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1. Introduction

Let us consider the Schrodinger operator

(L)  S=-a+00) (yER")

in R¥. The purpose of this work is to show an asymptotic formula for the
solution V' of the equation (S—k?)V'=F under the assumption that Q(y) is a
long-range potential, i.e., O(y)=0(|y|~%) (€>0) as |y|—>oco. Here ke R— {0}
and F(y) is a given function on R", and the solution V satisfies the ‘‘radiation
condition”

v .
1.2 ———kV(y) >0 (ly[— ).
23 Iyl
The exact definition of the radiation condition will be given below (Defini-
tion 2.1).
Our method has its origin in the works of W. Juager ([4]~[7]). He considered
the differential operator with operator-valued coefficients

(13) L= —g—;——i—B(r)—l—C(r) rel—(0, o),

where for each r&1I B(r) is a non-negative definite, self-adjoint operator in a
Hilbert space X and C(r) is a symmetric operator in X. L acts on X-valued
functions on I. In the above papers Jiager, among others, has established the
limiting absorption principle for L and an asymptotic formula for the solution »
of the equation (L—k*)v=f, which were used to develop an eigenfunction
expansion theory associated with L. These results can be applied to the
Schrodinger operator as follows: Let X=L,(S¥-!), S¥-! denoting the (N—1)-
sphere, and let L,(I, X) be the Hilbert space of all X-valued functions F(r) on
such that |f(r)|x is square integralbe on I, where | |, means the norm of X.
Then the multiplication operator U of the form
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(14)  U: L(R")3(y) > r ¥ Viflro)el(l, X)  (r=|yl, o=y[reS"")
gives a unitary equivalence between L,(R") and L,(I, X). Further, we have
(1.5) S=U-'LU

with

(1.6)  B(r)=r24— r—2(—AN+.MM), C(r)=0(re) X ,

Ay being the Laplace-Beltrami operator on S¥-1. Thus all results obtained for
L can be applied to S by the use of the unitary operator U. Saito [8]~[12] have
extended Jiger’s results to apply to the Schrodinger operator. [10] gives an
asymptotic formula for the solution v of the equation (L—k* v=f which can be
applied to the Schrodinger equation (S—&*)V=F with Q(y)=0(|y|-*), £>1/2.
On the other hand the Schrédinger operator can be treated directly by using
essentially the same idea as the above works. Along this line Ikebe-Saito [3]
has shown the limiting absorption principle for S with Q(y)=0(|y|-*), £€>0,
and the asymptotic behavior of the solutions of the equation (S—k*)V=F and
spectral representations for S have been investigated in Ikebe [2] with O(y)=

O(ly|~-*), ex>1/2.
In this work we shall restrict ourselves to the case that the potential Q(y)

satisfies Q(y)=O(|y|~°) at infinity with 0<<€<1/2. More precisely Q(y) is
assumed to satisfy the following

Assumption 1.1.

(Q) OQO(y) can be decomposed as O(y)=0(y)+ O.\(y) such that Q,and Q, are
real-valued functions on R", N being an integer with N>2.

(Qs) There exist constants C>0 and 0<<€=<1/2 such that O, C"(R") and
(17) DOy =CA+Iy))"  (yERY,j=0,1,2, -+, m),
where D’ denotes an arbitrary derivative of j-th order and

(1.8) me— { [2/€] (if 2/¢€ is an integer),

[2/€]+1 (otherwise),

[a] denoting the greatest integer n such that n=<a.
(0 Q.ECYRM) and
(19 1oMI=C1+1y))* (yeRY)

with the same C, € as in (Q,).

In §2~ §4 we shall consider the operator L given by (1.3), where B(r) and
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C(r) satisfy (1.6) with N=3. The argument have much similarity to the one
used in [10]. But we have to newly construct a function A\(y, k) (yER",
ke R— {0}) which is introduced as a solution of the following problem: Find a
function A(y, k) such that (L—E&?)(e’*x)=O(r-'-%) at infinity for any smooth
*(w)E X=L,(S"-1), where

(110)  u(y, B =rk—(3 k)  (=|9).

The function S;Q(,(tﬁ)dt, which was used in Saito [10], [11] (or Ikebe [2]),

will be turn out to be the “first approximation” to A\(y, k). The case of N=2
will be discussed briefly in §5.

Using the results obtained in this work we can develop an eigenfunction
expansion theory for the Schrodinger operator (1.1) with Q(y)=0(|y|~*) with
0<€é<1/2. We shall discuss this in [13].

2. The limiting absorption principle and the main theorem

In this and the succeeding two sections we shall assume the spatial dimen-
sion N=3. Then B(r) defined by (1.6) is a non-negative self-adjoint operator
in X for each r&l=(0, ). Corresponding to the decomposition Q(y)=

Qu(9)+0x(9), we set C(r)=Cy(r)+C\(r), i.e., Ci(r)=0;(ro) X (j=1,2).
Now we shall list the notation which will be employed in the sequel without
further reference. Many of these were used in [10] and [11].

C+ = {k = ky-Lik,eC|k 0, k,=0} .

X=L,(S¥-'). Its norm and inner product are denoted by and | |4 and
(s )x-

L, s(J, X) (B<ER) is the Hilbert space of all X-valued functions f(r) on
an open interval J such that (1+4-7)?|f(r)| y is square integrable on J.
The inner product and norm are defined by

(s s = | (L+12(f00), 20N

and

flle.s = [(fs F)s. 1172,

respectively. When 8=0 or J=I=(0, oo) the subscript 0 or I may
be omitted as in L,(I, X), || ||5 etc.

Hy*(J, X)=UH\(Bg), where J=(0, R), B={y=R"/|y| =R}, U is
given by (1.4) and H,(Q) is the Hilbert space obtained by the com-
pletion of C7 () by the norm
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el = 3 1{ 1 Duty) 2y

For N=3 Hy%(I, X) is a Hilbert space with its inner product
o , 0
(/> 8)5.1 = (f's §)o.s+(BVf,B*g)o, s +(F, &)o.s (f =—67f)

and norm (|fllz,=[(f, f)s/]>. When J=I we shall omit the sub-
script [ as in || || etc.

Fy(J, X) (v=0) is the set of all anti-linear continuous functionals / on
Hy5(], X), i.e.,

L: HY3(J, X)2v -, vyec,

such that

H4lly,; = sup {I<4 (14+7) o> [[llvll5, = 1}

is finite. F,(J, X) is a Banach space with its norm [|| ||ly,;. When
J=1 the subscript I will be omitted as in ||| [||.

L1, X)ie (Ho®(I, X)) is the set of all X-valued functions f such that
Ef LI, X) (Ho?(1, X)) for any real-valued, smooth function £ on
I=[0, o) with compact support in /.

D denotes the domain of the Laplace-Beltrami operator Ay (as a self-
adjoint operator in X).

C(4, B, --+) denotes a positive constant depending only on 4, B, ---. But
very often symbols indicating obvious dependence will be omitted.

C"(RM), C5(RY), Hy(R"),, etc. will be employed as usual.

Let us first show the limiting absorption principle for L which is our main

tool. Throughout this paper a number § will be fixed such that 1/2<8<
1/2+4-¢/4.

DEFINITION 2.1 (radiative function). Let /eF (I, X) and k&C* be given.
Then an X-valued function o(7) on [ is called the radiative function for {L, k, {},
if the following three conditions hold:

1) veHy, X),,.

2) v—ikvel,; (I, X).

3) o satisfies the equation

21 (o (L—R)dh=<b o> (9= UCT(RY)).

For the proof of the limiting absorption principle it suffices to replace (Q,)
in Assumption 1.1 by
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’ N
Q) O,eC(R") and

22)  10I=CA+Iy))*"  (y=RY)
with C and € as in Assumption 1.1.

Theorem 2.2 (limiting absorption principle). Let (Q), (Q,) in Assumption
and (Q,) be satisfied and let N =3.

(i) Let (k, {)eC+xFyI, X) be given. Then the radiative function for
{L, k, {} is unique.

(if) For given (k, {)eC* X Fy(I, X) there exists a unique radiative function
v=0(+, kR, {) for {L, k, {} which belongs to L, I, X)NH}*(, X),. The
mapping

(23)  CXFyI, X)D(k, {) > o(+, k, )& Ly -o(I, X)NHYI, X)s.

is continuous as a mapping from C+X Fy(I, X) into L, (I, X) and is also con-
tinuous as a mapping from C* X Fs(I, X) into Hy5(1, X),,,.

(iii) Let K be a compact set in C*. Let v=1v(-, k, {) be the radiative function
for {L, k, [} with keK and {cFyI, X). Then there exists a positive constant
C=C(K), depending only on K (and L), such that

24 [oll-st o' —dkolls_+[ 1B, < ClI|/|lls

and

(2.5) ol (e SC-SD|A|; (r21).
Before proving this theorem we prepare

Lemma 2.3. Let veHy?(l, X),, be a solution of the equation (2.1) with
keC and (={[f] (fe Ly, X),,.), where we set

(2'6) <4-f]’ ¢> = (f) ¢)0 .

Then v satisfies following (1)~ (4):

(1) o(r) is an X-valued, strongly continuously differentiable function on I
with its dertvative v'(r). We have v(0)=0.

(2) o'(r) is an X-valued, strongly absolutely continuous function on every
compact interval in I, and v'(r) is strongly differentiable almost everywhere on I
with its derivative v''(r)E Ly((a, b), X) for any 0<a<<b<<oo.

(3) w(r)eD for almost all rel, and B(r)veL,(a, b), X) for any
0<a<<b<eo.

(4) We have

2.7) —"(r)+B(r) v(r)+ C(r) v(r)—k*o(r) = f(r) (a.e. rel).
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Proof. Using (1.5), we obtain from the relation (2.1) with /=/[f]
2.8) (U, (S—F)9),, = (U, @)k, (pECT(RY)),

where (,),, means the inner product of L,(R"). Then, as is well-known,
@o=U"'v belongs to H,(R"),,, (see Ikebe-Saito [3], p. 536). Therefore there
exists a sequence {p,} CCF(R") such that ¢,—p, in Hy(R"),,. We set
v,=Ugp,. From the relations v,—v, v,/—>v’ in Ly(0, b), X) and v,”—2",
Bv,—Bv in Ly((a, b), X) (0<<a<<b< o) we can easily obtain (1)~(4). Q.E.D.

Proof of Theorem 2.2. B(r) and C(r) satisfy Assumption 1.1 of [10] except
the smoothness of Cy(r)?. Hence we can proceed as in the proof of Theorem
1.3 of [10], if we use Lemma 2.3 in place of Proposition 2.4 of [10]. Q.E.D.

Now we are in a position to state the main theorem. Here we may assume
with no loss of generality that

29) Q=0 (lyI=1)

Theorem 2.4 (asymptotic behavior of the radiative functions). Let
Assumption 1.1 and (2.9) be satisfied and let N =3. Then there exist real-valued
Sunctions Z(y)=Z(y, k) on RY X (R— {0}) and \J/(w)=(w,k) on S¥-1x (RN —{0})
such that Z(y) &€ CYR"), y(w) = C*(S¥-) and there exists the limit

(2.10) o= a(k, f) = s-lime=*Py(r)  in X

for any radiative function v for {L, k, {[f]} with ke R— {0} and fEL, ,.5_(I, X),
where p(y, k) is defined by

@11 wly, k) = rk—{{ Zew)dr+E) W)} (=171, 0=]17])

and E(r) denotes a real-valued smooth function on [0, o) such that

0 (r<1),

(2.12) g(r):{l r22).

This theorem will be proved by making use of the next

Theorem 2.5. Let Q(y) be as in Theorem 2.4 and let —5<<B=1—8.
(i) Let v be the radiative function for {L,k, !} with ke R—{0} and
(eF,,4(I, X). Then we have u'—iku, B"uc L, o(I, X), where u=ev and

(2.13)  Ay) =y, k) = S;Z(tw)dt—l—g(r)\,lr(w) .

1) The condition (B3) of Assumption 1.1 of [10] is justified by the Rellich lemma.
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Further let K be a compact set in R—{0}. Then there exists C=C(K, B) such that
214) |l —dkul |+ BV < C| s (u=e™0)

for any radiative function v for {L. k, } with k€K nad {EF ¢, X).
(ii) There exists C=C(K) such that for any radiative function v for {L, k, {}
(ReK, (eF,s_I, X)) we have

215) o) x=Cllllss-e  (rEID).

In the following section we shall construct A(y) and prove (i) of Theorem 2.5.
Theorem 2.5, (ii) and Theorem 2.4 will be shown in §4.

3. An estimate for radiative function

Let us first consider the following problem: Find a real-valued function
My)=M\, k) on RYx (R— {0}) such that

(3.1) [(L—R?)(e*x)| x = O(r~'-*%) (r—>o0)

for any x& D, where p is given by (2.12). If Q,=0, then A(y)=0 is a solution
of this problem. We shall construct a solution of this problem which will play
an important role in this and the next sections. In order to solve this problem
we have to investigate some properties of the Laplace-Beltrami operator A, on
S¥-1. Let us introduce polar coordinates (r, 6,, 8,, -+, 65_,), i.e.,

y, =rcosb,,
(3.2) y; =rsinf,sin @,---sin @;_, cos §; (=23, ,N-1),

yy=rsin@;sin @,---sinfy_,,
where r=0, 06, 0,, -+, 0y_,<m, 0<0,_,=27n. We set

b, =b(0)=sin0,sinf,sind,, (j=2,3, -, N—1),

3.3 b =b0)=1,
6 | )
M; = M6)= b,-(0)'150—. .

Then, as is well-known, we have

N-1 . . 0 . . 0
(4 Ay=21b(0)sin 0j)‘”+’+1—é?j{(sm o,.)N—f-lE}

(see, for example, Erdélyi and others [1], p. 235), and hence, sesting A=—Ay+

(N_—l)iM as in (1.6), we obtain
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(N—1)(N—3)w2
=

(B5) | Avx|i= ”z=',|Mx|X+1ch|x(xeg>(Aw)

Moreover we set

7= 9(9) = 23, ) = DrHAMAY,
P FO) ) )

11"#; 20V,

—~(N-D R § o el yre A

Vi Vp.il y=tadt

Here A is given by (2.13) and y, ;=0y,/06;.

Lemma 3.1. Let x&D. Then we have

(3.7) (e**B(r)— B(r)e*™)x = e*™(— ¢>j:21r'2 2 (M A\)M ;+iP)x
(<pj:21r‘22 (M A)M ; £ iP)(e*™x) ,
and
(3.8) (L—Fk*)(e*x) = e*{(B(r)+ Zir“zlzl(ij) M ))x
- (P4iZ! 4 Cy W) — (27— Co Z— )}

where A, @, P are as above, W=i¢""\p+E'(E \1»—|—2Z 2k), and £, M ; are defined
by (2.12) and (3.3), respectively.

Proof. A(e*™x) can be calculated as follows:
(3.9) A(e*?x) = e**Ax+ 2 (M A)te *"‘xZFZil_VZ_l(ij)(ij)e“-’"‘

S (N—j— )c050 ax}emx.

:Fi:}?:‘{bj sin @, 96,

£

Since the fourth term of the right-hand side of (3.9) is equal to Fir?P(y)e**x
by Lemma 5.7 of [11], the first relation of (3.7) follows from (3.9). The second
relation can be obtained from the first relation and

(3.10) M(e*™x) = i M \)e P x+e=* M ;x .
(3.8) follows from (3.9) and

(B.A1)  (e*x) = —(@iZ'+ R+ 22— 2kZ+W)ex .
Q.E.D.

2) 9(W) denotes the domain of W.
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Let A(y) satisfy the estimates

DiZ(y) = O(ly17)  (Iyl=,j=0,1,2)
2kZ(y)—Qu(y)—Z(y)—(y) = O(Iy1 %) (lyl—=>).

Then, since M A=0(| y|'-*) and P(y), Z'(y)=0(|y| '), it follows from (3.8)
that (3.1) holds good. To obtain A(y) which satisfies (3.12) let us consider
sequence {Z®(y)} and {y»™(w)} defined by

ZO(y) = (2k)'Qy(y) »
Z®(y) = (2k) Q1)+ 2 (y)+2(y, A™)}
n=0,1,2, -+,m—1),

(3.13) . X(”)(y) —_ s;Z(”)(tw) dt—l—g(r) \1,(”)((0) , (n=0, 1, 2, ey no),
0 (n=0, 1,2, -+, ny).

_S: (Z(tw)— Z5V(te)) dt+*D(w)
' (n=ny+1, -+, m—1),

(3.12)

() =

where m is given by (1.8) and n, denotes a positive integer which satisfies n,€ <1
and (n,41)€>1

Lemma 3.2. Let n be an integer such that 0<n=<m.

(1) ThenZ™(y, —k)=—Z™(y,k) (ye R", ke R—{0}) and Z™(y,k)=0
for |y| <1, ke R—{0}.

(ii) We have

(B.14)  2RZ(y)=Qo(¥)—ZP(y)—o(y, M) = O(|y =% (ly|—>e0).
(iii) Further, Z™(y)eC™*(R") and

(3.15) | DIZM(y)| =C (1+|y])7-* (yeR",j=0,1, -+, m—n)

with constants C .

If we note (1.7) in Assumption 1.1 and (2.9), then the proof is easy by induc-
tion, and hence we shall omit it.

DerINITION 3.3. We set

Z(y) = Z™2(y), W) = ¥ o),
Y(y) = 2kZ(y)—Qu(3)—Z(y)'—(¥) -

A(y, k) is defined by (2.13).

(3.16)

ReEMARK 3.4. (1) From Lemma 3.2 we see that Z(y)eC* R"), y(w)E
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C%(S¥-1) and

(3.17) { 1DZ(y)| SC(+1y)7 (=0,1,2)
| | Y(y)| =C(1+ |y])?

for ye RV,

(2) Inorderto obtain A(y) which satisfies (3.12) itis sufficient to set A(y)=
A®(y), n=[1/€]. But we have taken A(y)=A™-2(y) for the sake of convenience
of showing Theorems 2.4 and 2.5.

(3) In the case that £>1/2 it suffices to set Z(y)=Z(y)=(2k)'Q(y) and
Jr(w)=0 (cf. Ikebe [2] or Saito [10], [11]).

Now let us enter into the proof of (i) of Theorem 2.5. Through the
remainder of this section 3 is taken to satisfy —1/2<B<1-38.

Proposition 3.5. Let Q(y) be a real-valued, continuous function on RY
(N =3) such that |Q(y)| =C(1+ |y|) 2 (yERY). Let v be the radiative function
for {L, k, {[f1} with keC+ and f €L, .41, X). Then we have v'—ikv, B"®ve&
L, ¢(1, X).

Proof. The proof will be divided into three steps.

(I) Let p=UCF(RY) and set f=(L—k*) ¢. Then, taking the real part of
the both sides of the relation (a(l+7)+* (L—k%) ¢, ¢’ —ikdp)e=(a(147)**+'f,
¢’ —1ke), with a real-valued smooth function & on I such that a(r)=0 (r=1),=1
(r=2), and using partial intagration, the interior estimate (Lemma 3.1 of [10])
and (2.4), we obtain

(3.18)  [I¢'—ikgllet+11B*plls=CI|fll1+s

with C=C(k) which is bounded when % moves in a compact set in C+. Here
we should note the relation (L—Fk?)¢p=—(¢p'—ikep) —ik(p'—ikp)+Bop+Ce.
Then we can proceed as in the proof of (1.7) in Lemma 1.5 of [10].

(II) Next let us assume that f€L, .51, X) and kC+ with Im k>0%.
Then, by translating the argument used in the proof of Lemma 1.10 of Ikebe-
Saito [3] into our case by the use of the unitary operator U, we can find a
sequence {¢,} C UCF(R")such that f,=(L—k?%) ¢, converges to f in L, ;.4(1, X).
Then it follows from the continuity of the radiative function that ¢, converges
to the radiative function v for {L, &, {[f]} in L, (I, X)N Hy®(I, X),,., whence
follows that v’ —iko, B2 L, (I, X) and that (3.18) holds good with ¢ replaced
by ©.

(III) Finally let us assume that ke R— {0} and f&L, +s(I, X). Then,
setting k,=k-i/n and denoting by v, the radiative function for {L, k,, {f]}, we

3) I, z (R.z) means the imaginary (real) part of z.
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have (3.18) with ¢=wv,. If we let »—>oo, then we can easily see that v'—iko,
B'2ye L, g(I, X), which completes the proof. Q.E.D.

The following proposition is the key lemma to the proof of (i) of Theorem 2.5.
Let us set

(.19)  p(G) =sup {(1+1y1)|G(y)| [yER"},
where G(¥) is a function on R¥ and yER.

Proposition 3.6. Let Q(y) satisfy Assumption 1.1 with N =3 and let \(y)
be as in Definition 3.3. Further Q((y) is assumed to have compact support in R™.
Then there exists C=C(k, Q) such that the estimate

(3.20)  |lu"'—ikullg+ 1B ullg=CI|fl,+s

holds for any radiative function v for {L,k, [f]} lwith keR—{0} and
feL, 161, X), where u=e™v and ) is given by (2.13). The constant C=C(k, Q)
is bounded when k moves in a compact set in R—{0} and py(Q,), p;+«(D’Qy)
(=0, 1, -++, m) are bounded.

In order to show this proposition we need several lemmas.

Lemma 3.7. (i) Let u be as in Proposition 3.6. Then

(3.21)  —(u'—iku) — k(s —iku)+ Bu = ef—24(Z - E"pr) (o’ — iku)
(Y —C,—iZ'—iP—W)u—2ir2Mu,

where we set
(322 M=Z (MMM,

and M, P and Y are given by (3.3), (3.6) and (3.16), respectively.
(ii) Set V(y) = Zplgj( ¥)G;, with C* functions g; on R¥—{0} and operators
G, in X such that 9(G;)C D(AY?), A being given in (1.6). Then

(3.23) S:(Vu, W — ikt ydr — (26R)-{[(Vat, ' — i) ]
—S:(V(u’—iku), u’——iku)xdr—S:(V'u, w'—iku)y dr
+2iSZ((Z+§’«;r)Vu, W —ikui) g dr -+ S:(Vu, (Y—Cy—iZ/ —iP—W) u-tef)ydr
—SZ(Vu, Bu)y dr+2iS:(Vu, r*Mu)ydr}  (0<R<T).

(iii) Let x, x’ €D and let S(y) be a C* function on RY. Then
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(3.24)  (SMx, &) y+(Sx, Mx')y = —1*(SPx, &')x—((MS)x, ')y .

Proof. Multiply the both sides of (L—k?)v=f by ¢*. Then, by an easy
computation, we arrive at (3.21). (ii) is obtained from (i) by the use of partial
integration. (iii) also follows from partial integration if we note Lemma 5.7 of

[11]. Q.E.D.

Lemma 3.8. Let Q(y) be as in Proposition 3.6 and let v be as in Proposition
3.6, too. Then we have

(3.25) (,G—I—%)Sz(xrzlu’—iku | idr—l—(%—B)SZarm]Bl/zu |%dr
T
<UD+ CIf s+ | a1 —iu |5+ | B2 3)dr}
- mz‘zk'”"ReSTarzﬂ"‘(Z”Mu, Bu)ydr,
n=0 R

where o is a real-valued, smooth function on I such that a(r)=0 (r<R), =1
(r=R+1), »(T) is a function of T satisfying ilmn(T)=0, T>R+1, and
7>

C=C(k, Q) satisfies the same properties as in Proposition 3.6. m is as in (1.8).

Proof. Multiply the both sides of (3.21) by ar?+!(u’—iku), integrate over
the region {yER"/R<|y|<T} and take the real part. Then we obtain

(3.26) K= ReS:arm“{(Bu, W —iku)y—((w' —tku)', W' —ikuy)} dr
_ ReS:arﬂ“{(ei"f, W — ki) - (Y — Cy— W), u/ — i)} dr
—|—ImSZar2‘B“((Z’—i—P)u, W —iku) dr
—|—21mg:ar2"“(Mu, W —iku)ydr — K+ K4+ K,

where M in K; of the right-hand side is defined by (3.22). The left-hand side
K of (3.26) is estimated from below as follows:

L\(” 28 ()0 7 2 1 T 2
(3.27) Kg(B—F?)SRar u —zku|Xdr—|—(7— B)SRarZﬂ|Bwu|Xdr
T
—ls o'r"?P+1 | BY2y | % dr — 1 T2+ ' (T)—tku(T) | % -
2Jr 2
Noting that 8=<1—38, we can estimate K, as

(3.28) K1§C||f||,+5[STar”Iu’—ikuIﬁdr]‘”,
R
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where we have used (2.4) and the constant which depends only on k and QO(y)
will be denoted by the same symbol C in the sequel. Let us estimate K,. Set
V=ar®+(Z’4P) in (3.23) and use the Schwarz inequality and (2.4). Then

(3.29) K,=— 21_k Re{T?+((Z/(T)+P(T))u(T), u'(T)+iku(T))}
L CR(T)+k' Im SZarz"“(Z(Z’—I—P)u, W —ikui) g dr
4k Im SZarZB‘l((Z’—}—P)u, Mu)ydr

where we set

(330)  F(T) = lIflltes+ | ar®-t{lw—ikul+ | Bul3} dr

K, can be estimated by the use of Lemma 3.7, (ii), too. Setting V=ar*-'M in
(3.23), we obtain

(3.31)  K,<—Fk-' Re T%-(Mu(T), u'(T)—iku(T))x-+CF(T)
421 Im S:arzﬁ—l(ZMu, W —iku) y dr
Sk Im SZarz’g‘l(Mu, (Z'+P)u)ydr
+k-1Re SZarzﬁ‘l(Mu, Bu)yadr .

Here we have used the relation

(332)  Re (M —iku), u'—iku)y — —é—rz(P(u’—iku), W —iku)y

which follows from (2.24) with x=x'=u'—iku and S(y)=1. Thus it follows
from (3.26), (3.27), (3.28), (3.29), (3.31) and the interior estimate (Lemma 3.1 of
[10]) that we obtain

(333) J= (,B—I—%)SZOM" |’ —iku| Y dr+ (_;_— B)jz cr’®| By % dr
< #(T)+CF(T)
&1 Im S:arw—l{((zurp)u, Mu)g+(Mu, (Z'+P)u)y} dr

T
4k Im SRar23+1(Z(z'+P)u, U — i)y dr
+2k T | o™ ZMu, o — i) dr

+k-'Re STar”‘l(Mu, Bu)ydr = éjp )
R r=1
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where
3.34) =n(1)= %T”*‘Wu’(T)—iku(T) |%
—%{ Re {T**+(ZY(T)+P(T))w(T), w'(T)—iku(T))x}

— k1 Re {T?-(Mu(T), ' (T)—iku(T))} .

Since v'—ikv, B2 L, g(I, X) by Proposition 3.5 and the support of Z(y) is

compact in R¥ by the compactness of the support of Qy(y), it can be easily seen

that w'—iku, BYueL,gI, X), which implies that lim »(7T)=0. By using
T >

(3.24) J, is shown to be zero. J, and J; can be estimated in quite the same way
as in the estimation of K, and K, respectively. Thus we obtain

(335)  J<u(T)+CF(T)
4k Im sZarzf’“(Zz(Z’—l—P)u, W —iku)ydr
42k Im S:arzﬂ‘l(ZzMu, o — i)y dr
4k Re S:arZB—l(Mu, Bu)ydr
4 k-?Re S:arz"“(ZMu, Bu)ydr .
Repeating the above arguments, we arrive at
(3.36)  J=u(T)+CR(T)+ 5 k' Re | ar*~2"Mu, Bu)cdr
=1 R
k-0 Im S:arzﬂ+l(2m—l(2'+P)u, W —iku)y dr
+2k-@-D Im S:arzﬂ—l(Zm—lMu, o —iku)y dr ,

whence (3.25) follows directly. Q.E.D.

In order to show Proposition 3.6 completely we shall estimate the term
Re (Z"Mu, Bu).

Lemma 3.9. Let S(y) be a real-valued C' function on RM such that
|S(y)| =c(y=R") and |DS(y)| <cr~* (|y| >1) with a constant ¢c>0. Then we
have

(3.37)  |Re(SMx, Ax)y| <Cr-"(|4"x|5%+|x|%)  (r=1,x€D)

with C=C(c, k) which is bounded when c is bounded and k moves in a compact set in
R—{0}. A is given in (1.6).
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Proof. We shall divede the proof into several steps.
(I) From (3.5) we obtain

(338)  J = Re(SMx, Ax); = Re' >3 (M, (SMx), M ),
+ck Re (SMx, x)y = ]+ ], .

Throughout this proof we shall call a term K an O.K. term when K is dominated
by Cr-*(|AY%x|%+1x|%) for r=1 with C=C(c, k). Since |SMx|,<Cr-®
| A¥%x | x, we can easily show that [, is an O.K. term. Thus we have only to
consider the term J,.

(II) Let us calculate J,

(339)  Ji=Re (M,S)(Mx), M,x)y
+ Re 33(S'S (MMM ), M)
+ RS (S (MMM ), M) = Juct Tk T

By noting that M ,S(y) is bounded on {yeR"/|y| =1} ], is seen to be an O.K.
term. Before calculating J,; we mention

—1c0s @, .

b; 1smt? M, (n>1),

(3.40) MM,—MM,= (n=j),
,cos @, .

—b! sin, (<1

which is clear from the definition of M (see (3.3)). Using (3.40), we have

cos 0,

(341)  Ju=Re (ST MNES wg, (M), M)

. S M bnl COSG )
(5 5 0020540 (1,0), M),

N-1
+ Re’; (SM(M ,x), M%)y = it ]z -

Here J,5 is an O.K. term, because, making use of (3.24) with x=x'=M x, we
have

(34D Juw=— & F(SPM), Ma)x+H(MS)M 5, Mo)s}

Therefore let us consider J,+ ],y
(IIT) Set
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Z (ro) = S;Q(%if@[,:mtdt (p=1,2, -, N),
4

(3.43) v erre ,
Zofrm) = tp) 51 [PETED)y Ly,

j=bm= 0y;0y,
(P’ q:1’ 2) Ty N),

b, v;,, being given by (3.3), (3.6), respectively. 'Then, setting cos fy=1, we
obtain

(3.44) M\ = bt {— b,+IZ—|— Z Zb cos0 S6,},
j
and
Zin (i>n),
N
(345 M Mpn={Zm b 22,0086, (j=n),
Z b7 1COS 0: (M ) (j<n).
Thus J,, takes the form
cos 4.

(3.46)  Ji.= Re 2 (s z} b (M MM %), M x)x

—(Sbizﬁg Zpbp cos (M x), M,x)} x

N-1 N -1
+ Re § (S Z:; Zjn(ij)’ M x)x = Jint+ Sz -

Jiz 1s an O.K. term, because Z,,(y)=O0(|y|'"%) by the first estimate of (3.17).
Hence, in place of J,+ J13, it is sufficient to consider

(3'47) J =Jmt]m
— SV(SF (M%), M)x+ Re S (SG,, M)y = J/ 4]/

with
(348) F,= z(M M) 1208 6; zz bby?cos 0, = F,—F,,,
J
and
cos @

(349 G,= 2 by1s

%mem—zb”fﬂMmmw

(IV) Now let us calculate F,;. Using (3.44) and interchanging the order
of summation, we arrive at

(3.50)  Fo=—317b,cos6,+ If} Z b by? cos 0,4 Z, cos 0, ,
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and hence
N
(3.51) F,= '—,,Zzzl’bl’ cos §,+Z, cos b,,

which implies that J,’ is an O.K. term. As for J,” we can interchange the
order of summation to obtain

(352 J/ = ReE] S MM, M)
ji=1 i
(5785 (g (M), M)} = 0.
sin @,

J

Thus we have shown that each term of J=Re (SMx, Ax)yx is an O.K. term,
which completes the proof. Q.E.D.

Proof of Proposition 3.6. By the use of Lemma 3.9 the last term of the
right-hand side of (3.25) is dominated by CF(T), where F(T) is defined by (3.30)

and (2.4) has been used. Therefore by letting 7'—co along a suitable sequence
{T,} in (3.25) we obtain

lwzﬁf_'z l__ Y 120,12 dpp <
(3.53) (,8—|—2>SRar | zku[xdr—|—<2 B\ a1 Brul v dr<CR(T)
Take R sufficiently large in (3.53). Then it follows that
@54 [ r(w—ikulit | Bl =ClIfIGe (C=C(k, Q)

R+1

which, together with the interior estimate (Lemma 3.1 of [10]), yields to (3.20).
Q.E.D.

Now that we have shown Proposition 3.6, we can prove (i) of Theorem 2.5.

Proof of (i) of Theorem 2.5. Let v be the radiative function for {L, &, /}
with k€K, the compact set of R— {0}, and /e F . 4(I, X). Let k,&C* such
that Im £,<0. Then v can be decomposed as v=v,-+w, where 7, is the radiative
function for {L, ko, /} and w is the radiative function for {L, &, {[f]},f=(k*—Ek}) 2,
(Lemma 1.8 of [10]). It follows follows from Lemma 1.7 of [10] that
9,E Ly 1461, X) and

(3.55)  llus’—ikuqllp+11BYuqllp+ ool s S Collllllies (us=e™00)

with Cy=Cy(k,, k, B)”, and hence it suffices to show the estimate (3.20) with

4) It should be noted that Lemmas 1.7 and 1.8 are valid in our cass if the space C33(I, X)
is replaced by UCGZ (R¥).
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u=e*w. To this end we shall approximate Q,(y) by a sequence {Q,,(y)}, where
we set

(3.56) Qo) =(1¥1)Qu()>  sur)=s(r[n),

and s(r) is a real-valued, smooth function on I such that s(r)=1 (r<1), =0
(r=2). Then it can be easily shown that for each j=0, 1, -+, mp;,(D’Q,,) is
bounded uniformly for n=1, 2, .--. Let us set

(357 L= L iBO)+Cun+C0)  (Cul) = Qulra)¥),

and let us denote by w, the radiative function for {L,, &, /{[f]} with f=(k*—k})v,
(n=1,2, -+:). For each L, the function Z,(y) and +,(w) can be constructed
according to Definition 3.3 with Q(y) replaced by Q,,(y) and we set

(3.58)  w, = eMw,  (A(re) = S;Z,,(tm)dt—}—f(r)xlr,,(w)).

Now Proposition 3.6 can be applied to show

(3.59)  lu)/—iku,|le+11B"*u,[ls=<Cl|flli+s ~ (kEK),

C=C(K, B) being independent of n=1, 2, --. Since D’Q,(y) converges to
DQy(y) as n— oo uniformly on R for each j=0, 1, -+, m, it follows that 1 (y)—
M y) (n— o) uniformly on every compact set in RY. Therefore, by the use of
Theorem 4.1, of [10], we obtain u,—u in Hy5(1, X),,, as n—>oo. Thus, letting
n—> oo in the relation

(3.60)  llu,'—ku,|lp, 0.0+ 1B ulle, 0.0 =Cllifllies  (RET),
which is a direct consequence of (3.59), we have

(3.61) |1 —ikulls,0.0+11Bulls, 0,0 S CIIfll1+s -
Since R>0 is arbitrary, we have obtained (2.14). Q.E.D.

4. Proof of the main theorem

In this section we shall prove (ii) of Theorem 2.5 and Theorem 2.4 by using
Theorem 2.5, (i) which has been proved in the preceding section.

(ii) of Theorem 2.5 follows from (i) of Theorem 2.5 quite similarly as
in the proof of (4.16) in Theorem 4.3 of [10].

Proof of (ii) of Theorem 2.5. Let us first consider the case that v is the
radiative function for {L. &, {[f]} with k€K and f€ L, 1;-(I, X). Using (i)
of Lemma 3.7, we have
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@) —iku(r), ur)s} = E7glr),

4.1) 8(r) = |w'—iku|%+ | B"u|3+(e™f, u)x
+2i(Z+E'r)(u'—iku), u)x
—(Y—C,—iZ'—iP—W)u, u)x+2ir-*(Mu, u)y .

It follows from (2.14) with 8=28— & that g(r) is integrable over I with the estimate

2 | 180 1de< | — ki3 Bl o] s

+C{llw' —ikulls-ol [0l -5+ 120|254 | B0l |5-l 0] -5
SCNfvs-e

where C, C’ are positive constants and we have made use of (2.4), too. By start-
ing with (4.1) and (4.2) the estimate

4.3) o) [ x=Clflli+s-.  (r€l, C=C(K))

can be shown in the very same way as in the proof of Lemma 4.6, (II) of [10].
Next let us consider the general case. Let k,&C+ with Imk,>0 be fixed.
Then, as in the proof of (i) of Theorem 2.5, the radiative function v for {L, &, /}
can be decomposed as v=v,+w, where v, is the radiative function for {L, kq, ¢}
with v, Hy2(1, X)N Ly +5-oI, X) and w denotes the radiative function for
{L, k, [[(k*—EK})v,]}. Let us estimate v, and w separately. It follows from
Lemma 1.7 of [10] and the inequality |v4(r)| x<+/2 ||v0l|5, Which is shown in the
same way as in the proof of (2.34) in Lemma 2.5 of [10], that

“4) o) x=Clllll+s-.  (r€I C=C(K)).

On the other hand we obtain from (4.3)

(45)  [9() x<Clloghss-e  (rEI, C=C(K)),

which, together with (4.4) and Lemma 1.7 of [10], yields to (2.15). Q.E.D.

Proof of Theorem 2.4. Set 83=8—&. Theorem 2.4 will be proved by
proceeding along a similar line to the one in the proof of Theorem 5.1 of [10].
First we shall show that [9(r)| x tends to a limit as »—>oco. In fact, starting with
(4.1) and the relation

(46) L {Im (), ur)s} = Img(r),

and noing that (#/(R,)—iku(R,), u(R,))x—0 for some sequence {R,}, R,— o,
we obtain
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(+7)  [o0)lk =k {Im @), t)e+1m | ee-ngd)
= k- {Im (/(R), u(R))+1m || g(t)det-Im | "ere-g(e) i)
with R>0 fixed, whence follows the existence of the limit. Now let us set
48)  aur) = (2ik) e (W (r) - iko(r)) .
Then, by an easy computation, we have
4.9 e~ rRy(r) = ak(r)+e H - Pa_,(r)
and
#.10)  @/(r) = (2ik) '~ {Bu— e f+-i(Z -+ Ep) (o —iku)
+(W+C— Y+iP)u—}—Zir-Zl]gl(Mj)\)(Mju)} ,

and hence we obtain for x&D

(), 305 = (1), 2)o+ | @) e gt )

g(r, x) = (u, Bx)x—(r*f, x)x+i((Z+EV) (W —iku), x)x
(+.11) - (Cy— Y+iP—W ), x)y—2ir-*(u, Miu)y—2i(Pu, %)y

= ;é:gj(r’ x),

where we have used the relation (3.24) in Lemma 3.7, (iii). Therefore it follows
from Theorem 2.4, (i) with B3=58—¢& that g(r, x) is integrable over (1, o), which
implies the convergence of (a,(r), ¥); as r—>co. On the other hand setting
h(r)=e"™(u'(r)—iku(r), x)x, xD, and proceeding as in the proof that
}im (a(r), %)y =a, exists, we can show that lim 4(r)=0. In fact by the use of

7300

Lemma 3.7 and Theorem 2.5 it can be shown that A/(r)=e™* ((«'—iku)'+
tk(u’'—1ku), x)x is integrable over (1, oo), which implies the existence of lim A(r).

Moreover, since w'—ikuesL,,.5s-(I, X) we have h(r,)—0 (n—oc0) along some
sequence {r,}, whence we obtain lim A(r)=0. Note that lim e-%*"A(r)=0 and

lim (Z+&'y)v(r)=0, then we arrive at

lim {(e="2/(r), x)x—ik(e~*o(r), x)x} =0,
12 Vi (00, )5 ke o(r), o)} —2ika,,

and hence lim (e-*o(r), x)y=a, for any xD. Thus taking note of the
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boundedness of |9(r)|x and the denseness of D in X, we have established the
weak convergence of {e-*7(r)} as n—oco. Set a=w—Ilime-*o(r). Then the

7300
proof of Theorem 2.4 will be complete if we can find a sequence {r,} such that
(4.13) 11:2 lo(r)lx = |lalx.
Let us take a sequence {r,} which satisfies
P (r,)—iku(r,) | x<cy,

802 B(r ) u(r,) | x<c,,

[o(r) | x=¢o
lim |o/(r,)—iko(r) | x = 0 (8=3—6)

(4.14)

with a constant ¢,>0. Such a{r,} surely exists by Theorem 2.5, (i). Then from
(4.9) we obtain

(4.15) lo(r) |k = (e ayr,)+e ) a_(r,), v(r,)x
= (at(ry), €™ 0(r,))x

+(a-y(r,), e**0(r,))x = a,+b,.

Obviously we have b,—0 as n—>co, and hence it is sufficient to show that
a,—~|al%. Setting

(416) o, — e-momo(r,),
we obtain

(417) @, = (@(R), ax—{ (@), a)edt
= (@(R), )= @ik e-ermgle, ur )t

where g(r, x) is given by (4.11). Now we shall construct a function gyr) on
(1, o) which is integrable on (1, o) and dominates g(r, «(r,)) uniformly for » in
the sense that

418)  1g0 wr)| Salr)  (r2r(1),n=1,2, ).

In fact, the following estimates are obvious:

| gor, u(r,))| =c| fr)] x = gulr) ,
|8(r, u(r) |+ | &(7, w(r))| SoCr7'=*|o(r) | x = gulr)  (r21).

As for g(r, u(r,))=(u(r), B(t)u(r,))x we have from (4.14)

(4.19) {
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(420) |2, wr))| Scor 08| B u(r)|
<cr OB PRV | = golr)  (r7,, B=3—E).

Quite similarly we obtain for » =r, with 8=06—¢&

| gs(r, u(r,)) | Scor =P~ |rP(u/(r)—tku(r)) | x = gos(r) »

(4.21) S
| &5(r, ulr,)) | SccCr=CrPra) = gy(r) .

Combining (4.19)~(4.12), we may set g,(r)= i &oj(r). Here it should be noted

that 8+€>1/2 and €+ B+(1/2)>1. Now that the existence of g(r) has been
shown, (4.13) is obtained by letting #— oo in the relation

4.22) o)k = (@, an)x— S”(zz’k)—le-fw—fn)g(t, u(r,))dt+b,

which follows from (4.15) and (4.17) with R— oo along a sequence {r,} which
satisfies v'(r,,) —tko(r,)—0 in X. Q.E.D.

5. The case of N=2

Now we shall consider the Schrodinger operator S=—A+0(y) in R%. As
in the preceding sections we set L=USU-'=—d?/dr*+ B(r)+C(r), where U is
the multiplication operator by #/2. In this case the operator

(5.1) B(r) =r*(—A,—1/4)

is not necessarily non-negative definite and, further, the element v of UH(R?)
does not necessarily belong to L,(I, X). We, therefore, have to modify the argu-
ments in §2~ §4.
Let us set Hy?(I, X)=UH,(R?) and define the inner product and norm of
1,B,
o4, X) by

(v, w)p = v, W),
(:2) { olls = V{7, 7).,

where v=UV, w=UW with V, W H,(R? and (, ), denotes the inner product
of H(R?. Obviously Hy?(I, X) is a Hilbert space.

In the case of N =3 we have used the estimate |o(r)| x<+/2 |2l ([9], (2.6)),
where the fact that B(r)=0 has been only employed. But in this paper, which
deals with the concrete operator S=—A+-Q(y), a sharper estimate can be shown
for ve Hy5(I, X)=UH (R") with N=>2.

Lemma 5.1. Let veHy?(, X)=UH,(R") with N=2. Then v(r) is an
X-valued continuous function on [0, o) with v(0)=0, and the estimate
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(5.3) lo(r) | x=llollz  (r€[0, o).
Proof. Starting with the relation

N—1
|y|2r._W | p(y)|2dy

(v=Ugpe UCF(R")),

(54) —2Re S

lyl2r

2% dy = 10() 15+

we obtain (5.3) for ve UCF(RY). As for ve Hy5(I, X) there exists a sequence
{v,} cUCF(RY) such that v, converges to v in Hy5(I, X) as n—oo. It follows
from (5.3) with v=wv, that v,(r) converges to o(r) in X uniformly for r&[0, o).
Therefore ¢(r) is an X-valued continuous function on [0, o) with v(0)=0 and
the estimate (5.3) holds for v, too. Q.E.D.

In this section, instead of B(r) and Q(y), we shall use

B(r) =rH—ANy),
Q(y) = Qu()+@(y) (@) = Qu(»)—4?).

Since @,(y) has a singularity at y=0, () does not satisfy the condition (Q,) in
Assumption 1.1. But §(y)=0(|y|-?) as |y|—>co, and the analysis in a neigh-
borhood of y= oo proceeds as in the preceding sections. Here we shall note that
the interior estimate (Lemma 3.1 of [10]) has the following form.

(5.5)

Lemma 5.2. Let veHy%(1, X),, satisfy

(5:6) (v, (L—F)p) =<4 ¢>  ($EUCY(R?)
with keC and (e F (1, X). Then for any R>0 there exists C=C(R, k) such that

(5'7) Holl 5, 0.0 = C{H’”[ lo, 0, g+t (WHIO,(O,Rﬂ)} ’

where we set for an open interval J C 1
(5.8)  llolls, = [S JVVERIVI)dTE (0=UV, VEH(R)L) .
yE

By using the relation U-'LU=.\S the proof is easy, and we shall omit it.

Now we have to modify the definition of the radiative function slightly. Let
us set [;=(1, o). A solution ve H%(1, X),,, of the equation (5.6) with keC~
and /eF (I, X) will be called the radiative function for {L, &, ¢} if v/—ikvE
L, s-+(I;, X). Then it can be shown that the results of Theorems 2.2, 2.4 and
2.5 are valid in the case of N=2 without any serious alteration. The method of
the proof is essentially the same as in the preceding sections and [10]. There-
fore the proof of the theorems below will be left to the reader.

Theorem 5.3. Let Assumption 1.1 with N=2 be satisfied. Then all the
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results of Theorem 2.2 hold if we have only to replace (2.4) by
(5.9)  lloll-st+llo'—tkolls-y, 1,1 B0l l5-y, 1, S ClII 5 -

Theorem 5.4. Let Assumption 1.1 with N=2 and (2.9) be satisfied. Then
all the results of Theorem 2.5 are valid if we have only to replace (2.14) by

(5.10) 1w’ —dkulle,;,+11Bulls, 1, < ClI1]l 15 -

Theorem 5.5. Let Assumption 1.1 with N=2 and (2.9) be satisfied. Then
all the results of Theorem 2.4 hold good.

Finally let us apply Theorem 2.4 to the Schrodinger operator S.

Theorem 5.6. Let Assumption 1.1 be satisfied. Let V €Hy(R™);,.N
Ly(R™, (1+ |y |)~®dy) be a unique solution of the equation

(S—K)V =F,

5.11 .
G-11) —al’T—szeLz(El,(1+|y|)28-2dy)

0ly

with kRER—{0} and FeL(RY, (1+|y|)*®-*dy), where we set E =
{yER"||y|>1}. Then there exists a strong limit

(5.12)  a(k, F) = s—lim e~ #by(N-D2/(7.)
in L,(SV-1), u(y, k) being defined by (2.12).
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