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1. Introduction

In this paper, we shall give a proof of the following Theorem, which is a
conjecture of B. Rickman [9]; in special case, C;(¢p) has order 2, M.]. Collins
and B. Rickman proved in [2].

Theorem. Let G be a finite group which admits an automorphism ¢ of odd
prime order r whose fixed-point-subgroup Cq(p) is a cyclic 2-group. Then G is
solvable.

All groups considered in this paper are assumed finite. Our notation
corresponds to that of Gorenstein [7].

An important tool that is brought to attack the problem is B. Baumann’s
classification of finite simple groups whose Sylow 2-subgroups are maximal
[1], and in analogy with Matsuyama [8] that used the results of [1], we shall
prove that M, (S;2)=1, where S is a ¢-invariant Sylow 3-subgroup of G.

C.A. Rowley has obtained a proof of the theorem under the additional
hypothesis that G does not involve S,, the symmetric group on 4 letters.

The Theorem is a contribution to the continuing problem of showing
that finite groups which admit an automorphism ¢ of odd prime order such
that C(¢) is a 2-group are solvable.

2. Preliminaries

We first quote some frequently used results.

2.1. (Thompson [12])
Let G be a group which admits a fixed-point-free automorphism of prime
order. Then G is nilpotent.

2.2. (Rowley [10])

Let G be a solvable group admitting an automorphism of odd prime order
p such that Cy(¢), the fixed-point-subgroup of ¢ in G, is a cyclic g-group,
g=+p. Then, for any prime 7, G is either 7-nilpotent or 7-closed.
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2.3. (Glauberman [4])

Let G be a group with a Sylow p-subgroup P, either p odd or p=2 and
S, is not involved in G, in which C¢(Z(P)) and N¢(J(P)) both have normal p-
complements. Then G possesses a normal p-complement.

2.4. (Gilman and Gorenstein [3])

If G is a simple group with Sylow 2-subgroups of class 2, then G==L,(9),
¢=7, 9 (mod 16), 4,, Sz(2"), n odd, n>1, Us2"), n=2, Ly(2"), n=2, or Psp
(4, 2"), n=2.

2.5. (Gorenstein [7])

Let P be a Sylow p-subgroup of G, where p is the smallest prime in z(G).
If p>2, assume d,(P) <2, while if p=2, assume P is cyclic. Then G has a normal
P-complement.

2.6. (Matsuyama [8])

Let @ be a 2-group admitting an automorphism ¢ of odd order =1. If
d(Q)=1, then Q=FE=xR, where E is ¢-invariant, extra-special or 1, and R is
¢-invariant, and R is cyclic, D,,, @,, or S,,, m=4

2.7. (Collins-Rickman [2])

Let T be an extra-special 2-group admitting an automorphism ¢ of odd
prime order r acting fixed-point-freely on T/T'. Let S be the natural semi-
direct product 7<¢> and let K be a field of nonzero characteristic different
from 2 and r. Assume that there exists a KS-module M for which Cy(¢)=
Cu(T")=0.

Then (1) r=2"+1 is a Fermat prime,
(i) |T|=2%*, and

(iii) T=Qx(* D),
1
where @ and D denote the quaternion and dihedral groups of order 8, respec-
tively, and * denote the central product.

2.8. (Glauberman [5] [6])

Let G be a solvable group with a Sylow 2-subgroup @ with G =+C
(Z(Q)N(J(Q)), and O(X)=1. Put

Z={Z*|Gr>Z*: 2-subgroup and O,G/C(Z*))=1)>

and J=<{x=G|x: 2-element, |Z/C,(x)|=2)

and H={J,C(Z)>. Then the following hold;

(i) there exists a normal subgroup G; of H containing C(Z), 1<i=m, such
that, for i=1,+.-,m,G;/C(Z)=S;, and H/C(Z)=G,/C(Z) X - X G,,[|C(Z).

(ii) let V,=[G;, Z], 1=i=m, and let V=V ,D---DV,, then Z=VDC,(H)
and V,=Z,XZ,, 1=i=m.
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(iii) there is a 3-element x, of H such that, for each geH, H=<{Q N H, %%,
C(2)> and GIC(Z)=H/C(Z) Corccn('C(Z)).

2.9. (Matsuyama [8])

Let G be a group with a Hall z-subgroup H, and let 1+Pe&Syl(H), Q
2-group. If Ny(H)=HQ, d(Q)=1, QZ(Q)=<w, Ca(w)=1, and U(Pir’)
=1, then, for each P¢=P, g=G, m(PNP%)=1.

2.10. (Burnside’s theorem [7])
If a Sylow p-subgroup of G lies in the center of its normalizer in G, then G
has a normal p-complement.

2.11. (Burnside’s theorem [7])

If P is a Sylow p-subgroup of G, then two normal subsets of P are con-
jugate in G if and only if they are conjugate in N (P). In paticular, two el-
ements of Z(P) are conjugate in G if and only if they are conjugate in Ny(P).

2.12. (Smith-Tyrer [11])
Let G be a group with an Abelian Sylow p-subgroup P for some odd prime
p. If [N(P):C(P)]=2 and PNN(P)’ is noncyclic, then G is p-solvable.

2.13. (Thompson Transitivity theorem [7])

Let G be a group in which the normalizer of every nonidentity p-subgroup
is p-constrained. Then if A&SCN(P), CyA) permutes transitively under
conjugation the set of all maximal 4-invariant ¢-subgroups of G for any prime g =

p-

2.14. (Collins-Rickman [2])

Let G be a group, and let p and ¢ be distinct prime divisors of G.
Assume that G has an Abelian Sylow p-subgroup P for which m(P)=3 and
that, whenever P, is a subgroup of P with m(P[P,)<2, Ny(P,) is p-constrained.
Then C¢(P) permutes the elements of Ug*(P;q) transitively under conjugation.

2.15. (Frobenius theorem [7])
G is p-nilpotent if and only if N (H)/C(H) is a p-group for every noniden-
tity p-subgroup H of G.

3. The proof of the Theorem

Let G be a minimal counterexample to the Theorem, for the remainder of
this paper.

Lemma 3.1. G is simple.

Proof. By Lemma 5.1. of [2].
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Lemma 3.2. Let p be a prime divisor of G and P=Syl,(G). If N(P)
has a normal p-complement, then p=2 and the symmetric group S, is involved in G.

Proof. By Lemma 5.2. of [2], (2.2) and (3.1).

For the remainder of this paper, € denotes the ¢-invariant Sylow 2-
subgroup of G, and let Cy(d)=<x> and Q(C(d))=<w).

Then @ is a unique ¢-invariant Sylow 2-subgroup, and let p be an odd
prime in #(G) and P&Sly,(G), then, by (3.2), N(P)>w.

Lemma 3.3. 4,(Q)=2.

Proof. If d(Q)=1, by (2.6) and hypothesis Q=E*R where E is ¢-
invariant, extra-special, and R is ¢-invariant, cyclic. If E=1, by (2.5) G is
2-nilpotent, contrary to (3.1). So E =1. Since c/(Q)=2, by (2.4) this is a
contradiction.

Lemma 3.4. Every ¢-invariant proper subgroup of G is 2-nilpotent.

Proof. Assume otherwise. Let M be a non-nilpotent maximal ¢-invariant
subgroup of G without a normal Sylow 2-subgroup. If N(O,(M)) is 2-nilpotent,
M is nilpotent, a contradiction. By (2.2), N(O,M)) is 2-closed. Hence M=
N(OLM)), Oy(M)=@, and M=Ny(Q). Thus there is an odd prime p dividing
the index [N4(Q): Ce(Q)].

By (3.3), there is a characteristic subgroup C of @ such that C=Z,X --+ X Z,,
C contains Q,(Z(Q)), and [C, ¢]=1. Let P, be a ¢-invariant Sylow p-
subgroup of Ny(Q) and P be a ¢-invariant Sylow p-subgroup containing P,.

We now claim that [C, PJ=1. We may assume that weC. [w, PJS@QN
P=1. Since P, centralizes C/C(P,), [Py, C]=1. Thus CENy(P,).

Let M, be a maximal ¢-invariant subgroup containing Ng(P,). If M, is
2-closed, My=N4(Q). Since Np(Py)=P, P=P, Let @, be a ¢-invariant
Sylow 2-subgroup of Ny(P). Then [P, @))<PNQ=1, so Ny(P) is P-nilpotent,
and by (3.2), p=2, a contradiction. Thus M, is 2-nilpotent. Hence M,=
Ng(P). Since CEN(P), 1+[C, p]<Cy(P).

Now put Z,=[Q,(Z(Q)), ¢]. If Z,=1, P,O0SCy(Z,). When CyZ,) is
2-closed, PEN(Q), and [Q,, P, ]SO NP=1, acontradiction. Hence Cy(Z,) is
2-nilpoent. Therefore as Q< N (P), [Q,P,]=Q NP=1, a contradiction. Thus
we may assume that Z,=1, hence that Q,(Z(Q))=<w).

Put @=Q/<w) and let C, be the inverse image of Z(Q)NCin Q. As [C\,¥]
S<wy, C,=Ny(Kx>). On the other hand, let yC,. Then [y,¢]eC(<xD),
since (y xy)t=y " 'xy. Put C,=[C,,¢], so that 1+=C, SN (P), hence C4(P,)
contains P, and x.

Now let M, be a maximal ¢-invariant subgroup of G containing Cg4(C,). If
M, is 2-closed, M,=N(Q), and [@,, P]=1, contradiction. Thus M, is 2-nilpotent,
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i.e. My=N(P).
Put Q=Q/®(Q). [x, PJSPNQ=1. Since P, centralizes Q/C5(P,), P,
centralizes Q. Hence [Py, @]=1, a contradiction. Hence the lemma is proved.

For the remainder of this paper, in analogy with Matsuyama [8], we shall
prove the following result;
@ 3/1G1;
(i) |C4(S)] is odd, where S is a ¢-invariant Sylow 3-subgroup of G;
(i) Hg(S;2)=*1; and
(iv) m(S)=4.

On the other hand, in analogy with Collins-Rickman [2], we shall prove that
U, (S;2)=1. Hence this contradicts above.

For the remainder of this paper, we shall write down the results which can
be similarly proved as [8].

(3.5) Cyw)<Q.
(3.6) If p is an odd prime in z(G) and P& Syl,(G), then P is Abelian.

(3.7) If p is an odd prime in #(G) and A is any p-subgroup of G, then
Auty(A)=Ny(A4)/C(A4) is a 2-group.

(3.8) If Q(Z(Q))=+<w)>, then Ny(T) is a 2-group for any nontrivial ¢-
invariant 2-subgroup T of G.

Now put P be a ¢-invariant Sylow p-subgroup of G for any odd prime p in
7(G). Let K, be a normal 2-complement of Ny(P) and @,=® N Ny(P). Then
Ny(P)=Q,K,, Q,5Q. Furthermore let @,*=C¢,(K,), and then Q,*=[Q,*, ¢],
since weE @,*.

Hence, for any sex(K,), K,=K,, @,=Q,, and Q,*=Q.*. In particular,
K, is a nilpotent Hall subgroup of G.

(39) Co(P)=Q,*
(3.10) dQ,/Q,%)=1.

Furthermore let M,=N(P) and M,=M,/Q,*K,. Then by (2.6) and
hypothesis, M,=E,+E,, where either E,=1 or E, is ¢-invariant, extra-special
and R, is ¢-invariant, cyclic.

On the other hand, by (3.4), N4(®) is nilpotent, and then N;(Q)=@ by (3.5).
Hence by (3.2), S, is involved in G, yields 3/|G|. Furthermore let S Syly(G),
and then m(S)=3.

Lemma 3.11.  Let p be an odd prime in n(G). We can write M,=E p*ﬁp,
where either E,=1 or E, is ¢-invariant, extra-special, and R, is ¢-invariant,
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cyclic.
If E, =1, then »=2"+1 is a Fermat prime.

Proof. By (2.7), it is immediate that Cg (p)($)=Cor(E,)=0. By
(2.7), it suffices to prove that ¢ acts on E,/E,’ fixed-point-freely. First we may
assume that [EI,I =2. Then, since we can suppose that ¢ centralizes an element
of E, of order 4, it is not necessarily trivial.

Now suppose that there exists an element y of E, of order 4 such that [,
¢]=1. As E, is extra-special, the conjugate class of ¥ is {y, jw}. Hence
[E,: Cz,(5)]=2. Then ¢ acts on the set, E,—Cz(3), fixed-point-freely. It

is impossible.

Lemma 3.12. Let S be a p-invariant Sylow 3-subgroup of G. If [Q,/Q5*, $]
=1, then S is a T.1.-set.

Proof. If not, there exists an element g of G such that S¢4Sand S¢N .S =+1.
First we shall show that Cg(2)=@;* for any 2= S* It is immediate that
Co,(2)2Q5*. If Co,(2)2Q;* for some & S*%, weCo (2), by hypothesis. But
this is impossible. Next we will prove that, for any z& S* C(2) is 3-nilpotent.

Now put Cy(2)=C and let S, be a nontrivial subgroup of S. By (3.7),
Aut(S,) is a 2-group. Put Aut,(S,)>¢=1. Then ¢ is a 2-element. Furthermore
there exists an element y of S, such that y* =y, i.e. y and »* are conjugate in
C4(2). By (2.11), y and ' are conjugate in N (S). Thus we may assume
that tEN(S), and t€Q; Then 1€Cy (2)=Q;*=Cq,(S), a contradiction.
Hence C¢(2) is 3-nilpotent by (2.15), especially C¢(2) is 3-constrained.

Furthermore put 3+pe=(K;), and let P be a ¢p-invariant Sylow p-sub-
group of G. Ny(S)=Ng(P). Thus C4(2) is #(K,)-nilpotent.

Next put 1=y€S5¢N S, and let M be a =(K;)-complement of C4(y), and
then we will prove that M is a 2-group.

S normalizes M and (|S]|, |M]|)=1. Now suppose that M is not a 2-
group. There exists an odd prime g in z(/) such that g&#(K;). Furthermore
there exists a Sylow g-subgroup @, of M normalized by S. Since Auty(Q,) is
a 2-group, SSC(®,), and hence @, <K, It is impossible. Thus M is a 2-
group.

On the other hand, it is easy to show that M/ 2Q,*. Now suppose that M=
Q,*. Then C¢(y)=Q;* K;, and since S, S°SCy(y), S=S% a contradiction.
Hence M 2Q;*, C(S)SN(M).

Let M be the intersection of all elements of 1;*(S;2). By (2.14), M2M.
On the other hand, as M is ¢-invariant, SM is ¢-invariant. By (3.4), SM is 2-
nilpotent. Thus [M,S]SM N S=1. Hence MSC.(S)=Q,*, a contradiction.
This completes the proof of Lemma 3.12.

Now if E;=1, r=2"+1 is a Fermat prime by (3.11), where r=|¢]|.
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On the other hand, when E;=1, by (3.12), S is a T.L.-set, where S is a
¢-invariant Sylow 3-subgroup of G.

By B. Baumann [1], € is not a maximal subgroup of G, and thus there
exists a proper subgroup X of G containing € such that @ is a maximal sub-
group of X.

In analogy with Matsuyama [8], we can say the following.

X is a solvable {2, 3}-subgroup with O(X)=1, and X satisfies the hypo-
thesis of (2.8). Thus the structure of X is one of the following two type.

{Type I>

X/O,(X) is isomorphic to S; the symmetric group on 4 letters.
Z(04X)) contains Z(Q) and Z(O4X))=[Z(O4X)), X]® C0,(X),
where [Z(0,(X)), X] is isomorphic to Z,X Z,.

(Type II>

X has a subgroup H containing O,(X) such that [X: H]=2. H|O,X)
=X,/04(X) X X3(04(X)), X;/Oy(X) is isomorphic to S;, i=1,2. Z(O4X))
contains Z(Q) and Z(0,(X))=[Z(OX)), X,]BZ(O«X)), XJBCcoycen
(H), where [Z(0,(X)), X,] is isomorphic to Z,X Z,, i=1,2.

On the other hand, considering the structure of X, Z(€) is noncyclic, by
(3.8), @s*=1.

Now we will show that 1;(K,;2)=+1. For the remainder of this paper,
let S be a ¢-invariant Sylow 3-subgroup of G.

Lemma 3.13. U(S;7(K,;))=H4(S;2).

Proof. It is easy that M (S;7z(K;)") 2U(S;2). If there exists an element
A of Uy (S;7(K,)’) that is not a 2-group, by [7;6.2.2], S normalizes some Sylow
p-subgroup S* of 4. As Auty(S*) is a 2-group, [S,S*]=1. But it contra-
dicts C¢(S)=Ks.

By (3.13), it suffices to prove that Uy (S;7(K,)’)=1.
Now we suppose that Hy(S;7(K;)")=1. By Matsuyama [8], we can say
the following.

(3.14) If S®=S, g€G, then m(SNS¥)<1.

(3.15) There exists a nontrivial proper subgroup Z, of Z(Q) such that
3/1Ce(Z)] and [Z(Q): Zi]=2.

Furthermore, in analogy with Matsuyama [8], we can show the next lemma.

Lemma 3.16. There exists a nontrivial element a of Q,(Z(Q)) such that
| NZ,] > 1 |a®] o QZAQ)Y=1a®}.
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Proof. Put ¢,€Q,(Z(Q)), a,+w. Let A;={a®}. If there exists an
element of Q,(Z(Q))*— 4, that does not equal w, let a, denote this element. So
let A,={a;?}, and then A,NA,=¢. Inductively, if there exists an element

of QI(Z(Q))*——I:J!IA,- that does not equal w, we let a; denote this element. Then
we can write the following,

0(Z@)—<w> = U4,
where A;N4A;=¢ if i=j, 1<i,j<m.

Now suppose that m=2. Let |Q,(Z(Q))]|=2" and as [Q,(Z(Q)):Qu(Z))]
=2, |(Z)|=2""" If, any i, 1<i<m, |a;®NZ,] g%lai“’)l, then since
|a; | =r is odd. I‘[;Jl(ai<¢> NZ)| < | (Z(Q)—u(Z) | —2.

But, on the other hand, |Q,(Z(Q))—Qy(Z))|=2""1, and |Qy(Z,)}|=2""—1.
It is impossible. Hence m=1. Q,(Z(Q))*={a,*’}. This lemma is proved.

(3.17) a* normalizes some Sylow 3-subgroup of G, 0=i=r—1.

Now put A,-:(a“’i)GﬂQa, and then A;=¢, and Af=A;,, 0=i<r—1.
Furthermore, as @;*=1, Q,=E*R,.

If E;=1, then S is a T.L.-set, by (3.13). In analogy with the above ar-
gument, we can show that A; +¢, 0<<i<r—1.

But, in this time, w is an only involution in €, This is a contradiction.

Hence, for the remainder of this paper, we may assume that E; =1, i.e. r=
2"41 is a Fermat prime. Then (3.16) is reduced that there exists a nontrivial

clement a of Q,(Z(Q)) such that a0 Z,| >%|a<4’>|.
On the other hand, m(S)=4.
(3.18) There exists an element &;, b; of A;A;, respectively, 0=4, 1 <r—1,
t=j, [b; b;]=1.
Next A; is determined as the following.
Lemma 3.19. A,={b, bw}, 0<i<r—1, b, +w.

Proof. If weEA,;, then w centralizes some element of order 3, a contradic-
tion. Thus we A;.

For the remainder, we set b=b;.

Suppose that b, b* A, g=G, b=+b?. Then b, b¥*€Q;. Since S=Cs(w)D
Cs(bw), %m(S)zm(Cs(b))zm(Cs(bw))22.

Let S* be a Sylow 3-subgroup of Cy(5%) containing C(b¥). There exists
an element & of Cg(b%) such that (C4(b))¥*<S*. On the other hand, let S, be a
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Sylow 3-subgroup of G containing S*, and then S=.§, as C5(b*)SSN.S,. Since
(Cs(0)e* =S NSk, gheNg(S). Since bf=b#*, b and b° are conjugate in N(S).
As Ny(S)=@Q,;K,, b and b* are conjugate in Q,;. Hence A;= {b;, b;w}.

Now put A=<A;|0=i<r—1>, and then, by (3.19), A is ¢-invariant
Abelian. Furthermore, as [A, ¢] +1, [A, $]K; is nilpotent, and

1[A, ]S Co(Ky) = @* =1,
this is a contradiction. Hence U4(S;2) +1.

On the other hand, we will prove the next lemma, and then, in analogy
with Collins-Rickman [2], the proof of the main theorem is complete.

Lemma 3.20. Let S, be a proper subgroup of S such that m(S|S,)=2.
Then Ng(S,) is 3-solvable.

Proof. First we shall consider the case m(S;)>2. In this case, we will
show that C4(S,) is 3-nilpotent. Put C=C(S,), and let S; be a nontrivial
subgroup of S. If there exists a nontrivial element # of Aut.(S,), t is a 2-element
as Auty(S,) is a 2-group. Then there exists an element y of S| such that y* =+y.
Thus y and y* are conjugate in C4(S,). By (2.11), y and y' are conjugate in
N¢(S). Hence we may assume that t€Q,NC=Z,X - X Z, As t+w, S=
C(t)BCs(tw). Hence

27(8) = m(Cs(t) = m(Cs(tw)) .

This is a contradiction. By (2.15), C¢(S,) is 3-nilpotent. C¢(S,)/S, is
3-solvable. Hence Ng(S,) is 3-solvable.

Now we may assume that m(S)=4 and m(S,)=2. In this case, similarly,
if Cy,(S)=C(S), M;=N¢(S), then by (2.10), C¢(S,) is 3-nilpotent. Hence,
furthermore, we may assume that C,,(S,) =2 C(S).

If there exists an element x, of C,.,(.S,) such that |x,|=4, then x’=we&
C1,(So), a contradiction.

If there exists a four-group <x,> X <{x,> in Cy,(S,), then S=<{Cs(x,), Cs(x2),
Cg(xx;)>. On the other hand, S, is contained in Cgy(x,), Cs(x,), and Cs(xyx,),
and since

m(Cs(%,)) = m(Cs(x,)) = m(Cs(x,x,)) = 2,
Cs(%,)=Cs(%,)=Cs(x,%,)=S,, a contradiction. Hence we can write the follow-
ing;

Cuy(So) = C(S)t>,
where #?€C(S) and S=S,D[S,1].
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Put Ce(S)=C4(Sy)/S,- Then S=SNNie;55(S)’. By (2.12), Co(So) is

3-solvable. Hence, in this case, N¢(S,) is 3-solvable. This lemma is complete.

Now we already proved that ¥;*(S;2)=1. Next we will show that there

exists a ¢-invariant element @, of M *(S;2). Suppose false. Since M;*(S;2)
is ¢-invariant, r divides |M*(S;2)|. On the other hand, by (2.14), the element
of 1*(S;2) permuted by C(S) transitively. This is a contradiction.

Let N=SQ,. By (3.4), N is nilpotent. Hence
QS Co(S) = Co(Ky) -

On the other hand, as @;*=1, |C¢(S)| is odd. This is a contradiction.
The main theorem is proved.
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