xsL,.
Hence it suffices to prove the Proposition with respect to A instead of D. We
shall prove that e divides v(x) by induction on 7. As is well known e takes no
other value than some power of p. Hence in the case r=1, it suffices to prove
the following: If p does not divide v(x), then e=1.

Let 7= be a uniformisant of the discrete valuation ring 4. Then we can
write x=un"® for some uA*. Since

AP(u)[u+v(x)AV(z)[x = AV (x)/x= A

and since p does not divide v(x), we have A®(z)/[x=A. This implies that we
can define the derivation A® of 4/% induced by A®. Set K:=A4/P and K :
=A'|G where G:=PNA'. Since A®(a;)=1 implies A® 30, we have
[K: K'1>1. Therefore from the inequality e[K: K'|<[K: K']=p, it follows
that e=1.

Suppose 7>1 and the assertion holds for r—1. Set K:=the field of A®-
constants and A:=ANK. Since [K: K']|=p" and J(A|K:a;2,7)=1, Proposi-
toin 1.3 implies that [K: K]=p and [K: K']=p""'. Furthermore we have
K=K][a] and K=K'[a,, ***, t,]. Then the restriction of A® to K is a deriva-
tion on K such that A¥(4)c 4 for 2<i<r. Let ¢, be the ramification index of
P over PNA. Since [K: K]=p and A®(q;)=1, e, divides v(x) from the
argument in the case r=1. Therefore we can write ¥=uy for some u in A* and
y in K*. It follows from A(x)/x=(A(w)/u)(A(y)/y) that A(y)ly €(4ANK)
X [t: m]=A[t: m]. Furthermore J(A|K:a;2,r)=1€4* and a, -, a,€4.
Let e, be the ramification index of G:=%PNA over &':=PNA" and 0 be the
normalized valuation of K associated to the prime ideal g. Apply the induction
assumption to A| K, then we see that e, divides 2(y). On the other hand v(x)=
o(y)=e,0(y) and e=ee,. Hence e divides v(x)

(IT) Suppose that n:=mn;=---=mn,. We shall prove the Proposition by
induction on n. For the case n=1, let K= {2 K| D(2)=(z, *--, 2) mod T**1}.
Then KDKCK' and Proposition 1.3 implies that [K: K]>p". Since [K: K']
=p’, we get K=K’ and e divides v(x) by the previous argument. Suppose that
n>1 and the Proposition is proved for n—1. Let Li={2x€K|D(2)=
(2, ++-, ) mod T?*} and A{:=ANL, Itis easily seen that

(1) w(D®|L)=pu:p.
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(2) min SEN|m;<p;p*}=n—1=n—1 (1<i<7).

(3) J(D|L,:a’)=](D:a)’ & G:=PNA].

4) ated].
Hence Proposition 1.3 implies that [K: L,]=p" and [L,: K']=p® V" because
[K: K']=p™. We shall prove that the restriction of D to L, is an r-tuple of
non-trivial higher derivations of rank m on L, which leave A4{ invariant. We
know L,=K'[ad, -++, a?] by Proposition 1.3. For any element 2z in L,, z is of
the form

a= B Gl (@d)” (0., €K)

iy eZ,

where Z, denotes the set of non-negative integers. Therefore we get
D(z) = Z cil...,"D(af)il---D(alz)i, .

From Lemma 1.1 and the definition of L, it follows that D(a})EL,[¢: m]. This
implies that D(L,)C L,[t: m]. Since A{=ANL,, D|L, becomes an r-tuple of
non-trivial higher derivations of rank m on L, with the desired property. Let
e, be the ramification index of @ over G;. Let K be a subfield of K defined by
{z€K|D(z)=(z, -, 2) mod T*"'} where 1=(1,:++,;1). Then we have KD
K> L, and Proposition 1.3 implies [K: K]>p". Since [K: L,]=p’, we get K=L,
and e, divides v(x) by the argument in (I). Hence we can write x=uy for some
uin A* and y in L¥. Therefore D(y)/y€A,[t: m]. Let e, be the ramification
index of &, over PN A’ and v’ be the normalized valuation of L, associated to
the prime idea &,. By induction hypothesis, we know that e, divides v'(y) and
therefore e divides v(x).

(IIT) We shall prove the general case. Without loss of generality we may
assume the following:

1) m<m<--<mn,.

(2) J(D:a;k )P for 1<k<r.
Let #,, +++, i, and K, have the same meaning as in the step (II) of the proof of
Proposition 1.3. We shall use the induction on p. The case p=1 is treated
in (IT). Suppose that p>1 and the Proposition is proved for p—1. Proposi-
tion 1.3 and its proof shows [K,_;: K,]=p°*. Since [K: K']=p"P), we have
[K: K]=p™ and [K,: K'|=p"®~"%_ Let A;:=ANK, and ¢, be the ramifica-
tion index of P over G;: =% N A,. Then the step (II) implies that e, divides
v(x). Hence we can write x=uy for some u in A* and y in K¥. Then
D(y)ly€A,[t: m]. For r,<i<r, we have the followings:

(1) w(D®|Ky)=pip™.

(2) min SEN|m;< p;p™}=n,—,.

(3) J(D|K,:a;r,+1,7)=J(D: a;r+1,r) € A¥ where q: =p™.

4 #{m—n|n<i<r}<p.
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Let e, be the ramification index of &G, over PN A’ and v’ be the normalized
valuation of K, associated to the prime ideal G,. Then induction hypothesis
implies that e, divides v'(y), hence e divides v(x). Q.E.D.

2. Cokernel of @
We shall retain the same notations and assumptions used in §1, (1.5).

Proposition 2.1. Let S be a multiplicatively closed subset of A’ consisting of
prime elements in A. Let H be the subgroup of Div(A') generated by G=P(A")
such that GN S ¢, and L be the subgroup of L, generated by the set {D(a)lac
LacANA%}. Let L\ L% denote the subgroup of L, generated by L and L}.
Let f be the restriction of ® to (H4F(A')[F(A"))NKer(j). Let the homo-
morphisms js: Cl(A%s)—>CUAs), ®s: Ker(Js)—>-Las|-L4 be defined in a similar way
as j and @ respectively. Then we have the following commutative diagram of exact
rows and columns:

0 —> Coker (f) —> Coker (®) —> Coker ()

0 —— LVLYLY —— LyJLh —> Lyg]|-Lhg
f o] D
0 >(H+F(A")|F(A") N Ker(j)—>Ker(j)—> Ker(js)— 0

N

0 0 0

where L 4] -Ly — L,45|-Lh is the homomorphism induced by the inclusion L—>L 4
and Ker (j)—Ker(Jjs) is the natural homomorphism CI(A")—CI(A%).

Proof. The homomorphism Ker(j)—Ker(Jjs) is well-defined since we
have a commutative diagram:

Cl(4) —> Cl(4s)
7| 5|
Cl(4’) —> Cl(4%).

The middle sequence forms evidently a complex. For any element D(x)/x&
L,NLig (x=K*), we can write

D(x)[x = D (as)[(als) = D(a)/a



p-RapicaL DEesCeNT oF HIGHER EXPONENT 735

for some a/sc A% (acA4,s<S). Since afs is a unit of A, ais in A%. Hence
D(a)/a is in LV L} and the middle row is exact. The exactness of the third row
is seen as follows:

0 —> H+F(A")|F(A") — Cl(4") — Cl(4%) — 0

T I

0 G Ker(j)— Ker(Js)
T [
0 0 0

is commutative where G =(H-+F(A')/F(A'))NKer(j). Since S is generated
by prime elements of 4, we have Cl(4)=Cl(4;) ([4], Cor. 7.3, [7]). Therefore
Ker (j)—Ker(Jjs) is surjective. Furthermore Im(f)C LV L%/-L4. The rest is
immediate from the Snake lemma ([2], Chap. 1, §1. Prop. 2). Q.E.D.

Proposition 2.2. Let D={D;|0<j<m} be a higher derivation of rank m on
A and let P be a principal prime ideal in P(A4), say, P=cA. Let

5o: = min {s€N|(D(c)/c)’ € A[t: m]}
and

7o: = min {Y EN|Dy(c) & P}
(7f Dy(c)E P for all 1<y <m, we put ry: =m+1).

Then the following three assertions hold:

(1) s, is a power of p.
(2) Write sy=p™, then ay=min{aE Z, |r,p°>m-+1} where Z, denotes the
set of non-negative integers.

3) (D(o)[c)' < A[t: m] if and only if s, divides h.

Proof. (1) Write s,=s'p", pA’s’. Then it suffices to prove that s'=1,
In the relation

(D()fe)'o = (1 Dy ()"t "+ )",

the coeficient of #** is of the form s'(D,(c)/c)*+a(acd). If rp®>m,
then (D(c)/c)** € A[t: m], i.e., s'’=1 because of the minimality of s, Hence if
s'>1, we must have 7,p®<m. Then the coefficient of #** is in 4 and D, (c)*"
isin ¢**4. This implies that D, (c) is in cA=%, which contradicts to the de-
finition of 7, (note that »,<m).

(2) Set a':=min{ac Z,|r,p®>m+1}. Then we have (D(c)/c)** €
A[t: m], hence by the minimality of s, we have s,<p*. On the other hand
rop™>m+1 because otherwise (D(c)/c)*™ & A[t: m]. Hence a,>a’. Combin-
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ing these, a,=a’.

(3) It suffices to prove the “only if” part. Write A=sg+h', 0<h'<s,.
Suppose that (D(c)/c)*<A[t: m]. Since (D(c)/c)’o = A[t: m] and (D(c)/c) is a
unit of A[t:m], we see that (D(c)/c) € A[t:m]. Hence (D(c)/c)" EA[t: m]
and 4’=0 by the minimality of s,. Q.E.D.

Corollary 2.3. In the above notations, s, divides e where e :=e(P).

Proof. Notice that e is a power of p because P*"C PN A’ for some n.
Hence it remains only to prove that (D(c)/c)’€A[t: m]. For every prime ideal
Q in P(4), we can write c’=ux for some #€A4} and xK’. Then we know
that (D(c)/c)"=D(u)/uc A[t: m]. Since A= QAQ, we have (D(c)/c)* € A[t: m].

Q.E.D.

Lemma 2.4. Let A be a Krull domain and let a,, -, a, (v=>2) be elements
of A such that Supp(div,(a)) N\ Supp(div(a))=¢ for 1<k, I<v, k=%l Let
f(X) (1<k<v) be polynomials in one variable X over the quotient field of A
defined by

Fi(X) = 1H@PXA+ -+ aPX")a,

with af?, -, a¥ € A. If the product fi(t)---f.(¢) is in A[t: m], then all fi(t)’s are
in Alt: m] (1<k<v).

Proof. We shall use the induction on ». Let v, be the smallest integer
among those j such that aPja,&A (if aPla,€A for all 1<j<m, we put
v,=m-+1). In the case v=2, we may assume that v,<7v,. If v,=m-1,
then v,=m--1 and f,(t), f,(¢) are already in A[¢: m], hence the Lemma is proved.
Suppose that v, <m. The coeflicient of t"10f f,()f,(t) is

(@20)-+ (@) ) -+ P

Hence (o4?/a;)+(af?|ay) is in A. This means that a,afP+a,0f? is in a,a,4,
hence a,af) is in @,4.  Since Supp(div,(a,)) N Supp(div,(a))=4¢, af) is in a,4.
This is absurd. Suppose that »>2 and the assertion holds for »—1. Notice
that Supp(div,(a;)) N Supp(div,(a,:+-ay))=¢. By our argument in the case
v=2, fi(t) is in A[t:m] and fy(t)---fu(t) is in A[t:m]. From the induction
hypothesis, it follows that f,(2), -, f,(¢) is in A[¢: m]. Q.E.D.

Proposition 2.5. Let D be a higher derivation of rank m on A and let
a=ucir-civ (W€ ¥, j,, -, jyEZ and ¢, -+, ¢, are distinct prime elements of A).
Let

5 = min {SEN|(D(c;)/cr) € A[t: m]} .

Then D(a)|as A[t: m] if and only if s, divides j, for 1 <k<wv.
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Proof. The “if” part of the Proposition is obvious. We shall prove the
“only if” part. Assume that D(a)/a is in A[t: m]. Then we have (D(c,)/c,)r-+-
(D(cy)[ev)? is in A[t:m]. Since ¢, *+, ¢y are distinct prime elements of A, the
assumptions of Lemma 2.4 are satisfied. Hence by Lemma 2.4, (D(c;)/c;)’* is
in A[t: m] for 1<k<wv. Therefore Proposition 2.2, (3) implies that s, divides
Jie for 1<k<w Q.E.D.

Let D=(D®, :--, D) be an r-tuple of non-trivial higher derivations of
rank m=(m,, --,m,) on A. Let ¢ be a prime element of 4. Set

s@: = min {seN|(DD())c)'EAt:: m]}  (1<i<r)
and
§o: = max {s®|1<i<r} .

Then s, is a power of p by Proposition 2.2, (1) and s, divides the ramification
index of ¢4 over cAN A’ by Corollary 2.3.

Let J(D: 4): = {J(D:a)|la=(ay, -, a,)€A}. If J(D: A)=* {0}, {Pe
P(A)| J(D: A)c P} is a finite set because 4 is a Krull domain.

Theorem 2.6. Let A, A', K, K', D and n(D) be as before. Assume that
J(D: A)%={0} and let Py, -+, P, be all of P’s in P(A) such that J(D: A)C P.
Furthermore assume that [K: K'l|=p"® and P,’s (1<k<v) are principal. Set
Pr=c,4,

s¢): = min SEN|(D(cy)/c;)’ EA[t;: m]} (1<ir)
and,
sy = max {s{’|1<i<r} .

Let e, be the ramification index of P, over P,NA" for 1<k<v. Then we get
the following exact sequence:

. @ v
0— Ker (j) = L4]-L4 — ;,I=Il Z((ex/se)Z — 0.

Proof. Letn: =max {n,, -+, n,} and S be the multiplicatively closed subset
of A’ generated by ¢, ---,¢?". Then we get an isomorphism @s: Ker(Jj5)—
L4/-Lhg from Theorem 1.6. Therefore Proposition 2.1 implies that Coker(f)=<

Coker(®). Hence it suffices to prove Coker(f)=< iIIZ/(ek/sk)Z. Set G,: =

P.NA’ (1<k<v). Then G-, G, areall prime ideals in P(4") with G, N S *¢.
For each k (1<k<v), we have j(G,)=¢€,P;=div4(c{*) by the definition. Hence
J((G)=(D(cy)fex)* and

Im (f) = {(Dle)fen*| L<k<v>\/ L4| L .

Next we shall prove the following:
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LV L3]-Ls = (D)) s 1<k<v)V L3] L4
Suppose that D(a)/lacL (ac AN A%), then it is seen that
Supp (div, (@) C{Dy, -+, Po} .

Hence we can write a=uc{1--:civ for some u=A* and j, ---,jyEZ. Notice
that D®(a)/ac A[t;: m;] for 1<i<r. Then Proposition 2.5 implies that s{"
divides j, for 1<i<r and 1<k<v. Therefore s, divides j, for 1<k<v.
Conversely, it is easily seen that (D(c;)/c;)* isin L (1<k<v»). So we have the
required result. Consequently we know

oker (f) = {(D(cy)]e) | 1< k<vDV L)
Coker (N = {D(cy) ()P 1 <kZVIVLE

We shall define the homomorphism é by the following manner:

0: y Z|(es/s2)Z — Coker (f)
0 (the residue class of (5, **+, j4))
= the residue class of :.1:11 (D(cy)[ei)wr .
Then it is easily seen that 0 is well-defined and surjective. We shall show that
0 is injective. Suppose that
0 (the residue class of (f;, -, jv)) = 1.

Then there exist elements 7, +*, i, Z and a € A* such that
(Dlet)fer) I (Dles)fenyvs = I (Depfea)s™

Put x: = k]l:I acir where dy:=s;j,—es,. Then D(x)/x=1 and x€K’'. Let v,

be the normalized valuation of K associated to the prime ideal L, and A} be the
localization of A’ with respect to &,. Let u, be a uniformisant of A4} for 1 <k<w.
Since x is in K', there exist elements a, € A}* and f, € Z such that x=a,uf+ for
1<k<w. Then we have d,=v,(x)=v,(auf+*)=vi(u{¥)=fe;. Hence e, divides
SiJ 1.€., /sy, divides j, for 1<k<w. This implies that @ is injective. = Q.E.D.

Let =cA be a principal prime ideal in P(4) and let s(P): =min {sEN|
(D9(c)ey EA[t;: m]} (1<i<r), and s(P): =max {sO(P)|1<i<r}.

Theorem 2.7. Assume that A is a unique factorization domain and let
D=(DW, ++-, D") be an r-tuple of non-trivial higher derivations on A satisfying
the conditions J(D: A)=+ {0} and [K: K'|=p"P?. Then the followings are equi-
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valent to each other:

(i) @: Ker(j)—>-Lal-Lh is an isomorphism.

(it) For each prime ideal P in P(A), either J(D: A)E P or e(P)=s(P) occurs
where e(XP) stands for the ramification index of P over PN A'.

Proof. Immediate from Theorem 2.6. Q.E.D.

3. Calculus of divisor class groups

In this section we shall determine divisor class groups of certain rings as
applications of the preceding results. As before & will be a field of charac-
teristic p>>0 unless otherwise specified.

Proposition 3.1. Let A=k[x,y] be a two-dimensional polynomial ring over
k with the quotient field K. Let a, B be integers such that 0<a, B<p". Let
D be the higher derivation of rank p"—1 on K over k defined by

D(x) = x(14)*,  D(y) = y(1+2f°

and let K’ be the field of D-constants. Let p" be the maximal p-th power which
divides GCD(a, B). Set a=a'p’, and B='p". Then we have the following
assertions:

(1) [K: K =p*.

(2) LiLi=Z|p*"Z.

(3) Assume that p does not divide either a or B. Then CI(A"\=Zp"Z
where A':=ANK', and A’ is the normalization of K[x?", y*", x*"* y*].

Proof. (1) We may assume that p does not divide a'. Set F:=
k(2" y", x_ﬂ/y“’) for 0<s<n. Then we have

K=F>OF>--DOF, ,DF,.

Hence GCD(a’, p°)=1 implies that F,_,= Fyx*"™") and «""'eF,_,—F,
Therefore [F,_,: F]=p for 1<s<n. Set s,:=min {s|¥*’' €K', 1<s<n}. We
shall show that s,=n—7. From Q(x""'y)zx""'y, it follows that x*" &K’
and s,<n—7v. On the other hand D(**"~"™") %=*"~"~" because p does not divide
a’. This implies that s,=n—v. Since p(D)=p", we know that [K: K'|>p"""
by Proposition 1.3. Then we get K'=F, because F,, C K'C K=F, and
[Fy: F,]=p=p""". Hence [K: K']=pro=p"™".

(2) Since A*=Fk*, we have L= {1}. We shall show that L,=
{1+t ck[t: m]|s€Z} where d:=GCD(a, 8) and m:=p"—1. Notice that

£, = AD(Pf K[t: mll fe A— {0}, D()f € Alt: ml}
because D(fi/f2)/(filf2) = D(fL fD)Iff? (fi fo( +0) € A). For every polynomial
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feA— {0}, the total degree of the coeflicient of # in D(f) is not more than that
of f for 0<j<m by the definition of D. Hence D(f)/f €A[t: m] implies that
D(f)|f sk[t: m]. Setf:=>1a;x'y’ (a;;&k*)and D(f)/f=h(t) where i(T)EE[T].
Then we see

DV a; 5y (14-1) %P = 33 a; 07 y7h(2) .

Since x, y and T are algebraically independent over k, we get (142)"**#=A(t).
Hence ia+j@ is constant modulo p” for any i, j with @;; 0. On the other hand
ta+jB is a multiple of d=GCD(a, 8). Therefore we know D( f)/f=(1—|—t)‘”’
where s’=(ia-+jB)/d. 'This means that £, is contained in {(1+#)*“<k[t: m]|
s€Z}. Since GCD(a, B)=d, there exist integers a, b such that aa+bB=d.
Then we have D(x°y%)/x°y’=(1+£)*. This implies that (142)? is in L.
Hence L,={(1+t)*<k[t: m]|s€Z}. Let 6: Z|p*"Z—_L, be the homomor-
phism defined by @(the residue class of s)=(1+4%)*. Then we see easily
that @ is well-defined and surjective. We shall prove the injectivity of 6.
Assume that f(the residue class of s)=1. Then (14£#)*=1 in a truncated poly-
nomial ring k[¢:m]. Write d=d'p? and s=s'p’(pfd’ and pfs’). Since
(1484 =147 and pd's’, the coefficient of #"*° does not vanish.
Hence p"*°>p" and §>n—v. This implies that s p"™Z and @ is injective.
Finally we have L,/ L= ,=~Z|p""Z.

(3) Since p does not divide either o or B3, we see that the height one
property for D is satisfied. It follows from (1) that [K: K']=p" (note that
v=0). Therefore Theorem 1.6 implies that Ker(f)==.L,/-L4. Since A4 is a
unique factorization domain, we have Cl(4')=Ker(j), hence Cl(4")=Z[p"Z.
The rest is obvious from the fact 4’ is normal "and integral over E[x?",y?",
x?"~# 3] (note that K'=F,). Q.E.D.

By making use of Proposition 3.1 we get the following:

Proposition 3.2. The divisor class group of a surface S: Z"=XY is a cyclic
group of order p".

Proof. Letx, y be independent variables over k. Then the coordinate
ring of the surface S is isomorphic to Af:=k[x*", 9", xy]. Set a:=1 and
B:=p"—1 in Proposition 3.1, then we have Cl(4")=Z|p"Z where A'=ANK’
is a Krull domain in Proposition 3.1. We shall show that 4{=A'. We see
that A{ is normal because the surface S has only isolated singular point (cf. [4],
Th. 4.1). Since A’ is the normalization of k[x*", y*", xy] by Proposition 3.1,
(3), we get Aj=A". Q.E.D.

REMARK 3.3. Let G be a prime ideal in P(4’) generated by x*" and xy.
Since j(&)=div,(x) and since ®(cl(Z))=D(x)/x, c1(&) generates Cl(4")=Z[p"Z.
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In order to generalize Proposition 3.2, we shall prove CI(R,®:-QR,)==
k k

Ii CI(R;) in a certain restricted case as an application of Theorem 1.6.
i=1

Proposition 3.4. Let A; be a polynomial ring in a finite set of variables over
k and set K;:=0Q(4;) (1<i<r). Let D be a non-trivial higher derivation of
rank m; on K; over k leaving A; invariant. Let K/ be the field of D®¥-constants
and set Al:=A;NK! (1<i<r). Assume that the height one property holds for D®
and [K;: K!]=p™ where n;:=n(D®) for 1<i<r. Set A: :AIQPW(?A' and

A':=4iQ- QA4 with L:=Q(A) and L':=Q(A"). Then we have Cl(A’)
k
1T ci(49).

Proof. We have only to prove the Proposition in the case =2 because we
can get the general case by induction on r. Set 4,=Fk[x, -+, x,] and A,=
R[y1, =+, y.] where x, ---,x, and y,, ---,y, are independent variables over k.
Then A=<k[x,, -+, x4, ¥, =+ ¥.]- We shall extend D® to L by the following
way:

DO(y1) =y, =+, DV(y.) = Y. -

Similarly we shall extend D® to L. Then D:=(D® D®) is a 2-tuple of non-
trivial higher derivations of rank m:=(m,. m,) on L over k leaving A invariant.

We shall show that 4’=ANL’. Since K; (=1 2) are regular extensions
of k, K/(i=1 2) are also regular extensions of k. Besides, 4/(i=1, 2) are in-
tegrally closed integral domains. Therefore 4’'=A4] (k@Aé is an integrally closed

integral domain ([2], Chap. 5, §1, Cor. of Prop. 19). Furthermore ANL’ is
an integral extension of A’ with the same quotient field L'=0Q(4ANL")=0Q(4")
Hence we have A'=ANL’

Next we shall prove that L’ is the field of D-constants. It is easily seen
that A @Azz Ai[yy, =+, y.] is the ring of D®-constants in A. Similarly

A,QAj is the ring of D®-constants in 4. We know that A{@Aé:(ﬁl{ @Az) n
k

(4,45) ([2], Chapter 1, §2, Proposition 7). Therefore A’=A{;®A§ is the ring
k

of D-constants in 4. It is clear that L'=Q(A’) is contained in the field of D-
constants. Since A4 is the integral closure of 4’ in L, any element of L is of the
form a/b (acA,b=A’). Suppose that D(a/b)=alb (acA, b= A’). Then we
have D{a)=(D(a/b)b)=D(a[b)D(b)=(a/b)b=a, hence a is in A’. This implies
that a/b is in L’. Finally L’ is the field of D-constants.

We shall show that the height one property holds for D. Since A is A4;-
flat, we know that ht(P N 4;)<1 (i=1, 2) for all P P(A4) ([4], Proposition 6.4).
Set P;:=PNA;. Then there exists an element «; in A; such that the Jacobian
J(D®: a;) is not contained in P; because the height one property holds for D®.
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On the other hand we have J(D: (o, @,))=J(DV: o) J(D®: at;). Suppose that
J(D: (o, o)) € P, then either J(DV: ) or J(D®: ap) is in P, say, J(DV: o) E P.
This means that J(D®: @))€ PN A4,=2P,, which contradicts to the height one
property for DM,

We shall show that [L: L']=p"®. Set L,=0Q(4] @Az), then we have

LDOL,DL'. We know that [L: L']>p"P because of Proposition 1.3. Since

[L: L\=[L: L,][L,: L'}, it suffices to prove that [L: L,]<p™ and [L,: L] <p".

We shall prove that [L: L,J<p™. It is easily verified that L= Q(K,;QK,),
k

Li=0(K{ @KZ) and K{ @K2=L] N (KI@KZ). Therefore any element of L is of
the form a/8 with ocEKI@K2 and EEK{@KZ. Let ay, +*+, a, (v:=p™) be K{-
basis of K;. Then I{I(?K2 is generated by a,®1, -+, a,®1 over K{@Kz. Since
any element of L is of the form «a/B (aEKl(?KZ, BEK{(?KZ), L is generated
by ,®1, -+, a,®1 over L,, hence [L: L,]<v=p™. Similarly we have [L;: L']<

™.
Let
L; = {D9(z;)/z: |, €KF, DY(z)[z;€Ait;: mi]},
Lt = {Dw;)u; |u; = A¥} for 1=1,2,
L = {D(z)/z|z€L*, D(z)[z=A[t: m]}
and,

L' = {D(u)/uluc A*}

where t=(#,, t,). Since we know that Cl(4})=L;/-L} (i=1,2), Cl(A")=L|L"
and L/=_L'={1}, it remains only to prove that [y x L,=_/. Let € be the
homomorphism of £} X £, into £ defined by

(D@, DO(ar)|a) = D), (@EKF).

It is easily seen that @ is injective. We shall show that 6 is surjective. Suppose

that D(f)[feL (f€A—{0}). Then there exist polynomials g,(7;) in A[T;]

(=1, 2) such that D(f)/f=(g:(t,), g&:(tz)). Comparing the total degree with re-

spect to yy, «=+, ¥, of D®(f) with that of fg,(,), we see that g,(t,) is in A,[t,: my].

Write f=2>) ayby (ayE A4,, by 4, and {by} is linearly independent over k), then
Y

we have

23 (DV(ay) —gi(t)ar)by = 0.

Y

This implies that D™ (ay)=g,(t,)ay for all v. Therefore DV (a)/a=g,(t,) for some
ac A, Similarly D®(b)/b=gy(t,) for some b= A,. Hence §(DP(a)/a, D?(b)/b)
= D(f)/f. Furthermore we know that L= {D(f)/f|f€ A— {0}, D(f)/f<
Alt: m]}. Therefore 6 is surjective and we get the desired result. Q.E.D.
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ReMark 3.5. By the similar method as the proof of Proposition 3.4, we
can get the following fact using units theorem ([10], Corollary 1.8). But the
proof is more complicated, so we omit it:

“Let A;:= 2'2 (4)). 1<i<r) be graded unique factorization domains with

(A4:)o=F and let Kj be its quotient field. Assume that K, (1<i<r) are regular
extensions of k. Let D® be a non-trivial higher derivation of rank m; on K,
over k leaving A; invariant for 1<i<r. Let K! be the field of D®-constants
and set Al :=A;NK! (1<i<r). Assume that the height one property holds for
D% and [K;: K!]|=p" where n;:=n(D?) for 1<i<r. Set A:=A4,Q:--QA,
k k
and A':=A1Q--QA; with L:=0Q(A) and L':=Q(A’). Forthermore assume
k k
that A,Q-QA; (1<i<r) are unique factorization domains. Then we have
k k
Cl(4")==1I C1(4})".
i=1

The following Proposition is immediate from Proposition 3.4.

Proposition 3.6. The divisor class group of an affine variety in A* defined by
the equations Z}i=X.Y; (1<i<r) is isomorphic to il Z|q;Z where q;: =p™.
i=1
Remark 3.7. The coordinate ring of this variety is isomorphic to 4’:=

R[xf1, yf1, 2, 9y, oo, 277, vfr, x,y,]. And if we denote by &; a prime ideal in
P(A') generated by xfi, x;y; for 1<i<r, then cl(&;) (1<i<r) generate Cl(4').

As another generalization of Proposition 3.2 we have the following:

Proposition 3.8. The divisor class group of a hypersurface S: Z?" =X, X,
X, (r=2) is isomorphic to (Z[p"Z)"™*. The coordinate ring of this hypersurface S
is isomorphic to A': =k[x?", 28", -+, x!", 2,%,---x,] where x,, x,, -+, x, are independ-
ent variables over k. If we denote by G; a prime ideal in P(A’) generated by x!"
and x,%,++x%, for 1 <i<r—1, then cl(G;) (1<i<r—1) generate CI(A’).

Proof. We see easily that A’ is the coordinate ring of the hypersurface S.
We shall set A=E[x;, x,, -+, %,] and K:=0(4). Let D® be the higher deriva-
tion of rank p”"—1 on K over k satisfying

DO(x;) = x;(1+1,),
Do) = x; (1<j<r—1, j+i),
D(x,) = x,(14+1,)7"
for 1<i<r—1. Then we have
J(D: (%, oy £y o0y 8,)) = (— 1) 0peee£oeea,

for 1<s<r where D=D(®, -+, D*"V) and the symbol A over a letter means
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that the letter is missing. Let K’ be the field of D-constants. Then Proposi-
tion 1.3 implies that [K: K']>p"""D. We shall set

. LI ” ..
Ki- - k(x{ s X2 ---,xf y Xitly **0y Xpy Xy xr)

for 1<i<r—1 and K,:=k(xl", -+, 2", 2,-+x,). Then K=K, K;=K;,(%i41)
and ¥}, €K;,, for 1<i<r—1. Besides, KDK'DK,. This implies that
[K: K'1<p""™V, hence [K: K']=p"""". Since the hypersurface S has no sin-
gularity of codimension one, we see that 4’ is normal. Thenwe get A'=ANK".
Therefore we have Cl(4')=_L,/-L4 by Theorem 1.6. Let 6 be the homo-
morphism of (Z/p"Z)""! into L, defined by

0 (the residue class of (jy, ***, f,-1))
= D(a)/a
= ((1+tl)jl) "ty (1+tr-l)j'-x)

where a: =x/1---xi75!. Then 8 is well-defined and bijective by the similar de-
vice to the proof of Proposition 3.1. Consequently Cl(4")==L,/Li=L =
(Z[p"Z)'. Since D(x;)/x; (1<i<r—1) generate L,, cl(G) 1<i<r—1)
generate C1(4"). Q.E.D.

For future reference we shall recollect the known results concerning Galois
descent and semigroup rings. Let G be a finite group of automorphisms of a
Krull domain 4 and let 4’ be the invariant subring of A with respect to G.
Since A4 is integral over A’, we can define the homomorphism j: C1(4)—Cl(4)
by j(cl(Q))=cl(Z] e(P)P) where the sum is taken over all prime ideal L in P(4)
such that PNA'=G. If every prime ideal L in P(A) is unramified over PN 4’,
A is called divisorially unramified over 4.

Lemma 3.9. If A is divisorially unramified over A', there is an isomorphism
Ker(j)=HY(G, A%*) (cf. [4], Theorem 16.1).

Lemma 3.10. Let 9(A|A’) be the Dedekind different of A over A'. Then
we have the following; a prime ideal P in P(A) is unramified over PN A" if and
only if D(AJA")E P ([4], Proposition 16.3).

Let f(X) be the minimal polynomial for a primitive element o of Q(A4)
over Q(4’). Let f(X) denote the derivative of f(X) with respect to X. Then
we have f'(a)€ D(A/A’). Hence each prime ideal P in P(4) such that f'(a) & P
is unramified over £ N A4’ by Lemma 3.10.

Furthermore we need the following fact concerning semigroup rings.

Lemma 3.11. Let K;[T'] be a semigroup ring over a field K; generated by a
semigroup I'C Z} (i=1, 2). Assume that K;[T'] (=1, 2) are Krull domains. Then
we have CI(K,[T'])=CI(K,[T']) (cf. [1], Proposition 7.3).
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By making use of Proposition 3.8 and Galois descent we get the following:

Proposition 3.12. Let k be a field of arbitrary characteristic. Then the
divisor class group of a hypersurface S: Z*=X,X,--X, (r=2) over k is isomorphic
to (Z[dZ) .

Proof. It is easily seen that the coordinate ring of the hypersurface S is
isomorphic to A’: =k[x{, -+, 47, x,---x,] where xy, ---, x, are independent varia-
bles over k. Since A’ is generated by monomials, we may assume that k& is
algebraically closed by Lemma 3.11. Let p denote the characteristic of k.. In
the case p=0, we can conclude the result simply through Galois descent. So
we omit the proof. Assume that p>0 and write d=ap”, p.f'a. We shall set
B=k[x{’”, e, xf", x,-++,], then we have BDA4'. Let w be a primitive a-th root
of unity and ¢; be the automorphism of B defined by the following manner:

s =o', o) =x (<j<r—1, j*i),

ci(®?") = 0% and, oi(xyeee%,) = xp0e0%,

for 1<i<r—1. Then ¢; is well-defined. Let G be the subgroup of Aut B
generated by o; (1<i<r—1). Then we get B°=4’. In order to use Galois
descent, we must prove that B is divisorially unramified over 4’. We shall set

. d d ﬁ” n
Ki- - k(xly ety Xiy Xig1y *t0y x‘g ) xl'"xr)

for 1<i<r—1. Then F(T)=T"—x¢ is the minimal polynomial for a primitive
element #" of K,_, over K, and Fi(x?")=a(x")*"* for 1 <s<r where K,:=Q(B)
and K,: =0Q(4’). Therefore every prime ideal P in P(B) except P,=(x"", x,-+*x,)
(1<s<r) is unramified over N A’. By a direct calculation the ramification
index of &P, over ;N A" isone. Hence B is divisorially unramified over A’. By
Galois descent we get the following exact sequence:

0 — HYG, B*) — CI(B®) — CI(B).

Since G acts trivially on B*=k*, we know that HY(G, B¥*) = Hom, (G, k¥).
Furthermore it is easily verified that Hom, (G, k*)=(Z/aZ)"™* because o is in &.
On the other hand, Proposition 3.8 shows that Cl(B)=<(Z/p"Z)"*. Let &; be a
prime ideal in P(4") generated by xf and x,---x, for 1<i<r—1. Then we have
P:NA'=G; and j(G;)=2P; where j: Div(4')—>Div(B). Besides, cl(P;) (1<
1<r—1) generate Cl(B)==(Z[p"Z)~'. Finally we get the following exact se-
quence:

0> (Z)aZ) ™ — CI(A') > (Z|p"Z) " — 0.

Since a and p” are relatively prime, Ext,((Z/p"Z) ™, (Z|aZ)"™") vanishes and the
above sequence splits ([3], p. 290, Theorem 1.1). This implies that C1(4")=
(Z|dZ) . Q.E.D.
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RemARk 3.13. In the notations of the proof of Proposition 3.12, p"cl(G))
(1<i<r—1) generate Ker(j) because j(p"G)=divy(ax?") and Ker(j)==
Homy (G, k*)==(Z|aZ) ™. Furthermore it follows from Proposition 3.8 that
cl(G;) (1<i<r—1) generate C1(4") modulo Ker(j). Hence cl(&) (1<i<r—1)
generate C1(4").

Proposition 3.14. Let k be a field of arbitrary characteristic. Then the
divisor class group of the homogeneous coordinate ring of a Veronese transform v,(P")
of a projective space P" over k (d>2) is a cyclic group of order d.

Proof. Let x, &,, -**, x, be independent variables over k. We shall set
A:=k[xy, %, -++, x,]. Let A’ be the subring of 4 generated by monomials with
degree d. Then A4’ is isomorphic to the homogeneous coordinate ring of v,(P").
We may assume that & is algebraically closed by Lemma 3.11. Let p denote the
characteristic of k. In the case p=0, we have Cl(4")=Z/dZ by [8], p. 85, (1).
Assume that p>0 and d is a power of p, say, d=p" Let D be the higher de-
rivation on Q(A) over k of rank d—1 defined by D(x;)=x;(1-+1t) (0<i<r).
Then we see easily that 4’ is the ring of D-constants and [K: K'|=d
where K: =0Q(4) and K': =0Q(4"). Since J(D: x;)=x,(0<i<r), the height one
property is satisfied. Hence by Theorem 1.6, Cl(4")=Ker(j)=L,/-Li=L,.
Let 0 be the homomorphism of Z/dZ into L, satisfying 0 (the residue class of
7)=D((%0)/%5)’. It is easily seen that 6 is well-defined and bijective. Hence we
have Cl(4")=Z|dZ. 1f d is not a power of p, write d=ap”, p.f'a and let B be
the subring of A4 generated by monomials with degree p”. Let w be a primitive
a-th root of unity and let ¢ be the automorphism of B defined by o(M)=wM
for every monomial M with degree p". Let G be the subgroup of Aut B
generated by . Then we have A’=BS. Since x!" is a primitive element of
O(B) over Q(A4’) for 0<i<r, it is easily seen that B is divisorially unramified
over A’. By the similar device to the proof of Proposition 3.12, we get
Cl(4"=Z|dZ. Q.E.D.

All rings appeared in the above Propositions are generated by monomials.
The coordinate ring of the following surface is not generated by monomials:

Proposition 3.15. Let n be a positive integer and s be a nom-negative in-
teger with 0<s<n. Then the divisor class group of a surface S: Z*"=X""Y?*"—Y
is isomorphic to Z|[p*~*Z.

Proof. Let x, y be independent variables over k. Then it is easily seen
that the affine coordinate ring of the surface S is given by A’:=Rk[x?", y?", x*'y?"
—y]. Set A:=k[x, y] and let D be the higher derivation of rank m:=p"—1on
O(A) over k defined by D(x)=x-+t, D(y)=y+y*"t*". Then it is easily checked
that the assumptions in Theorem 1.6 are satisfied. Define the homomorphism
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of Z[p"*Z into L, by 6 (the residue class of 7)=(D(y)/y)’. Then 0 is well-
defined and injective. ~We shall show that € is surjective. Suppose that
D(f)[f€A[t: m] (f€A—{0}), then there exists an element g(T) of A[T] such
that D(f)/f=g(¢). Since the degree with respect to x of the coefficient of # in
D(f) is not more than that of f for 0< j<m, we have g(#)Ek[y] [t: m]. Write

f=a(y)tay)xt--ta(y)a,
a\(y)k[y] (0<v<h) and a,(y)=+0.

From D(f)=fg(t), we get

D(ay(y))+D(ay(y))(x+2)+ -+ +D(ax(y))(x+1)"
= a(y)g(t)+a(y)g@)x+-+an(y)g(t)x" .

Comparing the coefficients of x* on both sides, we have D(a,(y))=a,(y)g(t) be-
cause x, y and T are algebraically independent over k. By Lemma 3.17, there
exists an integer 7 such that g(#)=(D(y)/y)’. Hence 0 is surjective and Cl(4")=
Z[pZ. Q.E.D.

ReMARK 3.16. Let G be the prime ideal in P(A4’) generated by y*" and
x*"y?" —y. Then cl(Q) generates Cl(4’). The g-th symbolic power G@ of &
is a principal ideal generated by y*"~" where ¢q: =p"~*.

Lemma 3.17. Let A=Ek[y] be a one-dimensional polynomial ring over k. Let
n be a positive integer and s be a non-negative integer with 0<s<n. Let D be the
higher derivation of rank m: =p"—1 on Q(A) over k defined by D(y)=y-+y”"t*". If
DNf(feA—{0}) is in A[t: m], there exists an integer i such that D(f)/f=
(D).

Proof. Set A’:=Fk[y?"~"], then we have A’=A N K’ where K’ is the field of
D-constants. Notice that P:=yA is the only prime ideal in P(A4) such that
D,(A)c P (9:=p°). Then we have e(P)=p""* and s(P)=1. Hence we get the

following exact sequence by Theorem 2.6.

0 — Ker (J) = L/ L1 > ZIp*Z — 0.

Notice that 7 (the residue class of (D(y)/y)’)=the residue class of j. Further
more Ker(j)=Cl(4")=0and Li={1}. So we have the desired result.
Q.E.D.
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