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surfaces which can be embedded in L(2a, 8), ts 3, if and only if a=4u,u,—1 and
B=4up,—2p,—1.

3. System of curves on F,. From now on we restrict ourselves to
the case that A=3. Let a*, b*, c* and e« be oriented simple closed curves and
an arc on Fj, as shown in Fig. 3.1. Then we have {ea*er'} =2,2,, {eb*ez;'}
=22, and {esc*es'} =225, in =, (F,, p), where {c} denotes the element of
z,(Fs, p) represented by a p-based loop ¢. Note that N(a* Ub*) is an orientable
surface of genus 1 and F—N(a* Ub*) is a Mobius band having ¢* as a center-
line.

For every essential simple closed curve ¢ on Fj, there exists a homeomor-
phism p from F; onto itself which takes ¢ onto either ¢*, ¢;, a*, ON(c*) or ON(c,).
We say that ¢ is of type I, IL, III, IV or V, according as p(c) coincides with c*,
¢, a*, ON(c*) or ON(c,).

Since an autohomeomorphism of N(a* Ub*) can be extended to Fj, there
exists a homomorphism from the homeotopy group J(N(a* Ub*)) of N(a* U b*)
into J{(F,). According to [2], the homomorphism ‘is an isomorphism. More
presisely,

Proposition 3.1. Let GL(2, Z) he the group of all invertible matices over
Z. Then GL(2, Z) is isomorphic to J(F;) by an isomorphism which maps each

. [An Gz . .
matrix [ to an isotopy class of an autohomeomorphism p such that pa*~ao,a™*
O Uy

+a,b* and pb* ~a,a*+ob* on Fy.

It follows from the above proposition that every simple closed curve of
type I on F; is ambient isotopic to ¢* or —c* on F,.

By af, b¥, af and b¥, we denote simple closed curves on T, such that 77!
(a¥)=af UbY, z7}(b*)=b} Ual, n*({81ale1'})=2.2, and #*({g,b1e7'}) = 2,2, [Fig.

Fig. 3.1

Then the homology classes [af], [6¥], [af] and [b¥] form a basis of H(T),).
The lifting of an autohomeomorphism p of F,; whose isotopy class corresponds to
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&,_, with coefficients —I,(2e, B), -+, —Ir-,(2a, B). Then we can show that
each af, 1<u<\—1, bounds a disk in the result @, of a Dehn surgery on L,.

g
—I,(20,8) —I,2a,R)

—I,2at, )
Fig. 2.3

Since @,—M(F,) is a solid torus of genus A—1, €, is homeomorphic to the
union of M(F,) and V,_, such that 8D,=a}, 1 <p<A—1. From the definition
of the sequence {/.(2ct, B)} and Lemma 2.2, it follows that €, is homeomorphic
to L(2a, B). 'The proof is completed.

Corollary 2.3. If A=3, there exists a homeomorphism ) from L(2a, [3)
onto a Seifert fiber space such that each +rc,, \rc, and rcs is a fiber.

Proof. Let L, L' and L” be links with coefficients in .S3, as shown in Fig. 2.4.

kl A J k‘ k” ,C k”
Cos @ @ f@ @JO
2 =1 2 p—1 2 2m— 2p,—3
~2m+5 —2/tz+5 —2m+5 —2p,+5
L L’ L"
Fig. 2.4

The result of a Dehn surgery on each L, L’ and L” is denoted by @, @' and Q”.
For 1<u <5 and 1<v<3, each N,, N/ and N,  denotes a solid torus by which
we have replaced each N(k.), N(k.) and N(k;'). Then, using the method in
[15], we can show that @ is homeomorphic to @’ by a homeomorphism which
takes each N, onto N/. Furthermore there exists a homeomorphism + from
Q’ onto Q" such that N{=N{. Nj{=N7 and +N{=Nj3. Since we may
consider @” as a Seifert fiber space having a core of each N}/ as a fiber, the proof
is completed.

Let p,=I,2a, B)+1 and p,=I,(2, B)+1. Then, since N(2a, 8) is the
minimum number of genus of non-orientable surfaces which can be embedded
in L(2a, B), by [3], we have

Proposition 2.4. The minimum number N\ of the genus of non-orientable
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Theorem 2.1.' Let A=N(2a, B) and let ai, ---, a;_, be mutually disjoint
simple closed curves on T'y_, with the following properties:

A-1
) an(bud)=a.nb.=a.Nd..
2) If xl, = duald;?, then x}, = x,y;sC>P

Let V,_, be a solid torus of genus N—1 with meridian disks D,, +--,D,_,. Then
the union of M(F,) and V,_, such that M(F\)NV,_,=Ty_,=0V,_, and 0D,=
ap, 1< p<N—1, is homeomorphic to L(2a, 3).

Before we state the proof, we summarize notations about a surgery on
links in the 3-sphere S*[15]. A link L with surgery coefficients is a finite, dis-
joint collection of oriented simple closed curves &y, -+, k, in S* with ratio v,/3,
associated with each component k. Let [, and m, be a longitude and a meridian
of N(ky); that is, lu~k, in N(ku), [u~0 in S2— N (kw) and the linking number of m,
with k, is 1. Let @ be the 3-manifold obtained by replacing each N(k,) by a
solid torus N, with a meridian mj, so that mj~vum,-+3.l. on ON(k.). Then
we call @ the result of a Dehn surgery on L.

The following lemma is proved in [6].

Lemma 2.2. Let v, -+, Y, be integers and let L, be a link with surgery
coefficients as shown in Fig. 2.2. Then the result of a Dehn surgery on L, is homeo-
morphic to L(7, 8), where

1 LER 7S Yy
v, Fig. 2.2

V2

Proof of Theorem 2.1. Let L, be a trivial link with the components &, +--,
ky such that the coefficient associated with each &, is 2. Then, if we perform a
Dehn surgery on L,, a longitude /. of each N(k,) bounds a Mo6bius band M, in a
solid torus N, by which we have replaced N(k.). In S*—N(k,U - Uk,), there
exists a A-punctured sphere S such that 8S=/,U--- Ul,.

By @, we denote the result of a Dehn surgery on L. Assume that M(F,)
is embedded in @, so that F\=S UM, U - UM,, M(F\)=N(S)UN,U - UN,,
cu is a centerline of M, and 2¢y~I, in N, 1<pu<A. Then V=Q1—ZI°I(F>‘) isa
solid torus of genus A—1.

For 1<p<a—1, we take oriented simple closed curves &, ---,dr_, in V
which is parallel to a,. Let L, be a link obtained from L, by adding 4, -,

t J.S. Birman and J.H, Rubinstein have obtained independently the essentially same result
as Theorem 2.1, using a different method.
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itself given by (exp 0, t)—(exp i(®@+=(t+1)), f) induces a homeomorphism
7w of N(Cu), fixed on its boundary. Then 7, U.:-UT, can be extended to a
homeomorphism 7 of T)_, so that TIT,\_I—N(EU--'UE,‘) is the identity.
We choose orientations so that 7(au)~au+b, on T,_,. Clearly 7+t is an
orientation reversing, fixed point free involution on 7%_,. If we denote the
orbit space and the projection of 7+¢ by F, and =, respectively, then z: Ty_,— F)

is an orientable double cover of a non-orientable surface of genus A. Let p==p
and c,=nCu. We take oriented arcs e, :+,e, from p to a point in ¢, on F, as
in Fig. 2.1.

Let 24, p=1, -+, , be the element of z,(Fy, p) represented by eucuez'. By . and
Yu, p=1,+-,Ax—1, we denote the element of z,(Ty_,,p) represented by dua.d;*
and dubud;’, respectively. Then we can show that z%(x.)=2u.,25" and z¥(y.)=
zuzf...zi_lzﬂ_

Let (2at, B) be a pair of relatively prime integers such that af is positive and
[B|<2|al|. For each pair (2a, B), we define the function N(2a, B) recur-
sively by

N(2,1)=N(—2, —1)=1 and N(2a, B)=N(2a’', B')+1, where a'=a—20,
B'=p (mod 2|a’|), a’B’ is positive and |B'|<2|a’].

By [3], we can show that N(2«, ) is the minimum number of non-orientable
surfaces which can be embedded in L(2a, B). Furthermore we will define the
sequence {I.(2a, B), 1<p<N(2a, B)—1} of integers. Since N(2, 1)=N(—2,
—1)=1, {I.(2, 1)} and {I.(—2, —1)} are defined to be (). Assume that we have
defined the sequence {I.(2a’, B')}. We define {/.(2a, B)} as follows:

I(2a', B") £ 1<p<NQa, B)—2,

I.2a, B) =
2, 6) = |, if 1o = NQat, £)—1,
where I denotes the integer such that =8+ 2q'I.

Note that, if we make use of the fact that |B’|<2|a’|, it follows that
I.(2a, B)=%=—1 for each w.
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A surface F properly embedded in a 3-manifold @ is said to be compressible
in @, if

1) there exists a disk D such that DN F=0D and 9D is essential on F, or

2) there exists a 3-ball E in @ such that 0E=F.

We say that F is incompressible in @, if F is not compressible.

Let ¥V and V"’ be a solid torus of genus 1. Let m and m’ be a meridian of V/
and V’. Then a lens space L(a, B) of type (a, ) is the 3-manifold obtained by
gluing ¥V’ and V' via a homeomorphism +» from 97" onto 9V such that ym’'~al
+Bmon dV.

We call the connected sum of A-copies of a projective plane a non-orientable
surface of genus A.

R. Myers [Notices, vol. 25, 1978, A-607] and B.D. Evans [Notices, vol. 26,
1979, A-308] announced that they classifyed the fixed point free involutions on
Seifert fiber spaces which have finite fundamental group. The author wish to
thank the refree for bringing this to his attention.

The author would like to express his gratitude to Prof. J.S. Birman for
helpful suggestions, and to Prof. F. Hosokawa and Prof. S. Suzuki for valuable
discussions during the revision.

2. One-sided Heegaard splitting of L(2a, 8). Let (2a, 8) be a pair of
integers such that a@ is positive and |B|<2|a|. According to [3], each
L(2ct, B) contains a non-orientable surface. Let A be the minimum number
of genus of non-orientable surfaces which can be embedded in L(2a, 5). By
F, we denote a non-orientable surface of genus A embedded in L(2a, B). If
A>2 and F, is compressible, there exists a non-orientable surface of genus
smaller than A. If A=2, F, is incompressible by [1], [12] and [7]. Hence
F, is incompressible in L(2a, B). It follows from [4] that L2, B)-N(F,) is
homeomorphic to a solid terus of genus A—1. Thus we can construct L(2q,
B) by gluing a regular neighbourhood N(F),) of F, and a solid torus V,_, of
genus A—1.

Let z: T_,— F, be an orientable double covering of F,. We will consider
N(F,) as the mapping cylinder of z. For a subcomplex X of F,, we denote
the mapping cylinder of z |z ™' X by M(X).

First we will give a description of F,, T,_, and =. Let T,_; be a closed
orientable surface of genus A—1 represented in R3? in such a way that it is
invariant under the reflection about the xy plane as illustrated in Fig. 2.1. By
D, ay, -+, ax_1,byy - bx_1, €, ++, € and d,, -+, d,_,, we denote a base point, oriented
simple closed curves and arcs, as in Fig. 2.1.

We define a homeomorphism ¢: T\_,—=T,_;, by ¢(x, y, 2)=(x, y, —=2).
Suppose that each N(¢y) is of the form S'X[—1, 1] such that ¢(x, £)=(x, —1),
where x&S' and t€[—1, 1]. The homeomorphism of S'x[—1, 1] onto
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1. Introduction. Let F be a closed non-orientable surface in the 3-
manifold M such that the exterior of a regular neighbourhood of F is homeo-
morphic to a solid torus. Then the pair (M, F) is called a one-sided Heegaard
splitting of M [13]. 'This technique is useful for studying 3-manifolds which
are not sufficiently large, for example [1], [7], [12], [13] and [14]. In this paper,
we will give the minimum one-sided Heegaard splitting of lens spaces [Theo-
rem 2.1].

An involution ¢ on a space X is a homeomorphism from X onto itself such
that ¢? is the identity on X. Two involutions ¢ and ¢’ are said to be equi-
valent to each other, if there exists an autohomeomorphism +» of X such that
p=+ppy"t. By [9], [10], [11] and [12], we can classify the fixed point
free involutions on lens spaces L(1, 0), L(2, 1) and L(4e, 2aa—1) up to the equi-
valence. As an application of Theorem 2.1, we consider the fixed point free
involutions on a certain family of lens spaces and will obtain

Theorem 5.1. Let u, and u, be integers such that p,p,+0 and pp,+ —2.
Then the orbit space of a fixed point free involution on L(8u,puy—2, 4ppy—2p,—1)
is homeomorphic to a Seifert fiber space.

In §2, we will give the minimum one-sided Heegaard splitting of L(2a, B).
Using the lemmas proved in §3, we will find and invariant subspace under an
involution on L(8u,u;—2, 4pp;—2p,—1) [Lemma 4.1]. Finally the proof of
Theorem 5.1 will be completed in §5.

Throughout this paper we work in the piecewise linear category. For a
subcomplex X of a complex Y, the regular neighbourhood of X in Y will de-
noted by N(X). The boundary, the interior and the closure of a manifold @
will be denoted by 0@, Qo and @, respectively.

Two submanifolds X and Y of @ are said to be parallel, if there exists an
embedding r: X X I—@ such that /(X x {0})=X and 4~ (8(XxI)—Xx {0})
=Y, where I denotes the unit interval [1, 0].
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@) (-1 —m 0 1) ([al]
[bﬁ] . 0 0 -1 —u ,”71]
@ |0 —1 1 p| |[e]
B1) (1 w0 0 ) ([b]),

Using the above equation, we can compute the matrix associated with p* with

respect to {[af], [b,], [a3], [,]}-

4. Invariant subspace. The purpose of this section is to prove

Lemma 4.1. Every involution of L(2ct, B) is equivalent t¢ ¢ which has
one of the following properties:

(1) @F;NF, consists of three curves of type II.

(2) @F;NF; consists of a curve of type 1.

Assertion A. Let F be an incompressible surface in L(2a, B) such that F N
F, consists of simple closed curves. Then each component of F NV, is orientable.

Proof. Suppose that FNV, is non-orientable. Let L(2a, 8) denote
the orientable double covering of L(2a, 8). Then L(2a, B) can be considered
as the union of two copies of ¥, and the double covering of M(F;). Hence
the lifting F'; of F, is orientable, but the lifting F of F is non-orientable. Since
F is isotptic to F; in L(2a, B) by [13], F is isotopic to F; in L(2a, B). This
contradicts the fact that F'; is orientable.

Let @, be an involution of L(2a, B). Then, by [10], we may suppose that
@l 1s transverse with respect to Fj, i.e., M(c)C@,F; for each curve ¢ in
@3N F;. It follows from [12] that ¢, is equivalent to ¢, such that ¢, F;NF,
consists of essential simple closed curves on ¢ F; and F;.

Using Assertion A, we can divide our consideration into the following
three cases:

Case 1: @, F;NF, contains three curves of type II on ¢,F,.
Case 2: @ F;N F; contains a curve of type I on ¢, F;.
Case 3: @, F; N F; contains precisely one curve of type II on ¢,F,.

In the rest of this section we will give the proof of Lemma 4.1 for each case.

Case 1. In this case each curve of @ F;NF, is of either type II or type V.
Suppose that @, F; N F; contains a curve of type V on ¢, F;. Let ¢ be a simple
closed curve of type V on ¢, F; which bounds a Mobius band B on ¢, F, such
that BN F; consists of ¢ and a centerline ¢’ of B. Then ¢’ is of type II on
o F,. On F;, ¢ is two-sided, so ¢ is of type V. Hence ¢ also bounds a
Mobius band B’ on F;.

We now show that B’ contains ¢’. Since ¢’ and ¢ are of type II and V on
F;, respectively, there exists an autohomeomorphism p of F; such that pc’'=¢,
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oy o) . .
[ " :j induces an automorphism p* such that
oy

p*lat] ay ap, 0 0 [a¥]
PLoT]| |om an O O] [[Bf]
Platl| [0 0 an au| [[af]
pH[b%] 0 0 ap an [6%]
or
plat] 0 0 ap, ay [a¥]
o] 0 0 ax ax [6¥]
Pt [aik] ay ap 0 0 [a=2k]
#1581 law w0 0) \[p#1) in H(TY.

We have an another basis {[a1], [6,], [@5], [0,]} of H\(T,) defined in §2.

579

In

this paper it is convenient to use the basis {[ai], [], [a5], [0.]}. We now find
the matrix associated with p* with respect to {[a1], [b], [a2], [b.]}.

Lemma 3.2. Let p be a homeomorphism from F; onto itself whose isotopy

clas corresponds to [an a12] . Then
Qo Az
p*[ai] ay 0y —Qp— W0y Oy Bollyot 110l [a1]
P[] . 0 (2%7] 0 0z [51]
p*[a?] B (23] Kolliz+ 11Ol Oz — o0l —Olyy+ Ptz [a3]
p*[b2] 0 —xy 0 ap [6:]
or
p*lail (—ay  —m@n— iy —dp Oy POt Ay [a1]
p*[b:] . 0 (247 0 — 0z (5]
p*[at] B —Oly Wplly— O+ — Oy — WOty — POl [a5]
p*[62] 0 —xp 0 an [621),

where p,=I,(2a, B)+1 and w=D2a, B)+1.

Proof. First we will find the matrix associated with the change of bases.
Since z(x,)=2,27", 7*(y))=21, 7¥(x,)=2522" and #¥(y,)==2,2i%;, we can show
that z,2,==*y7'%1'y,) and 22,=n%(x3'yz %, y.071y1"). Hence we have af~a,—
b,+b, and bf~—a,—b,. The covering transformation of 7 takes af and b¥
onto b¥ and af, respectively. Thus, by using the fact that 272,22, =z%(x,y,)
and 27'2,2,% =7} (y7%%1 y,x0%,y,), we obtain af~—b,+a,+b, and bf~a,+b,.
Since ai~a,—(u,—1)b, and aj~a,—(u,—1)b,,
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Jx: [S(E), S(E')]e = [S(E), Va(E'®@A" )]s

between G-homotopy sets. We are also interested in this transformation j,.
In the non-equivariant case we already know some facts about j,. Clearly

S 1=S(A") where d=1if A=R, d=2if A=C, and d=4 if A=Q. The map
J: 8" = S(A") = VA(A"@A™ ) = V(AT
defined above induces a group homomorphism
Jat m(S™T) = m(Va(Am*"7Y)

between the i-th homotopy groups for an integer :>0. We collect known
results about the homomorphism j, in the following:

Proposition 1 (See for example [2; Chapter 7]). (a) jy is an isomorphism
in each case of the followings:

(i) 0<i<dn—2,

(iif) A=R, and i=n—1 1s even,

(iv) A=Cor Q, and i=dn—1.
Therefore
0  csae (ii)

n;(Vﬁ(AM+”_1)) = { // case (iii) or (IV)

(b) If A=R, m>2, and i=n—1 is odd, then j, is an epimorphism and
m(Va(A" )= Z|2Z .

To state our result in the equivariant case, let us define some notations.
For any closed subgroup H of G, N(H) denotes the normalizer of H in G, and
(H) denotes the conjugacy class of Hin G. Let X be a G-space. For any xe X,
G, denotes the isotropy subgroup at x. The conjugacy class of an isotropy
subgroup is called an orbit type. We put

X# = {xeX|HCG,},
X, = {x€X|H=G}, and
X = xeX|(H) = (G} .
For a representation E of G, IM(E) denotes the set of orbit types appearing on

S(E). Choose a representative of each element of MM(E), and denote by I, (E)
‘the set of those representatives. For any H &, (E) there is a transformation

ry: [S(E), S(E')]c — [S(E™), S(E")]

restricting to the fixed point set by H, where [, ] denotes the non-equivariant
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1. Introduction and results

Throughout this paper G denotes a compact Lie group, and A denotes one
of the real numbers R, the complex numbers C and the quaternions Q. Let
E be a representation of G over A. All representations considered in this
paper are orthogonal if A=R, unitary if A =C, and symplectic if A=Q. For
a positive integer m <dim, E, the Stiefel manifold V ;;(E) consists of all orthonor-
mal m-frames in E, i.e.,

thr\x(E) = {('vl’ ""vm)lviEE’ Il‘Z),“ =1 for 1= 19 see,m,
and o; | v; if i=j}.

If m=1, then V}(E) is the unit sphere S(E) in E. For any g&G and any ortho-
normal m-frame (v,, **+, v,,) in E, (gv,, +*-, gv,) is also an orthonormal m-frame
in E. This induces a smooth G-action on V,(E).

Let E’ be another representation of G over A. We are interested in the
set of G-homotopy classes of G-maps from S(E)to Va(E'), [S(E), Va(E)]s. If
m=1, this set is the set of G-homotopy classes of G-maps from sphere to sphere,
[S(E), S(E")]¢, which was studied in Hauschild [1], Rubinsztein [3] and others.
(I am grateful to the referee who informed me that there was a gap in the proof
of Rubinsztein’s main theorem [3; Theorem 7.2]. This information leads to
an improvement of the presentation of this paper.)

For any positive integer #, let

A" = A@®--®BA  (nsummands)

be a representation with trivial G-action and with the standard inner product.

We define a map
Jj: S(E)—=>Va(E'@A™Y)

by j(v)=(v, &, ***, e,-,) for v&S(E’) and the canonical orthonormal (m—1)-
frame (e, **+, €,,_;) in A", Then j is a G-embedding, and induces a transfor-
mation
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curve k, on @F;, which is ambient isotopic to ¢; in L(2a, B). Each kNc*
and k, Ng* consists of a point and kN f*=@. Thus, since c* is g-invariant,
@f*~+b* and pg¥*~Fa* in F;, we can show that k,= @k, is homotopic to
¢, in F,. Therefore a link k, Uk, is ambient isotopic to ¢, U¢; in L(2a, B), and
we have proved Theorem 5.1.
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Let f* and g* denote simple closed curves on G which is parallel to f and g,
respectively. Since each f* and g* is of type III on GC@F,, there exists a

matrix [““ “Z]e GL(2, Z) such that

Oy O
(1) pa*~on, f*+apg* and @b*~ay f*+ayg* in @F;.

The union @F; U F; separates L(2¢, B) into solid tori U{ and Uj such that
UinvV,=U,, u=1,2. Let 31 and 132 be simple closed curves obtained by push-
ing b, int U, and b, into U,, respectively. Since G is ambient isotopic to Gj,
{[f*1, [6,]} is a basis of H,(U?) and {[g*], [b.]} is a basis of H,(U%). It can
be shown that

( 2) f*NIJ"lél in Ué and g*Nll‘ZgZ in U{ .
By the argument in the proof of Lemma 3.2, we have

Sc(a¥, b) = —1, Se(af, a5) = 1, Se(b¥, b)) = 0, Sc(b¥, a3) = u,,
Se(a¥,ai) = —1, Sc(af, b;) = 1, Sc(b¥,a]) = p, and Sc(b¥, b,) = 0.
From this and the fact that z 'a*=a} Ub¥ and = b*=>b¥ U a¥, it follows that
(3) a*~—f*+b, and b*~— p,b, in U?,
(4) a*~g*—b, and b*~— b, in U}
In Uj, b*+b*~0 and py(a*+4f*)+b*~0, by (2) and (3). Using (1), (3), (4)
and the fact that @U{= U}, we can show that
(5) pb*+pg* ~oty f*+ ang* —Eana*+Ea,b*
N(a22+5a11)g*‘l‘(ﬂqazl_ean_sl‘lazx)b*"‘o
and
(6) pA pa*+@f*)+pb*
N”’Z(allf*_l_alzg*_l_eazza*_ealzb*)+a21f*+a22g*

~(8M2a12+8#1M2d22+ Moo+ ll’laZI)b* +(_£/L2a12+ #za12+a22)g*
~0, in U},

where E=t;,0p— 01200,

It is not difficult to show that (5) and (6) does not hold at the same time except
for the case that €=1, a;=a,=0, a,a,;=—1 and p,=up,. Thus we obtain
@f*¥~-+b* and pg*~Fa* on F;.

Let k==G%N¢; [Fig. 5.2]. Then g intersects k& in a single point and kN
f=0. Let k* be an arc on G which is parallel to k. Joining the end points
of k* by a vertical line in @F; N M(F,;), we obtain a one-sided simple closed
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can show that @ maps each fiber onto a fiber. Therefore the orbit space of
@ is also a Seifert fiber space.

Case 2. By Corollary 2.3, we may consider L(2t, B)—N(c,Uc;) as a Sei-
fert fiber space. Hence, in order to complete the proof, it suffices to show
that there exists a g-invariant link k Uk, in L(2«, B) which is ambient isoto-
pic to ¢, Uc;,.

Let G=V,N@F,;. Then we have 0G=r"'c*. Cutting T, along 9G, we
obtain G, and G, where G, contains af and bf, u=1, 2. Furthermore G
separates V, into U, and U, such that 0U,=G.UG, p=1, 2. Let ¢ be a
simple closed curve on T}, as shown in Fig. 5.2. Then ¢ bound a disk D in V,.
Since #~'c*N 3D consists of four points, we can deform D so that it inter-
sects G in two arcs. Each DN G, separates G into a disk G/, and an annulus
G.. The union G{UDUG} is an orientable surface of genus 1. See Fig. 5.2.
Let G; be a surface obtained by pushing G{ UD UG} into V, so that G,N T,=
0G;.

First we will show that G is ambient isotopic to G; in V,. Let V' and
V" be solid tori in V, such that 0V'=G{UDUGY and oV"’"=GYUDUG}.
Suppose that U, N D consists of two disks A; and A,. Then G'=GNV’ is
a disk and G"=GNV” is an annulus. Obviously, G’ is parallel to G{. Ac-
cording to [16], G” is parrallel to GY UA,U A, or G§,UA,, where A,="((D—
(ALUAY)). If G” is parallel to GY UA,UA,, G is parallel to G,. If G’ is
parallel to G;U A,, G is ambient isotopic to G;. Similarly, we can show that
G is parallel to G, or is ambient isotopic to G,, for the case that U,UD is dis-
connected.

Suppose that G is parallel to G;. Then G is parallel to G,. Since each
0D, N0G, v=1, 2, consists of |u,| points, G, is parrallel to G,, if and only
if |pypu,|=1. Thus G is ambient isotopic to G,.

We take oriented simple closed curves f and g on G{ U DU G} so that each f
and g is a centerline of an annulus GLUD, p=1, 2, and f N g is a single point, as
shown in Fig. 5.2.

fnD
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Fig. 5.1

For p=1, 2,1, separates D, into two disks V,, and V,,. Among V,;,UAU V,
u, v=1, 2, there exists at least one disk D{* such that 9D{* is not homologous
to zero and 0D, in T;. Deforming Di* slightly, we obtain a system {D{**, D3}
of V, such that GN(D**UD;j) has fewer components than G N (D]UDj).
Hence we can construct a system {D7Y, D7} of meridian disks of V, such
that at least one innermost curve b of G (DY UDY) in DY UDY connects two
points in distinct components of 9G.

Assume that b DY. Let A, beadisks in DY such that A;NG=b and ¢=

GAI—Z is contained in 8D7. Furthermore we assume that ¢CG,. Cutting G
and G, along b and ¢, we obtain annuli 4 and A4’. It can be shown easily that
A is incompressible. Applying Lemma 5.2 to 4, we can show that the union
of A, A’ and two copies Af and A} of A, bounds a solid torus U of genus 1.
Thus G UG, bounds a solid torus U’ of genus 2.

Let A, be a meridian disk of U such that 0A,CAUA’. Then A, and A,
form a system of meridian disks of U’. Note that each A;NG and A NG, is
a single arc connecting distinct components k, and k, of 0G=0G,.

Suppose that G is not parallel to G;. Then AUAJUAY is not parallel
to A’. Thus, by Lemma 5.2, we have |Sc(k;, 0A,)| >1, where k,=0G—(k, Uk,)
and Sc(k;, 0A,) denotes the intersection number of k; with 0A, in GUG,. Since
k, and k; generate H\(G)), the homomorphism ¥ from H\(G,) into H(U’) in-
duced by the inclusion is not onto.

From Lemma 3.1 and the fact that ¢~b, and ¢;~—b,, it follows that

. . [247)
there exists a matrix

] in GL(2, Z) such that k~aub—ayb, and ky~
X1 Oy

otpb—ob, on T, Since apjamp—oayoy=-41, the inclusion from G, into V,
induces an isomorphism from H(G) onto H\(V,). This contradicts the fact
that ¥ is not onto. Thus G is paralel to G,.

Since @M(F,)UM(F;) is @-invariant, ¢ takes U”="(U'—@M(F;)) onto
U” or ~(V,—(@M(F;)UU")). Using the fact that a solid torus of genus 2
does not admit a free involution, we have U”="(V,—(@M(F;) U U")). Then
G is parallel to G,.

From this, it follows that L(2a, B)—N(¢F3DF3) is homeomorphic to
the product of a 2-punctured disk and a circle. Hence we may consider L(2a,
/3) as a Seifert fiber space having each curve of @F;NF; as a fiber. By [5], we
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If we assume that /,~é&l, in V,, for &=1 or —1, one of the following systems of
equations holds.

Ap—Emor; =0, {azz‘|“5(lb1a21_azz) =0,
— 0ty — &0ty — pattz) = 0. —an+Eustn =0.

Each of the above systems does not hold except for €é=1 and p,u,=—2. Hence
the proof is completed.

By making use of Assertion C and the same method as in the proof for
Case 1, we can show that ¢, is equivalent to ¢, such that @,F;N F, does not
contain a curve of type V. Let B be a Mobius band in @,F; such that B in-
tersects F; in 0B and a centerline of B. Then 0B is of type III on F,. If
2 —2, this contradicts Assertion C.

5. Orbit space. In this section we will complete the proof of the follow-
ing main theorem.

Theorem 5.1. Let w, and p, be integers such that p,pu,+0 and w pu,+—2.
Then the orbit space of a fixed point free involution on L(8u pu,—2, 4pyp,—2p,—1)
is homeomorphic to a Seifert fiber space.

By Lemma 4.1, we can divide the proof into the following two cases:

Case 1: @F;N F; consists of three curves of type II on @F; and F;.
Case 2: @F;N F;=c*.

Case 1. 'To prove Theorem 5.1 for Case 1, we need the following lemma
which can be shown easily.

Lemma 5.2. Let A be an annulus properly embedded in V, such that A is
incompressible and 0A bounds an annulus A' on T,. Then AUA’ bounds a
solid torus U in V,. Furthermore A is parallel to A', if and only if the inclusion
from A’ into U induces an isomorphism from H,(A") onto H\(U).

Let G, and G, be 2-punctured disks obtained by cutting T}, along @F;N
T,. First we will show that G=@F, NV, is parallel to G, and G,. Each G,
G, and G, is incompressible in V,. Hence we can deform D, and D, so that
G N (D,UD,) consists of arcs, where D, and D, are meridian disks of V,, as in
§2. Since V, is irreducible, we can construct a system {D}, D3} of meridian
disks of ¥V, such that each curve G N (D1 U Dj) is not parallel to G in G.

From the fact that G is incompressible, it follows that GND.L+@, for
w=1, 2. Suppose that each of the innermost curves of G (D{UD3) on DjU
Dj connects two points in the same component of 8G. Then there exists a
disk A on G such that each ,=AND{ and ,=ANDj is an arc in dA and
0A—°(AU(DiUD;3)coG.





