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Following Handelman [8] we call a ring R is a right strongly semiprime
ring provided if / is a two-sided ideal of R and is essential as a right ideal, then
it contains a finite subset whose right annihilator is zero.

In this paper, we first show that a ring R is a right strongly semiprime
ring if and only if

(1) Q(R) is a direct sum of simple rings, and
(2) eQ(R)eR=eQ(R) for all idempotents e in Q(R) where Q(R) denotes

the maximal ring of right quotients of R.
Using these conditions (1) and (2), we shall investigate the following con-

ditions:
(a) Every nonsingular quasi-injective right i?-module is injective.
(b) Any finite direct sum of nonsingular quasi-injective right i?-modules

is quasi-injective.
(c) Any direct sum of nonsingular quasi-injective right i?-modules is

quasi-injective.
(d) Any direct product of nonsingular quasi-injective right jR-modules

is quasi-injective.
It is shown that the conditions (a), (b) and (d) are equivalent; indeed, the

rings satisfying one of these conditions are determined as rings R such that
RjG(R) is a right strongly semiprime ring, where G(R) denotes the right Goldie
torsion submodule of R. A ring R satisfying the condition (c) is also charac-
terized as a ring R such that RjG(R) is a semiprime right Goldie ring.

1. Preliminaries and notations

Throughout this paper all rings considered have identity and all modules
are unitary.

Let R be a ring. Q(R) denotes its maximal ring of right quotients. Let
M be a right i?-module. By ER(M)y nM, Z(M) and G(M) we denotes its in-
jective hull, the direct product of w-copies, its singular submodule and its Goldie
torsion submodule, respectively. (Note that Z(MIZ(M))=G(M)IZ(M).) For
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a given two right i?-modules N and M, we adopt the symbol N^M to denote the

fact that N is isomorphic to a submodule of M, and use the symbol iVcz^M to

indicate N to be an essential submodule of M.

Now, for a nonsingular right i?-module M, the following statements hold:

(1) MG(R)=0; so M become a right i?/G(i?)-module by usual way,

(2) M is also nonsingular as a right i?/G(i?)-module, and

(3) M is i?-injective (i?-quasi-injective) if and only if M is i?/G(i?)-injective

(i?/G(i?)-quasi-injective).

Noting that RjG(R) is a right nonsingular ring, we conclude from [4, The-

orem 2.2] that any nonsingular injective right i?-module has a unique right

j2(i?/G(l?))-module structure compatible with the i?-module structure. So, for

a nonsingular right i?-module M, we have M^eMQ(RlG(R))^βR{M).

It is well known (e.g. [4, Theorem 3.2]) that every finitely generated non-

singular right module over a right self-injective regular ring is both projective

and injective. Therefore, if M is a finitely generated nonsingular injective

right jR-module, then M is both Q(i?/G(i?))-projective and <2(i?/G(i?))-injective.

For a subset S of a ring R, {0:S)R((0:S)R) denotes the right (left) annihi-

lator of S in R.

Lemma 1.1. Let R be a ring and set R=RjG(R) and Q=Q(R). If M is

a nonsingular right Q-ntodule, then the following statements hold:

(a) M is nonsingular as a right R-module. (Of course, M becomes a right i?-

module by a natural way.)

(b) M is Q-quasi-injective if and only if M is R-quasi-injective.

Proof, (a) Let x be an element in M such that (O ΛiJjc^fi. Inasmuch

as G(JR)C(0:A:)£C,/?, we see from [4, Proposition 1.28] that (0:x)rR^eR. Hence

it follows (0:x)r

Q^:eQ9 whence #=0.

(b) Clearly M^BER(M) as a right ^-module. It is also easily seen that

M^βQ(M) as a right ^-module. As a reuslt we get Eχ(M)=EQ(M)9 whence

ER(M)=EQ(M). On the other hand we see that EndR(ER(M))=EndR(ER(M))

=EndQ(ER(M)) and EndR(EQ(M))=EndR(EQ(M))=EndQ(EQ(M))\ consequently

EndR(ER(M))=EndQ(E'ρ(M)), where End*(#) denotes the endomorphism ring of

a right *-module #. The proof is now easily done by applying the well known

fact that a module is quasi-injective if and only if it is a fully invariant submodule

of its injective hull.

The following lemma is frequently used in this paper.

Lemma 1.2. // M is a quasi-injective right R-module such that Rζ^nM

for some positive integer ns then M is injective.

Proof. By virtue of Harada [9, Proposition 2.4], nM is also quasi-injective.
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Hence we can easily see from RξinM that nM is injective, whence so is M.

2. Strongly semiprime rings

We recall some definitions introduced by Handelman and Lawrence [7]
and Handelman [8]. An right ideal / of a ring R is insulated if there exists a
finite set c:/ whose right annihilator in R is zero. For a non-zero element a
in R, a finite set {rly •• ,rn} <Ξi? is a right insulator of a if the right annihilator of
{aru "-,arn} is zero. A ring R is said to be a right strongly prime ring pro-
vided every non-zero ideal of R is insulated as a right ideal, and said to be a
right strongly semiprime ring if every ideal / of R with I^fi as a right ideal is
insulated as a right ideal. As is easily seen, a ring R is right strongly prime if
and only if every non-zero element in R has a right insulator.

The notion 'insulated' coincides with 'cofaithfuΓ in Beachy-Blair [1] and
is connected with 'finite intersection property on annihilator right ideals' in
Zermanowitz [14]. The class of right strongly prime rings is just that of right
absolutely torsion-free rings in the sense of Rubin [11], For details of strongly
prime rings and strongly semiprime rings, the reader is refered to [1], [6], [7], [8]
and [11].

DEFINITION. For an element a in a ring R> we call a finite set {rly •• ,rn;i}
c l? is a right semi-insulator of a when RaRΓ\RbR=0 and the right annihilator
of {aru " ,arn} U bR is zero.

Proposition 2.1. If R is a ring such that every element in R has a right
semi-insulator, then R is a semiprime right nonsingular ring.

Proof. Let a^R. Then there exists a finite set {rly ~ ,rn; b} ̂ R satisfy-

ing RaRΠRbR=0 and [IΊ(0: art)
r

R] Π(0: bR)r

R=0. If a£ίZ{R) and αφO, then

ar^Z^R) for each / and 0 Φ a τ e Π (0: artfR for some r^R. But it follows from
ί = 1

bRar=0 that ar=0, a contradiction. If aRa=0, then a=0 because α e [ Π

(0: ar^x] Π (0: bR)r

R=0. Thus R is a semiprime right nonsingular ring.

Lemma 2.2. Let Rbe a semiprime ring.
(a) If I is an ideal of R and J is a right ideal of R such that I Π J = 0 , then

If]RJ=0 and moreover Q(R)IQ(R)Γ)Q(R)JQ(R)=Q.
(b) For ideals I and J of R,I<^eJ as a right ideal if and only if I^LeJ as a

left ideal.
(c) If {/ λ |λeΛ} is an independent family of ideals of R, then so is

Proof, (b) and (c) easily follow from (a).
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(a). Set Q=Q(R). Since / Π / = 0 , we see / 7 = 0 and it follows (IQJ Π R)2

=0. Hence IQJ=O, from which we have (QIQ Π QJQ Π i?)2=0 and therefore

NOTE. Let / and / be ideals of a semiprime ring R. When we use ' / £ ! * / '

instead of cI^eJ as a right ideal' or */Q e / as a left ideal', no confusion arisies

by Lemma 2.2(b).

Proposition 2.3. Tλe following conditions are equivalent for a semiprime

right nonsingular ring R:

(a) Q(R) is a direct sum of prime rings.

(b) The set of all central idempotents of Q(R) is a finite set.

(c) R contains no infinite direct sums of ideals.

(d) Every ideal of R is essentially cyclic generated, i.e., if I is an ideal of R,

then there exists a in I such that

Proof. Set Q=Q(R). (a)^(b) is clear.

(b)=φ(c). Suppose that R contains an infinite independent set {7 λ |λeΛ}

of non-zero ideals. Lemma 2.2 (c) says that {QIλQ\X^A} is independent

and so is {EQ(QIλQ)\\EiA}. However, inasmuch as each EQ(QIλQ) is an

ideal of Q, each EQ(QIλQ) is generated by a central idempotent in Q by [5,

Corollary 1.10]. This contradicts (b).

(c)=φ(d). Let / be a non-zero ideal of R. For O φ α ^ / , if Rafl is not

essential in 7, we can take 0Φ#2

 m I such that {Rafl, Ra2R} is independent by

Lemma 2.2(a). Similarly when RaιR®Ra2R is not essential in 7, then there

exists a3 in 7 such that {RaχR9 Ra2R> Ra3R} is independent. Continuing

this manner, by (c), we must reach to n such that {Rafi, '",RanR} is inde-

pendent and RaλR® ®RanRc J. Here we claim R{aλ-\ \-an)R c J. From

Lemma 2.2(c), {QaλQy •••, QanQ} is independent. This implies

®anQ=(a1-\ \-an)Q since Q is a regular ring. Hence we see

®RattR)Q=R(a1-\ \-an)Q, which shows Λ ^ + . + α ^ c ^ i Λ Θ

Therefore surely JR(ΛH \-an)R<^J.

(d)=#>(a). It is easily seen from (d) that Q is a direct sum of indecomposable

rings, say Q=Qi®~-(BQn> To show that each Q{ is prime, let X be an ideal

of Qj. Then EQ.(X) is generated by a central idempotent in Q{ by again [5,

Corollary 1.10]. So, X^eQ{ as a right £)Γmodule from which we see that

Qi is a prime ring.

REMARK. The equivalence of (a) and (b) is due to J. Kado (see [10, Proof

of Proposition 3.2]).

Lemma 2.4 ([8]). If R is a right strongly semiprime ring, then

(a) R is a semiprime right nonsingular ring, and
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(b) Q(R) is a direct sum of simple rings.

Proof, (a). Let / be an ideal of R such that 7 2=0. Clearly 7 2 =0
implies (0: 7)*C<i? as a right ideal. So (0: I)ι

R is insulated as a right ideal.
Inasmuch as (0:1)l

RI=0, it follows 7=0. Hence R is a semiprime ring. Since
R is semiprime, using Lemma 2.2(a), there exists an ideal K^R such that
Z(R)®K^eR. Since Z(R)@K is insulated as a right ideal, there exists a

finite set fo, •••, zn) ^Z(R) and {̂ , •••, kn} ^K such that ή(0: #,-+&,•)£ =

( Π (0 :#,•)£) n(Π(0 :&,•)£). Let a<=Z(R) and suppose αφO. ThenOφαre Π(0 :*,.)£
ί = l ί = l » = 1

for some r in i?. But, since each kj(zr=O, we infer dr=0, a contradiction. Thus

(b). Inasumuch as every non-zero essential ideal of R is insulated, clearly,
R contains no infinite direct sums of non-zero ideals. Hence, by Proposition 2.3,
Q(R) is a direct sum of prime rings, say Q(R)=Qi® ζBQ,r In order to
show that each Q{ is simple, let X{ be a non-zero ideal of Qh i = l , « ,Λ. Since
Qi is a prime right self-injective regular ring, we see X^jQi by [5, Proposition
1.10]. As a result, {Xx®-®Xn) Π-RcΛ So (-XΊ0 —0X,) ΠΛ is insulated
as a right ideal, whence Rξ^k((X1(B~-@Xn)ΓϊR)^k(X1®- -(BXn) for some
positive integer k. Since -XΊ0 0-Xn is an ideal of Q, it is (g-quasi-injective
and so is by Lemma 1.1, i?-quasi-injective. Therefore we see that -XΊ0 0-Xn

is jR-injective, whence Q(R)=Xι®"'®XH. Therefore Q~Xiy i=l,---,n.

Theorem 2.5. For a given ring, R, the following conditions are equivalent:
(a) R is a right strongly semiprime ring.
(b) (1) Q(R) is a direct sum of simple rings, and

(2) Q(R)eR==Q(R)eQ(R), or equivalently, eQ(R)eR=eQ(R) far all
idempotents e in Q(R)

(c) (1) R contains no infinite direct sums of ideals,
(2) every element of R has a right semi-insulator.

(d) Q(R)I=Q(R) for any essential right ideal I of R.
(e) There exists a ring extension S of R with the same identity satisfying

SI=S for any essential right ideal I of R.

Proof. Set Q=Q(R). (a)=φ(b). According to Lemma 2.4, Q is a direct
sum of simple rings. So every ideal of Q is a direct summand. Let e=e2^Q
and take an ideal T of Q such that QeQ®T=Q. Since (QeRΠi?)θ(ΓΓiR) is
essential in R, it is insulated as a right ideal, hence there exists a positive integer
k such that Rc:k((QeRΓ[R)®(Tf]R)) as a right i?-module. Since QeR@T is
a left ideal of Q, QeR®T is ζ)-quasi-injective and so is i?-quasi-injective
(Lemma 1.1). Hence Lemma 1.2 says that QeR®T is i?-injective, whence we
have QeR=QeQ.
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(b)=>(c). In order to show R to be semiprime, let a^R such that aRa=0.
Since Q is a direct sum of simple rings, clearly it is a right nonsingular ring;
whence it is a regular ring. Thus Qa=Qe for some e=e2 in Q. Since QaR=
QeR=QeQ=QaQ, we see O=QaRa=QaQa, from which we have a=0. (1)
now follows from Proposition 2.3. Let us write j2=<2iΘ ΘQΛ, where each
Qi is simple, and let \=ex-\ \-en in this decomposition. {eu ••-,£„} is a

set of non-zero central orthogonal idempotents. Now, to show (2), let a^R.

Then QaR=QaQ=^®Qi f° r s o m e ^ { 1 , —>*}• Without loss of genera-

lity, we can assume 7={1, •••, s}. Let us express ei+ + £ s in QeR as

+£,=Σ?»Λ rί> where q^Q and r^R. We can take r in i? satisfying
1 = 1

Gi?, m = ί + l , ,w. Put b=r(es+1-\ \-en). Here we claim that {rly •• ,r/; b}

is right semi-insulator for a. RaR Π RbR=0 is obvious. If # is in [ Π (0: art )*](

Π(0: W?)#, then (^i+ "+^s)^=0. Further, inasmuch as QemrQ=Qm for m=
H-l, —,Λ, we infer QW2=^.+i® —®δ»5 whence (es+1^ \-en)x=0. There-
fore x=0 as required.

(c)=^(a). Proposition 2.1 says that R is a semiprime right nonsingular
ring. If I is an essential ideal of R, then there exists a in I such that RaR^J
( c ^ ) by Proposition 2.3. Let {rly •• ,rM;i} be a right semi-insulator of a.

Since RaR^JR and RaRΓίRbR=0, we see δ=0. Consequently Π(0: αrf.)=0.

Therefore / is insulated as a right ideal.
(b)=#(d). If I is an essential right ideal of R, then QI^jQ as a right R-

module. As is seen in the proof of (b)==> (c), it follows from (1) that Q is regular.
Therefore (2) easily implies QI=QIQ. As a result QI=QIQ<φQ and hence

(d)==>(e)=#>(a) is obvious.

Corollary 2.6. 4̂ πwg 2? is a right strongly prime ring if and only if Q(R)
is simple and Q(R)eR=Q(R)eQ(R) for all idempotents e in Q(R).

Corollary 2.7. The following conditions are equivalent for a given ring R.
(a) R is a semiprime right Goldie ring.
(b) R is a right finite dimensional right strongly semiprime ring.
(c) IQ(R)=Q(R)I=Q(R) for every essential right ideal I of R.

Proof. (a)=#>(b). Since every essential ideal of R contains a regular el-
ement, clearly R is a right strongly semiprime ring.

(b)=φ(a) follows from Lemma 2.4, and (b)«=>(c) follows from Theorem 2.5
and [12, Theorem 1.6].

Corollary 2.8 ([8, Corollary 16]). A regular right strongly semiprime ring R
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is a direct sum of simple rings. Therefore R is also a left strongly semiprime ring.

Proof. Inasmuch as R contains no infinite direct sums of ideals, it is suffi-
cient to show that R contains no proper essential ideals. Let I be an essential
ideal of R. Then QI=Q by Theorem 2.5, whence it follows from regularity
of R that ί=qe for some q<=Q and e=#<=I. Then, clearly, l=e. So I=R.

3. Nonsingular quasi-injective modules

L e m m a 3.1 ([1]). If R is a right strongly prime ring, then every nonsingular

quasi-injective right R-module is injective.

Proof. Let M (Φθ) be a nonsingular quasi-injective right i?-module
and let Oφtf^Λf. Since xQ(R) is £)(i?)-projective there exists e in Q(R) and
an isomorphism ψ: xQ(R)^eQ(R) with ψ(x)=e. We can take r in R such
that OΦerei?. Then Rζin(erR) for some positive integer w, since er has a right
insulator. Inasmuch as Rξ^n(erR)£&n(xrR)<^nM, M is injective by Lemma
1.2.

Lemma 3.2. Let R be a right self-injective regular ring such that every

nonsingular quasi-injective right R-module is injective. Then R is a direct sum

of simple rings.

Proof. According as every ideal of R is a nonsingular quasi-injective
right i?-module, every ideal of R is a direct summand. Hence R contains no
infinite direct sums of ideals. Hence by Proposition 2.3, R is written as a
direct sum of prime rings, say R=R1®"®Rn. Since R{ is prime and every
ideal of i?, is a direct summand, i?, must be simple, / = 1 , •••,«.

Proposition 3.3. // R is a right nonsingular ring, then the following condi-

tions are equivalent'.

(a) Q{R) is a direct sum of simple rings.

(b) ER(M)=MQ(R) for all nonsingular quasi-injective right R-module M.

Proof. Set Q=O(R). (a)==> (b). If M is a nonsingular quasi-injective right
i?-module, then MQ is nonsingular ^-quasi-injective. Hence, by Lemma
3.1, MQ is g-injective; whence MQ is i?-injective.

(b)=#>(a). If M is a nonsingular quasi-injective right Q-module, then M
is nonsingular i?-quasi-injective (Lemma 1.1). Hence M=MQ=ER(M)=EQ

(M), which shows that M is g-injective. Thus, by Lemma 3.2, we conclude
that Q is a direct sum of simple rings.

We are now in a proposition to show our main theorem.

Theorem 3.4. For a given ring R, the following conditions are equivalent:

(a) RjG(R) is a right strongly semiprime ring.
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(b) Every nonsίngular quasi-injectίve right R-module is injective.

(c) Any finite direct sum of nonsingular quasi-infective right R-module is

also quasi-injecίive.

(d) Any direct product of nonsίngular quasi-injectίve right R-module is quasi-

injective.

Proof. Set R=RIG(R) and Q=Q(RjG(R)). (b)=>(d)==>(c): Obvious.
(a)=^(b). Since R is a right strongly semiprime ring, Theorem 2.5 says

that Q is a direct sum of simple rings and eQeR=eO for all idempotenls e in Q.
Now, let M(Φ0) be a nonsingular quasi-injective right JR-module. In order
to show M is injective, we may show M=MQ by Proposition 3.3. Let 0 Φ # e
M. Since xQ is jj-projective, there exists an idempotent e in Q and an isomor-
phism ψixQ^eQ with ψ(x)=e. Inasmuch as xQ is (J-injective, ER(M)=
xQξ&Y for some submodule Y. Since M is quasi-injective, this yields M =
(xQf]M)(B(Yf)M). As a result, xQΓ\Mis quasi-injective. Put Z=ψ(xQf)M).
Inasumuch as xRc= ̂ QftMceχQ, we infer that ER(xQf]M)=xQ; whence
ER(Z)=eQ. Observing eQ==eQeR=EndQ(eQ)eR=EndR(eQ)eR^EndR(eQ)Z==Zi

we see eQ=Z=ψ(xQ Π M). Consequently xQ=xQ Π M and it follows #0 cjlf.
Therefore MQ=M as desired.

(c)=#>(a). In view of Theorem 2.5, it is enough to show that eQeR=eQ
for all idempotents e in Q and £) is a direct sum of simple rings.

Let e=e2(=Q and set T=eQeR®(l—e)Q(\— e)R. Then T is a nonsin-
gular quasi-injective right i?-module because both eQeR and (1—e)Q{\— e)R
are so. Since i?£Γ, it follows that T is injective; whence so is eQeR. Thus
we get eQeR=eQeQ=eQ. Now, assume that £) can not be expressed as a
direct sum of prime rings. Then, by Proposition 2.3, we see that there exist
infinite orthogonal non-zero central idempotents {̂  | i = l , 2 , } in Q. Since

CO

2 eQ is nonsingular ζ)-quasi-injective, it is also nonsingular i?-quasi-injective
i = l

CO

(Lemma 1.1). Putting T=(ί—e1)Qx(ΣιeiQ)y T is then a nonsingular quasi-

injective right i?-module, since both (1—^)^ and Σ ^ £ ? are so. As a result,

it follows from i?£ T that T is injective and 2 ^(X® 0> a contradiction. Hence
ί = l ~

Q must be written as a direct sum of prime rings, say Q=Qi@ ®Qn Let
X be a non-zero ideal of ζ),-. Then X is a nonsingular quasi-injective right
jj-module and hence it is nonsingular i?-quasi-injective by Lemma 1.1. Take
a non-zero idempotent e in X and consider Xx(l— e)Q. Since both X and
(\—e)Q are nonsingular quasi-injective right i?-module, so is Xχ(l—e)Q.
Inasmuch as i ? £ J χ ( l - e ) Q , it follows that Xx{\—e)Q is injective; whence
X<φj2, . Since Q{ is a prime ring, this shows X— Q{. Accordingly each Qt

is simple.
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Combining Theorem 3.4 with Corollary 2.8, we have

Corollary 3.5. If R is a regular ring, then the following conditions are equi-
valent:

(a) R is a direct sum of simple rings.
(b) Every nonsingular quasi-injective right R-module is injective.
(b') Every nonsingular quasi-injective left R-module is injective.

Corollary 3.6. If R is a right strongly semiprime ring, then its right socle
is a direct summand of R as a ring.

Proof. By Theorem 3.4(b), we conclude that the right socle S of R is a
direct summand of R as a right jR-module. Since R is a semiprime ring and
S is a two-sided ideal of Ry it follows that S is a direct summand of R as a ring.

Boyle and Goodearl [3] showed that every nonsingular quasi-injective
right module over a semiprime right Goldie ring is injective. However, ac-
cording as every essential ideal of a semiprime right Goldie ring R has a regular
element, R is a right and left strongly semiprime ring. Hence Theorem 3.4
guarantees the following result.

Corollary 3.7. If R is a semiprime right Goldie ring, then every nonsingular
quasi-injective right R-module is injective and, at the same time, every nonsingular
quasi-injective left R-module is also injective.

Finally we show the following result.

Theorem 3.8. For a given ring R, the following conditions are equivalent:
(a) R/G(R) is a semiprime right Goldie ring.
(b) Any direct sum of nonsingular quasi-injective right R-modules is quasi-

injective.

Proof. As is well known ([13]), the following conditions are equivalent:
(1) Q(R/G(R)) is a semisimple artinian ring.
(2) RjG{R) is right finite dimensional
(3) Any direct sum of nonsingular injective right Jf?-modules is injective.
Convining this fact with Theorem 3.4 and Corollary 3.7, the proof is es-

tablished.

REMARK. It seems to be also meaningful to study those rings whose nonsin-
gular quasi-injective right modules are written as direct sums of indecomposable
modules. Such rings were determined by Berry [2] as rings R such that R/G
(R) is right finite dimensional.
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