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Let K be an algebraically closed field of characteristic p>0, and G a finite
group of order pam where {p, m)=1 and a> 0. We denote by J(KG) the radical
of the group algebra KG. In case p is odd, D.A.R. Wallace [6] proved that
J(KG) is commutative if and only if G is abelian or G'P is a Frobenius group
with complement P and kernel G', where P is a Sylow />-subgroup of G and
G' the commutator subgroup of G. On the other hand, in case/>=2, S. Koshi-
tani [1] has recently given a necessary and sufficient condition for J(KG) to be
commutative. In this paper, we shall give alternative conditions for J(KG)
to be commutative.

If J(KG) is commutative, then G is a ^-nilpotent group and a Sylow p-
subgroup of G is abelian ([6], Theorem 2). We may therefore restrict our
attention to a j>-nilρotent group. Now, we put N=Op'(G). For a central
primitive idempotent £ of KN> we put G ε = {g^G\gSg~ι=S}. Let #t ( ί = l ,
2, •••, ί) be a complete residue system of G(mod Gε)

Then K. Morita [2] proved the following:

Theorem 1. If G is a p-nilpotent group, then e = Σ ί - i £*' & Λ central
primitive idempotent of KG and KGe is isomorphic to the matrix ring (KPz)f of
degree f over KPZ for some f, where P 8 is a Sylow p-subgroup of Gε.

In what follows, for a subset S of G, we denote by S the element Σ*e=s# of
KG. By [5], Theorem, it holds that J(KG)2=0 if and only if pa=2. When this
is the case, J(KG) is trivially commutative. Therefore we may restrict our
attention to the case^>Λ^3. The following proposition contains [1], Theorem 2.

Proposition. // G is a non-άbelian group and pa^39 then the following
conditions are equivalent:

(1) J(KG) is commutative.
(2) (G'F)'=G' and](KG'P) is commutative.
(3) (i) G' is a p'-group, and
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(ii) each block of KG'Py which is not the principal block, is of defect 0
if j>=i=2 and of defect 1 or 0 ifp=2.

(4) (i) G' is a p'-group, and
(ii) for each Λ G G ' - I , CG'F{X) is a p'-group if pΦ2 and its order is

not divisible by 4 if p=2.

Proof. (1)=Φ(2): We put H—G'P. Since H is a normal subgroup of
G, we have J{KH)(Zj{KG). Hence J{KH) is commutative, and so, by [6],
Theorem 2, \H'\ is not divisible by p. Since J(KG) is commutative and
J(KG)^J(KH)^J(KHfP)ZDήfJ(KP)9 by [6], Lemma 3, we have GXGz)
J(KG)2Z)h'2J(KP)2=H'J{KP)2ΞϊtifP. Thus, we have G'dH'P. Since G'
is a £ '-group by [6], Theorem 2, we have G'=H'.

(2)=^(3): Since J(KG'P) is commutative and ( G T ) ' = G ' , G' is a//-group
by [6], Theorem 2. Now, we put e1=\G'\-10\ and β2 = l - ^ . Then e1

and e2 are central idempotents of KG'P. Thus we have J(KG'P)=eJ(KGfP)
@e2J(KG'P). Since J(KG'P) is commutative, by [6], Lemma 3, we have

J(KGfP)2=e1J(KGfP)2®e2J{KGfP)2d(GfPyKGfP=OfKGfP=e1KGfP. There-
fore e2J(KG'P)2=0, and so by Theorem 1, every non-simple block of eJfίG'P is
isomorphic to the matrix ring over KD, where K is of characteristic 2 and D
is a group of order 2. Hence e2KG'P is a direct sum of blocks of defect 0 or of
defect 1 or 0 according asp is odd or 2. Since eιKG'P{=eλKP) is the principal
block, we obtain (3).

(3)=>(4): This is easy by [3], Theorem 4.
(4)=->(3) is trivial.
(3)=^(1): Since G'P is a normal subgroup of G and [G: GT] is not di-

visible by />, we have J(KG)=J(KG'P)KG. We put * x = I G T 1 ^ ' , and e2=
\—ex. Then ^ and e2 are central idempotents of KG and J(KG)=e1J(KG'P)-
KG®eJ(KG'P)KG. Since eJίKGΊ^KGdό'KG, eJ{KG'P)KG is a central
ideal of i£G by [4], Lemma 5. By Theorem 1, every block of e^KG'P is iso-
morphic to the matrix ring over KD, where D is a />-group. From our assump-
tion, every non-simple block of eJ^G'P has the radical of square zero. Hence
e2[J(KG'P)KG]2=e2J(KG'PγKG=0, and so eJ(KG'P)KG is commutative.
Thus, J(KG) is commutative.

REMARK. The condition (4) of Proposition for p odd is equivalent to the
condition of Wallace's result ([6]) that G'P is a Frobenius group with comple-
ment P and kernel G'.

Now, in case/>=2, we shall give the conditions for J(KG) to be commuta-
tive.

Theorem 2. Assume that p=29 2*^4 and G'Φl . Then the following
conditions are equivalent:
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(1) J(KG) is commutative.
(2) G' is of odd order and \P ΠPh I ^ 2 for every A G G T - P .

(3) G' is of odd order and CG'P{s)jζ/} is either a 2-group cr a Frobenίus
group with complement P/K/} for every involution s of P.

Proof. (ί)=φ(2): Suppose that J(KG) is commutative. Then, by Propo-
sition, G' is of odd order. Let h be an arbitrary element of G'P—P, and x an
arbitrary element of PΓ\Ph. Then hxh~1χ-1^Pf]Gf=ί9 and so x^CG'P(h).
Thus, P f)Phc:CG'P(h). Since we may assume that A G G ' - I , we obtain
IP Π Ph I ^ 2 by Proposition.

(2)=Φ(3) : Let s be an arbitrary involution of P such that CG'P(s) ΦP. Then
PnP*=<£> f° r #GCG'p(s)—P, and so CG'P(s)/<s)> is a Frobenius group with
complement P/Ks}.

(3)=>(1): Let x be an element of G'—1, and S a Sylow 2-subgrouρ of
CG'P(x). Suppose that S Φ l . Then S c P " for somewGGT, and^GCG^(*S)C
CG'P(s) for every involution s of S. Hence, CG'P(s) is not a 2-grouρ, and so

ls a Frobenius group with complement Pu/ζsy. Thus, we have
"*=<Λ>, and hence \CG'P(x)\ is not divisible by 4, which implies (1)

by Proposition.

Corollary. Assume that p=2, 2 Λ ^4 and G'Φ 1. IfJ(KG) is commutative,
then a Sylow 2-subgroup of G is a cyclic group or an abelian group of type (2, 2Λ"1).

Proof. Suppose that J(KG) is commutative. Then, by Theorem 2,
| P Π P A | ^ 2 for every h^G'P-P. If P ( Ί P A = 1 for all heϊG'P-P, then
G'P is a Frobenius group with complement P and kernel G'. Hence P is
cyclic. On the other hand, if PnP A =<s> for some h^G'P—P and some
involution s of P, then hsh~ιs~ιGPΠG'= 1, and so h^CG'P(s) and A φ P .
Therefore CVpCs) properly contains P. Hence, CG'P(s)lζsy is a Frobenius
group with complement P/<s> by the condition (3) of Theorem 2. Hence
P/ζs} is cyclic, and so P is a cyclic group or an abelian group of type (2, 2Λ~1).

REMARK. In case G is a non-abelian group and />*^3, S. Koshitani [1]
proved that if J(KG) is commutative, then NG(P) is abelian. This is included
in the following proposition: Let G be a non-abelian group, and pa^3. If
J(KG) is commutative then G is a semi-direct product of Gr by {abelian) NG(P).

Proof. It is easy to see G=G'NG(P). Suppose that J(KG) is commuta-
tive. Let Λ be a ^'-element of NG'P(P). Since G'P is a ^-nilpotent group,
NG'p(P) is the direct product of P and a normal j>'-subgroup, and so CG'P(x)
contains P. Hence, by Proposition (4), we have x=l, which implies that
G'nNG{P)=l.
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