ON ONE-SIDED QF-2 RINGS II

Manabu HARADA

(Received July 19, 1979)

We have studied the extending property on direct sums of indecomposable modules in [4]. We shall apply those results to projective modules and give characterizations of semi-perfect rings whose projective modules have the extending property of simple module. We shall deal with the dual concept of [5].

1. Preliminaries

Throughout this paper we shall denote a ring with identity by R and every R-module M is a right unitary R-module. By $\mathrm{S}(M)$ we denote the socle of M. We shall recall the definition of extending property of simple module. If for every simple submodule A_{a} of $\mathrm{S}(M)$ there exists a direct summand M_{a} of M such that $\mathrm{S}\left(M_{a}\right)=A_{a}$, we say M have the extending property of simple module. Let $\left\{N_{\beta}\right\}_{I}$ be a set of submodules of M. If $\bigcap_{I_{1}} N_{\gamma} \supsetneq \bigcap_{I_{2}} N_{\delta}$ for subset $I_{1} \subsetneq I_{2}, \bigcap_{I} N_{\delta}$ is called irredundant.

In this paper we shall study the dual properties to those in [5] and so we shall first introduce the dual condition to $\left({ }^{* *}\right)$ in [2] and [3].
(**)* Every indecomposable projective module contains a unique minimal submodule and is uniform.

If further every indecomposable left projective module contains a unique minimal submodule, we call R a QF-2 ring following Thrall [7]. Hence, if R satisfies $\left({ }^{* *}\right)^{*}$, we call R a right $\mathrm{QF}-2$ ring in this note.

Let M be an R-module. If M is a homomorphic image of projective module with non-essential kernel, we call M a non-cosmall module [3] and [6]. Every epimorphism onto non-cosmall module has the non-essential kernel [3]. We have dealt with conditions on non-small modules in [5]. We shall consider the dual or similar conditions to them.
(*1)* Every non-cosamll module which is contained in a projective module contains a non-zerc projective summand (dual to (*1) in [5]). And
(**2) For every finitely generated projective P with essential socle $\mathrm{S}(P)$, P / T contains a non-zero projective summand for any submodule $T \subsetneq \mathrm{~S}(P)$.

They are weaker conditions than the following:
(*) * Every non-cosmall module contains a non-zero projective summand [4].

2. Right QF-2 rings

We are only interested in right $Q F-2$ rings in this note and so from now on we always assume that R satisfies $\left({ }^{* *}\right)^{*}$ unless otherwise stated. Furthermore, we assume R is semi-perfect [1] and we shall denote the Jacobson radical of R and primitive idempotents by J and e, respectively. Let P be projective. Then $P=\sum \oplus P_{a}$; the P_{α} is indecomposable. Hence, $\mathrm{S}(P)$ is essential in P by $\left({ }^{* *}\right)^{*}$ (see [8]).

Lemma 1. Let R be a right $\mathrm{QF}-2$ and semi-perfect ring and e a primitive idempotent. Let $e R \supset e J^{n} \supsetneq e J^{n+k}$ be projectives. Then $e J^{n} \approx e J^{n+k}$ if J is nil or $e R$ is injective.

Proof. Since $e J^{n}$ is projective and $\mathrm{S}\left(e J^{n}\right)$ is simple, $e J^{n} \approx f R$ for some idempotent f. If $e J^{n} \approx e J^{n+k}, f R \approx f J^{k}$. This isomorphism is induced by an element in $f J f$. If J is nil, we have a contradiction. If $e R$ is injective, the isomorphism $e J^{n} \approx e J^{n+k}$ is extended to one on $e R$. Hence, $e J^{n}=e J^{n+k}$, a contradiction.

Theorem 1. Let R be a semi-perfect and right QF-2 ring with nil Jacobson radical. Then the following conditions are equivalent.

1) R satisfies $\left({ }^{*} 1\right)^{*}$.
2) Let $\left\{P_{\alpha}\right\}_{I}$ be a set of direct summands of a projective P such that $P=P_{\alpha}$ $\oplus P_{\alpha}{ }^{\prime}$ and $\mathrm{S}\left(P_{a}{ }^{\prime}\right)$ is simple. If $\bigcap_{I} \mathrm{~S}\left(P_{\alpha}\right)$ is irredundant, $\bigcap_{K} P_{\alpha}$ is a direct summand of P for any finite subset K of I.
3) i) For some primitive idempotent e, there exists a positive integer $t(e)$ such that $e R / e J^{t(e)}$ is a serial module, $e B\left(=e J^{s}, s \leqslant t(e)\right)$ is projective for any $e R \supset e B \supset$ $e J^{t(e)}$ and $Z(e C)=e C$ and $e C \cong e J^{t(e)}$ for every non-projective right ideal $e C$ in $e R$.
ii) $\left\{e J^{s}\right\}_{e, s=0}^{t(e)}$ is the representative set of indecomposable projectives, where $Z()$ means the singular submodule (dual to [5], Theorem 2).

Proof. 1) $\rightarrow 2$). Let $K=\{1,2, \cdots, n\}$ be a finite subset of I and put $P(n)=$ $\bigcap_{i=1}^{n} P_{i}$. We shall show $P(n)$ is a direct summand of P by the induction on n. If $n=1$, it is clear by the assumption. Put $P=P_{n} \oplus P_{n}{ }^{\prime}$ with $P_{n}{ }^{\prime}$ indecomposable and $\pi_{n}: P \rightarrow P_{n}{ }^{\prime}$ the projection. We note $\mathrm{S}\left(\cap P_{\alpha}\right)=\cap \mathrm{S}\left(P_{\infty}\right)$. Since
$\mathrm{S}(P(n-1))=\bigcap_{i=1}^{n-1} \mathrm{~S}\left(P_{i}\right) \nsubseteq \mathrm{S}\left(P_{n}\right), \pi_{n}\left(\mathrm{~S}(P(n-1)) \neq 0\right.$. Hence, $\pi_{n}(P(n-1))$ is noncosmall module in $P_{n}{ }^{\prime}$. Then there exists an indecomposable summand P_{0} of $\pi_{n}(P(n-1))$ by 1$)$. Since $\mathrm{S}\left(P_{n}{ }^{\prime}\right)$ is simple, $\pi_{n}(P(n-1))=P_{0}$. Therefore, $P(n-1)$ $=P_{0}{ }^{\prime} \oplus$ ker $\pi_{n} \mid P(n-1)=P_{0}{ }^{\prime} \oplus P(n)$, where $P_{0}{ }^{\prime} \approx P_{0}$. Since $P=P(n-1) \oplus P^{\prime}, P(n)$ is a direct summand of P.
$2) \rightarrow 3$). Let e be a primitive idempotent. We assume $e A$ is projective and $e B(\subset e A)$ is non-cosmall for right ideals $e A$ and $e B$. Then there exists a projective module P such that $0 \leftarrow e B \stackrel{f}{\leftarrow} P \leftarrow K \leftarrow 0$ is exact and $\mathrm{S}(P) \nsubseteq K$ by the defintion (see [3], Proposition 3.1). If $\mathrm{S}(P)$ is sımple, $K=0$ and $e B$ is projective. We assume $P=P_{1} \oplus \sum_{L} \oplus P_{\alpha}$ such that the P_{α} is indecomposable and $\mathrm{S}\left(P_{1}\right)$ is a simple module not contained in K. We put $Q=P \oplus e A$ and $P^{\prime}=\{x+f(x) \mid$ $x \in P\} \subset Q$. Then $\mathrm{S}\left(P^{\prime}\right)=(\mathrm{S}(P) \cap K) \oplus \mathrm{S}\left((1+f)\left(P_{1}\right)\right)$ and $\mathrm{S}(P)=\mathrm{S}\left(P_{1}\right) \oplus(\mathrm{S}(P) \cap$ K). Since $\mathrm{S}(P) \cap \mathrm{S}\left(P^{\prime}\right)$ is irredundant, $P \cap P^{\prime}=K$ is a direct summand of Q and hence of P. Accordingly, $e B$ is projective. Now if $e J$ is non-cosmall, $e J$ is projective from the above. Hence, $e J$ contains a unique maximal submodule $e J^{2}$, since $e J$ is indecomposable by $\left({ }^{* *}\right)^{*}$. Repeating those arguments, we obtain a unique chain $e R \supset e J \supset e J^{2} \supset \cdots \supset e J^{t}$ of projectives and $e B$ is cosmall for any $e B \subsetneq e J^{t}$ by Lemma 1. Hence, $e B=Z(e B)$ by [3], Proposition 3.2. The remaining part is clear from the construction of $e J^{i}$.
$3) \rightarrow 1$). Let P be a projective module which contains a non-cosmall module M. Then $P=\Sigma \oplus e_{i} J^{t_{i j}}$. Let $\pi_{i j}: P \rightarrow e_{i} J^{t_{i j}}$ be the projection. Since $M \neq$ $Z(M), \pi_{k l}(M) \nsubseteq Z\left(e_{k} J^{t}{ }^{t}\right) \subsetneq e_{k} R$ for some k, l. Hence, $\pi_{k l}(M)$ is projective and so $M=\operatorname{ker} \pi_{k l} \mid M \oplus M^{\prime} ; M^{\prime} \approx \pi_{k l}(M)$.

Corollary. Let R be semi-perfect. Then R satisfies $\left(^{*}\right)^{*}$ if and only if R is right QF-2 and QF-3 and satisfies (*1)*.

Proof. In the above proof the implication 1) $\rightarrow 2$) is valid without the assumption on J. Hence, we obtain the corollary by the implication 2) $\rightarrow 3$), Lemma 1 and [3], Theorems 1.3 and 3.6.

As the dual to Theorem 2' in [5] we have
Theorem 1'. Let R be as before. Then the following conditions are equivalent.

1) R is right hereditary.
2) Let P be projective and P_{i} direct summands of P for $i=1,2$. Then $P_{1} \cap$ P_{2} is a direct summand of P.
3) i) For some primitive idempotent $e, e R$ is uni-serial and $e B$ is projective for any right ideal $e B \subseteq e R$. ii). $\{e B\}_{e, B}$ is the representative set of indecomposable projectives.

In this case R is right artinian.
Proof. 1) $\rightarrow 2$). We can use the same argument as before.
2) $\rightarrow 1$). Let P be projective and A a submodule of P. Let $P_{1} \xrightarrow{f} A \rightarrow 0$ be an exact sequence with P_{1} projective. We put $F=P_{1} \oplus P$ and $P_{1}^{\prime}=\{x+f(x) \mid$ $\left.x \in P_{1}\right\}$. Then $F=P_{1}^{\prime} \oplus P$ and so $K=\operatorname{ker} f=P_{1} \cap P_{1}^{\prime}$ is a direct summand of F. Hence, K is a direct summand of P_{1}. Therefore, A is projective and R is hereditary.
$1) \rightarrow 3$). It is clear from Theorem 1.
$3) \rightarrow 1$). We know from 3) that R is right artinian and $Z(R)=0$. Hence, every right ideal A contains a projective summand by Theorem 1 . Since R is noetherian, A is projective.

Theorem 2. Let R be a right $\mathrm{QF}-2$ and semi-perfect ring. Then the following conditions are equivalent.

1) R satisfies (${ }^{* *} 2$).
2) Every projective module has the extending property of simple module.
3) i) For some primitive idempotent e there exists a chain of projective right ideals $e A_{i}$ such that $e R=e A_{1} \supset e A_{2} \supset \cdots \supset e A_{t}$ and $\operatorname{Hom}_{R}\left(\mathrm{~S}\left(e A_{i}\right), \mathrm{S}\left(e A_{j}\right)\right)$ is extended to $\operatorname{Hom}_{R}\left(e A_{i}, e A_{j}\right)$ for any pair $i \geqslant j$, (see [4], Theorem 2).
ii) $\left\{e A_{i}\right\}_{e, i}$ is the representative set of indecomposable projective such that $\mathrm{S}(e R) \neq \mathrm{S}\left(e^{\prime} R\right)$ if $e \neq e^{\prime}$.

Proof. 1) $\rightarrow 2$). Let P be projective and $P=\sum_{I} \oplus P_{a}$; the P_{a} is uniform. Let S be a simple submodule of $\mathrm{S}(P)$. Then there exists a finite subset $K=$ $\{1,2, \cdots, n\}$ of I such that $S \subset \mathrm{~S}\left(\sum_{K} \oplus P_{i}\right)$. If $n=1$, it is clear. Hence, we assume $S \subsetneq \mathrm{~S}\left(\sum_{K} \oplus P_{i}\right)$ and put $P(n)=\sum_{i=1}^{n} \oplus P_{i}$. Then $P^{(n)} / S=P_{0} \oplus Q$ and P_{0} is projective by 1). Considering an epimorphism $P^{(n)} \rightarrow P / S \rightarrow P_{0}$, we obtain $P^{(n)}=P_{0}{ }^{\prime} \oplus L ; P_{0}{ }^{\prime} \approx P_{0}$ and $L \supset S$. Since $L=\sum_{i=1}^{n-1} \oplus P_{i}{ }^{\prime}$, we can use the induction argument.
$2) \rightarrow 3$). Let $e R$ and $f R$ be uniform projectives with isomorphic socle. Then there exists a monomorphism $f: e R \rightarrow f R$ (or $f R \rightarrow e R$) by [4], Corollary 8, i.e. $e R<^{*} f R$ or $f R<^{*} e R$ (see [4]). Let $e R$ be a maximal one among uniform projectives P with isomorphic socle with respect to the relation $<^{*}$. Then those P are isomorphic to right ideals $e A$ in $e R$. Since the relation $<^{*}$ is linear on $\{e A\}$, taking repeatedly maximal ones, we get a chain of projective right ideals $e R=e A_{1} \supset e A_{2} \supset \cdots \supset e A_{t}$. The second condition is clear by [4], Corollary 8.
3) $\rightarrow 2$). It is clear from [4], Corollary 8.
2) $\rightarrow 1$). Let $P=P_{1} \oplus P_{2} \oplus \cdots \oplus P_{n}$ be projective and the P_{i} uniform. Let $T \subsetneq$
$\mathrm{S}(P)$ and $T=S_{1} \oplus S_{2} \oplus \cdots \oplus S_{i}$; the S_{j} is simple. Then there exists a direct summand $P_{1}{ }^{\prime}$ of P such that $\mathrm{S}\left(P_{1}{ }^{\prime}\right)=S_{1}$. Let $P=P_{1}{ }^{\prime} \oplus K_{1}$. Then $T=S_{1} \oplus$ $\pi_{1}(T) ; \pi_{1}: P \rightarrow K_{1}$. Hence, $\mathrm{S}\left(K_{1}\right) \supsetneq \pi_{1}(T)$ and $P / T \approx P_{1}{ }^{\prime} / S_{1} \oplus K_{1} / \pi_{1}(T)$. Repeating the same argument on $K_{1} / \pi_{1}(T)$, finally we obtain $P / T \approx P_{1}{ }^{\prime} / S_{1} \oplus \cdots \oplus$ $P_{i}{ }^{\prime} \mid S_{i}{ }^{\prime} \oplus K_{i}$ and K_{i} is projective, since $\pi_{j}(T)=0$ for some $j \leqslant n$.

3. Corollaries and examples

We shall consider some special cases of rings.
Corollary 1. If R is a right $\mathrm{QF}-2$ and semi-perfect ring with $\mathrm{Z}(R) \supset J$, then R satisfies (* ${ }^{*}$ *.

Proof. It is clear from the proof of the implication 3) $\rightarrow 1$) in Theorem 1.
Corollary 2. If R is a right $\mathrm{QF}-2$ and semi-perfect ring with $J^{2}=0$, then R satsifies (* 1)*.

Proof. Let $R=\Sigma \oplus e_{i} R \oplus \Sigma \oplus f_{j} R$, where the e_{i} and the f_{j} are primitive and the $f_{j} R$ is simple. Then $\mathrm{S}(R)=\sum \oplus e_{i} J \oplus \sum \oplus f_{j} R$. If $e_{i} J f_{j} \neq 0, e_{i} J \approx$ $f_{j} R$. Hence, $e_{i} J=\mathrm{Z}\left(e_{i} J\right)$ or $e_{i} J$ is projective. Accordingly, R satisfies ($\left.{ }^{*} 1\right)^{*}$ by Theorem 1.

Corollary 3. Let R be a right QF-2 and semi-perfect ring with nil Jacobson radical. Then $\mathrm{Z}(R)=0$ and (* 1$)^{*}$ is satisfied if and only if R is a right generalized uniserial and right artinian hereditary ring.

Proof. It is clear from Theorem 1.
Examples 1. Let $K \subset L$ be fields and put

$$
R=\left(\begin{array}{ccc}
K & 0 & L \\
0 & L & L \\
0 & 0 & L
\end{array}\right)
$$

Then R is a right QF-2 and hereditary artinian ring. Hence, R satisties (*1)*. If $[L: K]=\infty, R$ is not left artinian and does not satisfy (${ }^{* *} 2$).
2. Let $C=K \oplus M ; M=K$, be the trivial extension and put

$$
R=\left(\begin{array}{ll}
C & C \\
0 & C
\end{array}\right)([5], \text { Example 2). }
$$

Then R is QF-2 and $e_{11} R$ is injective and projective. Hence, R satisfies (**2) by Theorem 2. Put $P=e_{1} R \oplus e_{1} R \oplus e_{2} R$, where $e_{i}=e_{i i}$. We have a homomorphism $e_{1} R$ to $e_{1} R$ by a multiplication of $m(m \in M)$ from the left side and a
monomorphism ρ of $e_{2} R$ into $e_{1} R$. We take an epimorphism

$$
(1, m, \rho): P \rightarrow e_{1} R .
$$

Then its kernel $N_{1}=\{(x, y, z) \mid \in P, a+m y+\rho(z)=0\}$ is a direct summand of P. Put $N_{2}=\{(0, y, z) \mid \in P\}$ and $N_{3}=\{(x, 0, z) \mid \in P\}$. Then $N_{1} \cap N_{2} \cap N_{3}=0$. However, $N_{1} \cap N_{2}=\{(0,0),(a, b),(0, m b) \mid a \in M, b \in C\} \approx e_{1} J$ is not projective. Hence, R does not satisfy (${ }^{*} 1$).

References

[1] H. Bass: Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-486.
[2] M. Harada: Note on hollow modules, Rev. Union Mat. Argentina 28 (1978), 186194.
[3] -: Non-small modules and non-cosmall modules, Ring Theory of Proc. the 1978 Antwerp Conf.
[4] -: On extending property on direct sums of uniform modules, to appear.
[5] -: On one-side QF-2 rings I, Osaka J. Math. 17 (1980), 421-431.
[6] M. Rayer: Small and cosmall modules, Ph. D. Dissertation, Indiana Univ. 1971.
[7] R.M. Thrall: Some generalizations of quasi-Frobenius algebras, Trans. Amer. Math. Soc. 64 (1948), 173-183.
[8] R.B. Warfield Jr: A Krull-Schmidt theorem for infinite sums of modules, Proc. Amer. Math. Soc. 22 (1969), 460-465.

Department of Mathematics
Osaka City University
Sugimoto-cho, Sumiyoshi-ku
Osaka 558, Japan

