surfaces which can be embedded in $L(2 \alpha, \beta)$, is 3 , if and only if $\alpha=4 \mu_{1} \mu_{2}-1$ and $\beta=4 \mu_{1} \mu_{2}-2 \mu_{1}-1$.
3. System of curves on \boldsymbol{F}_{3}. From now on we restrict ourselves to the case that $\lambda=3$. Let a^{*}, b^{*}, c^{*} and $e_{c^{*}}$ be oriented simple closed curves and an arc on F_{3}, as shown in Fig. 3.1. Then we have $\left\{e_{1} a^{*} e_{1}^{-1}\right\}=z_{1} z_{2},\left\{e_{2} b^{*} e_{2}^{-1}\right\}$ $=z_{2} z_{3}$ and $\left\{e_{c} c^{*} e_{c *}^{-1}\right\}=z_{1} z_{2} z_{3}$ in $\pi_{1}\left(F_{3}, p\right)$, where $\{c\}$ denotes the element of $\pi_{1}\left(F_{3}, p\right)$ represented by a p-based loop c. Note that $N\left(a^{*} \cup b^{*}\right)$ is an orientable surface of genus 1 and $F-\stackrel{N}{ }\left(a^{*} \cup b^{*}\right)$ is a Möbius band having c^{*} as a centerline.

For every essential simple closed curve c on F_{3}, there exists a homeomorphism ρ from F_{3} onto itself which takes c onto either $c^{*}, c_{1}, a^{*}, \partial N\left(c^{*}\right)$ or $\partial N\left(c_{1}\right)$. We say that c is of type I, II, III, IV or V, according as $\rho(c)$ coincides with c^{*}, $c_{1}, a^{*}, \partial N\left(c^{*}\right)$ or $\partial N\left(c_{1}\right)$.

Since an autohomeomorphism of $N\left(a^{*} \cup b^{*}\right)$ can be extended to F_{3}, there exists a homomorphism from the homeotopy group $\mathcal{H}\left(N\left(a^{*} \cup b^{*}\right)\right)$ of $N\left(a^{*} \cup b^{*}\right)$ into $\mathscr{H}\left(F_{3}\right)$. According to [2], the homomorphism is an isomorphism. More presisely,

Proposition 3.1. Let $G L(2, Z)$ be the group of all invertible matices over Z. Then $G L(2, Z)$ is isomorphic to $\mathcal{H}\left(F_{3}\right)$ by an isomorphism which maps each matrix $\left(\begin{array}{ll}\alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22}\end{array}\right)$ to an isotopy class of an autohomeomorphism ρ such that $\rho a^{*} \sim \alpha_{11} a^{*}$ $+\alpha_{12} b^{*}$ and $\rho b^{*} \sim \alpha_{21} a^{*}+\alpha_{22} b^{*}$ on F_{3}.

It follows from the above proposition that every simple closed curve of type I on F_{3} is ambient isotopic to c^{*} or $-c^{*}$ on F_{3}.

By $a_{1}^{*}, b_{1}^{*}, a_{2}^{*}$ and b_{2}^{*}, we denote simple closed curves on T_{2} such that π^{-1} $\left(a^{*}\right)=a_{1}^{*} \cup b_{2}^{*}, \pi^{-1}\left(b^{*}\right)=b_{1}^{*} \cup a_{2}^{*}, \pi^{*}\left(\left\{\tilde{1}_{1} a_{1}^{*} \tilde{e}_{1}^{-1}\right\}\right)=z_{1} z_{2}$ and $\pi^{*}\left(\left\{\tilde{e}_{2} b_{1}^{*} \tilde{e}_{2}^{-1}\right\}\right)=z_{2} z_{3}[$ Fig. 3.1].

Fig. 3.1
Then the homology classes $\left[a_{1}^{*}\right],\left[b_{1}^{*}\right],\left[a_{2}^{*}\right]$ and $\left[b_{2}^{*}\right]$ form a basis of $H_{1}\left(T_{2}\right)$. The lifting of an autohomeomorphism ρ of F_{3} whose isotopy class corresponds to
$\hat{a}_{\lambda-1}$ with coefficients $-I_{1}(2 \alpha, \beta), \cdots,-I_{\lambda-1}(2 \alpha, \beta)$. Then we can show that each $a_{\mu}^{\prime}, 1 \leq \mu \leq \lambda-1$, bounds a disk in the result Q_{2} of a Dehn surgery on L_{2}.

Fig. 2.3
Since $Q_{2}-M\left(F_{\lambda}\right)$ is a solid torus of genus $\lambda-1, Q_{2}$ is homeomorphic to the union of $M\left(F_{\lambda}\right)$ and $V_{\lambda-1}$ such that $\partial D_{\mu}=a_{\mu}^{\prime}, 1 \leq \mu \leq \lambda-1$. From the definition of the sequence $\left\{I_{\mu}(2 \alpha, \beta)\right\}$ and Lemma 2.2, it follows that Q_{2} is homeomorphic to $L(2 \alpha, \beta)$. The proof is completed.

Corollary 2.3. If $\lambda=3$, there exists a homeomorphism ψ from $L(2 \alpha, \beta)$ onto a Seifert fiber space such that each $\psi c_{1}, \psi c_{2}$ and ψc_{3} is a fiber.

Proof. Let L, L^{\prime} and $L^{\prime \prime}$ be links with coefficients in S^{3}, as shown in Fig. 2.4.

L

\dot{L}^{\prime}

Fig. 2.4
The result of a Dehn surgery on each L, L^{\prime} and $L^{\prime \prime}$ is denoted by Q, Q^{\prime} and $Q^{\prime \prime}$. For $1 \leq \mu \leq 5$ and $1 \leq \nu \leq 3$, each $N_{\mu}, N_{\mu}^{\prime}$ and $N_{\nu}^{\prime \prime}$ denotes a solid torus by which we have replaced each $N\left(k_{\mu}\right), N\left(k_{\mu}^{\prime}\right)$ and $N\left(k_{\nu}^{\prime \prime}\right)$. Then, using the method in [15], we can show that Q is homeomorphic to Q^{\prime} by a homeomorphism which takes each N_{μ} onto N_{μ}^{\prime}. Furthermore there exists a homeomorphism ψ from Q^{\prime} onto $Q^{\prime \prime}$ such that $\psi N_{1}^{\prime}=N_{1}^{\prime \prime} . \psi N_{3}^{\prime}=N_{2}^{\prime \prime}$ and $\psi N_{5}^{\prime}=N_{3}^{\prime \prime}$. Since we may consider $Q^{\prime \prime}$ as a Seifert fiber space having a core of each $N_{\mu}^{\prime \prime}$ as a fiber, the proof is completed.

Let $\mu_{1}=I_{1}(2 \alpha, \beta)+1$ and $\mu_{2}=I_{2}(2 \alpha, \beta)+1$. Then, since $N(2 \alpha, \beta)$ is the minimum number of genus of non-orientable surfaces which can be embedded in $L(2 \alpha, \beta)$, by [3], we have

Proposition 2.4. The minimum number λ of the genus of non-orientable

Theorem 2.1. ${ }^{\dagger}$ Let $\lambda=N(2 \alpha, \beta)$ and let $a_{1}^{\prime}, \cdots, a_{\lambda-1}^{\prime}$ be mutually disjoint simple closed curves on $T_{\lambda-1}$ with the following properties:

1) $a_{\mu}^{\prime} \cap\left(\bigcup_{\nu=1}^{\lambda} b_{\nu} \cup d_{\nu}\right)=a_{\mu}^{\prime} \cap b_{\mu}=a_{\mu}^{\prime} \cap d_{\mu}$.
2) If $x_{\mu}^{\prime}=d_{\mu} a_{\mu}^{\prime} d_{\mu}^{-1}$, then $x_{\mu}^{\prime}=x_{\mu} y_{\mu}^{-I_{\mu}(2 a, \beta)}$.

Let $V_{\lambda-1}$ be a solid torus of genus $\lambda-1$ with meridian disks $D_{1}, \cdots, D_{\lambda-1}$. Then the union of $M\left(F_{\lambda}\right)$ and $V_{\lambda-1}$ such that $M\left(F_{\lambda}\right) \cap V_{\lambda-1}=T_{\lambda-1}=\partial V_{\lambda-1}$ and $\partial D_{\mu}=$ $a_{\mu}^{\prime}, 1 \leq \mu \leq \lambda-1$, is homeomorphic to $L(2 \alpha, \beta)$.

Before we state the proof, we summarize notations about a surgery on links in the 3 -sphere $S^{3}[15]$. A link L with surgery coefficients is a finite, disjoint collection of oriented simple closed curves k_{1}, \cdots, k_{ν} in S^{3} with ratio $\gamma_{\mu} / \delta_{\mu}$ associated with each component k_{μ}. Let l_{μ} and m_{μ} be a longitude and a meridian of $N\left(k_{\mu}\right)$; that is, $l_{\mu} \sim k_{\mu}$ in $N\left(k_{\mu}\right), l_{\mu} \sim 0$ in $S^{3}-\stackrel{N}{N}\left(k_{\mu}\right)$ and the linking number of m_{μ} with k_{μ} is 1 . Let Q be the 3 -manifold obtained by replacing each $N\left(k_{\mu}\right)$ by a solid torus N_{μ} with a meridian m_{μ}^{\prime}, so that $m_{\mu}^{\prime} \sim \gamma_{\mu} m_{\mu}+\delta_{\mu} l_{\mu}$ on $\partial N\left(k_{\mu}\right)$. Then we call Q the result of a Dehn surgery on L.

The following lemma is proved in [6].
Lemma 2.2. Let $\gamma_{1}, \cdots, \gamma_{\nu}$ be integers and let L_{0} be a link with surgery coefficients as shown in Fig. 2.2. Then the result of a Dehn surgery on L_{0} is homeomorphic to $L(\gamma, \delta)$, where

$$
\frac{\gamma}{\delta}=\gamma_{\nu}-\frac{1}{\gamma_{\nu-1}-\frac{1}{\ddots}} \begin{array}{r}
\gamma_{2}-\frac{1}{\gamma_{1}}
\end{array}
$$

Fig. 2.2

Proof of Theorem 2.1. Let L_{1} be a trivial link with the components k_{1}, \cdots, k_{λ} such that the coefficient associated with each k_{μ} is 2 . Then, if we perform a Dehn surgery on L_{1}, a longitude l_{μ} of each $N\left(k_{\mu}\right)$ bounds a Möbius band M_{μ} in a solid torus N_{μ} by which we have replaced $N\left(k_{\mu}\right)$. In $S^{3}-\stackrel{\circ}{N}\left(k_{1} \cup \cdots \cup k_{\lambda}\right)$, there exists a λ-punctured sphere S such that $\partial S=l_{1} \cup \cdots \cup l_{\lambda}$.

By Q_{1} we denote the result of a Dehn surgery on L_{1}. Assume that $M\left(F_{\lambda}\right)$ is embedded in Q_{1} so that $F_{\lambda}=S \cup M_{1} \cup \cdots \cup M_{\lambda}, M\left(F_{\lambda}\right)=N(S) \cup N_{1} \cup \cdots \cup N_{\lambda}$, c_{μ} is a centerline of M_{μ} and $2 c_{\mu} \sim l_{\mu}$ in $N_{\mu}, 1 \leq \mu \leq \lambda$. Then $V=Q_{1}-M\left(F_{\lambda}\right)$ is a solid torus of genus $\lambda-1$.

For $1 \leq \mu \leq \lambda-1$, we take oriented simple closed curves $\hat{a}_{1}, \cdots, \hat{a}_{\lambda-1}$ in \dot{V} which is parallel to a_{μ}. Let L_{2} be a link obtained from L_{2} by adding \hat{a}_{1}, \cdots,

[^0]itself given by $(\exp i \Theta, t) \rightarrow(\exp i(\Theta+\pi(t+1)), t)$ induces a homeomorphism τ_{μ} of $N\left(\widetilde{c}_{\mu}\right)$, fixed on its boundary. Then $\tau_{1} \cup \cdots \cup \tau_{\lambda}$ can be extended to a
 We choose orientations so that $\tau\left(a_{\mu}\right) \sim a_{\mu}+b_{\mu}$ on $T_{\lambda-1}$. Clearly $\tau \cdot \iota$ is an orientation reversing, fixed point free involution on $T_{\lambda-1}$. If we denote the orbit space and the projection of $\tau \cdot \iota$ by F_{λ} and π, respectively, then $\pi: T_{\lambda-1} \rightarrow F_{\lambda}$ is an orientable double cover of a non-orientable surface of genus λ. Let $p=\pi \tilde{p}$ and $c_{\mu}=\pi \tilde{c}_{\mu}$. We take oriented arcs $e_{1}, \cdots, e_{\lambda}$ from p to a point in c_{μ} on F_{λ}, as in Fig. 2.1.

Fig. 2.1
Let $z_{\mu}, \mu=1, \cdots, \lambda$, be the element of $\pi_{1}\left(F_{\lambda}, p\right)$ represented by $e_{\mu} c_{\mu} e_{\mu}^{-1}$. By x_{μ} and $y_{\mu}, \mu=1, \cdots, \lambda-1$, we denote the element of $\pi_{1}\left(T_{\lambda-1}, \tilde{p}\right)$ represented by $d_{\mu} a_{\mu} d_{\mu}^{-1}$ and $d_{\mu} b_{\mu} d_{\mu}^{-1}$, respectively. Then we can show that $\pi^{\sharp}\left(x_{\mu}\right)=z_{\mu_{+1}} z_{\mu}^{-1}$ and $\pi^{*}\left(y_{\mu}\right)=$ $z_{\mu} z_{1}^{2} \cdots z_{\mu-1}^{2} z_{\mu}$.

Let $(2 \alpha, \beta)$ be a pair of relatively prime integers such that $\alpha \beta$ is positive and $|\beta|<2|\alpha|$. For each pair $(2 \alpha, \beta)$, we define the function $N(2 \alpha, \beta)$ recursively by
$N(2,1)=N(-2,-1)=1$ and $N(2 \alpha, \beta)=N\left(2 \alpha^{\prime}, \beta^{\prime}\right)+1$, where $\alpha^{\prime}=\alpha-\beta$, $\beta^{\prime} \equiv \beta\left(\bmod 2\left|\alpha^{\prime}\right|\right), \alpha^{\prime} \beta^{\prime}$ is positive and $\left|\beta^{\prime}\right|<2\left|\alpha^{\prime}\right|$.

By [3], we can show that $N(2 \alpha, \beta)$ is the minimum number of non-orientable surfaces which can be embedded in $L(2 \alpha, \beta)$. Furthermore we will define the sequence $\left\{I_{\mu}(2 \alpha, \beta), 1 \leq \mu \leq N(2 \alpha, \beta)-1\right\}$ of integers. Since $N(2,1)=N(-2$, $-1)=1,\left\{I_{\mu}(2,1)\right\}$ and $\left\{I_{\mu}(-2,-1)\right\}$ are defined to be \emptyset. Assume that we have defined the sequence $\left\{I_{\mu}\left(2 \alpha^{\prime}, \beta^{\prime}\right)\right\}$. We define $\left\{I_{\mu}(2 \alpha, \beta)\right\}$ as follows:

$$
I_{\mu}(2 \alpha, \beta)= \begin{cases}I_{\mu}\left(2 \alpha^{\prime}, \beta^{\prime}\right) & \text { if } 1 \leq \mu \leq N(2 \alpha, \beta)-2 \\ I & \text { if } \mu=N(2 \alpha, \beta)-1\end{cases}
$$

where I denotes the integer such that $\beta=\beta^{\prime}+2 \alpha^{\prime} I$.
Note that, if we make use of the fact that $\left|\beta^{\prime}\right|<2\left|\alpha^{\prime}\right|$, it follows that $I_{\mu}(2 \alpha, \beta) \neq-1$ for each μ.

A surface F properly embedded in a 3 -manifold Q is said to be compressible in Q, if

1) there exists a disk D such that $D \cap F=\partial D$ and ∂D is essential on F, or
2) there exists a 3-ball E in Q such that $\partial E=F$.

We say that F is incompressible in Q, if F is not compressible.
Let V and V^{\prime} be a solid torus of genus 1. Let m and m^{\prime} be a meridian of V and V^{\prime}. Then a lens space $L(\alpha, \beta)$ of type (α, β) is the 3 -manifold obtained by gluing V^{\prime} and V via a homeomorphism ψ from ∂V^{\prime} onto ∂V such that $\psi m^{\prime} \sim \alpha l$ $+\beta m$ on ∂V.

We call the connected sum of λ-copies of a projective plane a non-orientable surface of genus λ.
R. Myers [Notices, vol. 25, 1978, A-607] and B.D. Evans [Notices, vol. 26, 1979, A-308] announced that they classifyed the fixed point free involutions on Seifert fiber spaces which have finite fundamental group. The author wish to thank the refree for bringing this to his attention.

The author would like to express his gratitude to Prof. J.S. Birman for helpful suggestions, and to Prof. F. Hosokawa and Prof. S. Suzuki for valuable discussions during the revision.
2. One-sided Heegaard splitting of $\boldsymbol{L}(2 \boldsymbol{a}, \boldsymbol{\beta})$. Let $(2 \alpha, \beta)$ be a pair of integers such that $\alpha \beta$ is positive and $|\beta|<2|\alpha|$. According to [3], each $L(2 \alpha, \beta)$ contains a non-orientable surface. Let λ be the minimum number of genus of non-orientable surfaces which can be embedded in $L(2 \alpha, \beta)$. By F_{λ} we denote a non-orientable surface of genus λ embedded in $L(2 \alpha, \beta)$. If $\lambda>2$ and F_{λ} is compressible, there exists a non-orientable surface of genus smaller than λ. If $\lambda=2, F_{\lambda}$ is incompressible by [1], [12] and [7]. Hence F_{λ} is incompressible in $L(2 \alpha, \beta)$. It follows from [4] that $L(2 \alpha, \beta)-N\left(F_{\lambda}\right)$ is homeomorphic to a solid torus of genus $\lambda-1$. Thus we can construct $L(2 \alpha$, β) by gluing a regular neighbourhood $N\left(F_{\lambda}\right)$ of F_{λ} and a solid torus $V_{\lambda-1}$ of genus $\lambda-1$.

Let $\pi: T_{\lambda-1} \rightarrow F_{\lambda}$ be an orientable double covering of F_{λ}. We will consider $N\left(F_{\lambda}\right)$ as the mapping cylinder of π. For a subcomplex X of F_{λ}, we denote the mapping cylinder of $\pi \mid \pi^{-1} X$ by $M(X)$.

First we will give a description of $F_{\lambda}, T_{\lambda-1}$ and π. Let $T_{\lambda-1}$ be a closed orientable surface of genus $\lambda-1$ represented in R^{3} in such a way that it is invariant under the reflection about the $x y$ plane as illustrated in Fig. 2.1. By $\tilde{p}, a_{1}, \cdots, a_{\lambda-1}, b_{1}, \cdots, b_{\lambda-1}, \tilde{c}_{1}, \cdots, \tilde{c}_{\lambda}$ and $d_{1}, \cdots, d_{\lambda-1}$, we denote a base point, oriented simple closed curves and arcs, as in Fig. 2.1.

We define a homeomorphism $\iota: T_{\lambda-1} \rightarrow T_{\lambda-1}$ by $\iota(x, y, z)=(x, y,-z)$. Suppose that each $N\left(\widetilde{c}_{\mu}\right)$ is of the form $S^{1} \times[-1,1]$ such that $\iota(x, t)=(x,-t)$, where $x \in S^{1}$ and $t \in[-1,1]$. The homeomorphism of $S^{1} \times[-1,1]$ onto

ON ONE-SIDED HEEGAARD SPLITTINGS AND INVOLUTIONS ON A CLASS OF LENS SPACES

Kouhei ASANO

(Received April 9, 1979)
(Revised January 28, 1980)

1. Introduction. Let F be a closed non-orientable surface in the 3manifold M such that the exterior of a regular neighbourhood of F is homeomorphic to a solid torus. Then the pair (M, F) is called a one-sided Heegaard splitting of M [13]. This technique is useful for studying 3 -manifolds which are not sufficiently large, for example [1], [7], [12], [13] and [14]. In this paper, we will give the minimum one-sided Heegaard splitting of lens spaces [Theorem 2.1].

An involution φ on a space X is a homeomorphism from X onto itself such that φ^{2} is the identity on X. Two involutions φ and φ^{\prime} are said to be equivalent to each other, if there exists an autohomeomorphism ψ of X such that $\varphi=\psi \varphi^{\prime} \psi^{-1}$. By [9], [10], [11] and [12], we can classify the fixed point free involutions on lens spaces $L(1,0), L(2,1)$ and $L(4 \alpha, 2 \alpha-1)$ up to the equivalence. As an application of Theorem 2.1, we consider the fixed point free involutions on a certain family of lens spaces and will obtain

Theorem 5.1. Let μ_{1} and μ_{2} be integers such that $\mu_{1} \mu_{2} \neq 0$ and $\mu_{1} \mu_{2} \neq-2$. Then the orbit space of a fixed point free involution on $L\left(8 \mu_{1} \mu_{2}-2,4 \mu_{1} \mu_{2}-2 \mu_{1}-1\right)$ is homeomorphis to a Seifert fiber space.

In §2, we will give the minimum one-sided Heegaard splitting of $L(2 \alpha, \beta)$. Using the lemmas proved in $\S 3$, we will find and invariant subspace under an involution on $L\left(8 \mu_{1} \mu_{2}-2,4 \mu_{1} \mu_{2}-2 \mu_{1}-1\right)$ [Lemma 4.1]. Finally the proof of Theorem 5.1 will be completed in $\S 5$.

Throughout this paper we work in the piecewise linear category. For a subcomplex X of a complex Y, the regular neighbourhood of X in Y will denoted by $N(X)$. The boundary, the interior and the closure of a manifold Q will be denoted by $\partial Q, \stackrel{\circ}{Q}$ and \bar{Q}, respectively.

Two submanifolds X and Y of Q are said to be parallel, if there exists an embedding $\psi: X \times I \rightarrow Q$ such that $\psi(X \times\{0\})=X$ and $\psi^{-}(\partial(X \times I)-X \times\{0\})$ $=Y$, where I denotes the unit interval $[1,0]$.

$$
\left(\begin{array}{l}
{\left[a_{1}^{*}\right]} \\
{\left[b_{1}^{\ddagger}\right]} \\
{\left[a_{2}^{*}\right]} \\
{\left[b_{2}^{*}\right]}
\end{array}\right)=\left(\begin{array}{cccc}
-1 & -\mu_{1} & 0 & 1 \\
0 & 0 & -1 & -\mu_{2} \\
0 & -1 & 1 & \mu_{2} \\
1 & \mu_{1} & 0 & 0
\end{array}\right)\left(\begin{array}{l}
{\left[a_{1}^{\prime}\right]} \\
{\left[b_{1}\right]} \\
{\left[a_{2}^{\prime}\right]} \\
{\left[b_{2}\right]}
\end{array}\right],
$$

Using the above equation, we can compute the matrix associated with $\tilde{\rho}^{\neq}$with respect to $\left\{\left[a_{1}^{\prime}\right],\left[b_{1}\right],\left[a_{2}^{\prime}\right],\left[b_{2}\right]\right\}$.
4. Invariant subspace. The purpose of this section is to prove

Lemma 4.1. Every involution of $L(2 \alpha, \beta)$ is equivalent to φ which has one of the following properties:
(1) $\varphi F_{3} \cap F_{3}$ consists of three curves of type II.
(2) $\varphi F_{3} \cap F_{3}$ consists of a curve of type I.

Assertion A. Let F be an incompressible surface in $L(2 \alpha, \beta)$ such that $F \cap$ F_{3} consists of simple closed curves. Then each component of $F \cap V_{2}$ is orientable.

Proof. Suppose that $F \cap V_{2}$ is non-orientable. Let $\tilde{L}(2 \alpha, \beta)$ denote the orientable double covering of $L(2 \alpha, \beta)$. Then $\widetilde{L}(2 \alpha, \beta)$ can be considered as the union of two copies of V_{2} and the double covering of $M\left(F_{3}\right)$. Hence the lifting \widetilde{F}_{3} of F_{3} is orientable, but the lifting \widetilde{F} of F is non-orientable. Since F is isotptic to F_{3} in $L(2 \alpha, \beta)$ by [13], \widetilde{F} is isotopic to \widetilde{F}_{3} in $\widetilde{L}(2 \alpha, \beta)$. This contradicts the fact that \widetilde{F}_{3} is orientable.

Let φ_{0} be an involution of $L(2 \alpha, \beta)$. Then, by [10], we may suppose that $\varphi_{0} F_{3}$ is transverse with respect to F_{3}, i.e., $M(c) \subset \varphi_{0} F_{3}$ for each curve c in $\varphi_{0} F_{3} \cap F_{3}$. It follows from [12] that φ_{0} is equivalent to φ_{1} such that $\varphi_{1} F_{3} \cap F_{3}$ consists of essential simple closed curves on $\varphi_{1} F_{3}$ and F_{3}.

Using Assertion A, we can divide our consideration into the following three cases:

Case 1: $\varphi_{1} F_{3} \cap F_{3}$ contains three curves of type II on $\varphi_{1} F_{3}$.
Case 2: $\varphi_{1} F_{3} \cap F_{3}$ contains a curve of type I on $\varphi_{1} F_{3}$.
Case 3: $\varphi_{1} F_{3} \cap F_{3}$ contains precisely one curve of type II on $\varphi_{1} F_{3}$.
In the rest of this section we will give the proof of Lemma 4.1 for each case.
Case 1. In this case each curve of $\varphi_{1} F_{3} \cap F_{3}$ is of either type II or type V. Suppose that $\varphi_{1} F_{3} \cap F_{3}$ contains a curve of type V on $\varphi_{1} F_{3}$. Let c be a simple closed curve of type V on $\varphi_{1} F_{3}$ which bounds a Möbius band B on $\varphi_{1} F_{3}$ such that $B \cap F_{3}$ consists of c and a centerline c^{\prime} of B. Then c^{\prime} is of type II on $\varphi_{1} F_{3}$. On F_{3}, c is two-sided, so c is of type V. Hence c also bounds a Möbius band B^{\prime} on F_{3}.

We now show that B^{\prime} contains c^{\prime}. Since c^{\prime} and c are of type II and V on F_{3}, respectively, there exists an autohomeomorphism ρ of F_{3} such that $\rho c^{\prime}=c_{1}$
$\left(\begin{array}{ll}\alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22}\end{array}\right)$ induces an automorphism $\tilde{\rho}^{\sharp}$ such that

$$
\left(\begin{array}{l}
\tilde{\rho}^{\sharp}\left[a_{1}^{*}\right] \\
\tilde{\rho}^{*}\left[b_{1}^{*}\right] \\
\tilde{\rho}^{\sharp}\left[a_{2}^{*}\right] \\
\tilde{\rho}^{\sharp}\left[b_{2}^{*}\right]
\end{array}\right)=\left(\begin{array}{cccc}
\alpha_{11} & \alpha_{12} & 0 & 0 \\
\alpha_{21} & \alpha_{22} & 0 & 0 \\
0 & 0 & \alpha_{22} & \alpha_{21} \\
0 & 0 & \alpha_{12} & \alpha_{11}
\end{array}\right)\left(\begin{array}{l}
{\left[a_{1}^{*}\right]} \\
{\left[b_{1}^{*}\right]} \\
{\left[a_{2}^{*}\right]} \\
{\left[b_{2}^{*}\right]}
\end{array}\right)
$$

or

$$
\left(\begin{array}{l}
\tilde{\rho}^{*}\left[a_{1}^{*}\right] \\
\tilde{\rho}^{*}\left[b_{1}^{*}\right] \\
\tilde{\rho}^{*}\left[a_{2}^{*}\right] \\
\tilde{\rho}^{*}\left[b_{2}^{*}\right]
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & \alpha_{12} & \alpha_{11} \\
0 & 0 & \alpha_{22} & \alpha_{21} \\
\alpha_{21} & \alpha_{22} & 0 & 0 \\
\alpha_{11} & \alpha_{12} & 0 & 0
\end{array}\right)\left(\begin{array}{l}
{\left[a_{1}^{*}\right]} \\
{\left[b_{1}^{*}\right]} \\
{\left[a_{2}^{*}\right]} \\
{\left[b_{2}^{*}\right]}
\end{array}\right) \text { in } H_{1}\left(T_{2}\right) .
$$

We have an another basis $\left\{\left[a_{1}^{\prime}\right],\left[b_{1}\right],\left[a_{2}^{\prime}\right],\left[b_{2}\right]\right\}$ of $H_{1}\left(T_{2}\right)$ defined in $\S 2$. In this paper it is convenient to use the basis $\left\{\left[a_{1}^{\prime}\right],\left[b_{1}\right],\left[a_{2}^{\prime}\right],\left[b_{2}\right]\right\}$. We now find the matrix associated with $\tilde{\rho}^{\ddagger}$ with respect to $\left\{\left[a_{1}^{\prime}\right],\left[b_{1}\right],\left[a_{2}^{\prime}\right],\left[b_{2}\right]\right\}$.

Lemma 3.2. Let ρ be a homeomorphism from F_{3} onto itself whose isotopy clas corresponds to $\left(\begin{array}{ll}\alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22}\end{array}\right]$. Then

$$
\left(\begin{array}{c}
\tilde{\rho}^{\sharp}\left[a_{1}^{\prime}\right] \\
\tilde{\rho}^{\sharp}\left[b_{1}\right] \\
\tilde{\rho}^{\sharp}\left[a_{2}^{\prime}\right] \\
\tilde{\rho}^{\sharp}\left[b_{2}\right]
\end{array}\right)=\left(\begin{array}{cccc}
\alpha_{11} & \mu_{1} \alpha_{11}-\alpha_{12}-\mu_{1} \alpha_{22} & \alpha_{12} & \mu_{2} \alpha_{12}+\mu_{1} \alpha_{21} \\
0 & \alpha_{22} & 0 & -\alpha_{21} \\
\alpha_{21} & \mu_{2} \alpha_{12}+\mu_{1} \alpha_{21} & \alpha_{22} & -\mu_{2} \alpha_{11}-\alpha_{21}+\mu_{2} \alpha_{22} \\
0 & -\alpha_{12} & 0 & \alpha_{11}
\end{array}\right)\left(\begin{array}{l}
{\left[a_{1}^{\prime}\right]} \\
{\left[b_{1}\right]} \\
{\left[a_{2}^{\prime}\right]} \\
{\left[b_{2}\right]}
\end{array}\right)
$$

or

$$
\left(\begin{array}{l}
\tilde{\rho}^{\sharp}\left[a_{1}^{\prime}\right] \\
\tilde{\rho}^{\sharp}\left[b_{1}\right] \\
\tilde{\rho}^{\sharp}\left[a_{2}^{\prime}\right] \\
\tilde{\rho}^{\sharp}\left[b_{2}\right]
\end{array}\right)=\left(\begin{array}{cccc}
-\alpha_{11} & -\mu_{1} \alpha_{11}-\mu_{1} \alpha_{22} & -\alpha_{12} & \alpha_{11}-\mu_{2} \alpha_{12}+\mu_{1} \alpha_{21} \\
0 & \alpha_{22} & 0 & -\alpha_{21} \\
-\alpha_{21} \mu_{2} \alpha_{12}-\mu_{1} \alpha_{21}+\alpha_{22} & -\alpha_{22} & -\mu_{2} \alpha_{11}-\mu_{2} \alpha_{22} \\
0 & -\alpha_{12} & 0 & \alpha_{11}
\end{array}\right)\left(\begin{array}{l}
{\left[a_{1}^{\prime}\right]} \\
{\left[b_{1}\right]} \\
{\left[a_{2}^{\prime}\right]} \\
{\left[b_{2}\right]}
\end{array}\right),
$$

where $\mu_{1}=I_{1}(2 \alpha, \beta)+1$ and $\mu_{2}=I_{2}(2 \alpha, \beta)+1$.
Proof. First we will find the matrix associated with the change of bases. Since $\pi^{*}\left(x_{1}\right)=z_{2} z_{1}^{-1}, \pi^{*}\left(y_{1}\right)=z_{1}^{2}, \pi^{*}\left(x_{2}\right)=z_{3} z_{2}^{-1}$ and $\pi^{*}\left(y_{2}\right)=z_{2} z_{1}^{2} z_{2}$, we can show that $z_{1} z_{2}=\pi^{*}\left(y_{1}^{-1} x_{1}^{-1} y_{2}\right)$ and $z_{2} z_{3}=\pi^{*}\left(x_{2}^{-1} y_{2}^{-1} x_{1} y_{1} x_{1}^{-1} y_{1}^{-1}\right)$. Hence we have $a_{1}^{*} \sim a_{1}-$ $b_{1}+b_{2}$ and $b_{1}^{*} \sim-a_{2}-b_{2}$. The covering transformation of π takes a_{1}^{*} and b_{1}^{*} onto b_{2}^{*} and a_{2}^{*}, respectively. Thus, by using the fact that $z_{1}^{-1} z_{1} z_{2} z_{1}=\pi^{*}\left(x_{1} y_{1}\right)$ and $z_{1}^{-1} z_{2} z_{3} z_{1}=\pi^{*}\left(y_{1}^{-2} x_{1}^{-1} y_{2} x_{2} x_{1} y_{1}\right)$, we obtain $a_{2}^{*} \sim-b_{1}+a_{2}+b_{2}$ and $b_{2}^{*} \sim a_{1}+b_{1}$. Since $a_{1}^{\prime} \sim a_{1}-\left(\mu_{1}-1\right) b_{1}$ and $a_{2}^{\prime} \sim a_{2}-\left(\mu_{2}-1\right) b_{2}$,

$$
j_{*}:\left[S(E), S\left(E^{\prime}\right)\right]_{G} \rightarrow\left[S(E), V_{m}^{\Lambda}\left(E^{\prime} \oplus \Lambda^{m-1}\right)\right]_{G}
$$

between G-homotopy sets. We are also interested in this transformation j_{*}.
In the non-equivariant case we already know some facts about j_{*}. Clearly $S^{d n-1}=S\left(\Lambda^{n}\right)$ where $d=1$ if $\Lambda=\boldsymbol{R}, d=2$ if $\Lambda=\boldsymbol{C}$, and $d=4$ if $\Lambda=\boldsymbol{Q}$. The map

$$
j: S^{d n-1}=S\left(\Lambda^{n}\right) \rightarrow V_{m}^{\Lambda}\left(\Lambda^{n} \oplus \Lambda^{m-1}\right)=V_{m}^{\Lambda}\left(\Lambda^{m+n-1}\right)
$$

defined above induces a group homomorphism

$$
j_{*}: \pi_{i}\left(S^{d n-1}\right) \rightarrow \pi_{i}\left(V_{m}^{\Lambda}\left(\Lambda^{m+n-1}\right)\right)
$$

between the i-th homotopy groups for an integer $i \geq 0$. We collect known results about the homomorphism j_{*} in the following:

Proposition 1 (See for example [2; Chapter 7]). (a) j_{*} is an isomorphism in each case of the followings:
(i) $m=1$,
(ii) $0 \leq i \leq d n-2$,
(iii) $\Lambda=R$, and $i=n-1$ is even,
(iv) $\Lambda=\boldsymbol{C}$ or \boldsymbol{Q}, and $i=d n-1$.

Therefore

$$
\pi_{i}\left(V_{m}^{\wedge}\left(\Lambda^{m+n-1}\right)\right)= \begin{cases}0 & \text { csae (ii) } \\ \mathbf{Z} & \text { case (iii) or (iv) }\end{cases}
$$

(b) If $\Lambda=\boldsymbol{R}, m \geq 2$, and $i=n-1$ is odd, then j_{*} is an epimorphism and

$$
\pi_{i}\left(V_{m}^{\Lambda}\left(\Lambda^{m+n-1}\right)\right)=\boldsymbol{Z} / 2 \boldsymbol{Z}
$$

To state our result in the equivariant case, let us define some notations. For any closed subgroup H of $G, N(H)$ denotes the normalizer of H in G, and (H) denotes the conjugacy class of H in G. Let X be a G-space. For any $x \in X$, G_{x} denotes the isotropy subgroup at x. The conjugacy class of an isotropy subgroup is called an orbit type. We put

$$
\begin{aligned}
& X^{H}=\left\{x \in X \mid H \subset G_{x}\right\}, \\
& X_{H}=\left\{x \in X \mid H=G_{x}\right\}, \quad \text { and } \\
& X_{(H)}=\left\{x \in X \mid(H)=\left(G_{x}\right)\right\}
\end{aligned}
$$

For a representation E of $G, \mathfrak{M}(E)$ denotes the set of orbit types appearing on $S(E)$. Choose a representative of each element of $\mathfrak{M}(E)$, and denote by $\mathfrak{M}_{r}(E)$ the set of those representatives. For any $H \in \mathfrak{M}_{r}(E)$ there is a transformation

$$
r_{H}:\left[S(E), S\left(E^{\prime}\right)\right]_{G} \rightarrow\left[S\left(E^{H}\right), S\left(E^{\prime H}\right)\right]
$$

restricting to the fixed point set by H, where [,] denotes the non-equivariant

ON THE EQUIVARIANT HOMOTOPY OF STIEFEL MANIFOLDS

Katsuhiro KOMIYA

(Received May 18, 1979)

1. Introduction and results

Throughout this paper G denotes a compact Lie group, and Λ denotes one of the real numbers \boldsymbol{R}, the complex numbers \boldsymbol{C} and the quaternions \boldsymbol{Q}. Let E be a representation of G over Λ. All representations considered in this paper are orthogonal if $\Lambda=\boldsymbol{R}$, unitary if $\Lambda=\boldsymbol{C}$, and symplectic if $\Lambda=\boldsymbol{Q}$. For a positive integer $m \leq \operatorname{dim}_{\Lambda} E$, the Stiefel manifold $V_{m}^{\Lambda}(E)$ consists of all orthonormal m-frames in E, i.e.,

$$
\begin{gathered}
V_{m}^{\wedge}(E)=\left\{\left(v_{1}, \cdots, v_{m}\right) \mid v_{i} \in E,\left\|v_{i}\right\|=1 \text { for } i=1, \cdots, m,\right. \\
\text { and } \left.v_{i} \perp v_{j} \text { if } i \neq j\right\} .
\end{gathered}
$$

If $m=1$, then $V_{m}^{\Lambda}(E)$ is the unit sphere $S(E)$ in E. For any $g \in G$ and any orthonormal m-frame (v_{1}, \cdots, v_{m}) in E, $\left(g v_{1}, \cdots, g v_{m}\right)$ is also an orthonormal m-frame in E. This induces a smooth G-action on $V_{m}^{\Lambda}(E)$.

Let E^{\prime} be another representation of G over Λ. We are interested in the set of G-homotopy classes of G-maps from $S(E)$ to $V_{m}^{\wedge}\left(E^{\prime}\right),\left[S(E), V_{m}^{\wedge}\left(E^{\prime}\right)\right]_{G}$. If $m=1$, this set is the set of G-homotopy classes of G-maps from sphere to sphere, [$\left.S(E), S\left(E^{\prime}\right)\right]_{G}$, which was studied in Hauschild [1], Rubinsztein [3] and others. (I am grateful to the referee who informed me that there was a gap in the proof of Rubinsztein's main theorem [3; Theorem 7.2]. This information leads to an improvement of the presentation of this paper.)

For any positive integer n, let

$$
\Lambda^{n}=\Lambda \oplus \cdots \oplus \Lambda \quad(n \text { summands })
$$

be a representation with trivial G-action and with the standard inner product. We define a map

$$
j: S\left(E^{\prime}\right) \rightarrow V_{m}^{\Lambda}\left(E^{\prime} \oplus \Lambda^{m-1}\right)
$$

by $j(v)=\left(v, e_{1}, \cdots, e_{m-1}\right)$ for $v \in S\left(E^{\prime}\right)$ and the canonical orthonormal ($m-1$)frame (e_{1}, \cdots, e_{m-1}) in Λ^{m-1}. Then j is a G-embedding, and induces a transformation
curve k_{1} on φF_{3}, which is ambient isotopic to c_{3} in $L(2 \alpha, \beta)$. Each $k_{1} \cap c^{*}$ and $k_{1} \cap g^{*}$ consists of a point and $k_{1} \cap f^{*}=\emptyset$. Thus, since c^{*} is φ-invariant, $\varphi f^{*} \sim \pm b^{*}$ and $\varphi g^{*} \sim \mp a^{*}$ in F_{3}, we can show that $k_{2}=\varphi k_{1}$ is homotopic to c_{1} in F_{3}. Therefore a link $k_{1} \cup k_{2}$ is ambient isotopic to $c_{1} \cup c_{3}$ in $L(2 \alpha, \beta)$, and we have proved Theorem 5.1.

References

[1] K. Asano: Homeomorphisms of prism manifolds, Yokohama Math. J. 26 (1978), 1925.
[2] J.S. Birman and D.R.J. Chillingworth: On the homeotopy group of a non-orientable surface, Proc. Cambridge Philos. Soc. 71 (1972), 437-448.
[3] G.E. Bredon and J.W. Woods: Non-orientable surfaces in orientable 3-manifolds, Invent. Math. 7 (1969), 83-110.
[4] J. Hempel: One-sided incompressible surfaces in 3-manifolds, Leuture Notes in Math. 438, Springer-Verlag, 1974, 251-258.
[5] C. McA. Gordon and W. Heil: Cyclic normal subgroups of fundamental groups of 3-manifolds, Topology 14 (1975), 305-309.
[6] F. Hirzebruch, W.P. Neumann, and S.S. Koh: Differential manifolds and quadratic forms, M. Dekker, 1971.
[7] P.K. Kim: Some 3-manifolds which admit Klein bottles, Trans. Amer. Math. Soc. 244 (1978), 299-312.
[8] S. Kinoshita: On Fox property of a surface in a 3-manifold, Duke Math. J. 33 (1966), 791-794.
[9] G. Livesay: Fixed point free involutions on the 3-sphere, Ann. of Math. 72 (1960), 603-611.
[10] P.K.M. Rice: Free actions of Z_{4} on S^{3}, Duke Math. J. 36 (1969), 749-751.
[11] G.X. Ritter: Free Z_{8} actions on S^{3}, Trans. Amer. Math. Soc. 181 (1973), 195-212.
[12] J.H. Rubinstein: On 3-manifolds that have finite fundamental group and contain Klein bottles, Trans. Amer. Math. Soc. 251 (1979), 129-137.
[13] -: One-sided Heegaard splittings of 3-manifolds, Pacific J. Math. 76 (1979), 165-175.
[14] -_: Free actions of some finite groups on S^{3}, Math. Ann. 240 (1979), 165175.
[15] D. Rolfsen: Knots and links, Publish or Perish Inc., 1976.
[16] H. Schubert: Konten und Vollringe, Acta Math. 90 (1953), 131-286.

Let f^{*} and g^{*} denote simple closed curves on G which is parallel to f and g, respectively. Since each f^{*} and g^{*} is of type III on $G \subset \varphi F_{3}$, there exists a matrix $\left(\begin{array}{ll}\alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22}\end{array}\right) \in G L(2, Z)$ such that

$$
\begin{equation*}
\varphi a^{*} \sim \alpha_{11} f^{*}+\alpha_{12} g^{*} \text { and } \varphi b^{*} \sim \alpha_{21} f^{*}+\alpha_{22} g^{*} \text { in } \varphi F_{3} \tag{1}
\end{equation*}
$$

The union $\varphi F_{3} \cup F_{3}$ separates $L(2 \alpha, \beta)$ into solid tori U_{1}^{\prime} and U_{2}^{\prime} such that $U_{\mu}^{\prime} \cap V_{2}=U_{\mu}, \mu=1,2$. Let \hat{b}_{1} and \hat{b}_{2} be simple closed curves obtained by pushing b_{1} int U_{2} and b_{2} into U_{1}, respectively. Since G is ambient isotopic to G_{3}, $\left\{\left[f^{*}\right],\left[\hat{b}_{2}\right]\right\}$ is a basis of $H_{1}\left(U_{1}^{\prime}\right)$ and $\left\{\left[g^{*}\right],\left[\hat{b}_{1}\right]\right\}$ is a basis of $H_{1}\left(U_{2}^{\prime}\right)$. It can be shown that

$$
\begin{equation*}
f^{*} \sim \mu_{1} \hat{b}_{1} \text { in } U_{2}^{\prime} \text { and } g^{*} \sim \mu_{2} \hat{b}_{2} \text { in } U_{1}^{\prime} \tag{2}
\end{equation*}
$$

By the argument in the proof of Lemma 3.2, we have

$$
\begin{aligned}
& S c\left(a_{1}^{*}, b_{1}\right)=-1, S c\left(a_{1}^{*}, a_{2}^{\prime}\right)=1, S c\left(b_{1}^{*}, b_{1}\right)=0, S c\left(b_{1}^{*}, a_{2}^{\prime}\right)=\mu_{2} \\
& S c\left(a_{2}^{*}, a_{1}^{\prime}\right)=-1, S c\left(a_{2}^{*}, b_{2}\right)=1, S c\left(b_{2}^{*}, a_{1}^{\prime}\right)=\mu_{1} \text { and } S c\left(b_{2}^{*}, b_{2}\right)=0 .
\end{aligned}
$$

From this and the fact that $\pi^{-1} a^{*}=a_{1}^{*} \cup b_{1}^{*}$ and $\pi^{-1} b^{*}=b_{1}^{*} \cup a_{2}^{*}$, it follows that

$$
\begin{align*}
& a^{*} \sim-f^{*}+\hat{b}_{2} \text { and } b^{*} \sim-\mu_{2} \hat{b}_{2} \text { in } U_{1}^{\prime}, \tag{3}\\
& a^{*} \sim g^{*}-\hat{b}_{1} \text { and } b^{*} \sim-\mu_{1} \hat{b}_{1} \text { in } U_{2}^{\prime} . \tag{4}
\end{align*}
$$

In $U_{1}^{\prime}, b^{*}+b^{*} \sim 0$ and $\mu_{2}\left(a^{*}+f^{*}\right)+b^{*} \sim 0$, by (2) and (3). Using (1), (3), (4) and the fact that $\varphi U_{1}^{\prime}=U_{2}^{\prime}$, we can show that

$$
\begin{align*}
\varphi b^{*}+\varphi g^{*} & \sim \alpha_{21} f^{*}+\alpha_{22} g^{*}-\varepsilon \alpha_{21} a^{*}+\varepsilon \alpha_{11} b^{*} \tag{5}\\
& \sim\left(\alpha_{22}+\varepsilon \alpha_{11}\right) g^{*}+\left(\mu_{1} \alpha_{21}-\varepsilon \alpha_{11}-\varepsilon \mu_{1} \alpha_{21}\right) b^{*} \sim 0
\end{align*}
$$

and

$$
\begin{align*}
& \mu_{2}\left(\varphi \alpha^{*}+\varphi f^{*}\right)+\varphi b^{*} \tag{6}\\
\sim & \mu_{2}\left(\alpha_{11} f^{*}+\alpha_{12} g^{*}+\varepsilon \alpha_{22} a^{*}-\varepsilon \alpha_{12} b^{*}\right)+\alpha_{21} f^{*}+\alpha_{22} g^{*} \\
\sim & \sim\left(\varepsilon \mu_{2} \alpha_{12}+\varepsilon \mu_{1} \mu_{2} \alpha_{22}+\mu_{1} \mu_{2} \alpha_{21}+\mu_{1} \alpha_{21}\right) b^{*}+\left(-\varepsilon \mu_{2} \alpha_{12}+\mu_{2} \alpha_{12}+\alpha_{22}\right) g^{*} \\
\sim & 0, \text { in } U_{2}^{\prime},
\end{align*}
$$

where $\varepsilon=\alpha_{11} \alpha_{23}-\alpha_{12} \alpha_{21}$.
It is not difficult to show that (5) and (6) does not hold at the same time except for the case that $\varepsilon=1, \alpha_{11}=\alpha_{22}=0, \alpha_{12} \alpha_{21}=-1$ and $\mu_{1}=\mu_{2}$. Thus we obtain $\varphi f^{*} \sim \pm b^{*}$ and $\varphi g^{*} \sim \mp a^{*}$ on F_{3}.

Let $k==G_{2}^{\prime} \cap c_{3}$ [Fig. 5.2]. Then g intersects k in a single point and $k \cap$ $f=\emptyset$. Let k^{*} be an arc on G which is parallel to k. Joining the end points of k^{*} by a vertical line in $\varphi F_{3} \cap M\left(F_{3}\right)$, we obtain a one-sided simple closed
can show that φ maps each fiber onto a fiber. Therefore the orbit space of φ is also a Seifert fiber space.

Case 2. By Corollary 2.3, we may consider $L(2 \alpha, \beta)-\stackrel{N}{N}\left(c_{1} \cup c_{3}\right)$ as a Seifert fiber space. Hence, in order to complete the proof, it suffices to show that there exists a φ-invariant link $k_{1} \cup k_{2}$ in $L(2 \alpha, \beta)$ which is ambient isotopic to $c_{1} \cup c_{3}$.

Let $G=V_{2} \cap \varphi F_{3}$. Then we have $\partial G=\pi^{-1} c^{*}$. Cutting T_{2} along ∂G, we obtain G_{1} and G_{2} where G_{μ} contains a_{μ}^{*} and $b_{\mu}^{*}, \mu=1,2$. Furthermore G separates V_{2} into U_{1} and U_{2} such that $\partial U_{\mu}=G_{\mu} \cup G, \mu=1,2$. Let c be a simple closed curve on T_{2} as shown in Fig. 5.2. Then c bound a disk D in V_{2}. Since $\pi^{-1} c^{*} \cap \partial D$ consists of four points, we can deform D so that it intersects G in two arcs. Each $D \cap G_{\mu}$ separates G_{μ} into a disk G_{μ}^{\prime} and an annulus $G_{\mu}^{\prime \prime}$. The union $G_{1}^{\prime} \cup D \cup G_{2}^{\prime}$ is an orientable surface of genus 1. See Fig. 5.2. Let G_{3} be a surface obtained by pushing $G_{1}^{\prime} \cup D \cup G_{2}^{\prime}$ into V_{2} so that $G_{3} \cap T_{2}=$ ∂G_{3}.

First we will show that G is ambient isotopic to G_{3} in V_{2}. Let V^{\prime} and $V^{\prime \prime}$ be solid tori in V_{2} such that $\partial V^{\prime}=G_{1}^{\prime} \cup D \cup G_{2}^{\prime \prime}$ and $\partial V^{\prime \prime}=G_{1}^{\prime \prime} \cup D \cup G_{2}^{\prime}$. Suppose that $U_{1} \cap D$ consists of two disks Δ_{1} and Δ_{2}. Then $G^{\prime}=G \cap V^{\prime}$ is a disk and $G^{\prime \prime}=G \cap V^{\prime \prime}$ is an annulus. Obviously, G^{\prime} is parallel to G_{1}^{\prime}. According to [16], $G^{\prime \prime}$ is parrallel to $G_{1}^{\prime \prime} \cup \Delta_{1} \cup \Delta_{2}$ or $G_{2}^{\prime}, \cup \Delta_{0}$, where $\Delta_{0}=^{-}((D-$ $\left(\Delta_{1} \cup \Delta_{2}\right)$). If $G^{\prime \prime}$ is parallel to $G_{1}^{\prime \prime} \cup \Delta_{1} \cup \Delta_{2}, G$ is parallel to G_{1}. If G^{\prime} is parallel to $G_{2}^{\prime} \cup \Delta_{0}, G$ is ambient isotopic to G_{3}. Similarly, we can show that G is parallel to G_{2} or is ambient isotopic to G_{3}, for the case that $U_{2} \cup D$ is disconnected.

Suppose that G is parallel to G_{1}. Then G is parallel to G_{2}. Since each $\partial D_{\nu} \cap \partial G, \nu=1,2$, consists of $\left|\mu_{\nu}\right|$ points, G_{1} is parrallel to G_{2}, if and only if $\left|\mu_{1} \mu_{2}\right|=1$. Thus G is ambient isotopic to G_{3}.

We take oriented simple closed curves f and g on $G_{1}^{\prime} \cup D \cup G_{2}^{\prime}$ so that each f and g is a centerline of an annulus $G_{\mu}^{\prime} \cup D, \mu=1,2$, and $f \cap g$ is a single point, as shown in Fig. 5.2.

Fig. 5.2

Fig. 5.1
For $\mu=1,2, l_{\mu}$ separates D_{μ}^{\prime} into two disks $\nabla_{\mu_{1}}$ and $\nabla_{\mu_{2}}$. Among $\nabla_{1 \mu} \cup \Delta \cup \nabla_{2 v}$, $\mu, \nu=1,2$, there exists at least one disk $D_{1}^{\prime *}$ such that $\partial D_{1}^{\prime *}$ is not homologous to zero and ∂D_{2} in T_{2}. Deforming $D_{1}^{\prime *}$ slightly, we obtain a system $\left\{D_{1}^{\prime * *}, D_{2}^{\prime}\right\}$ of V_{2} such that $G \cap\left(D_{1}^{\prime * *} \cup D_{2}^{\prime}\right)$ has fewer components than $G \cap\left(D_{1}^{\prime} \cup D_{2}^{\prime}\right)$. Hence we can construct a system $\left\{D_{1}^{\prime \prime}, D_{2}^{\prime \prime}\right\}$ of meridian disks of V_{2} such that at least one innermost curve b of $G \cap\left(D_{1}^{\prime \prime} \cup D_{2}^{\prime \prime}\right)$ in $D_{1}^{\prime \prime} \cup D_{2}^{\prime \prime}$ connects two points in distinct components of ∂G.

Assume that $b \subset D_{1}^{\prime \prime}$. Let Δ_{1} be a disks in $D_{1}^{\prime \prime}$ such that $\Delta_{1} \cap G=b$ and $c=$ $\partial \Delta_{1}-\stackrel{\circ}{b}$ is contained in $\partial D_{1}^{\prime \prime}$. Furthermore we assume that $c \subset G_{1}$. Cutting G and G_{1} along b and c, we obtain annuli A and A^{\prime}. It can be shown easily that A is incompressible. Applying Lemma 5.2 to A, we can show that the union of A, A^{\prime} and two copies Δ_{1}^{\prime} and $\Delta_{1}^{\prime \prime}$ of Δ_{1} bounds a solid torus U of genus 1 . Thus $G \cup G_{1}$ bounds a solid torus U^{\prime} of genus 2 .

Let Δ_{2} be a meridian disk of U such that $\partial \Delta_{2} \subset A \cup A^{\prime}$. Then Δ_{1} and Δ_{2} form a system of meridian disks of U^{\prime}. Note that each $\Delta_{1} \cap G$ and $\Delta_{1} \cap G_{1}$ is a single arc connecting distinct components k_{1} and k_{2} of $\partial G=\partial G_{1}$.

Suppose that G is not parallel to G_{1}. Then $A \cup \Delta_{1}^{\prime} \cup \Delta_{1}^{\prime \prime}$ is not parallel to A^{\prime}. Thus, by Lemma 5.2, we have $\left|S c\left(k_{3}, \partial \Delta_{2}\right)\right|>1$, where $k_{3}=\partial G-\left(k_{1} \cup k_{2}\right)$ and $S c\left(k_{3}, \partial \Delta_{2}\right)$ denotes the intersection number of k_{3} with $\partial \Delta_{2}$ in $G \cup G_{1}$. Since k_{1} and k_{3} generate $H_{1}\left(G_{1}\right)$, the homomorphism Ψ from $H_{1}\left(G_{1}\right)$ into $H_{1}\left(U^{\prime}\right)$ induced by the inclusion is not onto.

From Lemma 3.1 and the fact that $\widetilde{c}_{1} \sim b_{1}$ and $\widetilde{c}_{3} \sim-b_{2}$, it follows that there exists a matrix $\left(\begin{array}{ll}\alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22}\end{array}\right)$ in $G L(2, Z)$ such that $k_{1} \sim \alpha_{22} b_{1}-\alpha_{21} b_{2}$ and $k_{2} \sim$ $\alpha_{12} b_{1}-\alpha_{11} b_{2}$ on T_{2}. Since $\alpha_{11} \alpha_{22}-\alpha_{12} \alpha_{21}= \pm 1$, the inclusion from G_{1} into V_{2} induces an isomorphism from $H_{1}(G)$ onto $H_{1}\left(V_{2}\right)$. This contradicts the fact that Ψ is not onto. Thus G is paraleel to G_{1}.

Since $\varphi M\left(F_{3}\right) \cup M\left(F_{3}\right)$ is φ-invariant, φ takes $U^{\prime \prime}={ }^{-}\left(U^{\prime}-\varphi M\left(F_{3}\right)\right)$ onto $U^{\prime \prime}$ or ${ }^{-}\left(V_{2}-\left(\varphi M\left(F_{3}\right) \cup U^{\prime \prime}\right)\right)$. Using the fact that a solid torus of genus 2 does not admit a free involution, we have $\varphi U^{\prime \prime}={ }^{-}\left(V_{2}-\left(\varphi M\left(F_{3}\right) \cup U^{\prime \prime}\right)\right)$. Then G is parallel to G_{2}.

From this, it follows that $L(2 \alpha, \beta)-\stackrel{N}{N}\left(\varphi F_{3} \cap F_{3}\right)$ is homeomorphic to the product of a 2 -punctured disk and a circle. Hence we may consider $L(2 \alpha$, β) as a Seifert fiber space having each curve of $\varphi F_{3} \cap F_{3}$ as a fiber. By [5], we

If we assume that $l_{1} \sim \varepsilon l_{2}$ in V_{2}, for $\varepsilon=1$ or -1 , one of the following systems of equations holds.

$$
\left\{\begin{array} { l }
{ \alpha _ { 2 2 } - \varepsilon \mu _ { 1 } \alpha _ { 2 1 } = 0 , } \\
{ - \alpha _ { 2 1 } - \varepsilon (\alpha _ { 2 1 } - \mu _ { 2 } \alpha _ { 2 2 }) = 0 . }
\end{array} \quad \left\{\begin{array}{l}
\alpha_{22}+\varepsilon\left(\mu_{1} \alpha_{21}-\alpha_{22}\right)=0 \\
-\alpha_{21}+\varepsilon \mu_{2} \alpha_{22}=0
\end{array}\right.\right.
$$

Each of the above systems does not hold except for $\varepsilon=1$ and $\mu_{1} \mu_{2}=-2$. Hence the proof is completed.

By making use of Assertion C and the same method as in the proof for Case 1 , we can show that φ_{1} is equivalent to φ_{2} such that $\varphi_{2} F_{3} \cap F_{3}$ does not contain a curve of type V. Let B be a Möbius band in $\varphi_{2} F_{3}$ such that B intersects F_{3} in ∂B and a centerline of B. Then ∂B is of type III on F_{3}. If $\mu_{1} \mu_{2} \neq-2$, this contradicts Assertion C.
5. Orbit space. In this section we will complete the proof of the following main theorem.

Theorem 5.1. Let μ_{1} and μ_{2} be integers such that $\mu_{1} \mu_{2} \neq 0$ and $\mu_{1} \mu_{2} \neq-2$. Then the orbit space of a fixed point free involution on $L\left(8 \mu_{1} \mu_{2}-2,4 \mu_{1} \mu_{2}-2 \mu_{1}-1\right)$ is homeomorphic to a Seifert fiber space.

By Lemma 4.1, we can divide the proof into the following two cases:
Case 1: $\varphi F_{3} \cap F_{3}$ consists of three curves of type II on φF_{3} and F_{3}.
Case 2: $\varphi F_{3} \cap F_{3}=c^{*}$.
Case 1. To prove Theorem 5.1 for Case 1, we need the following lemma which can be shown easily.

Lemma 5.2. Let A be an annulus properly embedded in V_{2} such that A is incompressible and ∂A bounds an annulus A^{\prime} on T_{2}. Then $A \cup A^{\prime}$ bounds a solid torus U in V_{2}. Furthermore A is parallel to A^{\prime}, if and only if the inclusion from A^{\prime} into U induces an isomorphism from $H_{1}\left(4^{\prime}\right)$ onto $H_{1}(U)$.

Let G_{1} and G_{2} be 2-punctured disks obtained by cutting T_{2} along $\varphi F_{3} \cap$ T_{2}. First we will show that $G=\varphi F_{3} \cap V_{2}$ is parallel to G_{1} and G_{2}. Each G, G_{1} and G_{2} is incompressible in V_{2}. Hence we can deform D_{1} and D_{2} so that $G \cap\left(D_{1} \cup D_{2}\right)$ consists of arcs, where D_{1} and D_{2} are meridian disks of V_{2}, as in §2. Since V_{2} is irreducible, we can construct a system $\left\{D_{1}^{\prime}, D_{2}^{\prime}\right\}$ of meridian disks of V_{2} such that each curve $G \cap\left(D_{1}^{\prime} \cup D_{2}^{\prime}\right)$ is not parallel to ∂G in G.

From the fact that G is incompressible, it follows that $G \cap D_{\mu}^{\prime} \neq \emptyset$, for $\mu=1,2$. Suppose that each of the innermost curves of $G \cap\left(D_{1}^{\prime} \cup D_{2}^{\prime}\right)$ on $D_{1}^{\prime} \cup$ D_{2}^{\prime} connects two points in the same component of ∂G. Then there exists a disk Δ on G such that each $l_{1}=\Delta \cap D_{1}^{\prime}$ and $l_{2}=\Delta \cap D_{2}^{\prime}$ is an arc in $\partial \Delta$ and $\partial \Delta-^{\circ}\left(\Delta \cup\left(D_{1}^{\prime} \cup D_{2}^{\prime}\right)\right) \subset \partial G$.

[^0]: \dagger J.S. Birman and J.H, Rubinstein have obtained independently the essentially same result as Theorem 2.1, using a different method.

