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Let K be a compact subset of C*. Let R,, -+, R,, 0<s<m, be continuous,
complex-valued functions on K, each of which can be extended to a neighbor-
hood U of K so as to be holomorphic 1n 2., **-, 2,. Let 4 denote the algebra
of continuous functions on K which can be approximated uniformly on K by
polynomials in 2, +-+, 2,, Z,+R), -+, Z+R,. Clearly A is a subalgebra of the
algebra B of continuous functions on K which can be approximated uniformly
on K by functions which can be extended to some neighborhood of K so as to
be holomorphic in 2y, **+, 2,. The goal of this paper is the following theorem
which gives sufficient conditions for the equality of these two algebras.

Theorem. Assume that Ry, -+, R, satisfy

*) B R (5+0)—Ry(2) "<k Hlu |
for all ac U and all w such that z+weU and wyyy=+=w,=0, with 0<k<]1.

Assume further that for each 2'&C° the set K,={z"C"*: (', 3")€K} is
polynomially convex. Then A==B.

This theorem was formulated and proved by A. Sakai [4] unde:i the fur-
ther assumption that R, .-, R, eC>(U). The special case when s=n—1 and
R,, -+, R,_, vanish identically was established much earlier by W. Rudin [3].

Sakai’s proof is based on the method used by L. Hormander and J. Wermer
[2] who considered the case s=n (where, of course, the sets K,/ play no role)
under the assumption that the functions R, -+, R, are differentiable of sufficiently
high order. Our proof depends instead on the Cauchy-Fantappi¢ integral
techniques used by the author [5, 6] to prove the Hérmander-Wermer theorem
with minimal smoothness hypotheses, and also on Rudin’s argument for the
special case cited in the previous paragraph. More specifically, we use an
argument due to Rudin to reduce the proof of the theorem to the assertion that
if heC§(C®), and J(z', 2”')=h(z") then | K €A. The assertion is then proved
using the Cauchy-Fantappi¢ formula as in the Appendix of [6].
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We begin with the following lemma, which is implicit in Rudin [3, theorem
4].

(If E is a set of functions on K and 2'C° we will use E, to denote the
set {f(2', +): fEE} of functions on K,.)

Lemma 1. Let K be a compact subset of C" and let s be an integer, 0<s<n.
Let A and B be closed subalgebras of C(K) such that
(i) AcB;
(ii) A contains a subalgebra A of functions which depend only on 2,4, +++, 2,
such that, for each z'€C°, A, is dense in V;
Gii) if heCHC*)and Jz', 2")=h(z") then k| K € A.
Then A=B.

Proof. Let M denote the projection of K on C°. Fix f&B and £>0.
For each 2’ &M there exists, by (ii), a function g,& 4 such that, for all 2’ K,,,

Ig‘/(z//)*f(z" zll)l <8 .

Since K and M are compact, and f is uniformly continuous on K, there exist
finitely many functions g, ---,g,€A4 and open sets Nj, +-, N, which cover M
such that, for all 2’eN; N\ M, and all 2"€K,,

lg:(z")—f(z', 2") | <E.

Let {h;} be a C* partition of unity subordinate to the covering {N;} of M
Then

hi(z') 8i(=")—f(3', ") | <éhi(z")
for all 7 and all (2’, 2”)eK. Since 3}k,=1 on M we have
123 hi(z")8i(=")—f(=", 2") | <¢&

for all (2, 2”)eK. By (iii), 2} hi(2")g:(2") belongs to A. Hence f €4, since
A is closed and € was arbitrary.

ReMARK. A more abstract version of the proof of Lemma 1 can be obtained
by using Bishop’s generalized Stone-Weierstrass theorem [1] since each set
of antisymmetry lies in one of the sets K.

If A and B now denote the algebras of the Theorem, then by the Oka-
Weil theorem we have (i) of the Lemma if we take for 4 the polynomials in
Zg41y ***y By Thus we have reduced the Theorem to the following proposition.

Proposition. If heC}(C*) and h(w', w”’)=h(w') then k| K € A.

Proof. By the Hahn-Banach theorem it suffices to show that if px is a
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complex Borel measure on K which is orthogonal to the algebra A then
S ') (@', w") = 0

for all hA&C§(W), where W is the projection onto C° of some neighborhood
of K.

By convolution with an appropriate approximate identity we can obtain,
for each j, 1< j <s, a sequence {R}} of C' functions defined on a neighborhood
V of K such that

(a) R}(2)—R;(z) for each z€V

(b) the functions RY, .-, R} satisfy (%) with the same constant k<1,
(independent of »,)

(c) each R} is holomorphic in 2,4, *+, 2,.

Let
G*(z, w) = 3 (3,—w;)(#+Ri(=)—w;— R}(w))
Qj(z, w) = G(z, w)™*(%;+Rj(z)—w,— Rj(w))
0Y(x) = (s—1)\2mi)™* A d2,+3R;
lsk és
d'z=dz;\--Ndz, .
Define Q¥(z, w) by

Q(z, w) = 23 (—1)7'Qj(z, w)Q() Ad'z

It follows easily from (%) that for each v,

d) 1G*(z, w)| =(1—k)|z"—w|?

(e) ReG'(z, w)>0if 2w’

(6) 19}, w)| (+RA—F)|z'—w’ 172

If we fix 2", w”’<C*"* it follows from the Corollary to Lemma 4 of [5] that

Iw') = SW Q') 2", ', w"’) AFh(2')

where W is the projection of ¥ onto C° and the support of % lies in W. Con-
sequently,

S h(w')dp(w) = SW 2 (=17 SK Qj(z', 2, w', w")dp(w)]0FAd'z Aok

We can write Q}(2)Ad'’z A0k as oj(2')dm, where m, denotes Lebsegue
measure on C’ and ¢ is a function. Moreover, the functions ¢ are uniformly
bounded because (b) implies that 0R;/0Z, are uniformly bounded.

Define G and Q; using R, -+, R, in the same way that G* and Q) were

defined using Ry, «++, R;.
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(g) For almost all 2V, and each j, 1<j <s,
[12,@ wldinl@<e.
Furthermore, there exists L&L'(dm(z")), independent of » such that
|| 3te, w)dn) <L),
Indeed, let L(z') be defined by
Lz) = -+ -y | SR

g —q' B

Since, for any compact set ACC",

sup S .___d_’ps_(z;)__<00

wea ) a Iz'"‘w"zs_l 2

(g) follows from (f) together with Fubini’s theorem.
Now Qj—Q; pointwise. By (g), for almost all €V,

[ aie, w)du@) - | 0 wdnw).
Consequently,
|| i) an@) =1 | =1y 1 03t wdp@)oi)m. =)
<3 1] 01, wan@) | 101 @dm, )
<c 3 (1] ai6s, w)dnta)am, ()
Letting v—>oo,
|| reran) 1 <c 2 (1] 0,6z, w)dnw) 1 am =)

| By Lemma 1 of [7] there exist holomorphic functions P, on {Re x>0}
such that

(1) P —»% if A0

2
(2) POV <
M=
By Runge’s theorem, each P, is the uniform limit on compact subsets of
{Re x>0} of a sequence of polynomials in A.
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Since Re G(z, w)>0 if 2'+w’ and since G(z, -)E4 for each sV, there
exist O, €4 such that

(3) O,(w) = G(z, w)™ on {weK:w'+z'}
2
(4) IQv(w)lsml—.

But (3) and (4) together with (g) imply that each Q/(2, -) is the pointwise limit
a.e. —d|p| of a sequence of elements of 4, and that for all z except perhaps
a set of Lebesgue measure zero, this convergence is dominated with respect to

d|p|. By the dominated convergence theorem, then, S Q,(2, w)du(w)=0 each

J. Hence Sh(w')d w#(w)=0 which is what we set out to prove.
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