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Introduction. Let K be a compact Lie group acting almost effectively
and transitively on a compact manifold M. A Riemannian metric on M is called
K-normal homogeneous if it is induced canonically from a biinvariant metric on
K. We are mainly interested in classifying normal homogeneous metrics on
compact homogeneous spaces up to homothetical equivalence.

We put foreward our study by meanss of the spectrum and the eigenspaces
of the Laplacian by the following reasons: First, a K-normal homogeneous
metric has a remarkable property that the eigenvalues of its Laplacian are express-
ed explicitely in terms of the representation of the Lie group K and moreover the
computations may be carried out in a relatively simple manner. Secondly, the
spectrum may give information on the Riemannian manifold which may not be
obtained by the curvatures. For example, although flat tori have vanishing
curvatures, their spectra considerably distinguish the isometry classes of them.
We see indeed that if two Riemannian metrics on a compact manifold have the
same spectrum and the eigenspaces, then they are identical, as is shown in 1
(Lemma 1.1).

In the paper [2], Berger has shown that certain normal homogeneous metrics
on S” and P"(C) (n: odd) are not isometric to the ususal ones. In 5, we shall
give some results for compact irreducible symmetric spaces, extending the above
results. In fact, we shall compute certain eigenvalues of the Laplacian and prove
our theorem, using the work of OnisCik on the classification of transitive com-
pact connected transformation groups on compact manifolds. We see then the
following: Let M=K'[L' be a compact irreducible symmetric space given by the
symmetric pair (K', L") with a compact simple Lie group K’. Let K be a con-
nected closed subgroup of K’ which is transitive on M. Then, a K-normal homo-
geneous metric on M is isometric to the original symmetric metric if and only if
the linear isotropy representation of L=K N L’ is irreducible. Moreover, while
there exist several such subgroups of SO(z-+1) acting on S” (n: odd), many of the
normal homogeneous metrics of them are mutually homothetically inequivalent.

In 3, we shall consider one parameter families of K-normal homogeneous
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metrics in case K is not simple. We can show that there are uncountably many,
homothetically inequivalent, K-normal homogeneous metrics on M in this case,
generalizing results of [8], [9] to some extent.

In 4, we shall prove the following: Let M be a homogeneous space of a
compact connected non-semisimple Lie group K’. If the maximal connected
semisimple subgroup K of K’ acts on M transitively, then any K’-normal homo-
geneous metric on M never becomes K-normal homogeneous.

For a Lattin letter denoting a Lie group, the corresponding German small
letter shall denote its Lie algebra throughout this paper. All inner products
used in the paper are always assumed to be positive definite.

The auther wishes to express his hearty thanks to Professor H. Ozeki for
his many advices and encouragements and also to Professor M. Takeuchi for
his many remarks and comments.

1. A lemma

Let (M, g) be a compact Riemannian manifold. We denote by A the
Laplacian acting on the space C*(M) of complex valued smooth functions on
M. Interms of local coordinates, it is given by
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where g=2g; dx'dy’, (g"/)=(g; ;)" and G=det(g; ;). We denote by Spec
(M, g) the ;’I;ectrum, i.e., the set of eigenvalues of the Laplacian:

Spec (M, g) = {0 = Ae<n <N <}
and by E,, the eigenspace corresponding to the eigenvalue ;.

Lemma 1.1. Let (N, g') be another compat Riemannian manifold and denote
by A’ and EY the Laplacian of (N, g') and its eigenspace corresponding to the eigen-
value N respectively. Suppose that Spec(M, g)= Spec(N, g'). Then, a diffeo-
morphism f: M—N is an isometry if and only if

f*E{,=E,  (1=0,1,2..:).
Proof. The necessity is obvious. We prove the converse.
Suppose f*Ei,=E,  ({=0,1,2-).

The differential operator f*A’f*™" acting on C*(M) coincides with the
Laplacian defined by the Riemannian metric f*g’ on M, and its eigenspace E{/
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coincides with f*E, for each i. Therefore, we may assume that M=N and f
is the identity map. We know that the algebraic asum E(M)= ‘EE,\,. is a
i=0

dense subspace in C*(M) with respect to the C*-topology. Our assumption
implies that A=A’ on E(M), hence we have A=A’. From the expression (1.1),
we have the lemma.

Here, we remark that if we replace g by ¢g with a positive constant ¢, then the
corresponding Laplacian is equal to ¢™*A. In particular, we have Spec(M, ¢g)=
¢ 'Spec(M, g).

2. Normal homogeneous metrics and their spectra

We recall the definition of a normal homogeneous metric and a formula to
compute its spectrum. Let K be a compact Lie group and L a closed subgroup
of K such that K acts almost effectively on the homogeneous space M=K|L.
For an AdK-invariant inner product B on f, we can define a biinvariant Rie-
mannian metric on K which coincides with B on T,K=%f. Let m be the
orthogonal complement to [ in ¥ relative to B, so that f=[+m and AdL-m=m.
For X in ¥, we denote by X* the tangent vector to M at o=L induced from the
infinitesimal action of X:

x* =% eptX0 (Xel).
dt| i

The correspondence X+—X* gives rise to an L-isomorphism between m with

the adjoint action of L and T, M with the linear isotropy action of L, and it gives

an L-invariant inner product g, on T,M by

g(X* Y =BX,Y) (X, Yem).

g can be uniquely extended to a K-invariant Riemannian metric on M, which
we denote by g or g(K, B) specifying K and B. Now, let M be a compact homo-
geneous manifold. A homogeneous Riemannian metric g on M is said to be
normal homogeneous if there exist a transitive compact Lie group K acting almost
effectively on M and an AdK-invariant inner product B on f such that
g=g(K, B). If we specify the tranformation group K and the AdK-invariant
inner product B, g is said to be K-mormal homogeneous and is denoted by
g(K, B). We denote by A(K, B) the Laplacian of the K-normal homogeneous
metric g(K, B).

Let £ be the Lie algebra of a compact Lie group K. We fix a maximal
abelian subaligebra f of . Since a weight of a finite dimensional representation
of K relative to f has its values in purely imaginary numbers on f, we consider
a weight as an element of \/ —1f*, where {* denotes the real dual space of f.



558 Y. TANIGUCHI

Fixing a lexicographic ordering on v/ —1f*, we denote by V,(f) or V,, an irre-
ducible f-module over C with the highest weight w. In case K is connected,
V(%) is often denoted by V,(K). From an AdK-invariant inner product B on
£, a positive definite inner product on /—1f* is defined in the usual and
denoted by the same letter B. We denote by 8x half the sum of positive roots
of IQC: Sx==1 Zt a.
positive

Proposition 2.1. Let (M, g) be a normal homogeneous Riemannian manifold

with g=g(K, B). Then, we have that

A(K, B) = B(w+208k, w)+id. on V(1)
for each irreducible t-submodule V ,(t) in C=(M).
Throughout this paper, we consider C*(M) as a K-module via
(k- f)(x) = f(kx)  (h€K,xEM and fEC(M)),

and consider it as a ¥ -module via

(X-f)(x) :(d?t flexp (—tX)-x) (XL, €M and fEC=(M)).

t=0
For a proof, see [9], [13] or [17].

Corollary 2.1. Under the same assumption, we have

(1) E=2V,®}) for each n&Spec(M, g(K, B)), where the summation runs
over all the irreducible Y-submodule V (Y) of C=(M) with \=B(w-+28x, w).

(2) Spec(M, g(K, B)={B(w-+25x, w); V.CC (M)} .

Next, we remark some effects on K-norm=l homogeneous metrics caused
by the change of K-action by a diffeomorphism of M=K/L. We assume
that the K-action on M is effective, and consider K as a subgroup of the diffeomor-
phism group Diffeo (M). Suppose that there is given a diffeomorphism f of
M with f(o)=o0. Then, the homomorphism F from K into Diffeo (M) defined by
F(k)=f "'kf(keK) gives rise to a new transitive action of K on M. We set
K=F(K). For an AdK-invariant inner product B on ¥, we can define an
inner product B on ¥ such that Fy:f—¥ becomes an isometry:

B(F,X,F,Y)=B(X,Y) (X, Ye¥).
Then, B is AdR-invariant.
Lemma 2.1. (1) Under the above situation, we have

g(K, B) = f*g(K, B).
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(2) Moreover, suppose that K=K and B is invariant under any automorphism
of . Then, we have g(K, B)=g(K, B), and f is an automorphism of (M, g(K,B)).

Proof. We first remark that if we set [=F(I) and @i=F4(m), then [ is the
Lie algebra of the isotropy subgroup of K at 0 and m is the orthogonal com-
plement to | relative to B. For an arbitrary X €m, we have

(F*=2] [ expt X f(0)

t_
=f—l*X* .
Thus, we have

(R, B)(FxX)*, (FiY)*) = B(FyX, FY)
— B(X, Y)
=K, B)(X,Y) (X, Yem).

Hence, we obtain g(K, B)=f*g(K,B) at o€ M. Since both g(K, B) and
f*g(K, B) are K-invariant, they coincide on M. Under the assumptions of (2),
we have easily [=1, fi=m and B=B. Thus, we get g(K, B)=g(K, B).

In general, two different K-invariant metrics on a homogeneous space
M=K|L may be isometric to each other. We consider some conditions on
K-invariant metrics to avoid such troubles. For a Riemannian manifold (M, g),
we denote by Iso(M, g) and Iso°(M, g) the isometry group of (M, g) and its
identity component respectively.

Let {g,} be a family of K-invariant metrics and g’ a K-invariant metric on

M=K|L.

Condition (A):
(4,1) g;is a K-normal homogeneous metric g(K, B,) on M. The family
{B:} is stable under any automorphism of t.
(4,2) K is a connected subgroup of K'=1Iso(M, g), and for any subgroup
K" of K', which is transitive on M and isomorphic to K, there
exists an inner automorphism of K' which transforms K" to K'.

Lemma 2.2. Under the condition (A), if (M, g') is isometric to (M, g,) for
some t, then g' coincides with g, for some t' as tensor fields on M.

Proof. Let f be an isometry from (M,g’) to (M,g,). Then we see
fKfclIso(M, g'). By (A2), we may assume f'Kf=K and f(o)=o, as is
easily seen. Then, by Lemma 2.1, we have g'=f*g,= g, for some #'.

Remark 2.1. The condition (A,2) is fulfilled in the following cases:
(1) The identity component of the isometry group K’ of (M, g’) is locally
isomorphic to one of the groups SU(n) (n=2), SO(2n-+1) and Sp(n).
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(2) The isometry group K’ of (M, g’) contains a subgroup isomorphic to
Pin (2n)/D and the identity component of K’ is isomorphic to Spin(2#r)/D, where
D is a central discrete subgroup of Spin(2n) (n=3).
(3) K is a connected subgroup of K'=Iso(M, g’) such that
(a) ¥V =1tDY"  (direct sum of ideals),
(b) there are no Lie algebra homomorphism from f to ¥ except the
trivial one.
If the identity component of Iso(M, g’) is compact.simple Lie group of excep-
tional type, then it contains no proper connected closed subgroup K which acts
transitively on M.

See [6] and [10]. Itis easy to see that the condition (A,2) is fulfilled in the
case (3).

ReMARk 2.2. Let K be a compact Lie group acting almost effectively and
transitively on M. We denote by K the group of transformations of M induced
from the elements of K. Then, a Riemannian metric on M is K-normal homo-
geneous if and only if it is K-normal homogeneous. We often consider a K-
normal homogeneous metric on M as a K-normal homogeneous one.

3. Variations of normal homogeneous metrics

Let K be a compact connected Lie group acting almost effectively and
transitively on M. If K is simple, then the K-normal homogeneous metrics
are mutually homothetically equivalent, i.e., isometric to each other up to a
positive constant multiple. In this section, we assume that K is compact con-
nected and not simple, t=¥PD¥’ (¥,¥’: non-zero ideals of £). Let B’ and
B” be inner products on ¥ and ¥’ respectively invariant under the adjoint
representations. Let B, (s,£>0) be the AdK-invariant inner product on f
defined by the following relations;

(1) B, t)=0,

(2) B lyxy =s-B’,

(3) B lyrxyr=1t-B".

Lemma 3.1. Under the above situation, there exist continuous positive
functions s(r) and t(r) (0<r<<oo) satisfying

(1) t(r) (resp. s(r)) is monotone decreasing (resp. increasing) in r,

@) sjn=r,

(3) the ome parameter family g,=g(K, By 1) of K-normal homogeneous
metrics is of constant volume in r.

Proof. We set M=K|L. Let m,, be the orthogonal complement to [
relative to B,,. We put m=m,, and g=g(K, B,;). Let X,, -, X, be an
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orthonormal basis of m with respect to B, \|mxm. We set X=(X’, X”’) for any
Xet,where X=X'+X" (X'et’, X"et’). We set X;,,=(tX!, sX}{’) for
i=1, -, n, where X;=(X!,X!)(=1,:-,n). Then, {X,,, -, X,,:} be-
comes a basis of m, ,, as is easily seen. We compute the volumes U(s, ¢) and
V{(s, t) of the rectilinear parallelopiped in T, M spanned by the vectors X, , /*,
-+, X, ;" relative to the inner products g and g(K, B, ,) respectively. We put

ai.i(s’ t) = Bl,l(Xi,s,n Xj)
= t-B'(X!, X})+s-B"(X¥,, X¥), (G=1,-,n).
Then, we have

Xio = 2a 6, DX4Y: (ViED), (=1,,m).
Hence, we get

X; o* = jE:la,-,,-(s, 1) X¥ (f=1,--,n).
Since {X¥, -+, X¥} is an orthonormal basis of (T, M, g), we have

U(s, t) = det (a; ;(s, 1)) .
On the other hand, we have

V(s, t)? = det (B (X 5.6 X .50))
since (m; ;, Bs,tlm,,,xm,,,)i(ToM ,8(K, By s)) is an isometry. Here, we have

B, (X 0 X 1) = sB'(tX!, tX])4t-B"(s XV, sX}') = sta; (s, 1) .

Therefore, we see that U(s, £)=V(s, t) if and only if
(%) det (a; ;(s, 1)) = §"t" .

Now, we set b'=(B'(X}, X})) and b= (B"(X}, X}")). By the definition,
b'+b’=1, Take an orthogonal matrix P which diagonalizes b’. Then, P
simultaneously diagonalizes 5”.
el 0 e/ 0
), ‘PY'P = ),
0 e, 0 e

eltel! =1, el el’=0 (= 1,2, -, m).

‘Pb'P = (

Devide the both sides of (*) by " and we get
(%) f[ (el +rely=1"t",
i=1

where r=s/t.



562 Y. TaNI1GUCHI
Thus, to prove the lemma, it suffices to put
n
t= (1L (ef+ret))*fr and s=tr.
i=1

It is obvious that the continuous functions s(r) and #(r) satisfy the conditions
(2), (3). If we show that one of ef, -++, e; is not zero, we complete the proof of
the lemma. Suppose /=0 for i=1, ---,n. 'Then, m must be included in t”
and hence I contains '. This contradicts the assumption of the almost-effectivity
of the K-action.

By Cor. 2.1, we get easily the following

Theorem 3.1. Let K be a compact connected non-simple Lie group acting
almost effectively and transitively on a compact manifold M. Then, there exists a
one parameter family g, of K-normal homogeneous metrics on M satisfying the
following conditions:

(1) vol(M, g,) is constant in r.

(2) For each r,>0, there exists a positive number h such that g,’s are not
1sometric to each other if \r—ry| <h,

ReMARK 3.1. This theorem partially lgeneralizes the results of [8], [9]
to some extent. Let K’ be a compact connected Lie group acting almost
effectively and transitively on a compact manifold M=K'[L’. Suppose that the
linear isotropy representation of the isotropy subgroup L’ contains a trivial
representation. Let m’ be the orthogonal complement to I’ relative to an
AdK'-invariant inner product B’ on ¥’. Take a linear subspace {’ of the L’-
trivial part of m’ such that f’ becomes a subalgebra of ¥’ in itself. Let H be
the closure of the connected subgroup of K’ corresponding to f’. 'Then, we see

that K’ X H acts on M almost effectively, in the following way since H cen-
tralizes L’ (cf. [18]).

(', h)-xL’' = k'xh'L'  (k',x=K' and heH).

Then, by the above theorem we see that there are uncountably many, homotheti-
cally inequivalent, K’X H-normal homogeneous metrics on 4, which are
obviously K’-invariant metrics on M. (Cf. [8], [9].)

4. Normal homogeneous metrics on compact homogeneous spaces
of compact non-semisimple Lie groups

Let K’ be a compact connected non-semisimple Lie group acting effectively
and transitively on M. Let 3 be the center of ¥’ and { the semisimple part
of . We denote by K the connected subgroup of K’ corresponding to the
subalgebra t of §’. Then, the decomposition
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' =3Pt

is orthogonal with respect to every AdK'-invariant inner product B on t’. As
we have shown in 3, there are many K’'-normal homogeneous metrics on M.
However, we have the following

Theorem 4.1. Let K' be a compact connected non-semisimple' Lie group
acting effectively and transitively on M, M=K'|L', and K be the maximal con-
nected semisimple subgroup of K'. Suppose that the K-action on M is transitive.
Then, any K'-normal homogeneous metric on M mnever becomes K-normal homo-
geneous.

Corollary 4.1. Under the same assumption, .f K' coincides with the identity
component of the isomstry group of a K'-normal homogeneous metric g’ then any
K-normal homogeneous metric on M is not isometric to g’.

To prove the above theorem and its corollary, we prepare a lemma.
We retain the notation in 2.

Lemma 4.1. Under the above situation, we have the following: (1) Let
V,(t') be an irreducible t'-submodule of C=(M) such that V, )=V ,E)QV3)-
Suppose that the K-action on M is transitive. Then, w=0 if and only if a=0.

(2) Let V() be an irreducible ¥'-submodule of C=(M). Then, C=(M)
contains an irreducible t'-submodule isomorphic to V,,(t') for each k=1,2, ---.

(3) There exists an irreducible t'-submodule V,(£)=V (£)@V(3) with a =0
and b &0.

Proof. (1) If the K-action on M is transitive, then the largest trivial K-
submodule of C*(M) consists of constant functions on M. From this, we get
(1).

(2) Let f be a highest weight vector of V,(¥'). f does not vanish at some
x&M. Then, we see easily that f* is a non-zero function on M belonging to a
f’-submodule of C(M) which is isomorphic to V,(t").

(3) Suppose that for any f’-irreducible submodule V, ()= V,(£)QV(3)
of C*(M) we have b=0.

Then the -action on C*(M) becomes trivial. This contradicts the assumption
of the effectivity of the K'-action on M.

Proof of Theorem 4.1. Suppose that a K’-normal homogeneous metric
g'=g(K’, B') on M coincides with a K-normal homogeneous metric g=g(K, B)
on M. Let V,(t')=V,(f)QV,(3) be an irreducible ¥’-submodule of C*(M)
with a0 and 530. Seeing the eigenvalues of the Laplacians on V,,(t"), we
have
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B'(kw+285, k) — B(ka+28¢, k) (k=1,2, ).
By the facts B'(3, £)=0 and 84,=3x, we have

{ B'(a, a)+B'(b, b) = B(a, a),

*) B'(5x, @) = B(3x, a) -

Here, we have B’(a, a)/B'(8k, @)= B(a, a)/|B(8k, a). This comes from the
following observation. Put B'=B’ and B’=B. Lett,;, -+, I, ; be the simple
factors of t such that each pair of them are orthogonal relative to B’ (i=1, 2).

=100, (=12).

We set a=a, ;- +-a, ; according to the decomposition, where V,(£)=V, (!, :)®
=@V, () (F=1,2). We may assume that ¥; , is isomorphic to f; , (j=1, -+, 7)
and moreover the coefficients of a; ; relative to a fundamental system of weights
of f;, coincide with those of @;,. On the other hand, the retriction of B to
t; i x¥; ; coincides with the Killing form of f; ; up to a negative constant multiple
for i=1,2 and j=1, ---,7. Then, we get easily our assertion.

Now, from (x), we get 5=0. This is a contradiction.

Proof of Corollary 4.1. We next assume that K’ coincides with the identity
component of the isometry group of a K’-normal homogeneous metric g'.
Suppose there exists a K-normal homogeneous metric g=g(K, B) on M
isometric to g’. Let f be an isometry from (M,g’) to (M,g) with f(o)=o.
From the assumption, we have K=f"'KfcK’. Thus, K coincides with K.
Hence, B defined in 2 is also AdK-invariant. By Lemma 2.1, f*g is K-
normal homogeneous, which contradicts the above theorem.

RemARK 4.1, If the fundamental group of M is finite, then as is well known,
the K-action on M is transitive. (See [10] or [15].)

5. Normal homogeneous metrics on compact irreducible sym-
metric spaces

Let K’ be a compact connected simple semisimple Lie group and M=K'/L’
a compact irreducible symmetric space with a compact symmetric pair (K’, L').
In this section, we study K-normal homogeneous metrics on M for all the
connected subgroups K of K’, which are transitive on M.

We mention some results of Onis¢ik [10], [11] which describe compact
connected transformation groups acting transitively on the spaces under our
consideration.

Theorem (Oniscik). Let K' be a compact connected simple semisimple Lie
group and M=K'[L' a compact simply connected irreducible symmetric space with
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a compact symmetric pair (K', L'). We assume the K'-action on M is effective.
(1) Any compact connected Lie group of transformations of M which contains
K, coincides with K'.
(2) (a) case of rank 1.
Suppose that M is of rank 1. Then, every compact compact con-
nected Lie group of transformations of M is conjugate to one of the
Sollowing by an inner automorphism of Diffeo (M):
M=S8"; SO(n+1) with the usual action, and its subgroups
SU(m), U(m) (n=2m—1, m=2),
K, K,, Sp(m) (n=4m—1, m=2),
where K; and K, denote the quotient groups of Sp(m)x Sp(1) and
Sp(m)x U(1) by certain discrete subgroups of them,

Spin(9) (n=15),
Spin(7) (n="17),
G, (n=6).

T —
M=P"(C); SU(n+1) with the usual action and its subgroup
Sp(m)  (n=2m—1,m=2), (Cf. Remark2.2.)
o~
M=P"(H); Sp(n-+1) with the usual action. (Cf. Remark 2.2.)
M=Cayley projective plane; F, with the usual action.
(b) case of rank=2.
Except the following cases, every subgroup of K' which acts transiti-
vely on M, coincides with K'.
N~
(1) M=SU(2n)|Sp(n) (n=2): The subgroups SU(2n—1) and
e ———
S(U1)x U(2n—1)) act on M transitively.
N~
(i) M=SO0Q2n)|U(n) (n=3): The subgroup SO(2n—1) acts on M
M transitively.
(i) M=Q%C)=S0(7)[SO2)x SO(5): The subgroup G, acts on
transitively.
(iv) M= SO(8)/SO(3)x SO(5): The subgroup Spin(7) acts on M
transitively.
Moreover, in the last four cases, every compact connected proper
subgroup of K' which is transitive on M is conjugate to one of the sub-
groups listed above by an automorphism of K'.

In the following, we freely use the convention of Remark 2.2.
Our result is the following

Theorem 5.1.
Spheres: (1) Let n=2m—1 (m=2). Let g, g and g, be SO(n+-1)-, U(m)-
and SU(m)-normal homogeneous metrics on S™ respectively. Then, any
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pair of them are mutually homothetically inequivalent. Moreover,
Is0°(S7, g,)=U(m).
(2) Let n=4m—1 (m=2). Let g;, g, and gs be K;-, K,~and Sp(m)-
normal homogeneous metrics on S respectively. Then, they are not of
constant curvature. Moreover, any pair of g, g, -+, g5 except the pair
(g1, g4) are mutually homothetically inequivalent. In addition, we have
I50° (87", g3)=K;.
(3) Any Spin(9)-normal homogeneous metric on S™ is not of constant
curvature.
(4) Every Spin(7)-normal homogeneous metric on S” and every G,
normal homogeneous metric on S® are of constant curvature.
Complex projective spaces:
(5) Let n=2m—1 (m=2). Any Sp(m)-normal homogeneous metric
on P"(C) is not homothetically equivalent to the Fubini-Study metric.
W/% (6) Any S(U(1)x U(2n—1)) or SU(2n—1)-normal homogeneous
metric on M= SU(2n)|Sp(n) is not homothetically equivalent to
the symmetric metric on M.

%/ /U\(njz (7) Any SO(2n—1)-normal homogeneous metric on M=
SO(2n)[U(n) is homothetically inequivalent to the symmetric me-
tric on M.

0%0): (8) Any Gy-normal homogeneous metric on Q% C) is not homothe-
tically equivalent to the symmetric metric on Q%C).
SO(8)/SO(3)x SO(5): (9) Any Spin(7)-normal homogeneous metric on M=
SO(8)/SO(3)x SO(5) is not homothetically equivalent to the sym-

metric metric on M.

ReEMARK 5.1. In cases S**~! and SU(2#n)/Sp(n), we can say nothing about
whether g, and g,, or an S(U(1)x U(2rn—1))-normal homogeneous metric and
SU(2n—1)-normal homogeneous one are mutually homothetically equivalent or
not.

ReEMARK 5.2. The linear isotropy representation of the isotropy subgroup
of Spin(7) (resp. G,) acting on S7 (resp. S is irreducible (see [2]). Hence in
particular, we see the following fact: Let K be a compact connected subgroup
of K’ acting transitively on M=K'[/L’. Then, a K-normal homogeneous
metric on M is isometric to the symmetric metric on M up to a positive constant
multiple if and only if the linear isotropy representation of the isotropy sub-
group of K is irreducible.

Proof of Theorem 5.1. In the following, we adopt the notation of Bourbaki
[4] for the terms of the representation theory. However, for the convenience
for typing, we write a, w in place of a, @ respectively.
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Case S™.

We consider S” as the unit sphere in the Euclidean space B**'. Let 4{* be
the vector space of homogeneous harmonic polynomials on R**! of degree k
with coefficients in C and H* the space of real polynomials of #*. We often
identify 4* with the complexication of H*. We know that 4* and H* are
irreducible SO(n+1)-module over C and R respectively and that the restric-
tion map of J* (resp. H¥) to S” is one to one (cf. [3] or [13]). We frequently
identify %* and H* with their images under the above maps. Then, as is well
known, the spectrum and the eigenspaces of the Laplacian of the unit sphere

S” are as follow (cf. [3] or [13]):

Spec (the unit sphere S"={k(k+n—1); k=0,1,2, -},
Eipin-n = J* (k=0,1,2,-),

dim gt — kT2 (B+2v—1)!
v kl(2v—1)!

(5.1)

(v = _;,(n_n, k=0,1,2,-).

Now, let K be a subgroup of SO(n+1) acting transitively on S”. After
decomposing 4{* into K-irreducible sumbodules, we can compute the spectrum
and the eigenspaces of the Laplacian of S” with a K-normal homogeneous
metric using Proposotion 2.1.

(i) case n=4m—1, K=K, K, or Sp(m).

We consider S” as the unit sphere in H” (H={a+bi+cj+dk; a,b,c,d=R}
quaternion field) and Sp(m) as the group of matrices A€M, (H) such that
A*-A=1,. Let U(1) denote exclusively the subgroup of Sp(1) consisting of
complex numbers of modules 1. Sp(m) acts on S” transitively by matrix multi-
plication and an element A= Sp(1) transforms each vector in S” into a vector in
S”* by the right multiplication of 27!, Thus, S” is an almost effective homo-
geneous space of Sp(m)x Sp(1). Let w,, w,, -+, w,, be the fundamental weights
of Sp(m) relative to the simple root system a,, a,, **+, a, as in Bourbaki [4]
(o ° o&——o ) and w] the fundamental weight of Sp(1) relative

a a a,
to the simple root system ai. Let w, denote the weight of U(1)-module C with
the standard action of U(1).

We decompose %' and J* into K-irreducible submodules as follows.
Let I, J be the linear transformations of H” defined by the right multiplications
of 7, j respectively (i,j&H). The Sp(m)-action on H” commutes with I and
J, and hence in particular, (H", I) becomes an Sp(m)-module over C by the
complex structure I, which is denoted by H”. In the decomposition

H"QC=V*®V-  (V*: £/ —1 eigenspaces of I respectively),

we have a canonical isomorphism V*=H, and since I]=—]I, ] gives rise to an
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Sp (m)-isomorphism between V* and V~. From the definitions, each element
heU(1) operates on V* (resp. V™) as the scalar multiplication by % (resp. A7%).
On the other hand, we have H'=H" as Sp(m)x Sp(1)-modules over R, since
the Sp(m)x Sp(1)-actions are orthogonal. Thus, we get

(*) H'=Vyw, as Sp(m)xSp(1l)-modules.
We next decompose 42.  From (5.2), we have

S HY) = S(VHBS(V)YDV*-V~,
where S? denotes 2-nd symmetric tensor power and - the symmetric tensor product
in '@, This splitting is the decomposition of S*4') into the weight
spaces of U(1), i.e., an element A& U(1) acts on each component by 742, k7%, 1
respectively. Although both S ¥*) and S¥V ") are irreducible Sp(m)-modules

(cf. [16]), V*- ¥V~ decomposes as follows: Since both V'* and V'~ are isomorphic
to H? as Sp(m)-modules, we have

V-V =S H)DOA(H),
where A? denotes the 2-nd exterior power. We denote by S'and A the subspaces
of V*+V~ corresponding to S (H!) and A*H!) respectively. The Sp(m)-
module A splits into the direct sum of its submodule isomorphic to V,, and

the one dimensional trivial submodule spanned by the ‘“‘symplectic form”.
Thereby, we see easily that

SHI) = S(VHDS(V)DSPV,,BC  as Sp(m)-modules,
= Vw2, V0, OC as Sp (m)x Sp(1)-modules,

where Vi 12, =SHV")DSA(V")DS and C denotes the trivial module. Since
SHR"™MQC=I*PC as SO(n+1)-modules, we have

() H = Vs, ®V,,  as Sp(m)xSp(l)-modules.

From (%), (#x), we see easily the decompositions of H* and J{* into Sp (m) x U(1)-
or Sp(m)-irreducible modules. To compute the eigenvalues of the Laplacian
A(K, B), we normlize B as follows:

In case K=Kj,

B(ay, a)) = 2.

We put B(ai, aj) = 4t (t>0) andset B;=B.
In case K=K,

B(a,, a))= 2.

We put  B(w,, w,) =t (>0) andset B;=B.
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In case K=Sp(m),
B(dl, al) = 2 .

Every AdK-invariant inner product on f is obtained from the above B or B,
by a certain positive constant multiple and invariant under any automorphism
of f for K=K; or Sp(m). In case K=K,, the family of AdK-invariant inner
products on f is stable under any automorphism of f.

In the following table, we list the K-irreducible decompositions of %' and
S{* and the eigenvalues of the Laplacian on each component.

Table 1.
I = VoK)
2m—1-4-3t (K=Ky),
= le+wo(K)@Vw1—wo(K)
2m—1+t 2m—1+t (K=K)),
=V, (K) @ V,(K)
2m—1 2m—1 (K=Sp(m)).
I = V2wl+2w{(K)®Vw2(K)
4m--8t 4m (K=Ky),
= V2w1+2w0(K) %) VZWI(K)®V2w1—2w0(K) D sz(K)
Hm+1)+4t 4m+1) 4m+1)+4t 4m (K=K)),
= V3 (K) DV 20 (K) D V30 (K) DV i )(K)
4(m+1) 4(m+1) 4(m-+1) 4m (K=S8p(m)).

In this and the forthcoming tables, the number below a K-irreducible
module denotes the eigenvalue of A(K, B) on that submodule of C*(M).

(ii) case m=2m—1, K= U(m) or SU(m).

We consider S” as the unit sphere in C”. The goups U(m) and SU(m) act on
S” transitively in the usual way. Let wg, w,, **+, w,,_; be the fundamental weights
of U(m) so that w,, -+, w,_, are the fuudamental weights of SU(m) and the
highest weight of C™ with the standard action of U(m) is w,+w,. Our AdK-
invariant inner product B on f is assumed to be normalized as follows:
In case K=U(m),

B(a, a)=12.

We put B(w,, w,) =t (t>0) and set B; = B.
In case K=SU(m),

B(a;, a)) = 2.
In this case, H' is isomorphic to Homg(C”, R) as U(m)-modules over R, (R is
considered as a trivial module). We have
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It = C"P(C™)*  as U(m)-modules over C.

Since the U(m)-module C"®(C™)* is the direct sum of V, ., , and the one
dimensional trivial submodule C, we have

SHI) = SHCM)DSH(C™)*)DV uytu,,BC

as U(m)-modules. In the right hand side of the above decomposition, each
component is U(m)-irreducible
The SU(m)-irreducible decompositions of J' and JH* are obtained from
the above decompositions.
In the same way as before, we get the following table.

Table 2.
= VoK) D Vel
(m—l)(m—]—l)_,_t (m——l)(m+1)+t (K= U(m)),
m m
= V,,(K) ® V., (K)
(m—1)(m+-1) (m—1)(m—+1) (K=SU(m)),
m m
‘-4‘2 = V2w1+2wo(K) @ VZwm_l—Zwo(K) @ Vw1+wm_1(K)
2(m—1)(m—{—2)+4t Z(m—l)(m+2)+4t om (K=U(m)),
m m
= VZwI(K) 69 VZW,,._1(K) @ Vw1+w,,,_1(K)
2(m—1)(m+-2)/m  2(m—1)(m+-2)/m 2m (K=S8U(m)).

(iii) case =15, K = Spin(9).

The inclusion map of Spin(9) into SO(16) is given by the spinor representation
whose complexification is a Spin(9)-irreducible module with the highest weight
w, (cf. o o=x—o ). The weights of V, (Spin(9)) may be obtained

a, a,
by transforming w, under the Weyl group of Spin(9). Thereby, seeing the
weights of S*(V,, (Spin(9))), we get

HH* = Vy, (Spin (9))DV,, (Spin (9)) as Spin (9)-modules.

o

Then, we have

Table 3.
40B (a, @) on V,, (Spin(9)cC(M),
16B (a,, a,) on V, (Spin(9)cC~(M).
(iv) case x =7, K = Spin(7).

A (Spin (9), B) =

The inclusion map of Spin(7) into SO(8) is given by the spinor representation
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whose complexification is an irreducible Spin(7)-module with the highest weight

w; (cf. o o=>—=o). Therefore, we have J'=V, (Spin(7)) as Spin(7)-
a as

modules. For each k, * includes V,,, (Spin(7)). From (5.1) and the formula

of Weyl, comparing the dimensions of 4* and V,,,(Spin(7)), we have H*=V,,,

(Spin(7)).

Table 4.
¥ = Vi, (Spin (7))

S Blay a(k+6)  (k=0,1,2,).

(v) case n=6, K=G,.

The inclusion map of G, into SO(7) is given by the real representation of
G, whose complexification is an irreducible G,-module with the highest weight
w, (cf. o==o0). In this case, we get similarly the following
a9 &
Table 5.
I = Viu(G))
B(a,, a))k(k+5) (k=0,1,2,-).

Remagrk 5.1. In the last two cases, the linear isotropy representations of
the isotropy subgroups of Spin(7) or G, are both irreducible, according to [2].
From these facts, the assertion (4) of Theorem 5.1 can be obtained. In the all
cases above, the family of AdK-invariant inner products on ¥ is stable under
any automorphism of f.

Now, from Table 1-3, we see by Lemma 2.2 and Remark 2.1 that g;, g,, «--,
gs are not of constant curvature. We shall observe g, -*+, g5 in more details.
Note that if a Riemannian metric on a sphere S” has the isometry group of dimen-
sion $n(n+1), then g is of constant curvature. Thus, we have Is0°(S”, g,)= U(m)
(n=2m—1) and Is0°(S", g;)=K; (n=4m—1) by the theorem of Oniscik. In
particular, we see that g, and g, are homothetically inequivalent to each other by
Cor.4.1. In case n=4m—1, the inclusion relations among our groups are given
as follows:

U(2m) D SU(2m)
U U
K = Sp(m)x Sp(1)) 2K, = (Sp(m)x U1)> Sp(m)

loc.
From this, Iso°(S”, g,) must be isomorphic to one of the groups K;, K, and
U(2m). In any case, g, and g fulfill the condition (A). They are homotheti-
cally inequivalent by Table 1 and Lemma 2.2. The same assertions are valid
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for the pairs (g;, g,) and (gs, gs) by the possibilities of Iso°(S” g,) and Iso°(S", gs).
Table 2 shows that V,, .,, ., is contained in E,, for g, g. On the other hand,
this space splits into two subspaces contained in different eigenspaces for g;.
(We have U(2m)-module V, ., _,=Sp(m)-module V,, BSp(m)-module V,,, see
(i), (ii).) Hence, we see that g; is not homothetically equivalent to g, or g,
From the inclusion relations listed above, Iso°(S”, g;) must be isomorphic to
SU(2m) or U(2m). If g, and g, are mutually homothetically equivalent, their
isometry groups must be isomorphic to U(2m). But then, we see easily that
g, and g, fulfill the condition (A). From Tables 1-2, they must be mutually
homothetically inequivalent. g, and g; are not mutually homothetically equi-
valent, since their isometry groups are not isomorphic to each other. The
same assertion is valid for g, and g, since their isometry groups cannot be iso-
morphic to each other by the inclusion relations listed above.

Thus, we have proved (1) and (2). Table 3 implies (3). Tables 4-5 toge-
ther with Lemma 1.1 show (4).

Case P*(C) (n=2m—1).

Sp(m) acts transitively on the projective space P*(C) of H (cf. (i)). The
eigenspace E corresponding to the non-zero first eigenvalue of the Laplacian of
the Fubini-Study space P"(C) is isomorphic to V, ;u,,.,(SU(n+1)) (see [3] or
[13]).

As we have seen in case (i) of S”, we know

E=V,, ®V,, as Sp(m)-modules.

We get easily
(4m-+4)B(a,, a))[2 on  V,, (Sp(m))c C=(P*(C)),

ACPEB)= 1 g Bay a)z on Vi (Spm) C C=(PX(C)).

Thus, we see by Lemma 2.2 and Remark 2.1 that any Sp(m)-mormal homogeneous
metric on P*(C) is not homothetically equivalent to the Fubini-Study metric.
Case SU(2n)/Sp(n) .

The Satake diagram of the symmetric space M=SU(2n)/Sp(n) is given as
follows:

—o &——-::0 ° (see [1]).
a a Arn-1

We can read from the diagram that V,,(SU(2n)) is a spherical representation
of SU(2n) on M (see [13]). Hence, it is a subspace of a certain eigenspace of
the Laplacian of the symmetric metric. The subgroup S(U(1)x U(2n—1)) of
SU(2n) acts transitively on M. Put K=S(U(1)x U(2n—1)). Let wy, w,, =+, w;
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(I=2n—2) be the fundamental weights of K so that

(1) w, is the fundamental weight of the center of K,

(2) w,, -, w; are the fundamental weights of the maximal connected semi-

simple subgroup SU(2n—1) of K,

(3) €=V 440, (K)DV,(K)  as K-modules.
Let a,, -++, a; be the simple system of roots of K. Every AdK-invariant inner
product B on t is invariant under any automorphism of f. Normalizing B,
we can assume B(ay, a,)=2 and B(w,, wy)=t (¢>>0). We have

AC™ = NV gy 10 (K) DV 10 (K)
= Vingrod K)B Vouyra(K) 25 K-modules.

The SU(2n—1)-irreducible decomposition of A*C* is obtained from the above
one by setting w,=0 formally. We get

%Ht on  Viru(K)CC=(M),
AEB=1 by
TERL A on Vi (R)SC(M), (K=S(U(1) x Un—1),
212:1—3 on V,(K)cC=(M),
AWK, B) = 2421
o on V. (K)cC(M), (K= SU@2n—1)).

Thus, we get (6) by Remark 2.1 and Lemma 2.2.
Case M =SO(2n)|U(n) .
The Satake diagram of the symmetric space M is given as follows:

o—Oo—: (see [1]).

From the diagram, we see that the SO(2n)-irreducible representation V,,(SO(2n))
=A’R”Q®C is a spherical representation of SO(2zn) on M. The subgroup
SO(2n—1) acts on M transitively. By the decomposition

R = R"'®R as SO(2n—1)-modules,

we have

AN’R*"QC = N’R*'QCOR*'QC  as SO(2n—1)-modules.
Then, we get easily
(2n—1)B(ay, a))2  on V,(SO(2n—1))cC*(M),

ASOE=D, B)= 1 4 _)Bla, a)2  on V,(SO@n—1))CC(M).



574 Y. TaNIGUCHI

We see (7) by the same reason as before.
Case Q%C)= SO(7)[SO(2)x SO(5) .
The Satake diagram of the symmetric space M is given as follows:

o——o=5=e (see [1]).
2 a;

a a

From this diagram, we see that the SO(2n)-irreducible module A’R'®C is a
spherical representation of SO(7) on Q%C). The inclusion map of G, into
SO(7) is given as in case (v) of S”. The Gj-irreducible decomposition of
A’R'Q@Ccan be given as follows: From the formula of Weyl, we have

dimV,(G) =7, dimV,(G)=14 and dimV,>14

for the other @ (w=0). Since the G,-action on M is transitive, A’R’QC con-
tains no G,-trivial submodule. We see

A’R'QC =V, (G)®V,,(G,) as G,modules,
since dimA’R'@QC =21. We get easily

6B(a,, a) on V,(G)cC(M),

A(G,, B) =
(G2 B) 12B(a, @) on V,(G)cC("M).

Therefore, we get (8) by the same reason as before.
Case M = SO(8)/SO(3)x SO(5).

The Satake diagram of the symmtric space M is given as follows:

(see [1])-

The SO(8)-module A*REQC is an irreducible module with the highest weight
w;+w, of dimension 56, and hence a spherical representation of SO(8) on M.
The inclusion map of Spin(7) into SO(8) is given as in case (iv) of S”. The
Spin(7)-irreducible decomposition of A’R,®C is given as follows: The wieghts

of Spin(7)-irreducible module R*QC are %(:I:Ed:&zj:&) (cf. [4]). Hence, the

Spin(7)-module A’REQC contains an irreducible Spin(7)-submodule with the
highest weight %EI—E—%SZ—I—%&:M—I—% of dimension 48. From the formula
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of Weyl, we see that V,, (Spin(7)) is the only irreducible Spin(7)-module
of dimension 8. Hence, we get the decomposition

ANRQC =V, ..,(Spin 7))DV,,(Spin (7)),  as Spin (7)-modules.

We get easily

489-B(a1, @)  on V,.m(Spin(7)CC=(M),

A(Spin (7), B) =
%-B@l, @) on V,(Spin(7))cC=(M).

Therefore, we have (9) by the same reason as before.
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