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Let K be an algebraically closed field of characteristic p>0, and G a finite
group of order p°m where (p, m)=1 and a>0. We denote by J(KG) the radical
of the group algebra KG. In case p is odd, D.A.R. Wallace [6] proved that
J(KG) is commutative if and only if G is abelian or G’P is a Frobenius group
with complement P and kernel G’, where P is a Sylow p-subgroup of G and
G’ the commutator subgroup of G. On the other hand, in case p=2, S. Koshi-
tani [1] has recently given a necessary and sufficient condition for J(KG) to be
commutative. In this paper, we shall give alternative conditions for J(KG)
to be commutative.

If J(KG) is commutative, then G is a p-nilpotent group and a Sylow p-
subgroup of G is abelian ([6], Theorem 2). We may therefore restrict our
attention to a p-nilpotent group. Now, we put N=0O,(G). For a central
primitive idempotent & of KN, we put G.={g=G|gég™'=¢€}. Let q; (i=1,
2, +++, 5) be a complete residue system of G(mod G)

G == G,aIU G!azu soe U G!as .
Then K. Morita [2] proved the following:

Theorem 1. If G is a p-milpotent group, then e=>Y., &% is a central
primitive idempotent of KG and KGe is isomorphic to the matrix ring (KP,); of
degree f over KP, for some f, where P, is a Sylow p-subgroup of G..

In what follows, for a subset S of G, we denote by S the element Sesx of
KG. By [5], Theorem, it holds that J(KG)*=0 if and only if p°=2. When this
is the case, J(KG) is trivially commutative. Therefore we may restrict our
attention to the case p°>3. The following proposition contains [1], Theorem 2.

Proposition. If G is a non-abelian group and p°=3, then the following
conditions are equivalent:

(1) J(KG) is commutative.

(2) (G'P)'=G" and J(KG'P) is commutative.

(3) () G'is ap’-group, and
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(ii) each block of KG'P, which is not the principal block, is of defect 0
if p=2 and of defect 1 or 0 if p=2.
4) () G'isap’-group, and
(i) for each xG'—1, Cyp(x) is a p'-group if p==2 and its order is
not divisible by 4 if p=2.

Proof. (1)=(2): We put H=G'P. Since H is a normal subgroup of
G, we have J(KH)C J(KG). Hence J(KH) is commutative, and so, by [6],
Theorem 2, |H’| is not divisible by p. Since J(KG) is commutative and
](KG)DJ(KH)D](KH’P):)I?'](KP), by [6], Lemma 3, we have G'KGD
J(KGy> A” J(KPP=H'J(KP¢=H'P. Thus, we have G'CH'P. Since G’
is a p’-group by [6], Theorem 2, we have G'=H’.

(2)=(3): Since J(KG'P) is commutative and (G'P)'=G", G’ is a p'-group
by [6], Theorem 2. Now, we put eI=|G'|"(§", and e,=1—e¢,. Then ¢
and e, are central idempotents of KG'P. Thus we have J(KG'P)=e, J(KG'P)
@®e, J(KG'P). Since J(KG'P) is commutative, by [6], Lemma 3, we have

J(KG'Py=e, J(KG'P)*@e, J(KG ’P)ZC(C{’}’) 'KG'P=G'KG'P=¢,KG'P. There-
fore e, J(KG'P)*=0, and so by Theorem 1, every non-simple block of ¢,KG'P is
isomorphic to the matrix ring over KD, where K is of characteristic 2 and D
is a group of order 2. Hence ¢,KG'P is a direct sum of blocks of defect 0 or of
defect 1 or 0 according as p is odd or 2. Since ¢,KG’P(=e,KP) is the principal
block, we obtain (3).

(3)=(4): This is easy by [3], Theorem 4.

(4)=>(3) is trivial.

(3)=(1): Since G'P is a normal subgroup of G and [G: G'P] is not di-
visible by p, we have J(KG)=J(KG'P)KG. We put e,=|G’|"'G", and e,—
1—e,. Then ¢ and e, are central idempotents of KG and J(KG)=e, J(KG'P)-
KG®e, J(KG'P)KG. Since ¢, J(KG'P)KGC G'KG, ¢, J(KG'P)KG is a central
ideal of KG by [4]; Lemma 5. By Theorem 1, every block of &,KG'P is iso-
morphic to the matrix ring over KD, where D is a p-group. From our assump-
tion, every non-simple block of ¢,KG'P has the radical of square zero. Hence
e[ J(KG'P)KG)=e, J(KG'P)KG=0, and so ¢ J(KG'P)KG is commutative.
Thus, J(KG) is commutative.

ReMARK. The condition (4) of Proposition for p odd is equivalent to the

condition of Wallace’s result ([6]) that G'P is a Frobenius group with comple-
ment P and kernel G’.

Now, in case p=2, we shall give the conditions for J(KG) to be commuta-
tive.

Theorem 2. Assume that p=2, 2°=4 and G'=1. Then the following
conditions are equivalent:
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(1) J(KG) is commutative.

(2) G’ is of odd order and |PNP*| <2 for every he G'P—P.

() G’ is of odd order and Cg p(s)/<sD> is either a 2-group or a Frobenius
group with complement P[<{s> for every involution s of P.

Proof. (1)=(2): Suppose that J(KG) is commutative. Then, by Propo-
sition, G’ is of odd order. Let % be an arbitrary element of G'’P—P, and x an
arbitrary element of PN P*: Then hxh 'x'€PNG'=1, and so x&Cyp(h).
Thus, PNP*CCyp(h). Since we may assume that A& G'—1, we obtain
| P N P*| <2 by Proposition.

(2)=(3): Let s be an arbitrary involution of P such that C¢/5(s)%=P. Then
PNP*={s> for x=Cyp(s)—P, and so Cyp(s)/<s> is a Frobenius group with
complement P/<{s>.

(3)=(1): Let x be an element of G'—1, and S a Sylow 2-subgroup of
Cyp(x). Suppose that S3=1. Then S P*for someucG'P, and xCyp(S)C
C¢ p(s) for every involution s of S. Hence, Cg x(s) is not a 2-group, and so
Cyp(5)/{s> is a Frobenius group with complement P“/{s>. Thus, we have
ScP*NP“=(s>, and hence |C¢p(*)| is not divisible by 4, which implies (1)
by Proposition.

Corollary. Assume that p=2, 2°=4 and G'+1. If J(KG) is commutative,
then a Sylow 2-subgroup of G is a cyclic group or an abelian group of type (2, 2°7%).

Proof. Suppose that J(KG) is commutative. Then, by Theorem 2,
|[PNP* <2 for every heG'P—P. If PNP*=1 for all h&G'P—P, then
G'P is a Frobenius group with complement P and kernel G'. Hence P is
cyclic. On the other hand, if PNP*=<{s) for some A& G'P—P and some
involution s of P, then hsh™s'€ PNG'=1, and so h& Cyp(s) and h & P.
Therefore Cgp(s) properly contains P. Hence, Cgp(s)/<s> is a Frobenius
group with complement P/{s> by the condition (3) of Theorem 2. Hence
P/[<s)> is cyclic, and so P is a cyclic group or an abelian group of type (2, 2°7%).

RemMARk. In case G is a non-abelian group and p°=3, S. Koshitani [1]
proved that if J(KG) is commutative, then Ng(P) is abelian. This is included
in the following proposition: Let G be a mnon-abelian group, and p°=3. If
J(KG) is commutative then G is a semi-direct product of G’ by (abelian) Ny(P).

Proof. It is easy to see G=G'N4(P). Suppose that J(KG) is commuta-
tive. Let x be a p’-element of N p(P). Since G'P is a p-nilpotent group,
Ny p(P) is the direct product of P and a normal p’-subgroup, and so Cgyp(x)
contains P. Hence, by Proposition (4), we have x=1, which implies that
G'NNg(P)=1.
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