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1. Introduction and notation

Let G be a finite group containing a standard subgroup of known isomor-
phism type, centralized by a 4-grouρ. Then it is shown that G is a known
group or G is of Conway Type. The proof requires information about the
classes of involutions and centralizers in the automorphism groups of the known
sporadic groups, and that information is summarized below in tabular form,
as it is of independent interest.

The main theorem is a step toward the classification of finite groups of
component type. To put the result in the proper setting we include the follow-
ing definitions and background material.

A group A is quasisimple if A is its own commutator group and, modulo
its center, A is simple. A component of a group is a subnormal quasisimple
subgroup. The core of a group is its largest normal subgroup of odd order.
A 2-componenΐ of a group is a subnormal subgroup A such that A is its own
commutator group and A is quasisimple modulo its core. G is of component
type if the centralizer in G of some involution contains a 2-component. This
is equivalent to requiring that the centralizer is not 2-constrained.

The following important conjecture of J. G. Thompson seems close to
being established:

B-conjecture: Let G be a finite core free group. Then 2-components
of centralizers of involutions are quasisimple.

A subgroup K of G is tightly embedded in G if K has even order while K
intersects its distinct conjugates in subgroups of odd order. A standard sub-
group of G is a quasisimple subgroup A of G such that K= CG(A) is tightly
embedded in G, NG(A)=NG(K)y and A commutes with none of its conjugates.
It is shown in [1] and [14] that:

Component Theorem. Let G be a finite group of component type
satisfying the B-conjecture and contained in the automorphism group of a
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simple group. Then, with known exceptions, G contains a standard subgroup.
Let JC consist of the simple Chevalley groups, of both ordinary and twisted

type, the alternating groups, and the 25 known sporadic groups listed below in
Table 1. JC contains all the finite simple groups known at the moment. In-
deed existence proofs for two of the groups, and uniquencess theorems for still
others, do not now exist, and in those cases we include in JC all simple groups
satisfying the defining properties of the (potential) group.

Theorem. Let G be a finite group with O(G)=1, A a standard subgroup of
G, and X=(AGy. Assume Z(A)(=JC and the 2-rank of the centralizer in G of A
is at least 2. Then the pair A,X is one of the following:

(1) A=X.
(2) A is an alternating group An and X is An+^
(3) A is L2(4) and X is the Mathieu group M12.
(4) A is L2(4) and X is the Hall-Janko group HJ.
(5) A is L3(4) and X is the sporadic Suzuki group Sz.
(6) A is a covering of L3(4) and X is Held's group He.
(7) A is Sz(8) and X is Rudavalίs' group Ru.
(8) A is G2(4) and X is of Conway Type.

A group X is of Conway Type if X is simple, X possesses a standard
subgroup A^G2(4), and there is a subgroup B of order 3 in A such that
E(CA(B))=L^SL3(4) and <LCCB)>/£ is isomorphic to Sz. Presumably a group
of Conway Type is isomorphic to Conway's largest group Cox.

The case A/Z(A)^L^(4) was done by Cheng Kai Nah [5] and the case
A/Z(A) a Bender group was done by Griess, Mason, and Seitz [19]. We ap-
peal to their work rather than duplicating the proof.

Certain information about the involutions in the automorphism group of
A is necessary to the proof. If A is a Chevalley group of odd characteristic
this information is minimal. The appropriate facts are established in Section
4. If A is a Chevalley group of even characteristic, detailed information is
required. This information is contained in [4], which is crucial to the proof.
Less detailed information is required if A is a sporadic group. We do however
determine the conjugacy classes of involutions in the automorphism group of
A and the general nature of the isomorphism type of the centralizer of a re-
presentative in each class. These facts are summarized in Table 1. Column
1 gives the simple group G. Column 2 gives the order of the outer automor-

phism group of G. Columns 3 and 4 give the number of classes of involutions

contained in G and in Aut (G)-G, respectively. Column 5 gives the general

isomorphism type of the centralizers. By convention the centralizers of the

classes in G are listed first. Gn\Gn^\ - denotes a group with normal series

n=G with HJHm.^Gm. Q*Dm denotes the central pro-
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S3IQ Z2 X 05 Z2 X Aζ

S4/E16 L3(2)IE8 F20/£16

L3(2)/£16

L3(2)/£>3 S5/E64

Z2XA5

A5IQD E4XA5 PGL2(7)

A5jQD L2(17)

^8/Z2 Mn

AnlZy,

S5IQ2*Zt Z2xAut(A6) S5IE16 S8

L3(2)/£)3 Z2/L3(4)/£'4 ^/Zs

^β"(2)/03 Z2jL3(4)xE4 Aut(HJ) Aut(M12)

S5/2n Sz(8)XE4

Z2/L3(4)/Z4 Λ

Spe(2)IZ2 Z2XM12

Sp6(2)/Q* A8IE16XD* Aut(A6)IE2W

^8+(2)/04 Aut(M12)IE2u Z2IG2(4)XE4

U6(2)IZ2 Z2/U4(2)/Z2XQ* 2-constrained 216 33

M(22)/Z2 Z2IU6(2)jE4 ^/C/^/^xQ4

Z2/M(22)/Z2 S3jΩQ(3)/Z3IQ* M(23) S3/U6(2)IE4

Z2/HSIZ2 A5 wreath Z2/Q4 510

^9/G4

Z2I
2E6(2)/Z2 Z2IF4(2) X E4Co2IDn O6

+(2)/£'216/£l

29
T? 1 7 f~^f\ \(~\12
•^2/^2 ^^l//^

duct of w copies of the quaternion group of order 8 and w copies of the dihedral

group of order 8, with identified centers. En is an elementary abelian group of

order n.
Most of the information listed in Table 1 is already known and much

appears in the literature. Some is collected in an unpublished table of N.
Burgoyne. Proofs and references to proofs of the facts in Table 1 appear

within. In many cases more detailed information is included.
In addition to the notation and terminology defined above we also use

Bender's notation F*(G) for the Generalized Fitting subgroup of G. F*(G)=

E(G)F(G), where E(G) is the join of the components of G and F(G) is the

Fitting subgroup of G. L(G) is the join of all 2-components of G. G^

denotes the smallest normal subgroup H of G such that G/H is solvable with
abelian Sylow 2-groups. Given a permutation representation of G on a set
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Ω, GΩ denotes the image of G under this representation.
A quasisimple group A satisfies hypothesis II if whenever a noncyclic

elementary abelian 2-group T acts faithfully on A, with T Sylow in a 2-nil-
potent tightly embedded subgroup of TA, then T<AC(A).

Ω£(2W) is the commutator group of the w-dimensional orthogonal group
over GF(2m) defined by a quadradic form of sign 8.

I(x) is the set of fixed points of a permutation x.
The concept of "admissibility" is defined in Section 2.

2. Preliminary results

In this section we collect a number of lemmas which will be used in the
proof of the main theorem.

(2.1) Let K be tightly embedded in G, R^Syl2(K) and Φ(R)=1. Assume
F*(G) is simple and K^G. Then 0(K)R is tightly embedded in G. Further
Cκ(r) is solvable for each re/2*.

Proof. As F*(G) is simple and K is not normal in G, Theorem 4 of [1]
implies either K is 2-constrained or Oz'(K)/O(K)^L2(2n). In the former case
O2't2(K)=O(K)R is tightly embedded in G. In the latter case RO(K) is C(r)-
invariant for each reΛ* and N(RO(K)) is transitive on Λ*, so RO(K) is tightly
embedded in G.

The following will be used as an induction tool in the proof of the main
theorem:

(2.2) Let K be a solvable tightly embedded subgroup of G and R<=Syl2(K).
Assume L is a quasisimple subgroup of G normal in N(K) and R^Syl2(C(L)).
Then either

(1) L is standard in G, or
(2) <LG>==LxL*, R<L8, and L is a Bender group.

Proof. Let H=C(L). L<N(K) so N(K)<N(L). As R^Syl2(H) and K
is tightly embedded in G, it follows that H is tightly embedded in G. Also
N(H) = H(N(H)Γ\N(R))<HN(K)<N(L)y so N(H) = N(L). Therefore, L is
either standard or there exists a conjugate A=L8 of L in H, and we may assume
the latter.

Let T<=SyIΛ(L). Then T<L<C(A), so H< C(T)<N(C(A))<N(A).
Hence A<H. Now as R is Sylow in H either ^4 < Γl>R(A)< N(K), or
R^Syl2(A) and NA(K) is strongly embedded in A In the former case A=
[A, AΠR]<K, impossible as K is solvable. Hence R<=Syl2(A), so that
A=O2'(H), and 1̂ is a Bender group. Moreover D=LxA satisfies the hypo-
thesis of Theorem 5 in [1], so that theorem implies that D<\G.



GROUPS WITH A STANDARD COMPONENT OF KNOWN TYPE 443

(2.3) Let K be a solvable tightly embedded subgroup of G. Then L(N(K))=
L(C(t)) for each involution t&K.

Proof. 2.1 and 2.7 of [1].

Let T be a noncyclic elementary abelian 2-group. A quasisimple group
A is T-admissible if T acts faithfully on A, T is Sylow in a 2-nilpotent tightly
embedded subgroup of TA, and

(2.4) Either | T\ =4 or Nτ(Ta)<C(T"} for each aϊΞA.

(2.5) O2(CΛ(*)M<C(Γ), each f e Γ*.

Recall XΛ is the smallest normal subgroup Y of X such that X\ Y is sol-
vable with abelian Sylow 2-grouρs. A is said to be admisible if A is Γ-admis-
sible for some noncyclic elementary 2-group T.

(2.6) Assume A is Γ-admissible, Z(A)<C(T), and for each ίe Γ*, F*(CA(t))/
Z(A) is a 2-group. Then T is a 7Y-set in AT.

Proof. T^Syl2(X), X a 2-nilρotent tightly embedded subgroup of AT.
Let y=O(J5:). It suffices to show [Γ, y] = l. Let W= Cγ(t). Then JF<
CA(O2(CA(t))9 so as F*(CA(t))/Z(A) is a 2-group, W<Z(A). Therefore y=

(2.7) Assume the hypothesis of 2.6 with ^4fΊ Γ=l. Then [CA(t\ T]=l for
each *<EΞ Γ*.

Proof. [CA(f ), Γ] < A Π Γ= 1 by 2.6.

3. Standard subgroups

Recall that a quasisimple group A is standard in G if K=CG(A) is tightly
embedded in G, NG(A)—NG(K), and ^4 commutes with none of its conjugates.
In this section we operate under the following hypothesis :

Hypothesis 3.1. A is standard in G and A satisfies hypothesis II. O(G)=
1 and m(CG(A))> 1. A is not normal in G.

Set K=CG(A\ N(A) = NG(A)/Ky and let R<=Syl2(K). By Theorem 3
in [2]:

(3.2) Φ(Λ)=1.

(3.3) Let g£ΞG-N(A) and T^Syl2(K8ΠN(A)). Assume ΓΦ1 and Λ is T-
invariant. Then

(1) Either R has order 4 or T e= Syl2(Ks) and [Γ, Λ] = 1 .
(2) If Γ e Sylz(K8) then Γ < ̂ ί̂
(3) There exists g^G-N(A) with Γe Syl2(Kg).
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(4) CΛ(T)«Γ.

Proof. [2].
Given 3.3 we may choose g^G — N(A) such that a Sylow 2-group T of

K8 Π N(Λ) is Sylow in Kg

y and T centralizes R. Define V to be the weak
closure of R in the centralizer of RGΓ[CG(RT). This notation is maintained
thorughout this section.

(3.4) <AGy=F*(G) is simple.

Proof in [3].

(3.5) (1) V is an elementary abelian 2-group .
(2) V=

Proof. (1) is immediate from 3.2 and the definition of V. (2) follows
from 3.3.3.

(3.6) Assume

(*) For each Rx <Vy NA*(V)ICA*(V) has a characteristic cyclic subgroup
regular on(VΓ\A*)*.
Then either
(1) [NA(V)9 V]=Ty [NAs(V)y V]=Ry and RGf] V={R, T}.
(2) [NA(V)y V]=[NAg(V)y V]=VQy

v~v0= u ρ*

and N( VγRβ n V) is 2-transitive.

Proof. Let X=<£>2(N A(V)y O2(NAe(V)y. Then X in tis action on V satis-
fies the hypothesis of lemma 3.1 in [1], so that lemma implies V0=[NA(V), V]
is ^"-invariant, and either X acts on R or V — V0 is the disjoint union of q= \ V0 \
conjugates of /?* under Xy with NA(V) transitive on Rx— {R}. Notice that in
this second case V0 is the only nontrivial ^-invariant subspace of V.

Suppose R is -XT-invariant. Then R and VQ are -SΓ-invariant subspaces of
Vy so applying the remarks above to Γ, T must also be .XT-invariant. As V0

is the unique NA( F)-invariant subspace disjoint from R, T—VQ. Similarly R=
[F, A*Γ\N(V)]. Moreover in this case R and T uniquely determine each other
in V.

Suppose R is not ^-invariant and Ry=Q(=(RGΓ\ V)-RX. As V-V0 is
the disjoint union of conjugates of J?* under X, Q<V0. Hence applying the
argument above to the pair Ry Q in place of the pair R9 T, we conclude Q= V0

and R=[V, AXΠN(V)]. Similarly T=[V, AxΓίN(V)]y a contradiction.
It follows that either (1) or (2) holds, and the proof is complete.

(3.7) Assume W<A such that
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(a) L=E(CA(W)) is quasisimple.
(b) ReSyln(C(WL)nN(R)).
Then either
(1) L is standard in C(W\ or
(2) <LCCWΓ)>=LxLc, R<LC, and L^L2(\R\).

Proof. By 2.1, 3.2, and 3.4, O(K)R is tightly embedded in C(W). (b)
implies 72 is Sylow in the centralizer of WL. Hence 2.2 yields the desired
result.

(3.8) Assume the hypothesis of 3.7 with T<RL9 Tf}L=l, R not normal in
C(WT), and if L^L2(\R\) assume RGΠL is empty. Then L is standard and
nonnormal in C(W).

Proof. Assume L is not standard in C( W). Then by 3.7, L^L2( \ R \ ) and
R is contained in a conjugate L° of L. But then RC~1^RGΓ\L, contrary to
hypothesis.

So L is standard. Assume L<C(W). Then H=C(LW)<C(W). T<RL
and TΓiL=l, soRL=TL with #=O2(TLn#)<C(7W), contrary to hypothesis.

Recall that for a group λ", -X"α is the smallest normal subgroup Y of ^C
such that X/Y is solvable with abelian Sylow 2-groups.

(3.9) Let £e Γ*. Assume the commutator group of Out(^4) is of odd order.
Then

(1)
(2)
(3) A is T-admissible.

Proof. As the kernel of the homomorphism of A to A is the center of AT,
O2(CA(ϊ))=O2(CA(t))/Z(A). Hence (1) implies (2). Also (1) and 3.2 and 3.3
imply (3). As the commutator group of Out (^4) is of odd order, O\C A(t))C A(t)'
<O2(N(A8))=D and D/Ag has abelian Sylow 2-subgroups. By 2.1, KgΠC(t)
is solvable, so (1) follows.

(3.10) Assume A ̂  L2(4) with RG Γ) A empty. Then either

(1)
(2) (AGy^Ml2 and there exists an involution t fused into R inducing an outer
automorphism on A and acting nontrivially on R.

Proof. [3].

(3.11) Assume A is a Bender group. Then one of the following holds:

(1) A<G.
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(2) A^L2(4) and <^G>-M12, HJ or A..
(3) A^Sz(8) and

Proof. [19].

4. Chevalley groups of odd characteristic

Hypothesis 4.1. G=G(q) is a Chevalley group with q=pe odd and GΦL2(#)
or 2G2(q). Let Δ be a root system, U^Sylp(G), H a ̂ -complement in NG(U),
and for $eΔ let £/, be the corresponding root subgroup of G and Vs=Ωίl(Us).
Let r be the root of highest height in Δ, V== Vr9 J=<V, F_r>, and <f>=Z (J).

(4.2) Assume 4.1. Then

(1) J^SL2(

(2) NG(J)=XJH where [^,y] = l and ̂  is the Levi factor of the parabolic
subgroup P=NG(V).

(3) If G is not isomorphic to Ω*n(q) then NG(J)=CG(t), so that/ is tightly em-
bedded in G.

(4) If <?^Ωi(?)ΦΛί(?) then X = XJW, for some OJEE^, and CG(ί) =

(5) If G^Ωβίί') there exists a 4-group HP^ in W such that J(/ is the central
product of four conjugates of J under Wλ and CG(t)=XJHW^.
(6) The isomorphism class of X and the weak closure of V in the centralizer
of t are given in Table 4.2.

Proof. Let G have rank /. Statement (1) is well known. Write

σ=u

Table 4.2

G(q)

£„(<?)
PSP,(q)
UM
«(ϊ)

G2(q)
3D4(q)

Ft(q)
2E*(q)

E6(q)

Eι(q)

Es(q)

X

SLΛ-M)

SP.-M)

SU,.2(q)

SL2(q)SOl-t(q)

SL2(q)

SL2(<?)

SPe(q)

SUe(q)

SLs(q)IZ(.g_ιΛ )

SOSf.9)

E ,(q)

<Fenc(ί)>
XJ
XJ
XJ
XJ,

unless «=7 or n=8, e= —1, where JJW.

j
j

XJ
XJ
XJ
XJ
XJ



GROUPS WITH A STANDARD COMPONENT OF KNOWN TYPE 447

the Bruhat decomposition of G. The representation of elements is unique and

NG(J) < CG(t)= CvWN^ήCvW^C^t), CW(f )>•
The structure of P is known (eg. [7], [13]). P=QXH, where Q=OP(P)

and X is the Levi factor of P. In fact

for some i, except for G=Al(q)ί where

Then -X=<U±βy: jφt> or < U ± β y : j Φ l , /-!> if G=A,(q). If w0 is the word
of greatest length in the generators ̂ , •••,$/ of J/F, then/MΌ=y, (Δ+)wo=Δ"", and

Now ρ is special with 0'= V and hence (Qw»)'= F*Ό= V.r. Also OP'(C(V))
=QX,soX<C(J)<C(t).

Next, ί inverts Q/V. This can be checked directly using the structure
of P. An easy proof is obtained in most cases using the results of sections
3 and 4 of [7] and sections 9 through 11 of [13] to note that X acts irreducibly
on ρ/F.

It follows that Cu(t) = (UnX)V,C(t)nUwo = (UwonX)V_r and <Cv(f),
Cuw,(t)y=<jCUs(i): stΞΔy=XJ. Also CN(t) normalizes <CvJ(t): s <EEΔ>=.X/.

If X contains no component in Jw then CN(ΐ)<C(t)Γ(N(J)<J(N(V)n

C(t))=JXH. So in this case Cc(ί)=<C^(ί), CN(t)y=JXH=N(J). Moreover
this occurs unless G^Ω%). Here we use the fact that PSp4(q)y U4(q)y and
L4(q) are isomorphic to Ω5(#), Ω^(ή') and ΩJ (q)y respectively.

In the remaining cases X has the form X=X1J
W, where -XΊ^Ωn_4(?).

Checking the root system we find w may be chosen to interchange / and Jw and
to normalize Xl. Morever with the exception of Ωβ(<?), X^ contains no compo-
nent in Jw. Hence (4) holds. For G=Ωί(j), X^=]w^]ww^ and we set W,=
ζw, «?!> to obtain (5). (6) is easy to check.

(4.3) Assume 4.1 and let G be the Universal Chevalley group of type G(q), and
/=<Fr, V.ry be defined in G in the same way / and Fare defined in G. Then
/ is isomorphic to SL2(q) and is tightly embedded in G.

Proof. Let K be the preimage in G of / under the homomorphism of G
onto G. Then K=O*'(K)χZ(G) and J=O*'(K)^J^SL2(q). Let <*>=Z(/).
It remains to show A/g(/) = Q;̂ ). It suffices to establish this fact in some

nontrivial homomorphic image G of G. For G^Ω£(#), set G = G and use 4.2.3.
For G^Ωl(q) set G=Spinε(w, q\ and check the Clifford algebra (eg. [24], 23.4)
to obtain the result.

(4.4) Assume 4.1. Let St=Sylt(G) and Σ={/*: J* Γ\ S <= SylΛ(J*)} . Then
" is the central product of the members of Σ
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Proof. It suffices to prove the corresponding result in the Universal
Chevalley group G of type G(q). By 4.3, / is tightly embedded in G and has
quaternion Sylow 2-grouρs. Let Δ= {K Π S: K e2} Then the members of
Δ are tightly embedded in S, so by 2.5 in [2], distinct members of Δ commute.
Thus for distinct members / and J8 in 2, the involution z8 in Z(J8) centralizes
a Sylow 2-group of/. Hence J <>C(z8)<N(J8). By symmetry J8 acts on /,

(4.5) Assume 4.1. Then G=<Op(NG(V),jy.

Proof. Let Q=OP(N(V)) and M=<£, />. As N(Q)=N(V)=QxH
with XH<N(J) we have N(Q)<N(M). Thus N(M > <N(Q)~jy=G, so G=M.

Hypothesis 4.6. T is a noncyclic elementary abelian 2-group acting on a
group G and Sylow in a 2-nilpotent tightly embedded subgroup K of G.

(4.7) Assume 4.6 with SL2(q)^J<G, q odd, and CΓ(/)Φ1. Then [J, T]
= 1.

Proof. As J<G and CT(/)Φ 1, J<N(K). Suppose t<=T-C(J). Then
[/, £]<-SΓn/, so [/, ί] is a 2-nilpotent normal subgroup of J. Hence either
[/,*]<£(/) or 4=3 and [/,ί]=02(/). In the first case/- O\J)<C(t). The
second case is impossible rs O2(J) is quaternion while K has abelian Sylow
2-groups.

(4.8) Let U be a 4-grouρ acting on a central product L of groups L^SL2(q)9

q odd, which are permuted by U. Assume U moves Llf Then L^Γi^L).

Proof. If #>3 this is a corollary to 2.8 in [1]. Morever the same proof
works if }=3.

Theorem 4.9. Assume G is quasisίmple with Z(G) a 2-group and G—
G/Z(G)^G(ί), or G^L2(3) or SL2(3). Assume T is a 2-group acting faithfully
on G and GT satisfies hypothesis 4.6 Then
(1) G^L2(?), 3<?<9
(2) T<GC(G)
(3) Ifq>5thenT<G.

Let G be a minimal counter example to Theorem 4.9. We first show
(4.10) G^L2(?)or2G2(?).

Proof. If G^2G2(q) then |Out(G): G| is odd and Cδ(*) is maximal in G
with <#>=Z(C(#)) for each involution x in G. Further Z(G)=1. So G=
Γ1>T(G)^JV(^), a contradiction.

So assume G^L2(q). By 3.5 and 3.6 in [1], Γ<GC(G), T is a 4-group,
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and q<9. Moreover if G^L2(q), q>5, then [CG(i)> Γ]Φ1, so T<G. Hence
we may take G^SL2(q), q<9. Now T*={*t : l<i<3} and ti=gici, g{ and c{

elements of order 4 in G and C(G) respectively with gϊ =c*=z generating Z(G).

Then g&=t*=tιt2=(gιg2) (*A)> so Sιg2=g31' Henc^ Q=<gι, g2>
 is quaternion.

Now *==[*ι, £2]e[.ίΓ, C(ί2)]< ,̂ impossible as Γ acts faithfully on G.

(4.11) G^L2(9) or *G2(q).

Proof. Assume G^L2(q) or 2G2(#). Then G satisfies 4.1. Take S<Ξ Syl2(G)
to be Γ-invariant with /ΓΊSeSyl2(/). Let J1 be the preimage in G of /and
set y^O'CΛ). Then Jl=Z(G)J. We show [T,J}=1. Then T centralizes
F, so Q=θχJV(tO=ΓliHδ)=ΓliΓ(ρ)C(G^/C(G)^JV(X)C(σ)/C(G), as Q is of
odd order. Hence by 4.5, G<N(K)C(G), so as G is quasisimple and KC(G) is
solvable, [G, T]<[KC(G), G]=l, a contradiction.

So it remains to show [T,J]=l. If Γ acts on/ this follows from 4.7 and
4.10. So assume T does not act on J. We show <JT> is the central product
of the groups in/Γ and hence by 4.8,/<Γ1,Γ(G)<ΛΓ(,K). Thus [/, T]<K.
But as Td£N(J), [J, T] is not 2-nilpotent, a contradiction.

Suppose G^G2(q). Then T acts on /G and we appeal to 4.4. So assume
G^G2(q). Then G has one class of involutions, so we may assume T centralizes
the involution # in/. Now O2(C^(^)) is the central product of /and L^SL2(q),
so again the result follows. This completes the proof of 4.11, and hence also of
Theorem 4.9.

Theorem 4.12. Assume A is standard and non-normal in G with O(G)=1,
m(C(A))> 1, and A/Z(A)^G(q), q odd. Then either
(1) A^L2(5) and <AGy^HJ, M12 or A9, or
(2) A^

Proof. If A/Z(A) is isomorphic to L2(5)^A5 or to L2(9)^AQ9 Then we
appeal to the main theorem of [3] to obtain (1) and (2). So assume otherwise.

By 4.9, A satisfies hypothesis II. Hence we may adopt the notation of
section 3. A second application of 4.9 implies Z(A) is of odd order, A/Z(A)^

L2(7), and T<A. Now there euists an involution a^NA(T)-C(T). As [a, T]

Φl, a induces an outer automorphism on A*. However [<z, Jf?]=l, and by 4.9,
R<A8

y whereas an outer automorphism of L2(7) centralizes no 4-group in L2(7).
The proof is complete.

5. A fusion lemma

In this section we assume the following hypothesis:

Hypothesis 5.1. V=R@U@W is a finite dimensional vector space over
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GF(2) with m= \R\>2 and q=\U\ = \W\. X is a group of automorphisms of
V zndAxB<Nx(R) with A and B cyclic groups such that [A, U]=Q=[B, W],
A is regular on IF*, and B is regular on U*9 and [AB,jR]=0. Define

Σ3=uH r

> Ω = ΛX, r=
B*

Assume :
(1) For T e Ω- {#} , Λ ΓΊ Γ=0 and the projection P(T) of Γ on U+ W is con-
tained in f/*, IF*, or Γ.
(2) If Γ<Λ+t/then either T=£7 and (R+ T) Π Ω = {R, T} or Γnt/=0.
The same holds with U replaced by W.
(3) There exists Γe Ω- {#} with P(ΊJ c Γ.

(5.2) Either

(1) 2=Γ-(C7+ίF) and |Ω|=?

2, or
(2) j=τw=4 and f/ and W are in Ω.

The proof involves a series of reductions. Assume 5.2 to be false.

(5.3) Ifge(AB)*, TeΩ with P(Γ)*^Γ and f and ί* are in Γ*, then Γ*cΓ.

Proof. tg<=ΞTΠTg so by 5.1.1, T=T*. Then r=
is contained in R+U or Λ+IF, say the former, so if CΓ(^)ΦO then P(T)*<£Γ.
Thus T=[T,g]<[V,AB]=U+W. So Γ*=

(5.4) If 71 Π (17+ PF)ΦO then Γ< C/+PF.

Proof. By (2) we may take P(Γ)*^Γ. Let f e Γ*Π (U+W). Then
Assume ίe Γ*— Γ. Then s=r+c, r<=R*y c<=Γ. r+c+t=s+t<= Γ* and hence
c+t^: Γ by 5.1.1. (AB)Γ is transitive so there exists g^(AB)* with c+t=c*.
Then ί*=ί+ί, so by 5.3, T < U + W.

(5.5) Let ΓeΩ- {R} and Λ=

Then one of the following holds :
(1) T=Uor T=
(2) T*^(R+U
(3) Γ*CΓ and k=(q-l)2l(m-l).
(4) P(T)*cr, Γn(C/+WO-0, and k=(q-l)2.

Proof. This follows easily from 5.1.1, 5.1.2, and 5.3.

Let a and β be the number of AB orbits of type 5.5.1 and 5.5.2, respecti-
vely. By 5. 1.2, a+β<2.
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(5.6) There exists TtΞΩ-{R} with T^U+W.

Proof. If Ω-{Λ}cι[7+Fthen IΣΠ(Λ+T)|=2(ifi-l)<IΣn(Γ+S)l
for all distinct T and S in Ω — {R}, a contradiction.

(5.7) IfαΦθthenα=/8=l.

Proof. Assume C7eΩ but /3=0. Then by 5.4 and 5.6 there exists ΓeΩ

with TΓ\(U+W)=Q and P(Γ)*QΓ. Hence ί7, and possibly W, are the only
members S of Ω such that 1 2 Π (5+ Λ) | — 2(# — 1). Also R+ U= CV(Λ) and W=

[V, A], so W is the unique C(J?)Π C(t/)-invariant complement to R+U and
hence R and PF play the same role with respect to U as U and W play to Λ.

Thus {R, U} or {72, [/, W} is a set of imprimitivity for the action of X on Ω.
Let Δ be the set of imprimitivity containing Γ, and S a second member of Δ.

Σn(r+s)=r*us* so τ+s=(τ+sn(u+w))u((τ+s)nR+u)(j(τ+s)
n(R+W)(jT)jS. Hence m=q=4. |Δ | divides \AB\=9, so |Δ|=3 and U
and IF are in Ω. As this is the second case of 5.2, we have a contradiction.

(5.8)

Proof. Assume β=0. By 5.7, α=0. By 5.6, there exists ΓeΩ with

Suppose Γc}ΓJ. Then (#+S)*QΣ for all SeΩ— {#}, whereas there

exists P and Q in Ω Π (U+ W) with (P+ρ)*ΦΣ So by 5.5, Ω= {#} U TAB.
In particular ^Γ is 2-transtitve on Ω and by a result of Hering, Kantor, and
Seitz, q— l=r is a prime and ^ΓΩ is contained in the automorphism group of

L2(r2). Further {A, B} is invariant under NX(R), so (r+l)/2<2 and hence
r= 3 and #=4. Let # be an element of order 4 in NX(R)Ω. Then Λ;2=3; cen-

tralizes the 4-group R and fixes exactly two points of Ω. Also y centralizes
vectors u^ U* and w&W*, and then the coset R+u-\-w. But R-\-u+w inter-
sects three members of Ω, which must be fixed by yy a contradiction.

(5.9) /9=2, Έ=V-(U+W), and |Ω| =q2.

Proof. By 5.8, β>Q, so we may assume Δ=(Λ+?7)nΩ is of order q.

Let ΛφjR^eΔ. Now if Z is an ^4-invariant subspace of Fthen either W <Z
or Z<CV(A). Further A centralizes Rg so A acts nontrivially on U8 or W8.

Hence TF=C7* or W=Wg. Now Λ+t7=(JR+PF)* or (Λ+C7)^, respectively,

and as U=(R+U)-J1, U=W8 or 17=17*. Thus {C7, ΪFr} = {C/», W8}.
Suppose ΪP= 17* y-<JVx(Λ), ̂ > acts on {ί7, PF} . Further for R8* ΓGΞ

(Λ^+^ΠΩ, P(Γ)*^Γ and T<=RY. Finally jRn (C/+W^)-0, so RyΓί(U+W)

=0 for all 3;̂  Y. Therefore RY= {R} U ((R+ W)) Π Ω) U Δ U Γ^B is of order q2

by 5.5. Next Ω=RY or ΛyuSA B, 5feΩn(t/+PF). In the first case 5.2.1
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holds. In the second by 5.5, \a\=q2+(q-l)l(m-l)y so \RY\ > \Ω-RY\ .
But as N(R)< F, Rγ is a set of imprimitivity for X on Ω, a contradiction.

Hence U— Ug, so Δ* is a system of imprimitivity for the action of X on Ω.
In particular q divides the order n of Ω.

By 5.5, n=l+a+β(q— 1)+7(?— I)2 where 7 is 1, (m— I)"1, or (m—\yιm,
and α+/3<2. w = 0 m o d # and m>2, so either /3=2, n=q2, and ^ΪH^—

or α=0, £=1, n= 8 , and = ^ - # + W U Λ « , or «=£=!, f i = 2 ,

In the last case N(R+U)=N(U+W), whereas N(U+W) moves W, while
we showed above that N(R+ U) acts on W. In the second case R+ W=(V— 2>
and then ^=1?+^ Π Ω is -XT-invariant, a contradiction.

This completes the proof of 5.2.

6. L3(2")

Theorem 6.1. Let A be standard and nonnormal in G with O(G)—l,
A/Z(A)^L3(q)y q even, and m(CG(A))> 1 . Then either

(1) Z(A)=landGs*Sz.
(2) Z(A) is a 4-group and G^He.

Proof. We prove q=4 and appeal to the theorem of Cheng Kai Nah [5].
By 20.1 in [4], A satisfies hypothesis II. Thus we may choose notation as in
section 3 . Set Z= VΓ\A.

Assume q=2. By 4.9, A^L3(2) and T=Z is a 4-group. Notice NA(T)
^S4. Let a be an involution in NA(T) with [Γ, α]Φl. Then a induces an
outer automorphism on Ag, so <α> Ag^PGL2(7). But this is impossible as a
centralizes the 4-group R<Ag.

Therefore we may take q>4. Hence Z(A) has odd order, (eg. [9]). Let
ίeΓ* and Z0=O2(Z(CA(t))). There exists a nontrivial cyclic subgroup W of
order (?-l)/(?-_l, 3) in CA(t). Let PeSyl2(CΛ(t)). Then [P, W] = P. As
the outer automorphism group of A is abelian, P=[P, W]<(AK)g and then

ZQ=Φ(P)<Ag. As Z( ί̂) has odd order, TnA=l. Hence 2.7 implies CΛ(ί)=
CA(T), so Z=Z0. That is Z is a root subgroup of A

Now TP<=Syl2((AKf and PF centralizes the root group Z of ̂ , so PF
induces a group of inner automorphisms on A8 with £(CAί(Pί/))^£(C>1(PF))=L
^L2(q). In particular Λ is not normal in C(WT). Also WL is not centralized
by any involutory automorphism of A, so by 3.8, L is a nonnormal standard

subgroup of C(W). As #>4, 3.11 yields a contradiction.

7. Classical groups of even characteristic

In this section A is quasisimple with A/Z(A) isomorphic to Ln(q), Un(q),
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sPn(q), or Ω*(?), rc>4, and q even. Exclude L,(2)^A8 and
If A/Z(A) is orthogonal take n>S.

Theorem 7.1. Assume A is standard in G with m(C(A)) > 1 . Then A<G.

The proof involves a series of reductions. Let G be a counter example.
By 20.1 in [4], A satisfies hypothesis II. Thus we may choose notation so
that hypothesis 3.1 is satisfied. By 3.3 we may choose g^G—N(A) so that
T <Ξ Syl2(Kg). That is the notation of section 3 holds. The results in [4] show
F*(CA(a)) is a 2-group for each 2-element a<=A — Z(A), so by 2.8, T is a 7Y-set
in AT. By 3.9, A is Γ-admissible. In particular hypothesis 22.1 of [4] is
satisfied and we may appeal to 22.2 of [4].

Let P=RT(~}A, ίeΓ*, and {p}=PΓitR. p is one of a canonical set of
representatives for the classes of involutions in A denoted by jt) al3 bl9 or c;,
where / is a parameter associated withp called its rank. Applying 22.2 in [4]
we find:

(7.2) Z(A) is of odd order, P* is fused in A and either

(I) P<J=O2(CA(p) Π C(pA Π C(p))), \ T \ <q and one of the following holds:
(1) J=a(p) and Aut^(/) is cyclic of order q—l and regular on/*.
(2) A=Spn(q), b—b^ />!, J=a(a)a(b) where a and b are of type at^ and bt

respectively, and AutA(J)^Zq-lχZg_1 is regular on/— (a(d) \Ja(b)).
(3) A=Spn(q), p—c^ J=a(a)a(b) where a and b are type al and bί9 respectively,
and AutA(J) is as in (2).

(4) A=Ωΐι(q), p=cn J=β(p) and Aut^(/) is cyclic of order q— 1 and regular
on/*.

or,
(II) T=P has order 4 and either
(5) AIZ(A)=Ln(2), *=/„ and T<SΦ(S) where S^Syl2(CA(t)).
(6) A^Spn(2) and t= c2.

a(p) and β(b) are certain normal subgroups of CA(p) isomorphic to the
additive group of GF(q). They are discussed in Section 11 of [4].

(7.3) q>2.

Proof. Assume q=2. Then 7.2.5 or 7.2.6 holds. In particular T is a 4-
group contained in A and there is a conjugate a of t under A with [α, T]=<(£>.

As [a, ΓJΦ1, a induces an outer automorphism on A*. But if A^Spn(2)
then as #>4, the outer automorphism group of A is of odd order. Hence
AIZ(A)^Ln(2) and the outer automorphism group of A has order 2. Therefore
CA(T)<(KA)g, and then by 7.2.5, Γ<Φ(C^(Γ))<^, a contradiction.

The primary involutions of A are the transvections (type^) of Ln(q) or
Un(q), the transvections (type ox) of Spn(q), or the involutions of type a2 in
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(7.4) T Γ\A=l. Further we may choose T so that p is a primary involution
of A.

Proof. If 7.2.1 or 7.2.4 holds then by 3.6 either TΓlA=l or T=P=J.

Suppose 7.2.2 or 7.2.3 holds. Recall V is the weak closure of R in the cen-

tralizer of RGΓiRT. Then V= RJ. Moreover 7.2 and 3.6 imply that hypo-

thesis 5.1 is satisfied and hence 5.2 implies either TΓ}A=l and there is a

conjugate T^ of T under N(V) such that 7\ Π A=l and Pl=RT1 Π A<a(p^ for
some primary invoolution p1 in /, or a(p^)^RG for some primary involution/)!

in/.
Among all G-conjugates T of R in C(R) choose T so that T=P if possible

and, subject to this restriction, so that the rank / of p is minimal, and if A is

orthogonal, choose p to be primary if possible.

Suppose p is not primary. Then by remarks in the first paragraph, 7.2.2

and 7.2.3 do not hold. Next by 11.3 and 11.6 in [4] there is a conjugate Pa

of P such that \JJaΓ\JA\=q— 1 and JJa=a1a2 where the groups ca are a or
β groups of involutions of smaller rank, or if A is orthogonal and p is of type £2,
the cίi are primary.

Assume T=J. Then | TTan GA\ = q-1 >3, so by 3.6, | TTaΓ(TG\=q.
Hence an involution of samller rank, or a primary involution of ^4, is contained

in a conjugate of Γ, contradicting the choice of T. Thus by choice of

Γ, R* Π A=1 for all #<EΞ G. Hence by 3.6, TT" contains T\ (\ T\ -1) involu-

tions in the set X] of elements fused into Γ* under G.

Now the elements in P are of the form a(b)=a1(bu1)a2(bu2)9 for fixed
ui^F*=GF(qY, with b ranging over some additive subgroup B of F. Further

we may pick a so that a(b)a=a1(bu1)a2(bcu2)ί for some fixed c^Fy with a(d)

and a(dc) distinct elements of P* for some d^θ. That is a acts on a2 and

centralizes a±. Thus PPa contains the \T\— 1 elements α2(%+iχ), b^θ*9

and the element a,(d(c+ iχ). So as | TT* ΠΣI = I 2 11(| Γ| — 1), some element

of Σ projects on one of these elements, again contradicting the choice of T.

Therefore p is primary. Hence if T=J, then 11.7 in [4] implies that

T< CA(Tγ<A8, a contraciction. This completes the proof of 7.4.

From now on choose T so that p is a primary involution. By 11.8 and

11.9 in [4] we may choose W<CA(T] with W^L2(q() and a Sylow 2-grouρ of

W conjugate under A to /.

Now A/Z(A)s*XJ(q), X=L, C7, Sp, or Ω. If X=L, U or Sp then by 11.8

in [4], L=E(CA(W)) is isomorphic, modulo its center, to Xn_2(q). If A^L^q)

or U4(q) set Y=W. If As*L4(q) or U4(q) let ^=0(^(1*0). Then Y, is cyclic

of order q— 1 or q-\-l, respectively. In this case set Y=Y1W. Then L=

E(CA(Y)) and by 11.8, YL is not centralized by an involutory automorphism

of A.
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Next suppose As*(£(q), n>8. Then E(CA(W)) = W2 X W0, where W2^
L2(q) and W0s*f%_4(q), by 11.9 in [4]. In this case set Y=WW2 and L=WQ,
unless n=8. If n=8 let Y=WW0 and L=W2. By 11.9 in [4], A admits no
involutory automorphism centralizing YL.

In any case it is possible to choose Y so that J<L. In particular T cen-
tralizes Y.

(7.5) L is standard but not normal in CG(Y).

Proof. As A admits no involutory automorphism centralizing YL, R e
SyI2(C(YL)ΠN(R)). Next J^C^Γ)", so ^<CV(#)~. By symmetry, X=
CAg(Rγ. Hence the isomorphism class of CAg(p)°° is determined and by 11.10
and 11.11 in [4] this implies there is an automorphism γ of Ag such that
X*>=X.

Let w be an involution in W. Notice W<X. Then w is a primary
involution of A in JΪ", so by 11.14 and 11.15, w8'1 is a primary involution of
A*, and a(w*f)=a(ιo)*'. Now by 11.8 and 11.9 in [4], C^(^)^CA(1^). In
particular R is not normalized by AgΓ\ C(W). Hence if Y=W then 3.8 com-
pletes the proof.

So assume Y ^W. If A^L4(q) or U^q) then yx centralizes W and a(p),
so YΊ induces a group of automorphisms on A8 centralizing A*Γ\C(W). Thus
again R is not normalized by A*ΓiC(Y). So assume ^4^Ω^(<?). If n>8 then
we have symmetry between W and W2, so the embedding of W2 in A8 Γ\ C(W) is
determined up to an automorphism and again we find R is not normalized by
the centralizer of Y=WW2 in A8. Finally if n=8 one can again check that the
embedding of CY(W) in A8Γ\C(W) is determined up to an automorphism so
that R is not normal in AgΠ C(Y). The proof is complete,

(7.6) Let £ = <jRCCF)>. Then ? = 4, ^^L4(4), i74(4), 5 4̂(4), or Ω|(4), and

Proof. By 7.5, L is standard in B and LΦ£. Therefore by 3.10, 3.11,
6.1, and induction on the order of G, L^L2(4) and B^HJ or Aut(Ml2), or L^

Suppose L^L2(4). Then ^L4(4), C/4(4), 5>4(4), or β|(4), so we may
assume B^Aut(Ml2). Now by 3.10 there is a conjugate b of £ under £ inducing
an outer automorphism on L with [7?, δ]Φ.l. As [R, δ]Φl, ό induces an outer
automor automorphism on A. Then [F, i] — 1 and L<ό>^55. But ^4 does not
admit such an automorphism.

So assume L^L3(4). Then A^L5(4). So CA(Y)^GLΛ(4). This is im-
possible since Sz does not admit an automorphism of order 3 inducing an outer
automorphism on L.

If24^L4(4)orί/4(4)>letZ)=y ι. If A^Ω\(4), let D=W0. ΎhenB<C(Y)
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<C(D). Moreover by symmetry between DL and DW=Y,

Therefore

(7.7) B is contained in but not normal in C(D).

(7.8) A

Proof. Assume A is not Sp4(4). Let S<=Syl2(W) and X=C(D). Claim

B<CX(U)=C, for all 1 Φ U<S. Set C=CX(U)IU. Assume first that U=S.

As 5^#/, R=O2(K) so O2(K)S=RS=RhS=O2(Kh)S for R*<RS. Therefore
jf? is tightly embedded in C, so L is standard in C. As J5<C, 3.10 implies jB=

<Γ^>, so that B=<Lcy< C. Next assume £7 has order 2. Suppose c<Ξ C, r <Ξ Λ*
and rc^RU—R. As NB(R)<C(U) is transitive on Λ* we may take rcerC7, so

that £26ΞC(r)Γ! C(rc)<N(R)Γ\N(Rc). Therefore £ acts on RRC=RS and then
S=[Λ, c]. So c£ΞN(rU) Π N(S)<N(rU) Π A^(5) and hence as H7 Π B= {r} we
have a contradiction. It follows that R is tightly embedded in C, and as above,
B<C.

Now E(CC(B))=E(CC(RL))= 1, so B=E(C). As this holds for each 1 Φ C7
<S, B is standard in C. Now 7.7 and 17.1 (which will be proved indepen-
dently) yield the result.

(7.9) A^Spώ).

Proof. Assume A^Sp4(q). By symmetry between L and W, (Rc<iL:>y =

E^HJ. Let X be a subgroup of order 5 in L. Then CB(X)=XχH where

R<H^L2(4) (eg. p. 429 in [20]). Also Cβ(̂ Γ) Π £< CB(X) Π C(L)=CB(L)^^4,
so CB(X) Π J? is not normal in CB(X) and hence £ is not normal in CG(X). But
C(^WΓ) Π N(R)=KX. so by 3.7 W is standard in CPQ. Therefore as W<E <
C(X), 3.10 implies E=(Wc^y<C(X\ a contradiction.

This completes the proof of Theorem 7.1.

8. Exceptional groups of characteristic 2

In this section we assume that A is a quasisimple group with A/Z(A) an
exceptional Chevalley group of characteristic 2, or the Tits group 2ί'4(2)/. We
exclude G2(2), as its commutator group £/3(3) was handled in section 4. We
prove

Theorem 8.1. Assume A is standard in G with O(G)=l and m(C(A))> 1.
Then either
(1) A<G, or
(2) <^4G> is of Conway type.

By [4], A satisfies hypothesis II, so we may choose notation as in section
3. Let £e: T*. We begin a series of reductions.
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Recall the definition of X<Λ given in section 1.

(8.2) (
Proof. Out(Ά)' has odd order so we may appeal to 3.9.

(8.3) Z(A) has odd order.

Proof. Assume not. By [9], A^ G2(4), F4(2), or 2E6(2).

Assume A^G2(4). Then A is the covering group of G2(4) and

is of order 2. By section 18 of [4], A has 2 classes of involutions represented

by root involutions a and b of long and short roots, respectively. By [16], a is
an involution while b is of order 4. Hence by 3.5, ?Φ6, so we may tkae t=ά.
By 18.4 in [4], CA(a)=LU=CA(a)^ where U=O2(CA(ά)) and L^L2(4) contains
a conjugate of b. As b has order 4, L^*SL2(5), so #eL. By 8.2, CA(α)=

C^α)03^^. Then z&A* and CΛ(β)=^*n C(*). But one checks that a has
240 square roots in t7, while there are more than 240 conjugates of b in U squa-
ring to z, a contradiction.

So J[^F4(2) or 2£6(2). We take t to be one of the involutions in 13.1 or
14.1 of [4]. Now Z(A) is the kernel of the homomorphism of A on to A, so

02(CA(7))=02(CA(t))Z(A)/Z(A). Thus by 8.2 O\C^(t)}a centralizes T. How-
ever if fφ E7β(l)C7p(l) or Z7r(l)Z/,(l) in [4], then <?>-Cz(O

2(C^(?))Λ). Further
if ?= Ur(\)Us(\) then C^(O2(C^(?))β)-:<?, £> where ΰ is a root involution. We

conclude t=UΛ(l)Uβ(l) and T* is fused under A.

Then 02(C3(?))=02,3(C^(?)) and Z(Cz(?))-Z(02(C^(/))=<?^>. Hence

TnZ(Ca(f ))=<*>, so by 3.9, ΓΠ-4Φ1, and we may choose t<=TΓlA. By 2.8,
T is a 77-set in A Γ, so T Π A is a Γ/-set in A. Let je T— <*> and set JT=
O2>3(CΛ(ί)). We have shown ?$Z(-X), so as ίxcΓ ΠA Γ Π^4 has order at

least 4. J f T f ] A has order 4 then as CA(t) acts on Γ (Ί ^4, O2(CΛ(ί))^
 c>ι(Γ Π A),

so that f Π A<Z(CZ(?))==<?>. Consequently | ϊ1 Π A \ >4.
By [16], I Z(A) \ <4, so it suffices to show T Π A<Z(Ag), that is Γ Γ\A<A8.

Since £ is chosen arbitrarily from (ΓίΊ^l)*, it suffices to show t^A8. From the
presentation of the covering group of A in [16] we see that Z(A)<O2(CA(i))'.

Thus as O2(CA(t))<O\CA(t)\ t^O\CA(f)). However \N(A): AK\ < 6, K*
has an abelian Sylow 2-group Γ, fand CA(t)<N(T\ so if t&A*, then tA*&

O2(CA(t))A8/Ag, a contradiction. Hence the proof of 8.3 is complete.

Throughout the remainder of this section let p be the projection of t on
A and P the projection of T on A. We take p to be in the set Δ of canonical

involutions of A defined in the section of [4] corresponding to A. There Δ
is linearly ordered. Define the rank r(p) of p to be its place in that order. In

particular the root involutions have smallest rank, p is said to be degenerate
if A^F,(q) or 2E6(q) and r(p)=3 or A^F,(q) and r(p)=4. Let Z be a Sylow

2-group of Z(CA(t)). Inspecting the centralizers given in [4] we find:
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(8.4) (1) If p is nondegenerate then AutA(Z)^ZQ-l and is regular on Z*.

(2) If p is degenerate then Z=Zl X Z2 where Z, is the root group of a root

involution, Z-(Zl(jZ2)^pA, and

(8.5) Assume A^G2(q) and r(p)=2 or A^E7(?) and r(^)-4 or 5. Then f <Z.

Proof. CA(p)=ZCA(p)°°. By 8.2, CΛ(^)°°< C(T) and as Z is in the center

oίCA(p\Z<C(T).

(8.6) (1) f<Z.

(2) Either Γ Π ^4=1 or A^£7(#) and r(p)=4 or 5. or ̂ G2(#) and r(p)=2.

Proof. If Γ Π A= 1 then (1) holds by 2.9, so we may take p=t. Moreover

by 8.5 we may assume t is not one of the involutions described in 8.6.2. But
now inspecting the centralizers in [4] we find t<=(CA(t)')Λ, So by 8.2, t&Ag,

against 8.3.

(8.7) q>2.

Proof. Assume q=2. Then by 8.6.1 and 8.4, p is degenerate for each

£<Ξ Γ*. By 8.4, Z is a 4-group, so by 8.6, T= Z. But then by 8.4, p is a root

involution, and hence nondegenerate, for some t^ T*.

Let V be the weak closure of R in C(RG Π C(RT)). Let Σ= {^- r<=R*}

(8.8) (1) V=RZ.

(2) If p is nondegenerate then either

(i) T=Z and Σ Π V=R* U Γ* or

(ii) T Π -4=1 and V — Z is the disjoint union of q conjugates of R. y^ Γ\Z
is empty.

(3) If p is degenerate then there exist G-conjugates 71,- of 7? in V such that either

(i) ?;< ,̂ ^Π Γ=l, and Σ^ϊ7-^ or
(π) Γ^Z,.

Proof. (1) follows from 8.4. Moreover V satisfies the hypothesis of 3.6
or 5.1 with <O\NA(V), O*(NΛ*(V)> in the role of X, given 8.4. Hence 3.6 and
5.2 imply (2) and (3).

(8.9) Assume A^ G2(q). Then

(1) Ifr(p)=2thenZ=Γ.
(2) We may choose T so that r(p)=l.

Proof. Letr(/>)=2. Assume first TΓ\A=l. Let B=O2(CA(p)). Then
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B contains q2 ^4-conjugates of Z, so by 8.8, the set Γ of conjugates of R in RB

is of order q\q— 1)+1. Moreover NA(T)r^E^GL2(q) is transitive on Γ— {R}
with O2(NA(Γ)T) semiregular on Γ— {R}. Moreover the same holds in A8, so
N(T)Γ is 2-transitive. But now a result of Shult [29] yields a contradiction.

So by 8.8, T=Z. By section 18 in [4], there is a conjugate Ta of T such
that TTa contains q ^-conjugates of T and one 2-central root group U. By

8.8 applied to ΪT", U=Agft TT" and Ϊ/ΠΣ is empty. Therefore U is a 2-
central root group of Ag, so by symmetry between A and Ag, (2) holds.

(8.10) Assume A^G2(q). Then

(1) Γn ,4=1 and
(2) We may choose T so that p is in a root subgroup.

Proof. Pick p so that Z=7' if possible and, subject to this condition, so
that r(l) is minimal.

Assume p is not a root involution. Then by 8.8.3, p is never degenerate.

Next by sections 13 through 18 of [4] there is a conjugate Za of Z such that
ZZ* contains (q— I)2 conjugates of p and 2(q—l) involutions of smaller rank.

Hence if T=Z then | TTa ft 21 >(?-l)2, so by 8.8.2, | ΓΓTl Σl =ί(ϊ-l)
Thus there is a conjugate ί of t under G in ΓΓα with r(s)<r(£), contradicting

the choice of p. Therefore by choice of T, Rx Π .4= 1 for all RX<N(A). So by

Elements of P have the form p(b)=U-ίl(bu1)" U^/ι(buk)ί where f/γf is a root

group, the % are fixed elements of F=GF(q), and ό varies over some additive

subgroup θ of F. We may choose notation so that ZZa— UX where U= UΊk

and X consists of the elements X(d)= UΊl(uλί d)- Uιk_£uk_ιd), d<=F. Moreover

we may take p(b)a=X(b)U(cb) where p(d) andp(dc) are distinct elements of P*.

Thus PP* contains the \T\-l elements U((c+l)b), b^θ\ and the element

X((c+ l)d). So as I TTa ft^\ = \T\(\T\—\\ some element of 2 projects on
one of these elements, again contradicting the choice of p.

So p is a root involution. But now by 8.6, TΓ\A=l. The proof is

complete.

(8.11) Assume A^2F,(q). Then we may pick T so that r(p)=2.

Proof. Assume not. Then r(p)=l. By section 18 in [4] there is a con-

jugate Za of Z such that \pA Π ZZ* | =2(q- 1). By 8.10 and 8.8, | TTa Π Σ I ==
\T\(\T\— 1). Therefore there exists a conjugate s of t in TTa with p(s)<=
ZZa-pA. Hence r(p(s))=2.

If ^4^G2(ί) pick T so that r(_p)=l and if A^2F4(q) pick T so that r(p)=2.
Iri the remaining cases choose T so that p is a root involution. Let re P*.

(8.12) CΛ(Γ)~=CV(P)~ and r(f*)=r(p) for some
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Proof. By 8.2, CA(T)~ < CAg(R)°°. By symmetry between R and T we have
equality. Now inspecting the centralizers in [4] we find CA(T)°° determining p
up to conjugacy in Aut(A).

We now define a subgroup Q or CA(T)°°. If A^G2(q) or 2F,(q\ or if
A^D4(q) and r(p)=2, let Q be a Hall subgroup of order q-l in CA(T)°°. If

Ae**D<(q) and r(/>)=l, let ρ be a Hall subgroup of order q*+q+l in C^(Γ)00.
In all other cases let Z3 and Z4 be ^[-conjugates of Z centralizing T such that

D=<Z3, Z4>^L2(#), and let g be a Hall subgroup of order q— 1 in Z>. Set

L=E(OA(Q)). By [4], L is described in Table 8.13 :

Table 8.13

A

Σ

r(p)

, <?Φ4

L2(q)

I I or 2

E7(ρ}

1

(8.14) L is standard but not normal in C(W)

Proof. By 3.8, 8.9, and 8.10 it suffices to show R is Sylow in N(R)Γ\

C(LQ)y and R is not normalized by CAs(Q).

Suppose x is a 2-element in (N(R)Γ\ C(LQ))—R. We may assume x2^R

so X induces an involutory automorphism on A. By [4], L=O2(CA(Q)), so X

induces an outer automorphism on A. Out(2F^(q)) is of odd order. If A^ G2(q)

or 3Z)4(?) then by 19.2 x is a field automorphism and CL(x)^X(qQ) where
L^X(q). Finally if A has rank greater than 2 then x acts on E(CA(L))=D

and as [#, £]=!, ^ centralizes D. But inspecting the possibilities for x given
in section 19 of [4], £(CΛ(D<>>))<L.

It remains to show R is not normalized by A*ftC(Q). By 8.12, Q< Y=
CAe(R)°° and r(fr)=r(p) for some ^/^Aut(Ag). Then Q is contained in a Levi
factor ^Γ of Y. r(fry)=r(/>), so Jf centralizes a subgroup Z)0=<Z, Zoy^L2(q).

Thus D0<^ Π C(0 and Z)0 does not normalize Λ< ΓZ. The proof is complete.

(8.15) A^G2(4) and <Lccwr)>=JB is isomorphic to Sz, modulo its core.

Proof. Let β=<LCCW)>. By 8.14, 8.12, 6.1, and induction on the order of

G, L^SL3(4) and B/Z(B)^Sz. Hence A^G2(4) or 8Z>4(4 ). In the latter case
let Y be a Sylow 3-group of CA(T) centralizing W. Then Y/YΓ\W induces a

diagonal automorphism on L. However B/Z(B)^Sz does not admit an auto-
morphism of order 3 centralizing R and inducing a diagonal automorhpism on L.

(8.16) G is of Conway type.

Proof. 8.15 and 8.9.
This completes the proof of Theorem 8.1.
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9. The Mathieu groups Mn

In this section G is the Mathieu group M24 acting 5-transtitively on a set
Ω= {1,2, ••, 24}. The following facts can be found in section 4 of [32]:

(9.1) G has one class ZG of involutions fixing 8 points and one class tG of fixed
point free involutions, z is 2-central.

(9.2) Elements of order 3 centralized by t are fixed point free.

G123 is isomorphic to L3(4) and acts on Ω3—Ω — {1, 2, 3} as on the points of
the projective plane PG(2, 4) over GF(4). Choose z<= G123 and let Δ=/(*) Γ) Ω3.
Then Δ is the axis of z in PG(2, 4). Let E be the subgroup of G123 generated
by all elations with axis Δ. Then E^Elβ is the pointwise stabilizer in G123, and
hence also in G, of /(#). So E<\CG(z). Next G123 has one class of involutions
and hence is transitine on #G(ΊG123. So C(z)κz^ is 3-transitive on its 8 points
and hence isomorphic to the holomorph of E8. The stabilizer of a cycle of z is
a compliment for E in C(z). Moreover E=C(e)Ke) for each e^E*y so N(E) is
transitive on E* and by an order argument N(E)/E^GL4t(2). Summarizing:

(9.3) GK^=E^E16 and N(E)IE^GL4(2). CG(z) is the split extension of E by
the holomorph of E8.

The following facts can be found in lemmas 2.17, 5.4, and 5.5 of [22]:

(9.4) C(t)^=RX where E6^R<C(t), X^S5, and R=[R,X\. There is a

4-group U<C(t). </>=Z(C(0).

Now the set Γ of orbits of U on Ω is of order 6. If x is an element of
order 5 then I(x) is of order 4, so I(x) is one of these orbits and X is transitive
on Γ. Thus

(9.5) UX is transitive on the 12 cycles of t.

(9.6) Gj^Mgg has one class ZG± of involutions. Gx Π C(z) is the split extension

of£^£16byL3(2).

As G has one class ZG of point fixing involutions and CG(#)/(Z) is transitive
the first remark follows. As C(z\*^ is a complement for O2(C(^)/(Z)) in C(0)/(ί°
the second remark follows.

Next let G12=L^M22 and set A=G({1, 2}). By [9],

(9.7) A=Aut(M22).

As GQ is 5-transitive we may choose t^A and u^zGΓ\ (A — L). As E is
regular on Ω — F(z), CG(z) is transitive on the cycles of z. By 9.5, CG(i) is
transitive on the cycles of t. Therefore:
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(9.8) tA and UA are the classes of involutions in A — L under L. ZL is the
unique class of involutions in L.

The stabilizer of 1 and 2 in CG(z)κ^ is the stabilizer in L3(2) of 2 and is

isomophic to S4. Hence

(9.9) CL(z) is the spit extension of E^E16 by 54 and hence is isomorphic to Z2

wreath S^

As the stabilizer of a cycle of z is a complement for E in CG(#) we get:

(9.10) CL(u) is the holomorph of Es.

Recall CG(ί) acts as PGL2(S) on the 6 orbits I(x)c^ of C7, where x is an
element of order 5. Then Λ is in the kernel of this action and the pointwise

stabilizer of a cycle c of t in I(x) is [#, R]X where X is of index 2 in C«#, ί».

Thus

(9.11) CL(t) is the split externsion of V^E16 by the holomorph of a cyclic
subgroup <V> of order 5 with V=[V, oc].

As a final remark notice that by 9.3

(9.12) NA(E)/E^S5.

Witt shows in Satz 9 of [33] that there is a subgroup K of G isomorphic

to M12 acting on fl with two nonequivalent orbits Γ and Γ' interchanged by an
involution b of G acting on K. By [9] | Aut (M12) : M12 \ =2. Therefore

(9.13) Aut(Ml2)=K<p>=B.

Choose IEΞΓ and 2= P. Then as Witt remarks, K2 acts 3 -transitively on
Γ with K12^L2(ll). Then <byKl2^Aut(L2(ll)=PGL2(n). As K2 is transi-
tive on Γ and there is one class of involutions in PGL2(ll) — L2(ll) it follows that

(9.14) There is one class bκ of involutions in B — K.

By Wong [34].

(9.15) K has one class %κ of involutions fixing 4 points and one class tκ of

fixed point free involutions. Cκ(z) is the split extention of Q8*QS by S3.

As K12(by^PGL2(ll) b centralizes an element x of order 5. By 9.15 we
may take [#, ί]=l, and xt is self centralizing in K. Hence <ί> is Sylow in Cκ(x)

and and we may take [b, t]=l. Then as [b, x]=l, b centralizes E(CK(t))=J,
and by L-balance, J<L(C(b)). But b interchanges Γ and Γr so b is fixed point

free on Ω. Therefore by 9.4, J=E(CK(b))=E(X) and U=<f,b>. As <ί>=
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Z(C(t)\ [X, I/]Φ1, so

(9.16) We may choose b so that Cκ(b)=<f> X E(CK(t)).

(9.17) Let # be quasisimple with H=H/Z(H) a Mathieu group. Then

(1) If H^M12 then £Γ satisfies hypothesis II.

(2) If H/Z(H)^M12, T is a 2-group acting faithfully on if with ι»(ϊ1)> 1 and

T<=Syl2(Q), where £) is tightly embedded in #T, then H^M12 and Γ=<ί, ft>

= CHT(E(CH(T))^E4, for some non 2-central involution t of if.

Proof. Assume the hypothesis of (2). By Theorem 4 in [1] we may

assume Q is 2-constrained. So if b or t is in T, then as <6, />=O2/>2(C(s)) for

each 5 in <ό, £>*> Q=<&, ?>• Suppose Z(#)φl. Then Z(#)==:<7Γ> is of order
2, £2=7r and [ft, ί] = τr. Let ίe Γ with 5=?. Then t^C(s)<N(T), so τr=[f, i]
€Ξ T, impossible as T acts faithfully on H. Hence Z(H)=l. Now there exists

h<=C(t)<N(T) with [A, B]=t, so ίe T.
So we may assume T'cs*. But H=<O2(Cs(s), O2(C#(3*))> for any con-

jugate 2? of # with z~g(=O2(C(s))— <X>. Hence H<ΓltT(H)<N(Q), and then

[//, O2/t2(j3)]=l, a contradiction.

So we may assume H^M12, and it remains to show H satisfies hypothesis

II. By [9], Mu, Λf23, and M24 have trivial outer automorphism groups, so we

may take H ^M22. Assume T is a noncyclic elementary abelian 2-group acting

faithfully on H and Sylow in a 2-nilpotent tightly embedded subgroup Q of HT,

with T^HC(H). As I Atf (#) : H | =2, Γ= Γ0<ό> where Γ0= Γ Π f/C(/ί). By

a Frattini argument CH(S) = O(C H(s)(C H(s) Γ\ N(T))y each $e Γ*. As O(CH(ί))
= 1, CH(s)<N(T).

By 9.8, 9.10, and 9.11, T=<byO2(Cji(b))^E16 or £32, for b fused to it or ί,
respectively. Without loss we takeS^T0. £* is the unique abelian subgroup
of rank 4 in O2(C^)) and by 9.12, E is self centralizing in Aut(M22). So we
may take b=ΰ. Now Cχ(u) is transitive on w(TΠ £?)*, so Njj(T) is 2-transitive
on ΰ(fΓ\H). So |#|2> I fn^| |Cπ(w)|2=:29>27— \H\2, a contradiction.

(9.18) Let H be quasisimple with H/Z(H)^Mlly M22, M23, or M24, and assume
H is Γ-admissible. Then H^M24, T is a 4-grouρ, and

Proof. Set H=HT/CHT(H). T centralizes O2(C^(?)) for each *<ΞΞ f *. It
follows that H=M119 M22, or H=M2i and T is the group C7 defined in 9.4
Assume the latter. M24 has a trivial multiplier (eg [9]) so Z(H)=l and C#(?)=

Now C7= T=d£Z(CΉ(J)), so by 2.9, ΐί n T Φ 1. Hence as f * is fused,
Then T=U<CH(T)°° by 9.4.

So take H=Mn or M22. By 2.8, T< O2(CH(t)). Further O2(C^(?))< C^f)
But if H=Mll then O2(CΉ(t)) = O2(O2(CΉ(t)) is of 2-rank 1, a contradiction.
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So H^M22. Let X=<jH n O2(C^(?)>. Then <T>=Cj£X), so as X is Γ-admis-
sible, T is a 4-group. However O2(C#(?)) normalizes no 4-grouρ.

10. The Hall-Janko group HJ

Let G=HJ and A=Aut(G).

(10.1) (1) G has one class #G of 2-central involutions and one class rG of non-

2-central involutions.

(2) CG(z) is the split extension of Q=O2(CG(z))^ £)8*Z)8 by Ay Q=<zG ΓΊ C(*)>
(3) CG(r)=R X L where R^E4, L^A5, and rσ Π L is empty.
(4) Let S^Syl2(G) and P the weak closure of R in S. Then P is isomorphic
to a Sylow 2-grouρ of L3(4) and S~P<i> where 6 is a conjugate of z inducing
the graph-field automorphism on Q.
(5) \A: G\=2 and there is one class aG of involutions in A — G. CG(ά)^

PGL2(7).

Proof. (1) and (2) are well known. See [3] for (3) and (4), where it is also

shown that \A: G\ =2 and there is an involution a^CA(r) — B with <α)>L^*S5

and [R, α]=t=l. We may assume a acts on S. Then a induces the field auto-
morphism on P and we may take [a,b]=l. All involutions in aS are fused
under S to a or άb. Further Z(P)<by=Cs(ab)^D8 and Cs(ά)=<b, r>^D16, so

Cs(ά) is Sylow in CG(ά), and C(α) is transitive on %G Π C(0). Hence by the clas-
sification of groups with dihedral Sylow 2-groups, CG(ά)^PGL2(q), some odd q.
As C(ά)Γ\ C(r)^D12, we conclude ^=7. Moreover letting <^>=Z(Cs(α)), aft is
fused to az in CG(ά), so as all involutions in #5 are fused under S to ab or α#,

there is one class of involutions in A — G.

(10.2) Assume H is quasisimple with R=HIZ(H)^HJ. Then H satisfies

hypothesis II and if H is Γ-admissible then T projects on a conjugate of the

group R in 10.1.3.

Proof. By 2.3, and 10.1, H satisfies hypothesis II. Further <»=
= CG(CG(#)°°), so each involution in T projects into a conjugate of R. Now by

2.3, T projects onto a conjugate of R.

11. The Janko group JΓ3

In this section G^/3. By [25] :

(11.1) G has one class %G of involutions. CG(z) is the extension of Q=O2(C(z))

«ρ.*i>.byΛ.. C(*)=C(*)~.

(11.2) Let G<B<Aut(G) with \B: G\=p prime. Then either
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(1) ί==
(2) CB(z}=Z(CB(z)}CG(z}.

Proof. By 11.1 and a Frattini argument B=GCB(z). As Aut(Q) is the
extension of E16 by *S5, either (1) holds or CB(z) = CB(Q)CG(z). In the latter
case as | CB(Q): <z>\=p and C(#)=C(*)~, (2) holds.

(11.3) ASylowl7-group.XΌfGisoforderl7. NG(X)/X^Z8 andX=CG(X).

Proof. Lemma 5.6 in [25].

(11.4) Let A=Aut(G). Then \A:G\=2 and CA(z)IQ^S5.

Proof. By [23], \A:G\>2. We show | A : G \ < 2 and O> = Z(CA(z)\
and then apply 11.2. First if \A: G\ >2 then by 11.2 we may choose B<A
with I B: G\=p prime and CB(z)~Z(CB(z))CG(z). Hence it suffices to assume
B exists and then exhibit a contradiction.

Let X^Syl17(G) and Y a complement for X in NG(X). We may take
z&Y. Aut(X)^Z16, so by a Frattini argument Y is contained in an abelian
complement W to X in NB(X). As Y= CG( Y), PF= Cβ( Y)= FCβ(*) and hence
CX*)=<*>X<A> where <J)>=Z(NB(X)). But now G=<CG(*), J*Γ> <<?(£), a
contradiction.

(11.5) There is one class of involutions in A — G with representative a.

Proof. Let XeSyllΊ(G), Y e SylΛ(NG(X)), and Y< Y^ Syl2(NA(X)).
We may assume #e F. Suppose yx is cyclic. The image of Yλ in CA(z)IQ^
Oϊ(2) is cyclic of order 4 and hence acts without fixed points on the nonsingular
vectors of <2/<X>. On the other hand Yl centralizes Φ(Y)<Q, and Φ(Y) is of
order 4, so that Φ(Y)/<X> is a nonsingular point of ζ?/<X> Hence Y1= Yx <α>,
where a is an involution centralizing X.

Now by 11.4, a induces a transvection in Ol(2) on QI(zy=O2(CG(z))l<zy,
and all involutions in C (̂#) — G are fused under C(#) into aQ. There is an

element x of order 3 in C(z) with [x, a]<Q. Let <£>/<X>=[fl, QK^>] and
PI<zy=CQ/<z>(a). P=<cy*[P, x] with [P, ΛT] quaternion. We show CQ(a)^
D8, so [P, Λ?, α] Φ 1 and hence [x, a} Φ 1 . This implies C(#) Π C(̂ ) is a 2-group.

Let SeSjy^ίCG^)) with Cs(a)^Syl2(CG(a)). Then 5 is isomorphic to a
Sylow 2-group of L3(4) extended by a graph-field automorphism and a induces
an outer automorphism on Sy so *S<α> is isomorphic to a Sylow 2-group of
Auΐ(LΆ(4)) (eg. 3.3 in [25]). Hence as Y<Cs(ά), Cs(a)^D16 and then

Cg(α)«A
Therefore Cs(α)=C(α)n C(<s:)^Z)lβ. Moreover <g, Λ?> is transitive on the

involutions in aQ, so C(z) is transitive on the involutions in CA(z) — G> and
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hence there is one class of involutions in A — G. Further C(ά) is transitive
on zGΓ\C(ά)9 so appealing to the classification of groups with dihedral Sylow

2-groups, CG(fl)«La(17).

(11.6) Let X be quasisimple with X/Z(X)^JZ. Then

(1) X satisfies hypothesis II.
(2) X is not admissible.

Proof. (1) follows from 2.3, 11.1, and 11.5 <zy=CG(CG(z))=CG(CG(z)~),

so X is not admissible.

12. The Higman-Sims group HS

Let G=HS and A=Aut(G). A is the automorphism group of a strongly

regular graph so on a set Ω of 100 vertices. Let oo be a distinguished vertex
of Ω, Δ=Δ(oo) the set of 22 vertices joind to oo in s&, and Γ=Γ(oo) the set of

77 remaining vertices. A^ is the automorphism group of M22 and Goo is M22.
Aoo acts 3-transitively on Δ and the vertices in Γ can be regarded as the fixed
point sets of involutions in G^ on Δ. The members of Δ are called points and
the members of Γ blocks. For α^Δ, Δ(α) is the set of blocks containing α.
(Recall a block is a set of fixed points of an involution). Two blocks are

adjacent in s& if they are disjoint.
By 9.8, sλoo has one class zG°° of involutions. Let B=I(z)^T and a^B.

LetflWL. By [26]

(12.1) CG(z) is the extension of T=O2(C(z))^QξQ$Z5 by S5 with C(z)/T ac-
ting as the stabilizer of a nonsingular point on the orthogonal space T/<X>.

Again by 9.8, H—G^ has two classes UH and tH of involutions with u fixing
8 points of Δ and t acting without fixed points on Δ. C=GooΓ(C(t) is the
split extension of E16 by the holomorph of Z5. Choose S e Syl2(C(t)) with z^
Z(S). Then as [f, #]=!, t acts on I(z)=B. Let K be the stabilizer in H of B.
By 9.12, KB^S6. K — G has 3 classes of involutions tκ, sκ and rκ where t and
r act fixed point freely on B and s fixes 4 points of B. r centralizes an element
of order 3 in K, while as remarked above, CH(i) has order prime to 3. Hence

(12.2) tκ=tHnK,s*(Jrκ=uHΓ]K.

Let N be the number of fixed blocks of t. Counting the set of pairs (Z), th),
where Z) is a block fixed by th, we have N\ tH \ =77 \ tκ \. We conclude N=5.

Now C=Go.nC(i)=-YF where F=O2(C) and X=NC(X5) where X5 is a

Sylow 5-group of C. As tκ=tH Π K, C is transitive on Γ Π I(t) and then ^Γ5 is

regular on these blocks. Thus F=CΛ(ί)/(ί). I(u) has order at least 9 so
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and hence tGΠH=tG. So CG(i) is transitive on I(z) and hence CG(ί)/(0

2(5).
Summarizing :

(12.3) CG(t) is the extension of Y=O2(CG(t))^E16 by PGL2(5) and tG Π H=tH.
CG(t) acts irreducibly on Y.

By [15].

(12.4) G has two classes ZG and VG of involutions. There are two classes tG

and UG of involutions in A — G. \ CG(u) | = 8 ! .

As wGΠ#=^ M fixes \CA(u): CH(u)\ -8 !/26 3-7-30 vertices. Hence w
fixes 21 blocks. By 12.2 CH(u) has 2 orbits Γ\ and Γ2 on these fixed blocks,
where ΓΊ consists of those blocks in which u fixes 4 points and Γ2 the blocks
upon which u acts without fixed points. As 3 points determine a block and u
fixeds 8 points of Δ, Γ\ has order 8 7 6/4 3 2=14. Hence Γ2 has order 7.
Each cycle of u on Δ is contained in 2 blocks of Γ\ and 3 blocks of Γ2. Hence
easy counting arguments show the graph sλ induced by s& on I(u) is bipartite so
that CG(u) is 2-transtitve on one of the sets I1 in the partition. Hence ώ is the

incidence graph of the projective geometry PG(3, 2), and CG(u) is the automor-
phism group of that geometry together with a polarity. Hence

(12.5)

u) correspond to a transvection. Then CG(w)Γ\ C(u)^
and W=E(CG(u) Π C(u))<L(C(w)). It follows from 12.1 and 12.4 that we may
take v=w. By [26],

(12.6) CG(v)^Z2χAut(A6).

Thus W=L(C(v)) and

(12.7) CA(v)=Z2/(E4xS6).

(12.8) Let X be quasisimple with X/Z(X)^HS. Then

(1) X satisfies hypothesis II.
(2) X is not admissible.

Proof. Let T be an elementary 2-grouρ acting faithfully on X and Sylow in
a 2-nilpotent tightly embedded subgroup of XT. Assume first a^T — XC(X).
By 2.3, a does not induce u on X, so a induces t. As Out(Jf) has order 2, some
bξΞT* induces an inner automorphism on X. By 2.3, b induces an automor-
phism in ZG. As O\CG(t)) acts irreducibly on O2(CG(t))9 Tf}XC(X)=T0 pro-
jects on O2(CG(t)). Now CG(b) acts on T0 and since we may choose b to project
on #, O2(CG(s)) normalizes the projection of T0. But Ί\^O2(CG(t))^Eu while
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m(O2(O
2(CG(#)))==3, a contradiction.

So T<XC(X) and (1) is established. Also as <^>=CG(CG(^)°°) for each
involution #eG, X is not admissible, establishing (2).

13. The Fischer groups

Let G=M(24), the largest of Fischer's three groups generated by 3-tran-
spositions. The following facts are in [11]:

(13.1) (1) G is generated by a class dG=D of 3-transpositions.

(2) I G: E(G) \ =2, E(G) is simple, and G=Aut(E(G)).
(3) CE,G,(d)=H^M(23) is simple and H=Aut(H).
(4) Let d e S(Ξ Syl2(G) and L=<S Π O>.
Then L is abelian of order 212 and NG(L) is the non-split extension of M24

acting 5-transtitively on S Π Zλ
(5) Let β, b, c> and rf be distinct members of S Π D. The all involutions in L
are ufsed under Λf(L) to d, t=da, dab, or dabc.
(6) Let K=CH(t). Then ^ is quasisimple and K/<ty^M(22) is simple.

AutG(K)=Aut(K) and | Aut(M(22)): M(22) | =2.
(7) Cκ(bi) is isomorphic to the covering group of t/6(2).
(8) M(2n) contains a unique class of 3-transpositions for each n=2> 3, 4.

We record four elementary facts about groups generated by 3-transposi-
tions:

(13.2) Let a, b, and c be distinct commuting members of a set E of 3-transpo-

sitions. Then

(1) CE(ab)=CE(a)Γ\CE(b).
(2) CE(abc)=CE(ά) Π CE(b) Π C*(c).
(3) If <F> is transitive on E then CE(a)=CE(b) exactly when a<=b°^<E>\
(4) If # is an involutory automorphism of <Z?> and [α, «Λ]Φ1, then x cen-
tralizes a member of E.

Proof. (1), (2), and (4) are easy. See [11], 2.1.3, for (3).

(13.3) Let E be the set of 3-transpositions in M^M(22). Then every in-
volutory automorphism of M centralizes a member of E.

Proof. Let x be an involutory automorphism of M and assume CE(x)
is empty. By 13.2.4, [u,u*]=l for each u^E, so x centralizes the involution
s=uu*. By 13.1.7, CM(u) is a covering of t/6(2) over u. Moreover ux is a trans-
vection in CM(w)/<w>, so J=<Cs(u)Γ\ CE(u*)y=AB where A=<^AΓ(Ey^U,(2)
and B=O2(J). Further by [11], 16.1.10, AJ is the unique class of ^-subgroups
complementing B in /.
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x centralizes s, so by 13.2.1, x acts on /. If x acts nontrivially on JIB

then by 12.2 and the proof of 19.8 in [4], [v, v*]&B for some v&JftE, against

13.2.4. So x centralizes J/B. Now by uniqueness of AJ and a Frattini agru-
ment, x=yb for some b&B and y^N(A). Then y centralizes A. Moreover A
acts irreducibly on B/Z(J), so y centralizes B/Z/J) and then B. So [j>, /]=!•
Now A acts in its natural representation on B/Z(J), so every member of B/Z(J)
is centralized by some v^AΓ\E. Further by 13.2.1, Z(J)vΠE—{v}y so every
member of B is centralized by some member of A Π E. In particular x=yb
centralizes a member of A Π E.

(13.4) (1) Every involution in G centralizes a member of D.

(2) Every involution in H fixes a 3 -transposition of H.

Proof. t=da is a 3 -transposition of H in the center of a Sylow 2-group
of if, so (2) is immediate. Let x be an involution in G and suppose CD(x)
is empty. By 13. 2 A we may assume dx=a, so that # centralizes t. By 13.2.1,
Kζdy=CD(i) is ^-invariant, so # acts on K—E(K(dy). By 13.3 we may assume
x acts on <(bd, £>. Now Λ? acts on <έ, rf, ί> n D= {α, 6, d} by 13.1.4. So x cen-
tralizes b.

(13.5) (1) rf, ί, dab, and dtofo are representatives for the conjugacy classes
of involutions in G.

(2) Let uy v, and w be distinct commuting 3 -transpositions in M^M(23) or
M(22). Then u, uv, and uvw are representatives for the conjugacy classes
of involutions in M.

Proof. L is weakly closed in S and L is abelian, so N(L) controls fusion
in L. By 13.1.5, any involution in L is fused to d, da, dab, or dabc, while by
13.1.4 none of these involutions is fused in N(L). So to prove (1) it suffices
to show each involution in G is the product of commuting 3 -transpositions.
By 13.4, each involution in G is conjugate to an involution in CG(d)=(dyH.
So as tH is the set of 3-transpositions in H, (1) is reduced to (2).

Next if M^M(23) or M(22), E is the set of 3 -transpositions of M, and
T^Syl2(M), then N(TΓlE)τr]E is M23 or M22 and all involutions in <ΓfΊ£>
are fused to exactly one of u, uv, or uvw in N(T), where uy v, and w are
distinct members of T Π E. Hence we may repeat the argument above, and
reduce (2) to showing that any involution in CM(v) is the product of commuting
3 -transpositions, where M^M(22) and v is a 3 -transposition of M. However
by 13.1.7, CM(v)l<(vy^U6(2)y so as every involution in Uβ(2) is the product of
1, 2, or 3 transvections, the proof is complete.

(13.6) (1) CG(d)=<d>xH^Z2xM(23).
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(2) Let *eZ)-C(O, dy) and S=(d,a,e>. Then S^S4 and CG(t) =

ζsy(ζdyxK) where s^ts induces an outer automorphism on K and Kjζty^
Λf(22).

(3) CG(dab)=<dabyxJ where E(J) is the covering group of C76(2) and //Z(7)

(4) Let ^=ώ*r and JΓ=<CD(*)>. Then O2(Z)^ζ)6, X/O2(X) is the perfect

central extension of Z3 by O^(3), CG(z)/X^S3, and Cσ(-X)==<*>.

(5) Cσ(S)=<CD(5)>« ι̂ιί(Ωί(2)).

Proof. (1) follows from 13.1.3. Pick e and S as in (2). As (ad)2=(aef
=(de)3=l, S^S4, so there is a conjugate s of t under S with \dy s]=t. Now

(2) follows from 13.1.6 and 13.2.1. (5) follows from 18.3.12 and 18.3.14 in [11].

By 13.1.7. and 13.2.2, B=<CD(dab)y=<dabyχE(B) where E(B) is the co-

vering group of C/6(2). By 13.1.4, CG(daV) induces S3 on {d, a, b} and hence

(3) follows.

Finally let z=dabc, X=<CD(z)y and Y=<CD(z)Γ\ C(rf)>. Then Y=

<<?>χ02(Y)where Φ(O2(Y))=<*>, Z(O*(Y))=<da,db,dc.>, and O2(Y)^£8xg4,

with y/O2(Y)«E74(2). Also {J,α,ft,<;}=Z(Y)nZλ Moreover by 13.5.2, d, a,

da, ab, dab, abc, and dabc are representatives for the C(d) classes of involutions

in C(d). So by 13.5.1, ZG Γ\ C(d) = zc™\ Hence X is transitive on XΓiD.

Now by 13.2.3, {dy a, b, c}=d°*x\ So <da, db, dcy<O2(X). As O2(O2(Y)) is

generated by conjugates of <da, db, &>, O2(O2( Y)) < O2(X). O2( Y)=O2(C(d) Π

C(*)) and I O2(-Y) : O2(Z) Π C( έί) | = \ d°^ | = 4. As O2(O2( Y)) ̂  £4 X ρ4 we
conclude O2(X)^ρ6.

Now yθ2(^)/02(Jί)-Z2xC/4(2). Also <CD(β)nCI>(ι/)>=^«30?(3). So
if v is a conjugate of z in PF, (C(v) Γ(DΠ Wy is solvable. Hence by the main

theorem of [11], X/O2(X) is isomorphic to Oβ(3) modulo its center. By [35],

Oβ(3)^Oί2(2), so Z(^/O2(J^))^Z3. By a Frattini argument C(z)=X(C(z)n

C(d)), so as C(z) Π C(d) induces 53 on {a, b, c}, the proof of (4) is complete.

(13.7) Let E be the class of 3-transpositions in H^M(23) and uy v, and w

distinct commuting members of E. Then

(1) CH(u) is quasisimple with CH(u)/<uy^M(22).
(2) CH(uv)=(syj where/ is the covering group of ί/6(2) and s is a conjugate

of uv inducing an outer automorphism on /.

(3) CH(uvw) is 2-constrained with CH(uvw)/(CH(u) Π CH(v) (Ί CH(w))^S3.

Proof. This follows from 13.1 and 13.2.

(13.8) Let M=M(22), A=Aut(M), E the class of 3-transpositions in M, and

u, v, and w distinct commuting members of E. Then
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(1) CM(u) is quasisimple with CM(u)l<uy^U6(2). CA(u)=<syCM(u) where s

is an involution inducing an outer automorphism on CM(u).

(2) CA(uv) and CA(uvw) is 2-constrained with CA(uv)/(CA(u)Π CA(v))^Z2

and \CA(uvw)\=21« 33.
(3) There are 3 classes of involutions in A — M with representatives s, su, and
suv.

(4) CM(s)^Auf(W(2)).

(5) CM(su)=CM(s) Π CM(«)«Z, x 5Λ(2).
(6) CM(suv) is the extension of JS^ by O^(2) acting in its natural representation

with uv corresponding to a nonsingular point.

Proof. By 13.1.6 NG(K)/CG(K) is isomorphic to A and \A: M\ =2. Let

e^D — CG«#, ί/» and sί a conjugate of ad under <<z, J, £> with [J, sj—βj. Let

s be the image of s± in A. By 13.6.2, ^4=M<».

By 13.6.5 and 13.2.1 we have <CD«*, d, J1»>=<CI)«α, rf, *»=CC«*, rf, *»>
^^4wί(Ω8(2)). This yields (4), and shows we may choose b and c to be con-

tained in and fused under CG(<X d, s^). Now Z? is the image of CD(ad) in M,
so we may take u and v to be the image of b and £, respectively. Then (1)
follows from 13.6.3 and (2) follows from (1), 13.2, and an easy calculation.

Next as s induces an outer automorphism of CM(u), 19.8 in [4] implies

s, su, sv, and svu are representatives for the CA(u) classes of involutions in

CA(u) — M. Notice that s1 and sj)c are involutions while s^db and s^dc are
elements of order 4, so s and suv are not fused in A to su or sv. In addition

CM(u)nC(s)^Z2xSp6(2) and CM(u)nC(sv) = CM(u)Γ(C(s)nC(v). By 13.3
every involution in A — M is fused to one of s, su, sv, or suv.

Recall that sjb is fused to s^c in C«α, d, s^), so su is fused to sv in A By

(4), CM(s) is transitive on CE(s], so CM(£>) is transitive on sMΠ C(v). Thus $ is
not fused to suv in A. Hence (3) is established.

su is the image of efb where sl=ef, e,f^D. By 13.6.3, CG(efb) acts on

{e, /, b}, so CG(efb) Π C(αrf) acts on {e, /, έ} Π C(ad)= {b}. Therefore CM(su)=
CM(s) Π CM(u)^Z2 x %(2), proving (5).

Next C(u) is transitive on (suv)M Π C(w) and hence C(suv) is transitive on

CE(suv). Let y-<£ Π C(Λ«;) Π C(φ and X=<CE(suv)>. F=<tί> X Yx where
Fj is the centralizer of a transvection in Sp6(2). Also {w, ^}=Z(F)n£l so by

13.2.4, uv^O2(X)^EM. YO2(X)IO2(X)^Z2xSp4(2)y so by the main theorem
of [11], X/O2(X)^Ol(2) acts in its natural representation on O2(X) with
ζuvy=Cx(Y) a nonsingular point. By a Frattini argument, CM(suv)=X(C(u) Π
C(suv))=X.

X is the image of (C(ad) Π C(efbc) Π D> so <2J induces an automorphism of
W=<f!D(eflφ such that <C(ad)Γ\DO2(W)/O2(W)y has an O8

6(2) composition
factor. But by 13.6.4, I^/O2(ίF)^O^(3), so O|(2) is of characteristic 3. Hence

Oί(2)s*Oϊ(3). This completes (6).
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(13.9) Let X be quasisimple with X\Z(X) isomorphic to Af(22), M(23), or

M(24)'. Then

(1) X satisfies hypothesis II.
(2) X is not admissible.

Proof. By 13.1.3, M(23) has a trivial outer automorphism group. By

13.1.2, G=Aut(M(24)'), and then 13.5.1, 13.6, and 2.3 imply Λf(24)' satisfy
hypothesis II. Suppose X/Z(X)^M(22) and T is an elementary abelian 2-
group acting on X and Sylow in a tightly embedded 2-nilpotent subgroup of TX

with T^XC(X). By 13.8 and 2.3, some ίeΓ* induces suv on X/Z(X).
By 2.8, C^(ί) fl£ta on T so as C^/Z(^;(ί)=:O2(Cx/Z(X)(ί)) acts irreducibly on

^2(Cχ/zaχ^(t))9 some reΓ* projects on z^. But now tr induces s on X\Z(X\
against 2.3. The proof of (1) is complete.

By 13.6, C£(G)(CG(#)β)=<X> for each involution x in E(G), so M(24)' is not
admissible.

Suppose X^X/Z(X)^M(23). We adopt the notation of 13.7, setting

X=H. By 2.3 and 13.7, TfΊ E is empty. Next CH(/)=<M, t>>, so as 7 Π £ is
empty, 2.3 implies TΓ\(uv)H is empty. Hence by 13.5, T*^(uvw)H. Finally
by 13.7, CH(CH(UVW)Λ) = (U, v, w>, so as (uvw)H ft<(ut v, wy~{uvw}y we have a
contradiction.

Finally assume X^M(22). Let ΰ, v, and W be commuting 3-transpositions
in X. By 13.5 each involution in X is fused to ΰ, uv> or wra;, By 13.8 and 2.3,
ΰ<£T. <β, vy= Cχ(Cχ(ffi)}Λ^ so as ΰφ f, wφ T. Thus each involution in f

is fused to w^, and we may take t=uvw, t<= Γ*. Let J=Cχ(ΰ). Then //<w>
^ C/6(2) and by 13.6.3, / is quasisimple. By 21.7 and 10.6 in [4], C/(ί7 Π C(ί))
=<(uvzu, Z(J)y. By symmetry among w, t;, and w, Cx(tx Π C(ί))<<wϊ;zϋ, Z(X)y,
so by 2.4, Γ^£ 4. By 2.6, CX(0<^V(Γ), while by 21.7 and 10.6 in [4],
<u,u,Z(J)XJ)IZ(J) is the only 4-group in J/Z(J) normalized by Cj(ί)\Z(]\

Hence T<<β, Ί), wJ>. But Jx Π <M, ,̂ ϊc;>= {f}, a contradiction.

14. Conway's second group Co2

Let G—Co2. We record some facts about G found in [30]:

(14.1) (1) G has 3 classes of involutions with representatives #, α, and #7r.

(2) CG(z) is the split extension of E= O2(C(z)}^Q* by S^Sp6(2) with £:= [£, S].

(3) Set I = CG(a). Then O2(/) = W,XZ)0 where IF0^£:i6 and Z)0^Z)3 are

/-invariant, and //O2(/)^^8 acts as L4(2) on W0 and as Ωί(2) on Z>0/<^>
(4) SetM-CG(^),^:-CM(^), and/=02(M). Then |M: X\ =2,J=DxDu

where D^^ and u^M-X, XIJ^S6, M/J^Aut(A6), and Jϊ// acts in its

natural representation on the permutation modules. D and Du.
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(5) Let 7 and β be G-conjugates of z such that γ is a transvection in S and
a=γβ is of order 3. Then JVG«α»=<α, γ>χ C where C ^Aut(U,(2)).
(6) G1 = ̂ E, ΛfG(<α>)>==<γ>G0 where G0^Ϊ76(2) and γ induces a graph auto-
morphism on G0.
(7) G acts as a rank 3 group on the set Ω of cosets of G1 in G. G is a normal
subgroup of index 1 or 3 in the automorphism group of the rank 3 graph s& of
this representation.

Proof. Specific references in [30] are as follows: (1), 2.8; (2), 1.1, 2.1,
and 2.11; (3), 2.12; (4), 2.13 and the discussion on pages 101 and 102; (5),
4.1; (6), 4.3; (7), section 5.

(14.2) Aut(G)=Aut(d)=G.

Proof. Let A=Aut(G). By 14.1.7 it suffices to show A=GNA(G1), and
NA(G1)=G1. By a Frattini argument A— GCA(z). A second Frattini argument
implies CA(z)=CG(z)CA(<fi, α». By 14.1.5, JVΛ«α»=jBx JVc«α» where B=
CA(NG«O» In particular B<C(z}<N(E), so by 14.1.6, B acts on Gv Then
by 14.1.7, A=Aut(sό) and B has order 1 or 3.

Assume B has order 3. We show B centralizes CG(z). Then B centralizes
G1=<^E9 NG«tf»>. By 14.1.7, G1 is maximal in G, so 5 centralizes G =
<Gn CG(#)>, a contradiction. B acts on CG(z)=ES centralizing <α, <y>x Cs(α)^
S3=Sp^(2)J so [5, 5]<£. Assume 5 does not centralize CG(z). As S acts

irreducibly on E/<z>,CE(B)=<zy. BCG(z)=BCG(z)/E acts on £/<*>= F,

preserving a quadratic form of sign +, so BC(z)^Z3x Spb(2)<O^(2). Let
^eS have order 7. [F, ̂ ] is of dimension 3 or 6 and as B acts without fixed
points on [F,£], it must be the latter. Then Cv(g) is nondegenerate of dimen-
sion 2, and as B acts without fixed points on Cv(g), Cv(g) is of sign—.
Hence [V,g] is of sign— . But the order of 0^(2) is not divisible by 7. The
proof is complete.

(14.3) Let A be quasisimple with A/Z(A)^Co2. Then

(1) A satisfies hypothesis II.
(2) A is not admissible.

Proof. (1) follows from 14.2. By 14.1, <*>=CG(CG(*H if x=* or a> and

<*, ^>=:CG(CG(7r^)^). This yields (2).

15. Subgroups of Fischer's Monster

We adopt the notation of R. Griess in discussion subgroups of Fischer's
Monster. That is Fn denotes the simple composition factor of the centra-
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lizer of a certain element of order n in the Monster. The orders are as follows:
FS 2U.36 56 7 11 19
F3 215.310 53 72. 13- 19-31
F2 2". 3". 56.72 11. 13- 17. 19. 23- 31- 47

Fj 24β.320 59.76 ll2.133. 17. 19- 23 -29-31 41 47 59- 71

(15.1) LetG=F5andA=Auί(G). Then

(1) \A:G\=2.
(2) G has 2 classes of involutions with representatives z and £.
(3) E(CG(t) is quasisimple with E(CG(t))l<f>s*HS and CG(t)jφ^Aut(HS).
(4) CG(s) is the extension of £)4 by A5 wreath Z2.
(5) There is one class of involutions in A — G with representative α.
(6)

Proof. [21].

(15.2) Let G=F3. Then

(1) G=Aut(G).
(2) G has one class of involutions with representative z.
(3) CG(z) is the extension of an extraspecial group of order 29 by Ag.

Proof. [31].

(15.3) LetG=F2. Then

(1) G is generated by a class D=dG of 3,4-transpositions.
(2) CG(<ί)=<»# where H=E(C(d}}, H/<,dy^2E6(2), and e induces a graph
automorphism of //.
(3) D—d (jbH\JeH \JaH (JvH where ad and vd have order 3 and 4, respectively,
and <(ό, dy/(dy is a root involution of H/ζdy.
(4) G has 4 classes of involutions with representatives d, z = db, /= rfe, and
θ=dbb', where ό'eδ".
(5) CG(z) is the extension of D11 by Co2.
(6) Cc(/)=<ίX</, </>xE(CH(*))) where f =£(CH(β))«F4(2), [ί, </]=/, and *
induces an outer automorphism on F.
(7) CG(Θ) is the extension of O2(CG(Θ)) by O$(2) and <6>>=CG(O2(CG((9))).

Proof. [12].

(15.4) LetG=F2. Then G= <H, JB(CC(4))>.

Proof. There exist conjugates 6t and ά2 of b under H such that bb1 and άά2

have order 3 and 4 respectively. Moreover as D is a set of 3 ,4- transpositions,
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e does not centralize //=<ό7/>, and e is not conjugate to b in //, there exists
bz<=bH such that eb, is of order 4. It follows with 15.3.3, that D<^<H, £(CG(ό))>,
completing the proof.

(15.5) F2 is its own automorphism group.

Proof. Let G=F2 and A=Aut(G). By a Frattini argument, A=GCA(d).
Moreover CG(d)/<W> is its own automorphism group, so CA(d)=XCA(d), where
X=CA(H). Lety=02(CG(rf)nCG(δ)). ΎhenCA(Y)=X<by=CA(E(CG(b))<dyy

so \X: Cx(E(CG(b)))\=2. Finally by 15.4, Cχ(E(CG(b)))=l9 so X=<d>. The
proof is complete.

(15.6) LetG=F1. Then

(1) G has two classes of involutions with representatives t and z.

(2) CG(t)=H is quasisimple with #/<£>~ 2̂

(3) CG(z) is the extension of Q12 by Co^.

(4) If X is a group with involutions ί and z with centralizer as in (2) and (3),
then \X\ = \G\.

Proof. [18].

(15.7) Let G = F1 and <*>/<*> a 3,4-transρosition in #/<*>• Set •£" =
EH(N(ζSy ty)). Then ./£ is the covering group of 2E6(2) and <s, £>* is fused in

N(K).

Proof. K/Z(K)^2E6(2) and, replacing $ by rf if necessary, Z(K) = <ί>

or <ί, 0- As 2jE"6(2) has JS'4 as a multiplier, s is an involution. By L-balance
K<L(C(s))> so by 15.6 s is fused to t. Now by symmetry between s and ί,

Z(K)=(s, ty. Next by 15.3 there exists h^H inducing an outer automorphism
on Ky so [sy h] — t. By symmetry between s and t, N(K) induces S3 on <X 5>#.

(15.8) Let G=Fί and r a conjugate of s under ί/ contained in Cκ(<t, sy] — <ί, $>.

Set T=(jy Ty $y. Then T contains a unique conjugate of #, which we take to
be Zy and NG(T) is transitive on Γ — <#>.

Proof. <rί, ty/(ty is the center of Sylow 2-group of #, so as <#> is the

center of a Sylow 2-group of G, rs or r$£ is fused to #. By 15.7, ίί is fused to ί,
so we may take z=rs. Now NG(K)=K(N(K) Π N(Γ)) by a Frattini argument,

and by 15.7, N(K) Π N(T) has orbits of length 1, 3, and 3 on Γ*. The orbits of
length 3 are fused in Λ^T1), completing the proof.

(15.9) LetG=F lβ Then CG(*)=<CG«*, ί>), CG«*, *»>-

Proof. Let j3=O2(C(«)) and X=C«Zy ty). By 15.3, ^/<ί> is the exten-
sion of an extraspecial group of order 223 by Co2. So by 15.6, t^Q and XQ/Q
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is maximal in CG(z)/Q. By 15.8, *(E*CC2)-<X *>, so Q=<CQ(t), CQ(s)y and as
XQIQ is maximal in C(z)IQ, the result follows.

(15.10) Let G=F1. Then G=<CG(z), Cc(ί)>.

Proof. 15.6.4.

(15.11) F1 is its own automorphism group.

Proof. Let G=Fλ and A=Aut(G). By a Frattini argmuent A=GCA(t).
By 15.5 CA(t) = CG(t)X, where X=CA(CG(t)). X centralizes C(t)[\C(s), so
|-XΊC^(CG(ί))|=2. By 15.9, y=Cx(CG(ί)) centralizes CG(*), and then by
15.10, y=l. The proof is complete.

(15.12) Let A be quasisimple with A/Z(A)^Fny n= 1, 2, 3, or 5. Then

(1) A satisfies hypothesis II.
(2) A is not admissible.

Proof. If raφS then the outer automorphism group of A is trivial by 15.2,
15.5, and 15.11. If n=5, 15.1 and 2.3 imply (1). The results in this section
show m(C(CA(u)Λ)) <m(C(C A(v)^)) for each pair of involutions u and v in A\Z(A)
with u e C(CΛ(ϋ>Λ) - <v>. Thus (2) holds.

16. The remaining sporadic groups

(16.1) Let G be the small Janko group Jlt Then

(1) G=Aut(G).
(2) G has one class of involutions with representative z.
(3) CG(z)^Z2xA5.

(16.2) Let G be Conway's small group C03, let M be McLaughlin's group Me,
and let A=Aut(Mc). Then

(1) G=Aut(G).
(2) |^:M|=2.
(3) G has two classes of involutions with representatives z and t.
(4) CG(#) is the covering group of Sp6(2).
(5) CG(t)^Z2xM12.
(6) M has one class of involutions with representative z.
(7) CM(z) is quasisimple with CM(#)/<£>^^18.
(8) There is one class of involutions in A — M with representative t .
(9) CM(ί)«Mπ.

Proof. See [9] for (1) and (2) By [10], A<G and G acts 2-transitively on
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the set Ω of cosets of A in G. Moreover (3) holds where we may choose
and t^A — M, with the fixed point sets I(z) and I(t) of z and t on Ω of order
36 and 12, respectively.

Let oo be the point of Ω fixed by A and 0 a second point. Set H=GooQ.
By [10], p. 64, H is transitive on conjugates of z and t in H, so C(z/)/CW) is
2-transitive, u— z or ί. This yields (6) and (8).

(4) and (5) follow from [9]. In particular C(z)RZ)=Sp6(2) and C(tγ^=
M12. Hence as A is the stabilizer of oo, CA(z] acts as O^(2)^SB on /(#)— {00}
and CA(t) acts as Mn on /(Z)— {°°}. The proof is complete.

(16.3) Let G be Lyon's group Ly. Then

(1) G=Aut(G).
(2) G has one class of involutions with representative z.
(3) CG(z) is the covering group of A^.

(16.4) Let G be Held's group He and A=Aut(G). Then

(1) G has two classes of involutions with representatives z and r.
(2) CG(#) is the centralizer of a 2-central involution in the holomorph of E16.
(3) There is a standard subgroup L of G with r^R=Z(L)^E, and L/7?^L3(4).
NG(L)=L(d,fy where rf and / induce diagonal and field automorphisms on
L/Ry respectively.

(4) \A:G\=2.
(5) There is one class of involutions in A — G with representative a.
(6) Z(E(CG(a)))^Z3 and CG(a)IZ(E(CG(a)))^S7.

Proof. (l)-(3) are well known and are contained in, or can easily be de-
rived from [22].

Let T=^R8 be a distinct conjugate of R contained in L, and set S=CL(RT).
Then 5 is a Sylow 2-group of L and of L*. Now \Aut(L): AutG(L)\<2 with
S/R self centralizing in Aut(L). So CA(S)=TCA(L). Let X=CA(L). Then
X acts on L8 and centralizes 5, so X=RCx(Lg). By [5], He is the unique group
generated by a nonnormal standard subgroup isomorphic to L, so G=<L, !/)>.
Hence -X"=/ϊ. As ^to(L) : AutG(L) \ < 2, a Frattini argument shows A:G\<2.
The existence of an outer automorphism is known and establishes (4). Moreover
we have shown RT—CA(S), and there exists σ^A — L inducing a graph auto-
morphism on L.

Let P be a Sylow 3-group of N(S)^NA(L). Then NA(P}^N(L) = PD,
where D^E±. So we may take Z)=</, σ>. In particular σ and a=σf are
involutions.

We may assume #eC(β). Then a induces an outer automorphism on
CG(z)/O2(CG(z))=C^L2(7), so all involutions in aC are fused to aO2(C(z)). a
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inverts an element c of order 7 in C and c acts without fixed points on
O2(C(z))l(zy so by 2.1 in [4], each involution in CA(z) — G is conjugate to a or
az in C(z). Finally we may choose z^Rt, where <^>— [T, ά\. This proves (5).

JV(L)nC(σ-)-<r>X Y where <r>=[#, σ] and y-<TC(<r)nL>^55. By (5),

σ*=a, some^GEG, so y*^X=<flcw>.

Let £?=</,£> be ^-invariant. CQ(a) = <jR, ί,/>^Z2χD8, where <ί> =
[Γ, α]. In particular .R is weakly closed in CQ(a). As Cx(r*)^S5 and Λ is

weakly closed in a Sylow 2-group CQ(Λ) of CG(a) Π N(R), Theorem 3 in [2] im-

plies <r*, XyiZ(X)^S1. As C(Λ<α»-O2/(C(Λ <«>)), CQ(a)£<r*,X>, and a
Sylow 3 -group of C(R(ay) is of order 27, (6) follows.

(16.5) Let G be the sporadic Suzuki group Sz and let A=Aut(G). Then

(1) G has two classes of involutions with representatives z and r.

(2) CG(*) is the extension of Qz by Ωe(2).

(3) There is a standard subgroup L of G with r^R=O2(CG(L))^E4 and

L^L3(4). NG(L)=RL^y) *> where <#, 3;)= CG(L)^A^ [R} *] Φ 1, and * induces
a graph-field automorphism on L.

(4) |Λ:G|=2.
(5) There are two classes of involutions in A — G with representatives σ and σr.

(6)
(7)

Proof. (l)-(3) are well known (eg. [28]).

Let T=R8 be a distinct conjugate of R contained in CG(R)=RL and set
S=CG(RT). Then S^Syl2(RL) and by symmetry S^Syl2(TL8). Moreover

Z(SΠL) is the centralizer in Aut(L) of SΓiL. So CA(S)= TX, where X =

CA(LR). Then ^Γ acts on L^ and centralizes S, so X=RCx(TLg). By [5], fe
is the unique group generated by a nonnormal standard subgroup L^L3(4) with

m(C(L))> 1, so G=CRL, ΓL*>. Hence ^=#

Without loss choose z^Z(S) and set H=CG(z). Then CΛ(ίί)^CΛ(5)=

ΓJR, so C^(JΪ)=<^>. Hence as Aut(H)^Os(2)IE^ by a Frattini argument,

\A: G\ <2, with CA(z)^O^(2)IQz in case of equality. An outer automorphism

of G is realized in Coιy so (4) holds.

Next Δ— RG Π RT is of order 4 with 7VG(Δ)^54. In particular if x induces
an involutory automorphism on RT centralizing R then as x centralizes a mem-

ber of RT Π L, x centralizes a hyperplane of RT and then fixes each member of

Δ. Thus [x, RT]=l. Similarly [x,RT] = I if [x, Γ] = l, so if [x, L] = l then

x^CA(S)=RT. Thus CG(L)=CA(L), so there exists σ-e^4 inducing a graph

automorphism on L. σ centralizes Γ, so [σ, RT]=l. Thus N(L)Γ\C(σ )^
N(Lg)f]C(σ)^A4xA5. Now -ZV^σ) is standard and nonnormal in CG(σ), so by
3.10, K=(Rc^y<=^HJ. e induces an outer automorphism on K, so CG(σ)^
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Aut(HJ). Similarly N(L) Π C(σr)^Z2(E4 x AB), so by 3.10, CG(σr)^Aut(M12).
Let/=Cχ#) and Q=O2(H). JIQ^Ωϊ(2). Define the rank of an involu-

tion in J/Q to be the dimension of its commutator space on 0/<X>. There are
two classes of involutions mJ/Q — H/Q with rank 1 and 3 respectively. As
C(σ) Π C(z)^SJQ8*D8, has σ rank 1. Moreover σ is fused to σz in C(σr), so all
involutions in σCQ(σ) are fused. Hence all involutions in J of rank 1 are fused
to σ. Hence σr has rank 3. Thus all involutions in σ^<2/<X> are fused to
<crr, #>/<#>, and hence all involutions of rank 3 are fused to σr. This completes
the proof of (5), and then of lemma 16.5.

(16.6) Let G be the J?udvalis group Ru. Then

(1) G=Aut(G).
(2) G has two classes of involutions with representatives % and r.
(3) CG(z) is the extension of a group of order 211 and class 3 by S5. <X>—

CU
(4)

Proof. See [6], page 547 for (1). (2)-(4) are well known; see for example
[8], page 53.

(16.7) Let G be a group of O'Nan Type, and set A=Aut(G). Then

(1) \A:G\<2.
(2) G has one class of involutions with representative z.

(3) Z(£(C0(*)))*Z4, E(CG(z))/Z(E(CG(z)))^L3(4), and CG(*)=£(CG(*))<ί>,
where t is an involution inducing an outer automorphism on E(C(z)).
(4) If AΦG there is a unique class of involutions aG^A — G. Further CG(ά)

Proof. [27].

(16.8) Let G be Conway's large group Co^ Then

(1) G=Aut(G).
(2) G has 3 classes of involutions with representatives #, ί, and r.
(3) CG(z) is the extension of £>4 by ΩJ(2).
(4) CG(t) is the extension of E2ll by Aut(Ml2).
(5) CG(r)=<j>(ΛxL) where RxL^E4xG2(4), and ,9 is a conjugate of r with
[R, s] Φ 1 and inducing an outer automorphism on L.

Proof. [28].

(16.9) Let A be quasisimple with A/Z(A) isomorphic to J19 Me, C03, Ly, He,
Sz, Ru, Co1? or of O'Nan Type. Then
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(1) A satisfies hypothesis II.
(2) Assume A is T admissible. Then ACAT(A)ICAT(A)=Ά^He, Sz, Ru, or
Cσly and T=O2(CA(L)) where L is standard in A.

Proof. We have shown Out(A)=l unless Ά=A\Z(A} is Me, He, Sz, or
ON, in which case <ά> is Sylow in C Aut(A)(E(C(a))}. So 2.3 implies (1).

Assume A is T-admissible. Then T centralizes O2(CΛ(?))^ for each f e ϊ1*.
Inspecting the possible centralizers we get (2).

17. Proof of the Main Theorem

Theroem 17.1. Assume A is standard in G with A/Z(A) a sporadic group in
K, and m(CG(A))> 1. Then A<G.

The proof involves several reductions.

(17.2) A/Z(A)^M12.

Proof. Assume AIZ(A)^M12. By Theorem 3 in [2] there is a conjugate
K**K=CG(A) such that a Sylow 2-group T of K*ΠN(A) is of 2-rank at
least 2. By 9.17.2, Z(A)=1 and T= <ί, έ> where £<Ξ^4 and δ induces an outer-
automorphism on A. K<C(t), so T^.Syl2(K8) and 71 centralizes a Sylow
2-group Λ of, K, by Theorem 2 in [1]. As the outer automorphism group is of
order 2 we conclude R<Z(O2(N(R))). But T<=RG and there exists an involution
a<=A with [a, Γ]Φ1.

(17.3) A satisfies hypothesis II.

Proof. 9.17, 10.2, 11.6, 12.8, 13.9, 14.3, 15.12, and 16.9.
With 17.3 we may adopt the notation of section 3. In particular K=

CG(A), R<=Syl2(K), and T^Syl2(Ks) with R Γ-invariant. By 3.9, A is Γ-ad-
missible. Hence by 9.18, 11.6, 12.8, 13.9, 14.3, 15.12, and 16.9:

(17.4) A/Z(A)^M2,y HJ, He, Sz, Ru, or Col9 and T is a 4-group with its pro-
jection on A/Z(A) uniquely determined up to conjugacy.

(17.5) Z(A) is of odd order.

Proof. The multiplier of M24 and He is trivial; the 2 part of the multi-
plier of Ru HJ, Sz, and Co^ is of order 2. (eg. [9], [17]). In the latter 4 cases
the involutions in A/Z(A), upon which the elements in T* project, lift to elements
of order 4 in a cover of A/Z(A) over Z2. This contradicts 3.5. For Co1 this
fact appears in [28], p. 15. The coverings of Sz and HJ are contained in the
covering O of C0X with the appropriate 4-grouρs identified, so the remark
follows for Sz and HJ. For Ru we rely on a personal communication from D.

Wales.
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(17.6) If A/Z(A)^M24, He, S*, or Co,, then T<A.

Proof. If A/Z(A)^M2,y He, Sk, or Co» then for ίe T*, CΛ(ί)^CΛ(Γ), so
by2.9,^ΠΓφl . Now by 3.6, Γ<A

(17.7) AIZ(A)^M2,oτHe

Proof. Assume ^4/Z(^)^M24 or He. By 17.6, Γ<A By 9.18 and 16.4,
T< CA(Ty. But NG(T)IA8 is solvable, so Γ< C(AS) Π ̂ <Z(̂ ), against 17.5.

(17.8) TftA=l.

Proof. By 17.4 and 17.7, A/Z(A)^HJy Sz, Ru, or Co,. By 3.6, either
T<A or ΓΓI-4=1. Assume T<A. There exists ataA such that | TAΓ( TTa\
=4. Hence by 3.6, TaΠAg=ί. But then T°8~1Γ\A=l.J impossible by 3.6,
since Tag~l projects on an ^4-conjugate of T.

We now derive a contradiction, completing the proof of Theorem 17.1.
By 17.4, 17.6, and 17.8, A/Z(A)^HJ or Ru and T Γ) -4=1. The group V gene-
rated by a maximal set Δ of commuting conjugate of R containing R and T is
of order 64 or 128 respectively. As T Γ\A— 1, Δ is of order 13 or 25, respec-
tively and Q*=O2(NA(V))* is elementary of order 4 or 8, respectively, and acts
semiregularly on Δ. Moreover X*=(NA(V), NAg(V)y* is 2-transitive on Δ, so
by a result of Shult [29], | Δ | — 1 is a power of 2, a contradiction.

We have established the Main Theorem except in the case where A/Z(A)
is an alternating group. Here we appeal to the main theorem of [3]. Thus
the proof of the Main Theorem is complete.
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