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Let A be a Z-order in a semisimple @-algebra 4. We mean by the
class group of A the class group defined by using locally free left A-modules
and denote it by C(A). Define D(A) to be the kernel of the natural surjection
C(A)— C(Q) for a maximal Z-order Q in 4 containing A and d(A) to be the
order of D(A).

Let ZG be the integral group ring of a finite group G. Then ZG can be
regarded as a Z-order in the semisimple @-algebra QG, and hence C(ZG) and
D(ZG) can be defined.

In this paper we consider only finite groups. We will treat the semidirect
product G=N-F of a group N by a group F. Define D(ZG) (resp. C((ZG))
to be the kernel of the natural surjection D(ZG)— D(ZF) (resp. C(ZG)—
C(ZF)). First we will give

[I] Let N=N,XN, be the direct product of groups N, and N, and G=
N-F be the semidirect product of the group N by a group F. Assume that F acts
on each N,;, i=1,2. Denote by G; the subgroup N;-F of G, i=1,2. Then
D(ZF)® Dy(ZG,) @ D|(ZG,) (resp. C(ZF) D Co(ZG,) P C(ZG,)) is a direct
summand of D(ZG) (resp. C(ZG)).

For an abelian group 4 and a positive integer g, 4 denotes the g-part of
A and A“@) denotes the maximal subgroup of 4 whose order is coprime to g.
In particular, we write O(4)=A®. For any module M over a group H we
define M#={me& M | rm=m for every T H}.

We will apply [I] to some metacyclic groups. Denote by C,, the cyclic
group of order m. Using induction technique we will give, as a refinement of
a result in [1],

[II] Let G=C,-C,, and define e, by p°s||n for each prime divisor p of n.
Assume that C, acts faithfully on each Sylow subgroup of C, and that (n,q)=1.
Then
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where K is the complementary subgroup of EBD(ZC,e »)% in (D(ZC,)°) ) (cf. § 1).

D(ZG)=D(2C)D P D(che,)qua(z/

Next we will study the class groups of generalized quaternion groups in
connection with those of dihedral groups. Denote by H, the generalized qua-
ternion group of order 4n; H,=<o, T|c"=71'=1, 77'¢7=¢"") and by D, the
dihedral group of order 2n; D,=<o, 7|c"=72=1, 77'¢7=0"">. Frohlich and
Wilson have studied the 2-part of D(ZH ) for an odd prime p ([5], [11]), and
Cassou-Nogués has given some information on D(ZH,) for an odd integer # ([2]).

[III] Let n=3 be an odd integer and define e, by p*s||n for each prime divisor
pofn. Then;

1) D(ZH,)®D(ZD,)=D(ZH, /(T2+1))@D(ZD2n)

i) D(ZH,)=0(D(ZD,))®D(ZD,)>®(Z2Z)" 'O L,
where L is an extension of D(ZD,)® by an elementary 2-group. In particular,
if n=p" for an odd prime p,

D(ZH )=D(ZD,;)P(Z|2Z)’ .

1. Decomposition of class groups

The following theorem will play an essential part in this paper.

Theorem 1.1. Let N=N,;X N, be the direct product cf groups N, and N,
and G=N -F be the semidirect product of the group N by a group F. Assume that
F acts on each N,;, i=1, 2. Dencte by G; the subgroup N;-F of G,i=1,2.
Then D(ZF)PDy(ZG,)DD|(ZG,) (resp. C(ZF)PC(ZG,)DBC(ZG,)) is a direct
summand of D(ZG) (resp. C(ZG)). In particular, if F={1}, D(ZG,)DD(ZG,)
(resp. C(ZG,)DBC(ZG,)) is a direct summand of D(ZG) (resp. C(ZG)).

Proof. We denote the augmentation ideal of ZN (resp. ZN;) by Iy
(resp. Iy). There is an exact sequence
0 — Dy(ZG) — D(2G) % D(ZF) — 0,
where « is induced by M—»ZG/(IN)Z(%)M. Let B: D(ZF)— D(ZG) be the

induction map. Then it is easy to see that aoB=idyzm. So we have that
D(ZG)=D(ZF)®D(ZG) (cf. [10]).
Let a be a projective left ideal of ZG, such that the class [a] is in D(ZG)).
Then ZG geéa is isomorphic to ZNz§a as ZG-modules. Since [ZG/(IN)Qé
1 A
(ZN2§a)] = [ZGI/(INI)%) a]=0 in D(ZF), [ZNZQ? a] is in Dy(ZG). Hence we

have the map @,: D(ZG1)—D,(ZG) and similarly we get the map @,: Dy(ZG,)—
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D(ZG). Further, for a projective left ideal b of ZG such that [b]e D|(ZG),

[ZGI/(INI)%) (ZG/(INZ)%) b)]=0 in D(ZF), so [ZG/(INz)geéb] €Dy(ZG,). Hence

we have the lmap 1t D(ZG)—Dy(ZG,) and similarly we get the map ¢,: D(ZG)

—D\(ZG,). For every projective left ideal a of ZG, such that [a]eD(ZG),),

gblocpl[a]=[ZG/(INz)§(ZN2§a)]=[ZG1§ al=[a] in Dy(ZG,). In ¢roqp[a]=

[ZG[(Iy,) @é (ZN,®a)], N, acts on ZG/(Iy,) and N, via group action and F acts
Z\ z

on ZG/(Iy,) via group action, and we know that ¢,op,[a]=[ZG,]=0 in D(ZG),).
Consequently we see that (¢, ¢,)o(P1DP2)=idpyz6,)0py(26,)- T his implies that
D(ZG))®DD|(ZG,) is a direct summand of D(ZG).

If F= {1}, then D(ZG)=D(ZG) and D(ZG,)=D(ZG;), hence we see that
D(ZG,)PD(ZG,) is a direct summand of D(ZG). The assertion for C(ZG)
can be proved in the same way as for D(ZG).

Throughout this paper p stands for a rational prime. In case where G is
metacyclic, (1.1) will become as follows.

Proposition 1.2. Let G=C,-C, and define e, by p°s||n for each p|n.
Denote by G, the subgroup C,e,+-C, of G. Assume that (n, q)=1 and that
Ker(C,—Aut C,e;)=C, for every p|n. Let d denote the order of C,/C,. Then

D(ZG)=D(ZC )b BDJZG,)BM,

where M is an extension of an abelian group whose exponent divides d by the group
Ker [Ind, gc D(ZC,xC,)— D Indc’-,ff( c.D(ZCpe» X C))].
n r Pl” r

Proof. It follows from (1.1) that D(ZC,)® EPDo(ZGp) is a direct summand
pn

of D(ZG). Now we determine the remaining factor M. Define the subgroup
D(ZC,xC,) (resp. Dy(ZC\e; X C,)) of D(ZC,x C,) (resp. D(ZC,e, X C,)) as the
complementary subgroup of D(ZC,). Then there is a commutative diagram
with exact rows and columns

0 0 0
! ! |
0O—— > Kera M Kery — 0

y !
0 — Indg e D (zc %C,) —"L> Dy(ZG) ——> Coker o —— 0

VY
00— Ep? Ind, ”Xc DI(ZCW,XC ) z, @D (ZG )— Colier¢———> 0
’ )
0 0 0 )

where @ and ¢’ are the inclusion maps and d, B, and « are the natural maps.
By the induction theorem (cf. [3]) we know that the exponent of Coker @ divides
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d, and hence the exponent of Ker v also divides d. Next consider the com-
mutative diagram with exact rows and columns

0 0 0
y

0— Ker @ — Indg, $¢, Di(ZC, X C) — & Inde, 5t ¢ D(ZCyer X C) > 0
i

a
0 - Kera — IndC xcD(ZC,xC,) —> EB Indg, WC D(ZCe»x C,)
v

0 — Ker § — Ind$ D(ZC,) — @ Ind$* D(ZC,)
" pin r

0 0
Since § is injective, Ker 8=0 and so Ker a=Ker@&. This completes the proof.

Let N-F be the semidirect product of a group NV by a group F. For a
ZN-module M and each T F, we define another ZN-module structure on M
to be o+m=71"'otm where c&N and meM, and denote it by M". This
yields the action of F on D(ZN). Hence D(ZN) can be regarded as a module

over F.

Proposition 1.3. Let G=C,-C, and define e, by p°||ln for each p|n.
Assume that C, acts faithfylly on each Sylow subgroup of C, and that (n, q)=1.
Then

7o
D(ZG)=D(2C)® §D(ZC, (2] I -Z)" ®Indg D(ZC)®K,

2,9)
where K is the complementary subgroup of ©D(ZC )¢ in (D(ZC,)°e).
P sin ?

Proof. We have the induction map ¢: D(ZC,)— D,(ZG) and the restri-

2F »
ction map ¢: D(ZG)—D(ZC,). Tt is known that Coker <p2—:<Z / (zq )z)’
.q

([11). We see that g-Ker y=—0. Then we have that p: D(ZC,)"—D(ZG)®"
is surjective and that ¢: D(ZG)“'—>D(ZC,)" is injective. On the other hand
for a ZC,~-module M, ZG @ M =M PM " ®---DM™ " as ZC,-modules, where

ZCn
7is a generator of C,. So we see that gop=trace;,. Since q: D(ZC )<

tracec (D(ZC,,))CD(ZC,,)Cv tracec,: (D(ZC )ea)&’ ’—>(D(ZC )ea)) is bljectlve
Hence ¢: Dy(ZG)¥)—(D(ZC,))) is surjective and @: (D(ZC,)°e) %) —
Dy(ZG)®) is injective, and so both maps are bijective. Applying this argument
to the subgroup G,=C,-C, of G, we have the split exact sequence

0 — D(ZC,. o — Dy(ZG —>(z/ AN
(2Cy) = Di2G) ~ (2] )1 Z)
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we note here that D(ZC,,) is a p-group and that p is coprime to g.
Now applying (1.2), we get that

% e
D(ZG)=D(ZC,)& ‘@D(chg,,)%@@/ (Z‘Jq)z)’l @

Ker[Ind§ D(ZC,) — D Indg; D(ZCy)].

Trivially the last factor is isomorphic to Indg”D(ZC,,)(q) @ Ker [Indg“D(ZC,,)(q')

—»e]lalndg;,pD(ZCp.p)], and further, from the above argument on the induction
pin

maps it follows that the second factor is isomorphic to the complementary sub-

group of EIIB D(ZC ., ) in (D(ZC,)°)“). This completes the proof.
bin

2. Structure of D(ZH,)

Throughout this section we assume that #=3 is an odd integer.
Lemma 2.1. There are exact sequences

0— N— D(ZH,) — D(ZD,)®D(ZH ,/(T*+1)) = 0
0 — N’— D(ZD,,) - D(ZD,)®D(ZD,) — 0
where both N and N' are of odd order.

Proof. From the pullback diagrams

ZH, ZH,|(+1)
! !
ZD,=~ZH,|(*—1)—> F,D,
ZD, > ZD,
| !
ZD,————> F,D,

we get the (Mayer-Vietoris) exact sequences (cf. [8])
K(ZD,)®K,(ZH,/(T*+1)) = K(F,D,) - D(ZH,) —
D(ZD,)®D(ZH,/(*+-1)) = 0
K\(ZD,)®K,ZD,) — K\ F,D,) - D(ZD,,) — D(ZD,)®D(ZD,) — 0.
Hence it is sufficient to show that Coker [K,(ZD,)—K,(F;D,)] is of odd order.

Write D2n=<P) o, 7| p*=c"=7’=1, po=ap, pT=Tp, Tl%T=0"") and D,=
{o, T|e"=1t=1, v7%or=0"", and define 3,&ZD,, (resp. 3,€ZD,) to be

E,,="2_l o'. It has been shown [4] that D(ZD,,)=D(ZD,,/(Z,)) and D(ZD,)==
i=0
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D(ZD,[(Z,)). Then we have the commutative diagram with exact rows

Ky(2D,) 2 K\(FD,) -~ D(ZD,,) - D(ZD,)®D(ZD,) — 0
K(ZD, /(En))_)Kl(FDZn/(E ))—>D(ZD,,/(%,))—>D(ZD,/(Z,))®D(ZD,/(Z,))—0.

We see that Coker p=~Coker ¢’ and that the latter is of odd order, since
K\(FED,/(Z,)) is so. This completes the proof.

Lemma 2.2. There is a commutative diagram with exact rows and columns

@

0 — E — D(ZH,) > D(ZD,,) — 0

/

0 ks D(ziH,,/(Turl))i» D(Zf),,) ~0
0 0 ,

where E is an elementary 2-group.

Proof. We will use the following notation;

R’=the ring of integers of Q({,+¢7?), where £, is a primitive d-th root of
unity,

R, = ,®R" ZH,=Z,QZH,, Z,D,= z,,®z1)

Write H, <o‘,T|0' =7t=1,77'¢tr=¢"" and 3, 20’ EZH Then we see

that Nrd((Z,D.,/(Z,))*)=(Z,[oc + 7}, p]/(Z.)* for every prime p, because
Z,D,,[(Z,) is embedded into My(Z,[c+o7, p]/(Z,)). Since we can prove by
the same method as in [4, § 3] that D(Z[oc+07Y, p])=D(Z[c+0c7, p]/(Z,)), we
have that D(ZD,,)=D(Z[o+0c7", p]). Similarly we have that D(ZD,)=
D(Z[oc+0c7']). Now we express the class groups in idelic form (cf. [6]).
Then we have

H H (de*Xde*)

pl2n 1%d|n

D(ZH, )— (Rd*XRdf)mrz[””(ZpHn*) ,

1fd|n
where n(Z,H,*)={Nrd(x)|(1, x)€ Z H *~Z m>*x Z,H,/(Z,)*} and R*}=
{usR*|u is positive at all real places of R},

o1 (de*Xde*)

bl2n 14din

T REXRH T u(Zfoto o)

D(ZD,,)=

where

wZy[o+o7, p)={yl(L, Y)EZ,[o+07, p]*>Z,p>* X Z, [0+ 7, p]/(Za)*},



STRUCTURE OF THE CLASS GROUPS 837

IT II R%*
pin 1kdin
D(ZH»/("'Z"‘1))_14:1;[I R + 1L n(Z,H, (1))
where n(Z,H,/(T*+1)*)=
{Nrd(x)|(1, x)€ Z,H,/(T*+1)* Z,[7]* X Z,H [(=,, T>+1)*}, and
I R, *
pin il P
141:11 R** H wWZ,c+07"])°
where w(Z,[o 4o )={y|(1, ) EZ o+ *> Z*X Z,[c+c71(Z,)*}.
Hence there exist natural surjections ¢: D(ZH,)—D(ZD,,) and
¢’': D(ZH,/(v*+1))—D(ZD,). Then
II (R?* X R%*) H wZ,o+0a7", p])

1¢d|n

II (R* X R*%) H n(Z,H ,*)
1d|n
Trivially (R**)2C R*Y for every d|n, d+1. Since the degree of Z,H,/(Z,) over
its center is 4, w(Z,[c 407, p]’Sn(Z,H,*) for every p|n. Hence Ker @ is an
elementary 2-group. Similarly we can show that Ker ¢’ is an elementary 2-
group.

Let ¢: D(ZH,)— D(ZH ,/(7*4-1)) and ¢': D(ZD,,)— D(ZD,) be the maps
defined as follows; for (x, y)E(H I R¢ *)><(H IT R%*), ¢ (the class of

pI2n 1d(n b12n 1%din
(%, y))=the class of y, and ¢’ (the class of (x, y))=the class of y. In fact ¢
(resp. ¢') is the map induced by the natural surjection ZH,— ZH,/(7*+41)
(resp. ZD,,—~ZD,,/(p+1)=ZD,). Itis clear that both ¢ and ¢’ are surjective.
Further we have the commutative diagram with exact rows and columns

D(ZD,)=

Ker ==

0—N— D(ZH ) SN D(ZD,)®D(ZH,,|(7+1)) — 0
V 1id Do’
0—>N'— D(ZDZ,,) ——> D(ZD,)®D(ZD,) > 0.
(,9¢) |
0 0

Since Ker @ and Ker @’ are 2-group, we get by (2.1) that Ker p=Ker ¢'.
Thus we conclude the proof.

Theorem 2.3. Let n=3 be an odd integer and define e, by p°s||n for each
pln. Then:
i) D(ZH,)®D(ZD,)=D(ZH,|(~*+1))®D(ZD,,)

e
ii) D(ZH,)~O0(D(ZD,))®D(ZD,)®®(Z]2Z)" SL,
where L is an extension of D(ZD,)® by an elementary 2-group. In particular,
if n=p' for an odd prime p,
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D(ZH )=D(ZD,;)®(Z|2Z)’ .

Proof. By (2.2) we have the commutative diagram with exact rows and
columns

0 0
! |
] |
0 — E — D(ZH,) > D(ZD,,) — 0

0 s D(ZH,|(r*+1)) » D(ZD,) — 0
b 6
Since ¢/ splits by (1.2), ¢ splits also. Therefore
D(ZH,)®D(ZD,)=D(ZH,|(7*+1))®FHD(2ZD,)
~D(ZH, /(7*+1))®D(ZD,,) .

For the proof of ii) we begin with the case n=p'. It has been shown (e.g.
[1], [4]) that d(ZD,) and d(ZD,,) are odd, and hence in this case the exact
sequences in (2.2) split. On the other hand it is known that the 2-part of
D(ZH |(74-1)) is an elementary 2-group of rank ¢ ([11]). Therefore we see
that

D(ZH )=D(ZD,;)®(Z|2Z)" .
Next consider the general case. By (2.1) we see that
D(ZH,)®»=D(ZD,)®®D(ZH ,/(T*+1))® .

On the other hand, by (2.2), we have that O(D(ZH,))=O(D(ZD,,)). Thus
we get

D(ZH,)=0(D(ZD,,))®D(ZD,)»PD(ZH ,[(T*+1))> .
There is a commutative diagram with exact rows

0—E

i D(ZH ,/(m*+1)) —— D(ZD,) — 0
0— (Z/ZZ);’:”“—> ,EBD(ZH .ix/(‘rz—{—l)) — 51? D(Zngp) —0.

It can be shown along the same line as in (1.2) that « is surjective and split,
and by (2.2) E is an elementary 2-group. Therefore we see that

D(ZH,[(7+ 1)@ =(Z[22)" DL,
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where L is an extension of D(ZD,)® by an elementary 2-group. We conclude
the proof.

RemMARK 2.4. When n=p’, rank E=¢. But it may be conjectured that
rank E—3%¢,>0 unless 7 is a power of an odd prime. In fact, when n=15,
blin

E=C,xC,;xC, and in this case we get that D(ZH;)=C,xC,XC, We
note here the outline of the computation.

Since D(ZDy)=D(ZD,5)= {1} ([4]), the commutative diagram in the proof
of (2.3) shows that F= {1}, and hence

E=D(ZH,5)=D(ZH/(v*+1)).

Along the same line as in the proof of [1, Théoréme 3] we get that for an
odd square-free integer 7,

D(ZH,[(*+1))=@ D(ZH,[(*+1)® @  (Ri/I)*/Im R,
d¥prime

where I’= I (1—¢,)(1—¢,”")R?. Further we see that there is a natural
Pl

surjection @ (RY/I*)*[Im R*—D(ZH,/(Z,, 7*+1)). On the other hand, we
13din

d4prime
know that Ker[D(ZH,,/(7*+1))— D(ZH,/(Z,, 7+1))] is an elementary 2-group

of rank 231. Though this is true for every odd integer, here we give the proof
Din

for the square-free case. Expressing both groups in idélic form (cf. the proof
of (2.2)), we know that

Ker[D(ZH,|(7*+1))—>D(ZH [(Z,, T+1))]
I B3 I Ned(Z,H, (2 7+1)%)

i4d|n

= IR ITn(Z,H,[(7*+1)%)

15d|n
~ 1 (RANA(ZII(2), 4 1)) )
s \R"I(Z,H,/ (T4 1)¥)
= @ Ker[D(ZH,/(7+1)) > D(ZH,(Z,, 7*+1))]

=(z22)"" .
Hence we have that for an odd square-free integer n
D(ZH,|(v+1))== & D(ZH,|(*+ 1)) @D(ZH, /(% 7+1))
—'—!(Z/ZZ)"F" IEBD(ZH,,/(E,, 724-1)).

Now let us return to the case n=15. It is sufficient to show that D=
D(ZH 5/(Zss, T+1))=Z[2Z. From the pullback diagram
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ZHls/(Eis, 241)) ——> Z[gl.‘i’ 7]
Z[%y, TIDZ[Ss, 7] — F[Es TP F[Ls, 7]

we get the exact sequence

K\(Z[ts5, 7)) DKAZ[Es, T DKAZ s, T]) —
K\(F[¢s, T)OK(F[Es, 7]) > D —0.
Taking the reduced norm, we have the exact sequence
ZEDZ[L+ D Z[E s+ ]k — F*OF[L+ 65" -~ D —0.
On the other hand Z[{ 5415 = {£1°6,°%65° | @, b and ¢ are all odd or all even},

where &= +{n—1, &=054¢5°—1 and &=¢3+¢F +1. A direct com-
putation shows that D=Z/2Z.

REMARK 2.5. Let Ay, =ZC,,NTI R*XR?. Cassou-Nogués has shown in
din

[2] that there exists a surjection of D(ZH,) in D(A,,) whose kernel is an elemen-
tary 2-group. It is seen in the proof of (2.2) that D(A,,)==D(ZD,,). Hence a
part of (2.2) and the final assertion of (2.3) are only restatements of the results
of Cassou-Nogués.

REMARK 2.6. Recently, after this manuscript was written, T. Miyata
has shown [9] that Res: D(ZD,,)—>D(ZC,,) is injective for every integer m>1.
Using this we know that the map @ in (2.2) has a close relation to the restric-
tion Resgz"n: D(ZH,)—D(ZC,,). Further we can extend the results to the
case where n is even. Let m>1 be an integer and H,=<o, T|o*"=1, c"=1%,
7 lot=0"">. Then there is a natural surjection @: D(ZH,,)— D(ZD,,) such
that ResIC)Z:o¢=ResIC{2"; . (When m is odd, @ is the map defined in (2.2).)
From this we see that Resgz"‘m(D(ZHm))gD(ZDZM) and Ker p=Ker Resgz"; is an

elementary 2-group.
We give here the outline of the proof. There are isomorphisms (for de-

tails see [6], [7])

C(ZG) = Jacl[Jaes Jacl(QG)*U(ZG)
=Homg (Rg, Jr)[Homg(Rs, F*)Det(U(ZG)),

where R; is the Grothendieck group of virtual characters of G. For each
element of D(ZG) we can choose representatives as follows;
a projective left ideal M
oa=(a,)EUMM)S Jos, where MM is a maximal order of QG
containing ZG, such that M= Q(Z,,Gap NQG)

©Det(a) eHomg (Rg, Jr)-
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For a subgroup H of G, Resg(M) has the representative pg/z(Det(ar)), where
pe/a(Det(a)) (X) = DetraS«(a) for XE Ry (for details see Appendix in [7]).
Now we compute Resgz"'m and Resg:: by using pg /c,, a0d pp, sc,,. When
m is odd, we have the commutative diagram with exact row and column
0

|
(*) Res2em
C

2m

H
Resc, ™= pzC,)

where @ is the map defined in (2.2). Letm be even. Since Resg:: is injective,

we know that the natural map ¢ of D(ZH,)=U(0),/O*¥Nrd(U(ZH,,)) to
D(ZD,,)=U(0)/|O0* Nrd(U(ZD,,,)), where O=ZOZPHZDZD D R, is well

dizm
d=1,2

defined. Hence we also have the diagram (*). Finally, Ker p=Ker Resgz""n is
annihilated by 2 (the Artin exponent of H,,).
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