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0. Introduction. Let a(u; p, q) denote the number of lattice points
(#, y)E2Z? such that (i) |x|4|y|=u (ii) x+py=0 (mod g), where «, p, and
q are given positive integers. It is easy to see that a(u; p, q) is determined only
by p modulo g, if g is fixed. Let p’ be another positive integer. We always
assume (p, 9)=(p’, ¢)=1 in the following, where ( , ) means the greatest com-
mon divisor. It is easy to see that we have a(u; p, q)=a(u; p’, q) for every
positive integer # if p=4-p' or pp'=-+1 (mod ¢q). We will prove, in the pre-
sent paper, that the converse is valid:

Theorem 1. Suppose a(u; p, q)=a(u; p’', q) for every positive integer u.
Then p=-4p' or pp’=41 (mod g).

Our problem is related with a problem in differential geometry, and gives
an answer to it. Consider a 3-dimensional lens space with fundamental group
of order g. We ask whether the spectrum of the Laplacian characterizes the
space as a riemannian manifold. This geometric problem can be reduced to
a problem in number theory. A special case of our theorem, where g is of the
form [” or 2-1” (I a prime number), has been shown (cf. Tkeda-Yamamoto [3]).
Now our Theorem 1 gives a complete affirmative answer to the above geome-
tric problem (see Section 7 below).

If a lattice point (x, y) satisfies the conditions (i) and (ii), so does the point
(—x, —y). Denote by b(u; p, g) the number of lattice points (x, y) such that
(i") *=0 and x+|y|=u (ii) x+py=0 (mod g). Then we see easily that
Theorem 1 is equivalent to

Theorem 2. Suppose b(u; p, q)=>b(u; p’, q) for every positive integer u.
Then p=+p' or pp’=41 (mod q).
We introduce rational functions F;(X) (0=j=q¢—1);
1 + 1
= =D (1—vX) | (0% (-1 K)
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where {=¢€*/%, a primitive g-th root of unity. The function F;(X) has the
following expansion in X;

FJ(X) = (20 Cj’X’) (gogﬁiny)_;_(g L’ixXx) (go C—pjyXy)

= SVpietmxetp SV piemmxets
3=0

%,9=0
Put G(X)=:‘V‘_,_l F,X). Since qz,"—lg‘f‘zq if x=0 (mod g), =0 otherwise; we see
j=0 j=0
easily that the power series expansion of G(X) is given by
G(X) = 29+¢ 23 X*+q 23 b(u; p, ) X" .

Define Fj(X) and G'(X) in the same way, replacing p by p’. Then, theorem
2 is equivalent to

Theorem 3. If G(X)=G'(X), then we have p=+p' or pp’'=41 (mod g).
We shall prove theorem 3 in the rest of the paper.

1. Residues of G(X). By the definition, we see G(X) has a pole of
order at most two at X=1,¢, «-+, £2"%. 'The point X=¢* is the pole of order
two if and only if k= -+kp (mod g) i.e. k=0 (mod ;) or k=0 (mod r,), where we

- 9 -4 — i
put 7= and r,=—2__. Clearly (p—1, p+1, g)=1 or 2 according
" =Lg " (ptl9)

as ¢ is odd or even. We put

(-1, 9) = éuy,
(1_1) {(P—l‘l, Q) = &u,,

then (4, u)=1 and ¢==Euu,r, where €=1 if ¢ is odd, €=2 if gis even. The
singular part of Laurent expansion of G(X) at X={"* is as follows;

(1%*){)2 (ur|k and wuy|k),
1 1 1 1
(l_ckX)Z_*_( l_g—k(p+l)+ 1__§—k(s+l)) l—CkX
(ur Yk and wurlk),
(1-2) 1 1 1 1
(1—{,"’X)2+< l_gk(p—l)-l— I_Ck(s—l)) 11—t X
(wmrlk and wr fk),

1\ 1
1_§~k(s+l)/1_§kX

(wr XYk and ur Y'R),

1 1 1
( l_ck(p~1)+ l_é-k(s—l)_%— 1— C—k(p+l)+
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where s is an integer such that ps=1 (mod ¢), which is fixed in the following.

Lemma 1 (Chowla [2], Baker-Birch-Wirsing [1]). Let ¢, «+,¢,_, be ra-
tional numbers such that c;=0 if (j, 9)=*1 and c;=—c,-; (j=1, -, q—1). If

-1 C;
(1-3) S =0,

p—

-

then ¢;=0 for all j.

Proof. Operating the automorphism o ¢tk of the g¢-th cyclotomic
field Q(&) over Q to (1-3), we get

(1-4) ‘T—l % =0 for every k, (k, q)=1.

We can canonically extend the sequence ¢, +++,¢,-; to an infinite sequence {¢;} ;cz
periodically with period g, satisfying ¢;=0 if (j, ¢)#1 and ¢_;=—c;. Then,
from (1-4), we have

(1-5) SNk 0 forkeZ
) 1=y )
Let X be a Dirichlet character modulo ¢ and put d quz_i X(k)cj,. Then we get
k=1
(1-6) d; = X(j)d, and
(1) 4 S LSy,
e St ml- = ik
. 9-1 q9-1 C]k
- le(k) ]gl 1o
=0.

Clearly d,=0 if X is even; X(—j)=X(j). In case X is odd; X(—j)=—X(j); we
have, from (1-6),

a-1 d] . -1 X(])
) Si-asi
Clon(1 1 jm
=d; 2 X(J) (=—+-= cot )
‘A ( (2 2 q
—4 ‘MX(]) cot 1%
2 5=
— 11, %),
7

where L(s, X) is the Dirichlet’s L-function. Since L(1, X)=0, by Dirichlet’s
theorem, we get, from (1-7) and (1-8), that d,=0 in case X is odd, too. There-
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fore qi}x(j)cij for any character X, hence ¢;=0 for every j. q.e.d.

Corollary. The —;—;o(q) values of cotangent cot k—”, O<k<% and (k, 9)=1,
q

are linearly independent over Q.

In fact, since cot ke i 1
g 1-=¢+ 1-ft
above cotangents directly from lemma 1.

, we get the linear independency of

2. Proof of Theorem 3. We may safely assume that ¢>>4, since theorem
1 is trivial for ¢=1, 2, 3 and 4. Assume G(X)=G’(X), then G(X) and G'(X)
have the same Laurent expansion at every X=¢ % From (1-2), we get easily,
after exchanging p’ and —p’ if necessary;

(2-1) {(P—l, 9)=(p'—1,¢9) and
(¢+1,9=(®"+1,9),
and
1 1 1 1
(2-2) 1__Ck(1’-1)+ 1_§"(s—l)+ 1_§—k(p+1)+ l_c—k(s+l)
1 1 1 1
= 1_§k(ﬁ’-l)+1_Ck(:’-l)+1_§—k(p’+l)+ 1__;—):(:’+1) ’

for every integer k satisfying k=0 (mod %,r) and k=0 (mod u,r), where s’ is an
integer such that p’s’=1 (mod ¢). So we put

(P—lv q) = (P'—l, Q) = &uy,
(p+1, 9= (p'+1, ¢) = &u,,

2-3
(2-3) q=Euuyr and (u, u,) =1,

&= 2if ¢ is even, € = 1 otherwise.
Since (p—1, ¢9)=(s—1, ¢) and (p+1, ¢)=(s+1, g), we put
p—1=¢éua and p’'—1 = Eua’,
5—1 =8‘u1b s"—‘l =Eu1b’,
p+1 = ¢Eux p'+1=¢&ux’,
s+1 = éu,d s'4+1 = &ud’,

where a, b, a’ and b’ are integers prime to u,r and ¢, d, ¢’ and d’ are those prime
to uyy. Put

I, = cot @=Vkm o0 =Dk _ o (p+Dkz_ o (s+1)kx

(2-4) J
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= cot ‘iki’-l-cot b—kf—cot Ck—”—cot dkr

ur ur ur ur

and

Hm ot @ =Dk o ('=Dhw_ ¢+ Dk (' +1)kn

q q q q
=cot 4 k”—l—cot b k”—cot c'kn —cot &'k .
u,r /%4 uyr uyr

Then we get, from (2-2),
(2-5) IL,=1

for every integer k satisfying k%0 (mod u,r) and k%0 (mod wyr). It is suf-
ficient that we prove the theorem in the following cases:
(1) g=odd or 2||q; u;=u,=1,
(2) (1) g=oddor 2||q; u,=3,
(ii) 4llg; m=3,
(1) 8|q; uy=even(=2),
3) 4|lg; ;=2 and u,=1,
since the transposition of %, and %, is induced by replacing p and p’ by —p and
—p’ respectively.

3. Casel: g=odd or 2||q; yy=u,=1 (g=¢&r and r=odd).
From (2-5), we have I,=1I] i.e.

(3-1) cot fl—l—cot A75—cot L7 __cot dr
r r r r
’ ’ ’ ’
= cot M—I—cot M—cot £ __cot d'm .
r r r r

We can apply Corollary of Lemma 1 to (3-1), since 4, b, ¢, d, a’, b’, ¢’ and d’ are
all prime to 7.

Lemma 2. [,=0.

Proof. Assume I;=0. We see, by the Corollary, at least one of the
following congruences must hold:
a=—b (modr) (1)
a=c¢ (modr) (2)
a=d (modr) (3).

Case (1): Multiplied by €, we have p—1=—(s—1) (mod ¢). So p(p—1)=
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—p(s—1)=p—1 (mod g). Hence (p—1)*=0 (mod g¢), so that &r|(€a)’. Hence
r|&, since (@, r)=1. Asr is odd, r=1 i.e. ¢=E=<2, a contradiction with ¢>4.
Case (2): We have p—1=p-+1 (mod g), hence 2=0 (mod ¢) i.e. g|2, a con-
tradiction with ¢>4.

Case (3): We also have b=c (mod 7); so p—1=s+1 and s—1=p+1 (mod g);
hence p—s=2=—2 (mod ¢) i.e. ¢|4; this contradicts ¢>4 again. q.e.d.

By Lemma 2, we see that one of @, b, —c¢ and —d is congruent to a’, b’,
—c¢’ or —d’ modulo 7, that is, multiplied by &, the sets {p—1, s—1, —p—1,
—s—1} and {p'—1, s'—1, —p’'—1, —s’'—1} have non-empty intersection in
the residue classes modulo ¢ (= €r). This implies Theorem 3.

4. Case2: (i) g=odd or 2||q; u, =3 (q==Euu,r and u,, u,, r are all odd).

(i1) 4llg; m=3 (g=2uu,r, 2||luu, and r=odd).

(ii1) 8|q; m=even (q=2uu,r, 4|uyr and u,=odd).

Take an integer & such that (a) k=—1 (mod u,); (b) (R, u,r)=1 and k== —1
(mod /) for every odd prime divisior / of u,, e=ord,(uyr) i.e. I|juyr; if in case
(iii), we further add (b)’ k%= —1 (mod 2/), f=ord,(u;7). The existence of such
k is assured by the assumption on %,. It follows from (2-5) that I,+I,=I{+I;.
Hence we have:

4-1) cot % 4 cot iil—}—cot chr +cot diex
uyr uyr uyr u,r

4 ’ !’ 4
= cot iz—l—cot él—l—cot ¢ k”—l—cot &'k .
wr w,r w,r wr

Now we can apply Corollary of Lemma 1 to (4-1). In the first place, we have

Lemma 3. The following (1) or (2) do not hold in (4-1):
(1) ¢=—d (mod uy), ¢'=—d’, ck=—dk, or ¢’k =—d’k (mod uyr).
(2) c=—ck (mod wyr), d=—dk, ¢'=—c'k, or d'=—d'k (mod ur).

Proof. If ¢=—d (mod %), we have, both hand sides multiplied by &u,,
p+1=—(s+1) (mod ¢q), so that p(p+1)=—(1+p) (mod ¢g). Since (p+1, )
=&u,, we have p=—1 (mod u,r). Hence uyr|(p+1) i.e. uyr|Euc. Since (uyr, ¢)
=(uy, 4,)=1, we have #,|€. This is possible only in case (iii) with #,=£=2,
so that r|u,. Hence r is odd, this contradicts 4|uy. If ¢=—ck (mod uy),
then k= —1 (mod ), this contradicts the choice of k. In the same way, we
see that the other congruences are also impossible. q.e.d.

It is easy to see p=p’ or p=s’(mod q) if either ¢ or d (resp. ck or dk) is con-
gruent to ¢’ or d’ (resp. ¢’k or d’k) modulo %r. Hence we may assume that
neither ¢ nor d (resp. ck nor dk) is congruent to ¢’ or d’ (resp. ¢’k or d’k) modulo
uyr. Then we see, by Corollary of Lemma 1 and by Lemma 3, that only the



NuMBER OF LATTICE POINTS IN THE SQUARE 15

following cases may be possible in (4-1), after transposing p and s (resp. p’ and s")
if necessary:

(A) c=—dk, d=—ck, ’=—d'k and d'=—c'k (mod uyr).

(B) c¢=—dk, c'’=—d'k, d=c'k and d’'=ck (mod uyr).

(C) c¢=c'k, d=d'k, ¢'=ck and d'=dk (mod uyr).

(D) c=c'k,d=d'k, ¢'=dk and d'=ck (mod uyr).
Case (A):
From ¢=—dk and d= —ck (mod u,r) follows p+1=—(s+1)k and s+1=—(p+
1)k (mod g), so that p=s=—k (mod u,r) and B2=1 (mod uy). Ask=—p=—1
(mod u,), we have k=—1 (mod /%) for every odd prime divisor / of u,;, which
contradicts the choice of k. Hence », must be a power of 2, and this is possible
only in case (ili). Then we have k=—p=—1 (mod 4) and #*=1 (mod 27), so
that k= —1 (mod 277!). Furthermore we have f>=3 since, by the choice of k,
we have p=—k=1 (mod 27) while p=1 (mod 4). On the other hand, we have
(w7, u)=1, since p=—k=1 (mod r) and p=—1 (mod u,). Therefore we get
pr=—k=1 <mod %), p=—k=*1 (mod %) and p=—1 (mod ;). In the same
way, from ¢'=—d’'k and d'=—c'k (mod uyr), we have p'=1 (mod u—;—), p'=E1
(mod #,7) and p’=—1 (mod u,). We see each one of p and p' is congruent to

l—l—%'; or l—u—;: (mod 2uy), hence p=p’ or p=s’ (mod 2u,r), since we have

> ﬂ —ﬂ = . =s=p'=5'=—
f=3 and (1+ : )(1 ; )_1 (mod 2u7). As p=s=p'=s'=—1 (mod u,),
g=2um,r and (2uyr, u,)=1, we have p=p’ or p=s' (mod g).

Case (B):

From ¢=—dk and ¢'=—d'k (mod uy) follows p=p'=—Fk (mod u;). That
p=—k=1 (mod r) and p=—1 (mod w,) implies (u7, #4)=1 or 2. From d=
¢’k (mod u;r) follows s+1=(p'+1)k (mod q). So p+1=p(s+1)=p(p'+1)k=
p(p+1) (—p)=—(p+1)p* (mod wyr). Hence (p+1) (p*+1) = Euxc(p*+1)=0
(mod %) i.e. E(p*+1)=0 (mod u;r). We have p*=—1 (mod /) if there is an
odd prime divisor / of #,, while p?’=1 (mod I) since p=1 (mod #,). Therefore
u, must be a power of 2, this is possible only in case (iif). Then p*=—1 (mod
2771), so that f=2 since f =2 by the assumption of (iii). As p=—k (mod uy),
p=1 (mod &) and ur=&u,;=0 (mod 4), we have k=—1 (mod 27), which
contradicts the choice of k. Therefore case (B) is impossible.

Case (C) and (D):

We claim pp’=1 (mod g) in these cases. From c¢=c'k and d=d'k (mod wuy)
follows p+1=(p'+1)k and s+1=(s'"+1)k (mod[g), so that p'(1+4+p)=
p(14+p"Vk=p(p+1) (mod g), hence we get p=p’ (mod uyr). Since p=p'=1
(mod &u,), we have 2=2k (mod €u,), so k=1 (mod u,), while k= —1 (mod u,r).
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Hence we see (u;, w,r)=1 or 2. Let I be a prime divisor of g. Itisenough to
prove pp'=1 (mod [°"%@),

In case I=an odd prime:
Since p=p’ (mod wuyr), we get p—p'=(p+1)—(p'+1)=6Euc—c')=Eux'(k—1)
=0 (mod ), so that

(4-2) o(uz)+o(c")+o(k—1) =o0(u;)+0(r), where o( )=ord,( ).

(a) If /|u, then I fu;y and o(u;)=o0(q). Since p=p’'=1 (mod &u,), we have
pp'=1 (mod I°@).

(b) If I|(uy 7), then I Yu, and k=—1=1 (mod /) therefore from (4-2) o(q)=
o(u)+o(r). Since c=c’k=—c' (modr) and o(u)=o(r), we get pp’'=
(Euge—1) (Eue'—1)=E%jcc’ — Euy(c+¢')+1=1 (mod [@).

(c) If llu, and I fr, then I Yu;, and o(gq)=o(u;). Since p=p'=—1 (mod
Euy), we have pp’'=1 (mod °®).

(d) If I|r and IV u, then lfu, and O=o(u,)<o(u;)+o(r)=o(r), this is im-
possible since we have from (4-2), o(uy)=o0(u;)+o(r).

In case 1=2:
It is enough to prove only in case (ii) and (iii).
(a) Case (ii); we see 4||g and p=p'=1 or —1 (mod 4) according as #, is even
or u, is even. Hence pp’'=1 (mod 4).
(b) Case (iil); we have o(¢)=o0(u)+o0(r)+1=3 and o(m)=1. We get
Min(o (u), o(r))<1 since k=1 (mod %) and k=—1 (mod uyr).
(b-1) If o(r)=0, then we have o(q)=o(%)+1 and p=p'=1 (mod 2u), so
that pp’=1 (mod 2°@).
(b-2) If o(r)=1, then o(gq)=o(x;)+2. Since o(p—1)=o0(p'—1)=0(n)+1=
o(q)—1, we have p=p'=1+42°@"1 (mod 2°®), so that pp'=1 (mod 2°¥),
(b-3) If o(u;)=1, then o(q)=o(r)+2=3. Since we have p+1=(p'+1)k (mod
2°@) and p=p’ (mod 2°™"), we get p+1=(p+1)k (mod 2°®~'). Hence
k=1 (mod 2°®), while k=—1 (mod 2°®*2"). So we have 1=—1 (mod 2°®), so
that o(r)<1. Since o(g)=3, we get o(r)=1 and o(¢g)=3. It follows from
o(p—1)=o0(p’'—1)=2 that p=p’=5 (mod 8), hence pp'=1 (mod 2°).

This completes the proof in Case 2.

5. Case 3: 4||g; ;=2 and u,=1 (¢=4%r and r=0dd>1).

We see
I, = cot gz—f-cot b—”—COt C—”—cot d_"" ,
r r 2r 2r
L= cot P 4-cot YT —cot (HNT_coq (41)m
r r r 2r
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By the duplication formula of cotangent, we get

II+I1+1
=2 (cot ‘—”—t—l—cot b—”—cot T __cot ‘12) .
r r r r
From (2-5), I,+1,,,=I{+1},,. Halving both hand sides, we have
(5-1) cot Z= tcot LA 7ot 47
r r r r
= cot ﬂ—l—cot b’—”—cot cl—”—cot d'm .
r r r r

Now we can apply Corollary of Lemma 1 to (5-1). In the first place we have

Lemma 4. The following (1), (2) or (3) do not hold in (5-1):
(1) a=—b, c=—d, a’'=—b', or ¢'=—d’ (mod 7).

(2) a=c and b=d (mod 7) or a’=c¢’ and b'=d’' (mod 7).
(3) a=d and b=c (mod r) or a’=d’ and b’=c" (mor 7).

Proof. (1) If a=—b (mod 7), we have 4a=—4b (mod g), i.e. p—1=
—(s—1) (mod ¢). Hence p(p—1)=—(1—p) (mod g), so that p=1 (mod )
since (p—1, g)=4. This implies r=1, i.e. g=4, a contradiction with ¢>4.
(2) If a=c and b=d (mod ), we have 4a=4c¢ and 4b=4d (mod 4r), i.e. p—1=
2(p+1) and s—1=2(s+1) (mod 4r). Hence we get p=s=—3 (mod 4r). Then
1=ps=9 (mod 4r), i.e. =1 or r=2, a contradiction with ¢>4 and r=odd.
(3) If a=d and b=c (mod r), we have p—1=2(s-+1) and s—1=2(p+1) (mod
4r). Multiplied by p, we have p(p—1)=2(1+4p) and 1—p=2p(p+1) (mod
4r), ie. p*—3p—2=0 and 2p*+3p—1=0 (mod 4r). Hence 3p*—3=
3(p—1) (p+1)=0 (mod 4r). We have 3(p+1)=0 (mod 7), so that 3=0 (mod
r), since (p—1, 4r)=4 and (p+1, 4r)=2. Asr=3, we have r=3 and g=4r=12.
Since p*=1 (mod 12), p*—3p—2=0 (mod 12) implies 3p=—1 (mod 12), a con-
tradiction.

The other cases can be checked in the same way. q-e.d.

It is easy to see p=p’ or p=s’(mod g) if either a or b (resp. ¢ or d) is con-
gruent to a’ or b’ (resp. ¢’ or d’) modulo 7. Hence we may assume that neither
a nor b (resp. ¢ nor d) is congruent to a’ or b’ (resp. ¢’ or d') modulo . Then,
we see, by Corollary of Lemma 1 and by Lemma 4, that only the following
cases may be possible in (5-1), after trasnposing p and s (resp. p’ and s’) if ne-
cessary:

(A) a=c,a'=c',b=—d' and b'=—d (mod 7).

(B) a=d,a'=d’,b=—c" and b'=—c¢ (mod 7).

(C) a=c¢,a'=d',b=—c" and b'=—d (mod r).
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(D) a=—c¢',b=—d',a’=—cand b’'=—d (mod 7).
(E) a=—c,b=—d',a’=—dand b'=—c (mod r).
Case (A):

From a=c¢ and a'=c¢' (mod r) follows p=p'=—3 (mod g) (c.f. the proof of
Lemma 4. (2)).

Case (B):

From b=—¢' and b'=—c (modr) follows s—1=—2(p'+1) and s'—1=
—2(p+1) (mod g), so that 2p’+s=—1 and 2p+s'=—1 (mod g). Hence
we have 2pp’+1=—p and 2pp’+1=—p’ (mod g), so that p=p" and

(5-2) 2p*+p+1=0 (mod g).
On the other hand, from a=d (mod r), we have p—1=2(s+1) (mod g), so that
(5-3) p*—3p—2=0 (mod g).

From (5-2) and (5-3), we have 7p=—5 v(mod q). Then 0=7(p*—3p—2)=
(7p)*—21(7p)—98=32 (mod g), so that ¢|32 i.e. 7|8, a contradiction with
r=odd >1.

Case (C):

We have p—1=2(p+1), p'—1=2(s'+1), s—1=—-2(p'+1) and s'—1=
—2(s+1) (mod g). Hence p=-—3, p'—2s'=3, 2p'+s=—1 and 2s4s'=—1
(mod g). From the last three congruences, we get 6=2(p'—2s")=2p'—4s'=
—s—1—4(—2s—1)=75+3 (mod g), so that 7s=3 (mod ¢) i.e. 3p=7 (mod g).
Since p=—3 (mod ¢), we have 7=3p=—9 (mod ¢q). Hence ¢|16 i.e. r[4,
a contradiction.

Case (D):

From a=—¢' and a’=—c (mod r) follows p—1=—2(p'+1) and p'—1=
—2(p+1) (mod g), so that p+2p'=2p+p'=—1 (mod ¢). Hence p=p’ and 3p=
—1 (mod ¢g). From b=—d’ and b'=—d (mod 7), we get, in the same way, 3s=
—1 (mod g). Therefore 9=(3p) (35)=(—1)’*=—1 (mod g), so that ¢|8 i.e.
r|2, a contradiction.

Case (E):

From a’'=—d and b'=—c (mod r) follows p'—1=—2(s+1) and s'—1=
—2(p+1) (mod g), so’that p’+2s= —1 and s'+2p=—1(mod g). Hence pp’'+2=
—p and 14-2pp’=—p’ (mod g). Eliminating pp’, we have

(5-4) 2p—p'=—3 (mod q).
On the other hand, from a=—¢’ (mod ), we have

(5-5) p+2p'=—1 (mod g).
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From (5-4) and (5-5), we have 5p=—7 and 5p'=1 (mod ¢). Since 5%(pp’+2)
=5%—p) (mod g), we have —7+50=35 (mod ¢), so that ¢|8, a contradiction.

This completes the proof in Case 3 and completes the proof of Theorem 3
also.

6. Appendix. We can prove Theorem 3, without Lemma 1, or without
non-vanishing of Dirichlet’s L-functions at s=1, directly from (2-5) in case ¢
is a prime number >7.

Assume ¢ is prime =7. Let K=0(¢), a cyclotomic field of degree ¢—1,
and O be the ring of algebraic integers of K. Then the prime q is totally ramified
in K, more precisely, the principal ideal (¢)=¢0O in O is the (g—1)-th power of
prime ideal (A\)=\0; (¢)=(\)*"!, where A=1—{ and the residue class field
O/(\) is isomorphic to Z[/gZ. We have '

1—¢* = 1—(1—2)*

_ k=1, (k=1 (k—2),, (k—1) (k—2)(k—3),,
Y (1 I EDE=D, = >y

(k—1) (k—2) (k—=3) (R—4) y4__...
T 120 » )

for k=1, 2, .+, g—1. Hence
) A1 (R—1D\ (—A))\ !
oy Za= 4 @05

k—1,  B—1_,, k-1
(1+ 2 At 12 M 24
_EDE-19), ),

720
where the last series, as is easily seen from the fact that each (k—ffl):Hl——l=

%(]‘lk“1> is a An-adic integer, converges A-adically for k=1,..-,g—1. From
(2-5), we have

x3

3
1
k

(6-2) A, =\

As 1 A belongs to @ for k=1, -+:,g—1, both AI, and NI are also in O. Let

k

{M 1= Gt @A+ LN LN g
M| = gi+gIn+giIN+gIN g -
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be the A-adic expansions of AJ; and Al respectively, where the representa-
tives g, and gi of O/(A) are taken from {0,1,:--,¢g—1}. From (6-2), we have

(6-3) gi=gh (mod q) for k=0, 1, -
From (6-1), we get,

1 1 1
go—‘?? P— 1+s—1 p+1 s+1

p—1 1—p p+1 1+p

=—2 (mod g),
s=1 3 (1-1)=2-(-1)=3 mod g,
=153 (=1 )=—¢ (mod ),
g=5 3 (k=1 )=—1 (mod g),
gm0 5 (P—20k+-2)= 1 (94— 12 (mod ),

where the summation is taken for k=p—1, s—1, —p—1 and —s—1, especially
we see

Sk=0p—D+E—1)—p+1)—(+1)=—4
= 0=+ 6—1P—(+1)P—(+1)°
= —6(p*+59)—4.

In the same way, we get

gi= 135 (0" +s")— 5 (mod g).

Comparing the case k=4 in (6-3), we have
(6-4) P-2=p”+5” (mod g).
Since ps=p's’=1 (mod g¢), we have, from (6-4),
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{(H—S)’E (p'+s)? (mod g)
(p—s)’=(p'—s')’ (mod g),
hence

p+s=4(p'+s) (mod g)
p—s=4(p'—s') (mod g),

where the signs are taken independently. Then we see easily, from (6-5), that

69 |

p=-4p' or p=-+ts’ (mod g).
Thus we get Theorem 3 for prime ¢=7.
7. Spectrum of 3-dimensional lens spaces. In the course of the

proof of Theorem 3, we have shown the following

Proposition. Let q, p and p’ be as in Section 0. Assume we have (2-1)
and (2-2). Then p=4p' or pp’'=+1 (mod g).

This proposition was the essential part of the proof of “Main Theorem” in [3]
(cf. Lemma 4.4, Proposition 4.6), though only the case g=I" or 21" had been
shown there. Now we have proved completely

Theorem. Let g be a positive integer. If two 3-dimensional lens spaces with
fundamental group of order q are isospectral, then they are isometric to each other.
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