Harada, M. Osaka J. Math. 17 (1980), 433-438

ON ONE-SIDED QF-2 RINGS II

MANABU HARADA

(Received July 19, 1979)

We have studied the extending property on direct sums of indecomposable modules in [4]. We shall apply those results to projective modules and give characterizations of semi-perfect rings whose projective modules have the extending property of simple module. We shall deal with the dual concept of [5].

1. Preliminaries

Throughout this paper we shall denote a ring with identity by R and every R-module M is a right unitary R-module. By S(M) we denote the *socle* of M. We shall recall the definition of extending property of simple module. If for every simple submodule A_{α} of S(M) there exists a direct summand M_{α} of M such that $S(M_{\alpha})=A_{\alpha}$, we say M have the *extending property of simple module*. Let $\{N_{\beta}\}_{I}$ be a set of submodules of M. If $\bigcap_{I_{1}} N_{\gamma} \cong \bigcap_{I_{2}} N_{\delta}$ for subset $I_{1} \cong I_{2}$, $\bigcap_{I} N_{\delta}$ is

called irredundant.

In this paper we shall study the dual properties to those in [5] and so we shall first introduce the dual condition to (**) in [2] and [3].

(**)* Every indecomposable projective module contains a unique minimal submodule and is uniform.

If further every indecomposable left projective module contains a unique minimal submodule, we call R a QF-2 ring following Thrall [7]. Hence, if R satisfies (**)*, we call R a right QF-2 ring in this note.

Let M be an R-module. If M is a homomorphic image of projective module with non-essential kernel, we call M a *non-cosmall module* [3] and [6]. Every epimorphism onto non-cosmall module has the non-essential kernel [3]. We have dealt with conditions on non-small modules in [5]. We shall consider the dual or similar conditions to them.

(*1)* Every non-cosamll module which is contained in a projective module contains a non-zero projective summand (dual to (*1) in [5]). And

M. HARADA

(**2) For every finitely generated projective P with essential socle S(P), P|T contains a non-zero projective summand for any submodule $T \subseteq S(P)$.

They are weaker conditions than the following:

(*)* Every non-cosmall module contains a non-zero projective summand [4].

2. Right QF-2 rings

We are only interested in right QF-2 rings in this note and so from now on we always assume that R satisfies $(**)^*$ unless otherwise stated. Furthermore, we assume R is semi-perfect [1] and we shall denote the Jacobson radical of R and primitive idempotents by J and e, respectively. Let P be projective. Then $P=\sum \bigoplus P_{\alpha}$; the P_{α} is indecomposable. Hence, S(P) is essential in P by $(**)^*$ (see [8]).

Lemma 1. Let R be a right QF-2 and semi-perfect ring and e a primitive idempotent. Let $eR \supset eJ^n \supseteq eJ^{n+k}$ be projectives. Then $eJ^n \approx eJ^{n+k}$ if J is nil or eR is injective.

Proof. Since eJ^n is projective and $S(eJ^n)$ is simple, $eJ^n \approx fR$ for some idempotent f. If $eJ^n \approx eJ^{n+k}$, $fR \approx fJ^k$. This isomorphism is induced by an element in fJf. If J is nil, we have a contradiction. If eR is injective, the isomorphism $eJ^n \approx eJ^{n+k}$ is extended to one on eR. Hence, $eJ^n = eJ^{n+k}$, a contradiction.

Theorem 1. Let R be a semi-perfect and right QF-2 ring with nil Jacobson radical. Then the following conditions are equivalent.

1) *R* satisfies $(*1)^*$.

2) Let $\{P_{\alpha}\}_{I}$ be a set of direct summands of a projective P such that $P=P_{\alpha}$ $\oplus P_{\alpha}'$ and $S(P_{\alpha}')$ is simple. If $\bigcap_{I} S(P_{\alpha})$ is irredundant, $\bigcap_{K} P_{\alpha}$ is a direct summand of P for any finite subset K of I.

3) i) For some primitive idempotent e, there exists a positive integer t(e) such that $eR/eJ^{t(e)}$ is a serial module, $eB(=eJ^s, s \leq t(e))$ is projective for any $eR \supset eB \supset eJ^{t(e)}$ and Z(eC)=eC and $eC \subseteq eJ^{t(e)}$ for every non-projective right ideal eC in eR.

ii) $\{eJ^s\}_{e,s=0}^{t(e)}$ is the representative set of indecomposable projectives, where Z() means the singular submodule (dual to [5], Theorem 2).

Proof. 1) \rightarrow 2). Let $K = \{1, 2, \dots, n\}$ be a finite subset of I and put $P(n) = \bigcap_{i=1}^{n} P_i$. We shall show P(n) is a direct summand of P by the induction on n. If n=1, it is clear by the assumption. Put $P=P_n \oplus P_n'$ with P_n' indecomposable and $\pi_n \colon P \to P_n'$ the projection. We note $S(\cap P_n) = \cap S(P_n)$. Since

434

 $S(P(n-1)) = \bigcap_{i=1}^{n-1} S(P_i) \subset S(P_n), \ \pi_n(S(P(n-1)) \neq 0.$ Hence, $\pi_n(P(n-1))$ is noncosmall module in P_n' . Then there exists an indecomposable summand P_0 of $\pi_n(P(n-1))$ by 1). Since $S(P_n')$ is simple, $\pi_n(P(n-1)) = P_0$. Therefore, P(n-1) $=P_0' \oplus \ker \pi_n | P(n-1) = P_0' \oplus P(n)$, where $P_0' \approx P_0$. Since $P = P(n-1) \oplus P'$, P(n)is a direct summand of P. 2) \rightarrow 3). Let e be a primitive idempotent. We assume eA is projective and $eB(\subset eA)$ is non-cosmall for right ideals eA and eB. Then there exists a projective module P such that $0 \leftarrow eB \leftarrow P \leftarrow K \leftarrow 0$ is exact and $S(P) \leftarrow K$ by the defintion (see [3], Proposition 3.1). If S(P) is simple, K=0 and eB is projective. We assume $P = P_1 \oplus \sum_{\sigma} \oplus P_{\sigma}$ such that the P_{σ} is indecomposable and $S(P_1)$ is a simple module not contained in K. We put $Q=P\oplus eA$ and $P'=\{x+f(x)\mid x=0\}$ $x \in P \subset Q$. Then $S(P') = (S(P) \cap K) \oplus S((1+f)(P_1))$ and $S(P) = S(P_1) \oplus (S(P) \cap K)$ K). Since $S(P) \cap S(P')$ is irredundant, $P \cap P' = K$ is a direct summand of Q and hence of P. Accordingly, eB is projective. Now if eJ is non-cosmall, eJ is projective from the above. Hence, eI contains a unique maximal submodule eI^2 , since eI is indecomposable by $(**)^*$. Repeating those arguments, we obtain a unique chain $eR \supset eJ \supset eJ^2 \supset \cdots \supset eJ^t$ of projectives and eB is cosmall for any $eB \subseteq eI^t$ by Lemma 1. Hence, eB = Z(eB) by [3], Proposition 3.2. The remaining part is clear from the construction of eJ^i .

3) \rightarrow 1). Let *P* be a projective module which contains a non-cosmall module *M*. Then $P = \sum \bigoplus e_i J^{t_{ij}}$. Let $\pi_{ij}: P \rightarrow e_i J^{t_{ij}}$ be the projection. Since $M \neq Z(M), \pi_{kl}(M) \oplus Z(e_k J^{t_{kl}}) \subseteq e_k R$ for some *k*, *l*. Hence, $\pi_{kl}(M)$ is projective and so $M = \ker \pi_{kl} | M \oplus M'; M' \approx \pi_{kl}(M)$.

Corollary. Let R be semi-perfect. Then R satisfies $(*)^*$ if and only if R is right QF-2 and QF-3 and satisfies $(*1)^*$.

Proof. In the above proof the implication $1) \rightarrow 2$) is valid without the assumption on J. Hence, we obtain the corollary by the implication $2) \rightarrow 3$), Lemma 1 and [3], Theorems 1.3 and 3.6.

As the dual to Theorem 2' in [5] we have

Theorem 1'. Let R be as before. Then the following conditions are equivalent.

1) R is right hereditary.

2) Let P be projective and P_i direct summands of P for i=1, 2. Then $P_1 \cap P_2$ is a direct summand of P.

3) i) For some primitive idempotent e, eR is uni-serial and eB is projective for any right ideal $eB \subseteq eR$. ii) $\{eB\}_{e,B}$ is the representative set of indecomposable projectives.

In this case R is right artinian.

Proof. 1) \rightarrow 2). We can use the same argument as before.

2) \rightarrow 1). Let *P* be projective and *A* a submodule of *P*. Let $P_1 \xrightarrow{f} A \rightarrow 0$ be an exact sequence with P_1 projective. We put $F=P_1 \oplus P$ and $P'_1 = \{x+f(x) \mid x \in P_1\}$. Then $F=P'_1 \oplus P$ and so $K=\ker f=P_1 \cap P'_1$ is a direct summand of *F*. Hence, *K* is a direct summand of P_1 . Therefore, *A* is projective and *R* is hereditary.

1) \rightarrow 3). It is clear from Theorem 1.

3) \rightarrow 1). We know from 3) that R is right artinian and Z(R)=0. Hence, every right ideal A contains a projective summand by Theorem 1. Since R is noe-therian, A is projective.

Theorem 2. Let R be a right QF-2 and semi-perfect ring. Then the following conditions are equivalent.

1) *R* satisfies (**2).

2) Every projective module has the extending property of simple module.

3) i) For some primitive idempotent e there exists a chain of projective right ideals eA_i such that $eR = eA_1 \supset eA_2 \supset \cdots \supset eA_i$ and $\operatorname{Hom}_R(S(eA_i), S(eA_j))$ is extended to $\operatorname{Hom}_R(eA_i, eA_j)$ for any pair $i \ge j$, (see [4], Theorem 2).

ii) $\{eA_i\}_{e,i}$ is the representative set of indecomposable projective such that $S(eR) \approx S(e'R)$ if $e \neq e'$.

Proof. 1) \rightarrow 2). Let *P* be projective and $P = \sum_{I} \oplus P_{\alpha}$; the P_{α} is uniform. Let *S* be a simple submodule of S(P). Then there exists a finite subset $K = \{1, 2, \dots, n\}$ of *I* such that $S \subset S(\sum_{K} \oplus P_{i})$. If n=1, it is clear. Hence, we assume $S \subseteq S(\sum_{K} \oplus P_{i})$ and put $P(n) = \sum_{i=1}^{n} \oplus P_{i}$. Then $P^{(n)}/S = P_{0} \oplus Q$ and P_{0} is projective by 1). Considering an epimorphism $P^{(n)} \rightarrow P/S \rightarrow P_{0}$, we obtain $P^{(n)} = P_{0}' \oplus L$; $P_{0}' \approx P_{0}$ and $L \supset S$. Since $L = \sum_{i=1}^{n-1} \oplus P_{i}'$, we can use the induction argument.

2) \rightarrow 3). Let eR and fR be uniform projectives with isomorphic socle. Then there exists a monomorphism $f: eR \rightarrow fR$ (or $fR \rightarrow eR$) by [4], Corollary 8, i.e. eR < *fR or fR < *eR (see [4]). Let eR be a maximal one among uniform projectives P with isomorphic socle with respect to the relation <*. Then those P are isomorphic to right ideals eA in eR. Since the relation <* is linear on $\{eA\}$, taking repeatedly maximal ones, we get a chain of projective right ideals $eR = eA_1 \supset eA_2 \supset \cdots \supset eA_t$. The second condition is clear by [4], Corollary 8.

3) \rightarrow 2). It is clear from [4], Corollary 8.

2) \rightarrow 1). Let $P = P_1 \oplus P_2 \oplus \cdots \oplus P_n$ be projective and the P_i uniform. Let $T \subseteq$

436

S(P) and $T=S_1\oplus S_2\oplus \cdots \oplus S_i$; the S_j is simple. Then there exists a direct summand P_1' of P such that $S(P_1')=S_1$. Let $P=P_1'\oplus K_1$. Then $T=S_1\oplus \pi_1(T); \pi_1: P \to K_1$. Hence, $S(K_1) \supseteq \pi_1(T)$ and $P/T \approx P_1'/S_1 \oplus K_1/\pi_1(T)$. Repeating the same argument on $K_1/\pi_1(T)$, finally we obtain $P/T \approx P_1'/S_1 \oplus \cdots \oplus P_i'/S_i' \oplus K_i$ and K_i is projective, since $\pi_j(T)=0$ for some $j \le n$.

3. Corollaries and examples

We shall consider some special cases of rings.

Corollary 1. If R is a right QF-2 and semi-perfect ring with $Z(R) \supset J$, then R satisfies $(* 1)^*$.

Proof. It is clear from the proof of the implication $3 \rightarrow 1$ in Theorem 1.

Corollary 2. If R is a right QF-2 and semi-perfect ring with $J^2=0$, then R satsifies $(* 1)^*$.

Proof. Let $R = \sum \bigoplus e_i R \oplus \sum \bigoplus f_j R$, where the e_i and the f_j are primitive and the $f_j R$ is simple. Then $S(R) = \sum \bigoplus e_i J \oplus \sum \bigoplus f_j R$. If $e_i J f_j \neq 0$, $e_i J \approx f_j R$. Hence, $e_i J = Z(e_i J)$ or $e_i J$ is projective. Accordingly, R satisfies (* 1)* by Theorem 1.

Corollary 3. Let R be a right QF-2 and semi-perfect ring with nil Jacobson radical. Then Z(R)=0 and $(* 1)^*$ is satisfied if and only if R is a right generalized uniserial and right artinian hereditary ring.

Proof. It is clear from Theorem 1.

EXAMPLES 1. Let $K \subset L$ be fields and put

$$R = \begin{pmatrix} K & 0 & L \\ 0 & L & L \\ 0 & 0 & L \end{pmatrix}.$$

Then R is a right QF-2 and hereditary artinian ring. Hence, R satisfies $(*1)^*$. If $[L:K] = \infty$, R is not left artinian and does not satisfy (*2).

2. Let $C = K \oplus M$; M = K, be the trivial extension and put

$$R = \begin{pmatrix} C & C \\ 0 & C \end{pmatrix}$$
 ([5], Example 2).

Then R is QF-2 and $e_{11}R$ is injective and projective. Hence, R satisfies (** 2) by Theorem 2. Put $P=e_1R\oplus e_1R\oplus e_2R$, where $e_i=e_{ii}$. We have a homomorphism e_1R to e_1R by a multiplication of $m(m \in M)$ from the left side and a

M. HARADA

monomorphism ρ of e_2R into e_1R . We take an epimorphism

$$(1, m, \rho): P \rightarrow e_1 R$$
.

Then its kernel $N_1 = \{(x, y, z) | \in P, x + my + \rho(z) = 0\}$ is a direct summand of *P*. Put $N_2 = \{(0, y, z) | \in P\}$ and $N_3 = \{(x, 0, z) | \in P\}$. Then $N_1 \cap N_2 \cap N_3 = 0$. However, $N_1 \cap N_2 = \{(0, 0), (a, b), (0, mb) | a \in M, b \in C\} \approx e_1 J$ is not projective. Hence, *R* does not satisfy (* 1).

References

- H. Bass: Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466–486.
- [2] M. Harada: Note on hollow modules, Rev. Union Mat. Argentina 28 (1978), 186– 194.
- [4] -----: On extending property on direct sums of uniform modules, to appear.
- [5] -----: On one-side QF-2 rings I, Osaka J. Math. 17 (1980), 421-431.
- [6] M. Rayer: Small and cosmall modules, Ph. D. Dissertation, Indiana Univ. 1971.
- [7] R.M. Thrall: Some generalizations of quasi-Frobenius algebras, Trans. Amer. Math. Soc. 64 (1948), 173–183.
- [8] R.B. Warfield Jr: A Krull-Schmidt theorem for infinite sums of modules, Proc. Amer. Math. Soc. 22 (1969), 460-465.

Department of Mathematics Osaka City University Sugimoto-cho, Sumiyoshi-ku Osaka 558, Japan

438