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1. Introduction and notation

Let G be a finite group containing a standard subgroup of known isomor-
phism type, centralized by a 4-group. Then it is shown that G is a known
group or G is of Conway Type. The proof requires information about the
classes of involutions and centralizers in the automorphism groups of the known
sporadic groups, and that information is summarized below in tabular form,
as it is of independent interest.

The main theorem is a step toward the classification of finite groups of
component type. To put the result in the proper setting we include the follow-
ing definitions and background material.

A group A is quasisimple if A is its own commutator group and, modulo
its center, A is simple. A component of a group is a subnormal quasisimple
subgroup. The core of a group is its largest normal subgroup of odd order.
A 2-component of a group is a subnormal subgroup A4 such that 4 is its own
commutator group and A is quasisimple modulo its core. G is of component
type if the centralizer in G of some involution contains a 2-component. This
is equivalent to requiring that the centralizer is not 2-constrained.

The following important conjecture of J. G. Thompson seems close to
being established:

B-conjecture: Let G be a finite core free group. Then 2-components
of centralizers of involutions are quasisimple.

A subgroup K of G is tightly embedded in G if K has even order while K
intersects its distinct conjugates in subgroups of odd order. A standard sub-
group of G is a quasisimple subgroup 4 of G such that K=Cg(A4) is tightly
embedded in G, Ng(A4)=Ng(K), and A commutes with none of its conjugates.
It is shown in [1] and [14] that:

Component Theorem. Let G be a finite group of component type
satisfying the B-conjecture and contained in the automorphism group of a
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simple group. Then, with known exceptions, G contains a standard subgroup.

Let X consist of the simple Chevalley groups, of both ordinary and twisted
type, the alternating groups, and the 25 known sporadic groups listed below in
Table 1. X contains all the finite simple groups known at the moment. In-
deed existence proofs for two of the groups, and uniquencess theorems for still
others, do not now exist, and in those cases we include in X all simple groups

satisfying the defining properties of the (potential) group.

Theorem. Let G be a finite group with O(G)=1, A a standard subgroup of
G, and X={AC®>. Assume Z(A)= K and the 2-rank of the centralizer in G of A
ts at least 2. Then the pair A,X is one of the following:
(1) 4=X.
(2) A is an alternating group A, and X is A,.,.
(3) A4 is L(4) and X is the Mathieu group M,,.
4) A is L(4) and X is the Hall-Janko group H]J.
(5) A is L(4) and X is the sporadic Suzuki group Sz.
(6) A is a covering of L(4) and X is Held’s group He.
(7) A is Sz(8) and X is Rudavalis’ group Ru.
(8) A is G,(4) and X is of Conway Type.

A group X is of Conway Type if X is simple, X possesses a standard
subgroup A=G,(4), and there is a subgroup B of order 3 in A4 such that
E(C 4(B))=L==SL(4) and {L¢“®>|B is isomorphic to Sz. Presumably a group
of Conway Type is isomorphic to Conway’s largest group Co,.

The case A/Z(A)=L,(4) was done by Cheng Kai Nah [5] and the case
A|Z(A) a Bender group was done by Griess, Mason, and Seitz [19]. We ap-
peal to their work rather than duplicating the proof.

Certain information about the involutions in the automorphism group of
A is necessary to the proof. If A4 is a Chevalley group of odd characteristic
this information is minimal. The appropriate facts are established in Section
4. If A is a Chevalley group of even characteristic, detailed information is
required. This information is contained in [4], which is crucial to the proof.
Less detailed information is required if 4 is a sporadic group. We do however
determine the conjugacy classes of involutions in the automorphism group of
A and the general nature of the isomorphism type of the centralizer of a re-
presentative in each class. These facts are summarized in Table 1. Column
1 gives the simple group G. Column 2 gives the order of the outer automor-
phism group of G. Columns 3 and 4 give the number of classes of involutions
contained in G and in Aut (G)-G, respectively. Column 5 gives the general
isomorphism type of the centralizers. By convention the centralizers of the
classes in G are listed first. G,/G,_,/-:- denotes a group with normal series
1=H,{H,{--<1H,=G with H,|H,,_ =G,. Q"D™ denotes the central pro-
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Table 1
G {0Out(G)| cilﬁssgs clasistissc?ot centralizers
M, 1 1 0 GL,(3)
M,, 2 2 1 S3/Q? Zy,XSs ZyXAs
M. 2 1 2 Si/Eye L3(2)|Eg FolEss
My, 1 1 0 Ly(2)/Ese
M, 1 2 0 L3(2)/D?* Ss/Ee
J1 1 1 0 ZyX Ay
HJ 2 2 1 A,JOD E,xAs PGLy(7)
Js 2 1 1 As/QD  L(17)
Me 2 1 1 Ay|Z, My,
Ly 1 1 Y AnlZ,
HS 2 2 2 S5/0%*Z, ZyX Aut(Aes) Ss/Eie Ss
He 2 2 1 Ly(2)|D? Zy|Ls(4)|Ey Si/Zs
Sz 2 2 2 26203 Zy/|Ls(4)XE, Aut(HJ) Aut(M;z)
Ru 1 2 0 Ss/211 Sz(8)X E,
ON 2 1 1 Zy|Ls()|Zy T,
Cos 1 2 0 Spe(2)|Z, ZyX My,
Co, 1 3 0 Spe(2)|Q* Ag|EieXD?  Aut(Ae)/E210
Co, 1 3 0 2520 Aut(My5)|E;nt Z,|Go(4)X E,
M(22) 2 3 3 Ue(2)|Z, Z;]Uy(2)|Z3X Q* 2-constrained 216.33
Aut(24(2)) ZpXSpe(2) Og (2)/Ee
M(23) 1 3 0 M(22)|Z, Zp|Us(2)|Es Ss/Ud(2)/EsX Q*
MQ@4y 2 2 2 Z,|M(22)|Z; S5|8¢ (3)|Z5/Q° M(23) S3/Us(2)/E4
Fs 2 2 1 Z,|HS|Z, Aswreath Z;/Q* Sy
F, 1 1 0 Ay|O*
F, 1 4 0 ZoPPE((D)|Zy Zy|Fy(2)X EsCop| D™ Of (2)/E,16/E59
Fy 1 2 0 Fy|Z, Co, Q%

duct of 7 copies of the quaternion group of order 8 and 7 copies of the dihedral
group of order 8, with identified centers. E, is an elementary abelian group of
order 7.

Most of the information listed in Table 1 is already known and much
appears in the literature. Some is collected in an unpublished table of N.
Burgoyne. Proofs and references to proofs of the facts in Table 1 appear
within. In many cases more detailed information is included.

In addition to the notation and terminology defined above we also use
Bender’s notation F*(G) for the Generalized Fitting subgroup of G. F*(G)=
E(G)F(G), where E(G) is the join of the components of G and F(G) is the
Fitting subgroup of G. L(G) is the join of all 2-components of G. G
denotes the smallest normal subgroup H of G such that G/H is solvable with
abelian Sylow 2-groups. Given a permutation representation of G on a set
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Q, G® denotes the image of G under this representation.

A quasisimple group A4 satisfies hypothesis II if whenever a noncyclic
elementary abelian 2-group T acts faithfully on 4, with T Sylow in a 2-nil-
potent tightly embedded subgroup of T4, then T < AC(A4).

Q4(2™) is the commutator group of the n-dimensional orthogonal group
over GF(2™) defined by a quadradic form of sign €.

I(x) is the set of fixed points of a permutation x.

The concept of “admissibility” is defined in Section 2.

2. Preliminary results

In this section we collect a number of lemmas which will be used in the
proof of the main theorem.

(2.1) Let K be tightly embedded in G, ReSyl(K) and ®(R)=1. Assume
F*(G) is simple and K 4G. Then O0(K)R is tightly embedded in G. Further
Ck(r) is solvable for each r&R?.

Proof. As F*(G) is simple and K is not normal in G, Theorem 4 of [1]
implies either K is 2-constrained or O*(K)/O(K)==L,(2"). In the former case
0O, (K)=O(K)R is tightly embedded in G. In the latter case RO(K) is C(r)-
invariant for each r& R* and N(RO(K)) is transitive on R¥, so RO(K) is tightly
embedded in G.

The following will be used as an induction tool in the proof of the main
theorem:

(2.2) Let K be a solvable tightly embedded subgroup of G and Re Syl,(K).
Assume L is a quasisimple subgroup of G normal in N(K) and Re Syl,(C(L)).
Then either

(1) L is standard in G, or
(2) <L¢>=Lx L8 R<LZ4, and L is a Bender group.

Proof. Let H=C(L). L<IN(K)so N(K)<N(L). As ReSyl,(H)and K
is tightly embedded in G, it follows that H is tightly embedded in G. Also
N(H)=H(NH)NN(R))<HN(K)<N(L), so N(H)=N(L). Therefore, L is
either standard or there exists a conjugate A=L¢ of L in H, and we may assume
the latter.

Let TeSyl,(L). Then T<L<C(4), so HSC(T)SN(CA)SN(4).
Hence A<<H. Now as R is Sylow in H either 4<T, z(4) < N(K), or
Re Syl,(A) and N 4(K) is strongly embedded in A. In the former case A=
[A,ANR]<K, impossible as K is solvable. Hence R Syl,(4), so that
A=O0Y(H), and 4 is a Bender group. Moreover D=L x A satisfies the hypo-
thesis of Theorem 5 in [1], so that theorem implies that D<G.
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(2.3) Let K be a solvable tightly embedded subgroup of G. Then L(N(K))=
L(C(?)) for each involution t= K.

Proof. 2.1 and 2.7 of [1].

Let T be a noncyclic elementary abelian 2-group. A quasisimple group
A is T-admissible if T acts faithfully on 4, T is Sylow in a 2-nilpotent tightly
embedded subgroup of T4, and

(2.4) Either |T|=4 or N(T*)<C(T*?) for each ac 4.
(2.5) O (C4(8)A<C(T), each t=T*.
Recall X4 is the smallest normal subgroup Y of X such that X/Y is sol-

vable with abelian Sylow 2-groups. A is said to be admisible if A is T-admis-
sible for some noncyclic elementary 2-group 7.

(2.6) Assume 4 is T-admissible, Z(4A)< C(T), and for each t& T¥, F*(C4(t))/
Z(A) is a 2-group. Then T is a T'I-set in AT.

Proof. T &Syl (X), X a 2-nilpotent tightly embedded subgroup of AT.
Let Y=0(X). It suffices to show [T, Y]=1. Let W=Cy(¢). Then W<
CA(O,(C 4(2)), so as F*(C,(2))/Z(A) is a 2-group, W<Z(A). Therefore Y=
{Cy(t): te THLZ(A)KSC(T).

(2.7) Assume the hypothesis of 2.6 with ANT=1. Then [C,(t), T]=1 for
each te T*.

Proof. [C4(t), T]<ANT=1 by 2.6.

3. Standard subgroups

Recall that a quasisimple group A4 is standard in G if K=Cg(A4) is tightly
embedded in G, Ng(4)=Ng(K), and A commutes with none of its conjugates.
In this section we operate under the following hypothesis:

Hypothesis 3.1. A is standard in G and A4 satisfies hypothesis II. O(G)=
1 and m(Cg(A))>1. A is not normal in G.

Set K= Cg(A), N(A)=NgzA)/K, and let ReSyl,(K). By Theorem 3
in [2]:
(3.2) ®(R)=1.
(3.3) Let g&G—N(4) and TSyl (K¥NN(A4)). Assume T+1and R is T-
invariant. Then

(1) Either R has order 4 or T = Syl,(K#) and [T, R]=1.
(2) If TeSyl(K#é) then T<AK
(3) There exists g G —N(A) with T Syl,(K*).
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(4) Cr(T)=T.

Proof. [2].

Given 3.3 we may choose g& G—N(A) such that a Sylow 2-group T of
KéNN(4) is Sylow in K#, and T centralizes R. Define V to be the weak
closure of R in the centralizer of R6N Cg(RT). This notation is maintained
thorughout this section.

(3.4) <A®>=F*(G) is simple.
Proof in [3].

(3.5) (1) V isan elementary abelian 2-group .
(2) V=R(VNA)=T(V N 4%).

Proof. (1) is immediate from 3.2 and the definition of V. (2) follows
from 3.3.3.

(3.6) Assume

(¥) For each R*<V, N,«(V)[Ca«(V) has a characteristic cyclic subgroup
regular on (V' N 4%)*.
Then either
(1) [NuV), VI=T, [Nas(V), VI=R, and RENV={R, T}.
2) [INuV), VI=[Nus(V), VI=V,,
V—-Ve= U 0Ot

QERENYV
and N(V)®"V> is 2-transitive.

Proof. Let X=<O*N4(V), O(N4¢(V)>. Then X in tis action on V satis-
fies the hypothesis of lemma 3.1 in [1], so that lemma implies V=[N 4(V), V]
is X-invariant, and either X acts on R or IV —V, is the disjoint union of g=| V|
conjugates of R¥ under X, with N (V) transitive on R*— {R}. Notice that in
this second case V, is the only nontrivial X-invariant subspace of V.

Suppose R is X-invariant. Then R and V, are X-invariant subspaces of
V, so applying the remarks above to 7', T must also be X-invariant. As V,
is the unique N 4(V)-invariant subspace disjoint from R, T=V,. Similarly R=
[V, A4NN(V)]. Moreover in this case R and T uniquely determine each other
inV.

Suppose R is not X-invariant and R°=Qe(R°NV)—R*. As V-V, is
the disjoint union of conjugates of R* under X, Q<V,. Hence applying the
argument above to the pair R, Q in place of the pair R, T, we conclude Q=V,
and R=[V, A*NN(V)]. Similarly T=[V, A* N N(V)], a contradiction.

It follows that either (1) or (2) holds, and the proof is complete.

(3.7) Assume W< A4 such that
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(a) L=E(C4(W)) is quasisimple.

(b) Re Syl (C(WL)N N(R)).

Then either

(1) L is standard in C(W¥), or

(2) <LW»=LxL° R<L¢, and L=L,(|R}|).

Proof. By 2.1, 3.2, and 3.4, O(K)R is tightly embedded in C(W). (b)

implies R is Sylow in the centralizer of WL. Hence 2.2 yields the desired
result.

(3.8) Assume the hypothesis of 3.7 with T<RL, T NL=1, R not normal in
C(WT), and if L=L,(|R|) assume RCN L is empty. Then L is standard and
nonnormal in C(W).

Proof. Assume L is not standard in C(W). Then by 3.7, L=L,(|R|) and
R is contained in a conjugate L° of L. But then R°"*R¢NL, contrary to
hypothesis.

So L is standard. Assume L<IC(W). Then H=C(LW)<C(W). T<RL
and TNL=1,s0 RL=TL with R=0,(TLNH)<IC(TW), contrary to hypothesis.

Recall that for a group X, X is the smallest normal subgroup Y of X
such that X/Y is solvable with abelian Sylow 2-groups.

(3.9) LettsT* Assume the commutator group of Out(4) is of odd order.
Then

(1) (O(CAM)CA2)) <A*<(T).
(2) O(Cx(2))*<C(T).
(3) A is T-admissible.

Proof. As the kernel of the homomorphism of A4 to A is the center of AT,
OY(C4(7))=0%(C4(t))/Z(A4). Hence (1) implies (2). Also (1) and 3.2 and 3.3
imply (3). As the commutator group of Out(A) is of odd order, O*(C 4(2))C 4(2)’
< O*(N(A%))=D and D/A? has abelian Sylow 2-subgroups. By 2.1, K¥N C(¥)
is solvable, so (1) follows.

(3.10) Assume A==L,(4) with R°N 4 empty. Then either

(1) <A¢>=H], or
(2) <A®>==M,, and there exists an involution ¢ fused into R inducing an outer
automorphism on A4 and acting nontrivially on R.

Proof. [3].
(3.11) Assume A is a Bender group. Then one of the following holds:
(1) 4<G.
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(2) A=L,4)and <4>=M,,, H] or A4,.
(3) A=Sz(8) and <A®>=Ru.

Proof. [19].

4. Chevalley groups of odd characteristic

Hypothesis 4.1. G=G(qg) is a Chevalley group with g=p° odd and G==L,(q)
or ’Gy(¢q). Let A be a root system, U Syl ,(G), H a p-complement in Ng(U),
and for s€ A let U, be the corresponding root subgroup of G and V,=Q,(U,).
Let 7 be the root of highest height in A, V=V,, J=<V, V_,>, and {t>=Z (]).

(4.2) Assume 4.1. Then

(1) J=SL,(g)and teH.

(2) Ng(J)=XJH where [X, J]=1 and X is the Levi factor of the parabolic
subgroup P=Ng(V).

(3) If G is not isomorphic to Q;(g) then Ng(J)=Cq(2), so that J is tightly em-
bedded in G.

4) If G=0i(9)+Qi(g) then X=X, J* for some weW, and Cq(t)=
X, JJ Hw).

(5) If G=Q3(q) there exists a 4-group W, in W such that X]J is the central
product of four conjugates of J under W, and Cg(t)=XJHW,.

(6) The isomorphism class of X and the weak closure of V' in the centralizer
of ¢ are given in Table 4.2.

Proof. Let G have rank /. Statement (1) is well known. Write

G= 5} UHuwU
Table 4.2
G(q) X KVENCE»
La(g) SLy_(q) XJ
PSPy(q) SP,_2(q) XJ
Ua(q) SU,_-2(q) XJ
23(q) SL3(9)SO5 _4(9) XJ,
unless n=7 or n=8, e=—1, where JJ*.
Gx() SLy(q) J
2Dy(q) SLy(¢%) J
Fyo SPg(q) XJ
2Es(q) SUs(q) XJ
Ee(q) SLe(q)/Zca-1, XJ
Ex(q) SO13(9) XJ

Eg(q) En(q) XJ
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the Bruhat decomposition of G. The representation of elements is unique and
No(J)<Colt)=Co)Nn (D Col)=<Co(), Cx(t)>-

The structure of P is known (eg. [7], [13]). P=QXH, where Q=0 ,(P)
and X is the Levi factor of P. In fact

P= <B) S1s 5 Sioyy Sivny sl>
for some 7, except for G=A4,(q), where
P=<B,s, 5>

Then X=(U.q;: jF1> or (UL, j* 1, I=1) if G=4,(9). If w,is the word
of greatest length in the generators s,, ---, s, of W, then J“=], (A*)*e=A", and
PY=0"XH.

Now Q is special with Q’=V and hence (Q"2)=V*“=V_,. Also O (C(V))
=0X, so X <C(J)<C(2).

Next, ¢ inverts Q/V. This can be checked directly using the structure
of P. An easy proof is obtained in most cases using the results of sections
3 and 4 of [7] and sections 9 through 11 of [13] to note that X acts irreducibly
on Q/V.

It follows that Cy(t)=(UNX)V, C(t)N U*e=(U*NX)V_, and {Cy(?),
Cyui(t))=<Cyp,(t): s€ A>=X]. Also Cy(t) normalizes {Cy (t): s €A>=X].

If X contains no component in J% then Cn(t)<CE)NN(J)<JINP)N
C(t))=JXH. So in this case Cg(t)=<Cy(t), Cn(t)>=JXH=N(J). Moreover
this occurs unless G=Qn(q). Here we use the fact that PSp,(q), U(g), and
L,(q) are isomorphic to Q(q), Q5(g) and Q¢(g), respectively.

In the remaining cases X has the form X=X, J*, where X,~Qn_,(g).
Checking the root system we find w may be chosen to interchange J and J* and
to normalize X,. Morever with the exception of Qg(g), X, contains no compo-
nent in J*. Hence (4) holds. For G=Qj(q), X,=J*1J**1, and we set W,=
{w, w,> to obtain (5). (6) is easy to check.

(4.3) Assume 4.1 and let G be the Universal Chevalley group of type G(g), and
J=<V,, V_,> be defined in G in the same way J and V are defined in G. Then
J is isomorphic to SL,(g) and is tightly embedded in G.

Proof. Let K be the preimage in G of J under the homomorphism of G
onto G. Then K=0?(K)x Z(G) and J=0%(K)= J=SL,(q). Let {z>=Z(]).
It remains to show Ng(J)=Cg(=). It suffices to establish this fact in some
nontrivial homomorphic image G of G. For G22Q(g), set G=G and use 4.2.3.
For G=Qj(q) set G=Spin®(n, g), and check the Clifford algebra (eg. [24], 23.4)
to obtain the result.

(4.4) Assume 4.1. Let S&Syl(G) and 2}={J%: J*NS=Syl,(J¢)}. Then
{3> is the central product of the members of 3.
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Proof. It suffices to prove the corresponding result in the Universal
Chevalley group G of type G(g). By 4.3, J is tightly embedded in G and has
quaternion Sylow 2-groups. Let A={K NS: K&>}. Then the members of
A are tightly embedded in S, so by 2.5 in [2], distinct members of A commute.
Thus for distinct members J and J& in 37, the involution 2# in Z( J¥) centralizes
a Sylow 2-group of J. Hence J<C(2*)<N(J¥). By symmetry J acts on J,
so [J, J1<JN Jo=1.

(4.5) Assume 4.1. Then G=<O,Ng(V), J>.

Proof. Let Q=O0p(N(V)) and M=<Q, J>. As N(Q)=N{V)=0xH
with XH <N(J) we have N(Q)<N(M). Thus N(M ><N(Q), J>=G,so G=M.

Hypothesis 4.6. T is a noncyclic elementary abelian 2-group acting on a
group G and Sylow in a 2-nilpotent tightly embedded subgroup K of G.

(4.7) Assume 4.6 with SL,(¢)=J<G, q odd, and Cr(J)=1. Then [], T]
=1.

Proof. As J<IG and C(J)=*1, J<IN(K). Suppose tT—C(J). Then
[J,t1<KN ], so [],%] is a 2-nilpotent normal subgroup of J. Hence either
[/, 81<Z(]) or g=3 and [ ], {]=0,(J). In the first case J=0°(J)<C(t). The
second case is impossible rs O,(J) is quaternion while K has abelian Sylow
2-groups.

(4.8) Let U be a 4-group acting on a central product L of groups L;==SL,(q),
g odd, which are permuted by U. Assume U moves L,. Then L, <T, ,(L).

Proof. If ¢>3 this is a corollary to 2.8 in [1]. Morever the same proof
works if g=3.

Theorem 4.9. Assume G is quasisimple with Z(G) a 2-group and G=
G|Z(G)=G(q), or G==L,(3) or SL,(3). Assume T is a 2-group acting faithfully
on G and GT satisfies hypothesis 4.6 Then
(1) G=LJ(g), 3<9<9
(2) T<GCG)

(3) Ifg>5then T<G.

Let G be a minimal counter example to Theorem 4.9. We first show
(4.10) G=xL,(9) or *G,(9)-
Proof. If G==*G,(q) then |Out(G): G| is odd and Cgx(#) is maximal in G

with <#>=Z(C(x)) for each involution & in G. Further Z(G)=1. So G=

T, 7(G)<N(K), a contradiction.
So assume G=<L,(q). By 3.5 and 3.6 in [1], T<GC(G), T is a 4-group,
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and ¢<9. Moreover if G=L,(g), ¢>5, then [C4(t), T]#1, so T<G. Hence
we may take G=SL,(q), ¢<9. Now T#={¢:1<i<3} and #,=g;, g; and ¢;
elements of order 4 in G and C(G) respectively with gi=c?=2z generating Z(G).
Then g,c,=t,=t,1,=(g.8,)(c.c,), so g,g,—gs*. Hence 0={g,, g,> is quaternion.
Now z=[t,, g,]=[K, C(t,)]<K, impossible as T acts faithfully on G.

(#11)  G==xLy(q) or *G(g).

Proof. Assume Gz£L,(q) or °G,(q). Then G satisfies 4.1. Take S& Syl,(G)
to be T-invariant with JNS&Syl,(J). Let J, be the preimage in G of J and
set J=0%J,). Then J,=Z(G)]J. We show [T, J]=1. Then T centralizes
V, s0 Q=0 ,(N(V)=T, #(@)=T, +(Q)C(G)|C(G) < N(K)C(G)|C(G), as @ is of
odd order. Hence by 4.5, G N(K)C(G), so as G is quasisimple and KC(G) is
solvable, [G, T]<[KC(G), G]=1, a contradiction.

So it remains to show [T, J]=1. If T acts on J this follows from 4.7 and
4.10. So assume T does not act on J. We show {J7T)> is the central product
of the groups in J7 and hence by 4.8, J<T, #(G)<N(K). Thus [], T|<K.
But as T<EN()), [/, T] is not 2-nilpotent, a contradiction.

Suppose GXG,(q). Then T acts on J€ and we appeal to 4.4. So assume
G=G,(g). Then G has one class of involutions, so we may assume T centralizes
the involution 2 in /. Now O*(Cg(%)) is the central product of Jand L=SL(q),
so again the result follows. This completes the proof of 4.11, and hence also of
Theorem 4.9.

Theorem 4.12. Assume A is standard and non-normal in G with O(G)=1,
m(C(A))>1, and A|Z(A)=G(q), q odd. Then either
(1) A==L,5) and <A°>=H], M,, or A,, or
(2) A=L,09) and <A®>=A,,.

Proof. If A/Z(A) is isomorphic to L,5)=<A; or to L,(9)=A,, Then we
appeal to the main theorem of [3] to obtain (1) and (2). So assume otherwise.

By 4.9, A satisfies hypothesis II. Hence we may adopt the notation of
section 3. A second application of 4.9 implies Z(4) is of odd order, 4/Z(A)==
L,(7),and T<A. Now there euists an involution ac N 4(T)— C(T). As [a, T]
%1, a induces an outer automorphism on 4%. However [¢, R]=1, and by 4.9,
R< A#, whereas an outer automorphism of L,(7) centralizes no 4-group in L,(7).
The proof is complete.

5. A fusion lemma

In this section we assume the following hypothesis:

Hypothesis 5.1. V=RPUPW is a finite dimensional vector space over
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GF(2) with m=|R|>2and ¢=|U|=|W|. X is a group of automorphisms of
V and A x B<INx(R) with 4 and B cyclic groups such that [4, U]=0=[B, W],
A is regular on W¥ and B is regular on U%, and [AB,R]=0. Define

S=UrX, Q=R*, T=U+W—(UUW).
r*

Assume:

(1) For TeQ—{R}, RN T=0 and the projection P(T) of T on U+ W is con-
tained in U¥, W4 or T.

(2) If T<R+U then either T=U and (R+T)NQ={R,T} or TNU=0.
The same holds with U replaced by W.

(3) There exists TeQ— {R} with P(T){cCT.

(5.2) Either

() Z2=V—(U+W)and [Q|=¢’, or
(2) g=m=4and U and W are in Q.

The proof involves a series of reductions. Assume 5.2 to be false.
(5.3) If g=(4B)}, T<Q with P(T)*CT and ¢ and # are in T%, then T#CT.

Proof. #*=T NT* so by 5.1.1, T=T%. Then T=Cr(g)+[T,g]. Cr(g)
is contained in R+ U or R+ W, say the former, so if C7(g)=+0 then P(T)*<T.
Thus T=[T, g]<[V, AB]=U+W. So T*=P(T)<T.

(5.4) If T N (U+W)==0 then T < U-+W.

Proof. By (2) we may take P(T)fCT. Lett=T*N(U+W). ThenteT.
Assume s& T#*—T'. Then s=r+4c, re R ccT". r+c+t=s+t= T* and hence
c+te T by 5.1.1. (4B)" is transitive so there exists g (AB)* with c+41=c*.
Then s¥=s-+t¢,so by 5.3, T<U + W.

(5.5) Let TeO—{R} and k=|T45|.

Then one of the following holds:

(1) T=Uor T=W and k=1.

(2) T*C(R+U)—U or T*C(R+W)—W and k=g—1.
(3) T*cT and k=(¢—1)*/(m—1).

4) P(TycT, TN(U+W)=0, and k=(g—1)".

Proof. This follows easily from 5.1.1, 5.1.2, and 5.3.

Let o and B be the number of AB orbits of type 5.5.1 and 5.5.2, respecti-
vely. By 5.1.2, a+B<L2.
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(5.6) There exists T €Q— {R} with T<U+W.

Proof. If Q—{R}SU+V then |[ZINR+T)|=2(m—1)<|2IN(T+S)|
for all distinct 7" and S in Q— {R}, a contradiction.

(5.7) If a=0 then a=@=1.

Proof. Assume U< but 8=0. Then by 5.4 and 5.6 there exists T'=Q
with T'N(U+W)=0 and P(T)*<T. Hence U, and possibly W, are the only
members S of Q such that | >IN (S+R)| =2(¢g—1). Also R+U=Cy(4)and W=
[V, 4], so W is the unique C(R)N C(U)-invariant complement to R+ U and
hence R and W play the same role with respect to U as U and W play to R.
Thus {R, U} or {R, U, W} is a set of imprimitivity for the action of X on Q.
Let A be the set of imprimitivity containing T, and .S a second member of A.
IN(T+S)=T U S* so T+S=(T+SNU+W)U(TH+S) NR+U)U(T+S)
NR+W)UT US. Hence m=g=4. |A| divides |AB|=9, so |A|=3 and U
and Ware in Q. As this is the second case of 5.2, we have a contradiction.

(5.8) B>0.

Proof. Assume B8=0. By 5.7, a=0. By 5.6, there exists T'€Q with
TN(U+W)=0 and P(T)*cT.

Suppose T'C>). Then (R+S)C) for all S€Q—{R}, whereas there
exists P and Q in QN(U+W) with (P+0Q)<E>Y. So by 5.5, Q={R} U T45.
In particular X is 2-transtitve on Q and by a result of Hering, Kantor, and
Seitz, g—1=r is a prime and X© is contained in the automorphism group of
L,(r*). Further {4, B} is invariant under Ng(R), so (r+1)/2<2 and hence
r=3 and ¢g=4. Let x be an element of order 4 in Nx(R)®. Then x*=y cen-
tralizes the 4-group R and fixes exactly two points of Q. Also y centralizes
vectors u€ U* and we W*# and then the coset R+u-tw. But R+u-+tw inter-
sects three members of ), which must be fixed by ¥, a contradiction.

(5.9) B=2, S=V—(U+W), and |Q|=¢".

Proof. By 5.8, 8>0, so we may assume A=(R+U)NQ is of order gq.
Let R+=Ré=A. Now if Z is an A-invariant subspace of V" then either W<Z
or Z<Cy(A). Further A centralizes R* so A acts nontrivially on U or W%,
Hence W=U? or W=W#. Now R+ U=(R+W)? or (R+ U)?, respectively,
and as U=(R+U)—23, U=W?# or U=U®. Thus {U, W}={U?, W¢}.

Suppose W=U®. Y=(Nx(R), g> acts on {U, W}. Further for R¥%+T<c
(RE+W)NQ, P(TY<T and TeRY. Finally RN(U+W)=0, so R?N(U+W)
=0 forall ye Y. Therefore R¥={R} U((R+W))NQ)UA U T42 is of order ¢*
by 5.5. Next Q=RY or RYUS4E, SesQN(U+W). In the first case 5.2.1
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holds. In the second by 5.5, |Q|=¢’+(¢—1)/(m—1), so |R¥|>|Q—R¥|.
But as N(R)< Y, RY is a set of imprimitivity for X on (, a contradiction.

Hence U=U¥, so AX is a system of imprimitivity for the action of X on Q.
In particular ¢ divides the order 7 of Q.

By 5.5, n=1+a+B(q—1)+v(q—1)* where v is 1, (m—1)7*, or (m—1)"'m,
and a+PB<2. n=0mod ¢ and m>2, so either B8=2, n=¢*, and > =V—
(U4-W), or a=0, B=1, n=¢’, and 3 =(V—(R+W))URE, or a=B=1, n=2g,
m=g, and S1=((R+U)—U) U (U+W)—U).

In the last case N(R+U)=N(U+ W), whereas N(U+ W) moves W, while
we showed above that N(R+ U) acts on W. Inthe second case R4+W=<{V -3
and then R=R-+4-W N Q is X-invariant, a contradiction.

This completes the proof of 5.2.

6. L2

Theorem 6.1. Let A be standard and nomnormal in G with O(G)=1,
A|Z(A)==Lq), q even, and m(Cz(A))>1. Then either
(1) Z(A)=1 and G=Sx.
(2) Z(A)is a 4-group and G==He.

Proof. We prove g=4 and appeal to the theorem of Cheng Kai Nah [5].
By 20.1 in [4], A satisfies hypothesis II. Thus we may choose notation as in
section 3. Set Z=V N A4.

Assume ¢g=2. By 4.9, A=L,(2) and T=Z is a 4-group. Notice N4(T)
=S,. Let a be an involution in N4(T) with [T, a]#1. Then a induces an
outer automorphism on A%, so {a> A*=~PGL,(7). But this is impossible as a
centralizes the 4-group R< A%,

Therefore we may take ¢>4. Hence Z(A4) has odd order. (eg. [9]). Let
teT* and Z,=0,(Z(C4(?))). There exists a nontrivial cyclic subgroup W of
order (q—1)/(g—1, 3) in C,(¢). Let P=Syl,(C4(t)). Then [P, W]=P. As
the outer automorphism group of A is abelian, P=[P, W]<(4K)* and then
Z,=®(P)<A*%. AsZ(A) has odd order, TN A=1. Hence 2.7 implies C 4()=
C4(T),so Z=Z,. Thatis Z is a root subgroup of 4.

Now TPe Syl,((AK)* and W centralizes the root group Z of 4%, so W
induces a group of inner automorphisms on A4¢ with E(C 4¢(W))=E(C o(W))=L
=L,g). In particular R is not normal in C(WT). Also WL is not centralized
by any involutory automorphism of A4, so by 3.8, L is a nonnormal standard
subgroup of C(W). As ¢>4, 3.11 yields a contradiction.

7. Classical groups of even characteristic

In this section A4 is quasisimple with A4/Z(A) isomorphic to L,(q), U.(g),
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Spa(q), or Q5(q), >4, and g even. Exclude L(2)=A4, and Sp,(2)=S,.
If A/Z(A) is orthogonal take n>8.

Theorem 7.1. Assume A is standard in G with m(C(4))>1. Then ALG.

The proof involves a series of reductions. Let G be a counter example.
By 20.1 in [4], 4 satisfies hypothesis II. Thus we may choose notation so
that hypothesis 3.1 is satisfied. By 3.3 we may choose g& G—N(4) so that
T = Syl,(K#?). That is the notation of section 3 holds. The results in [4] show
F*(C 4(a)) is a 2-group for each 2-element ac A — Z(A), so by 2.8, T is a TI-set
in AT. By 3.9, A is T-admissible. In particular hypothesis 22.1 of [4] is
satisfied and we may appeal to 22.2 of [4].

Let P=RT N A4, tT¥ and {p}=PNtR. p is one of a canonical set of
representatives for the classes of involutions in A denoted by j;, a,, b,, or ¢,,
where [ is a parameter associated with p called its rank. Applying 22.2 in [4]
we find:

(7.2) Z(A) is of odd order, P*is fused in 4 and either

(I) P<J=0,(C4p)NC(p2NC(p))), | T|<q and one of the following holds:
(1) J=oa(p) and Aut,(J) is cyclic of order g—1 and regular on J*
(2) A=5Sp.(q), b=b,, I>1, J=a(a)a(b) where a and b are of type a,_, and b,
respectively, and Aut,(/J)=Z,-,x Z,_, is regular on J—(a(a) U a(d)).
3) A=5p.q), p=c;, J=a(a)a(b) where a and b are type a, and b,, respectively,
and Aut,(J) is as in (2).
4) A=Q.(q), p=c,, J=B(p) and Aut,(J) is cyclic of order g—1 and regular
on J*.
or,
(II) T=P has order 4 and either
(5) A|Z(A)=L,_2), t=j,, and T<D(S) where S Syl,(C4(2)).
(6) A=Sp,(2) and t=c,.

a(p) and B(b) are certain normal subgroups of C,(p) isomorphic to the
additive group of GF(q). They are discussed in Section 11 of [4].

(7.3) ¢>2.

Proof. Assume g=2. Then 7.2.5 or 7.2.6 holds. In particular T is a 4-
group contained in A and there is a conjugate a of ¢ under 4 with [a, T]=<{¢>.

As [a, T]=#1, a induces an outer automorphism on A4%. But if A= Sp,(2)
then as #>4, the outer automorphism group of 4 is of odd order. Hence
A|Z(A)=L,(2) and the outer automorphism group of 4 has order 2. Therefore
CA(T)<(KA)*, and then by 7.2.5, T < ®(C 4(T))< 44, a contradiction.

The primary involutions of A are the transvections (typej,) of L,(q) or
U.(g), the transvections (type b,) of Sp,(¢), or the involutions of type a, in Q.(q).
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(74) TNnA=1. Further we may choose T so that p is a primary involution
of A4.

Proof. If 7.2.1 or 7.2.4 holds then by 3.6 either TNA=1 or T=P=].
Suppose 7.2.2 or 7.2.3 holds. Recall V is the weak closure of R in the cen-
tralizer of RSN RT. Then V=R]. Moreover 7.2 and 3.6 imply that hypo-
thesis 5.1 is satisfied and hence 5.2 implies either TN A=1 and there is a
conjugate T, of T under N(V) such that T,N A=1 and P,.=RT,N A< a(p,), for
some primary invoolution p, in J, or a(p,)E RC for some primary involution p,
in J.

Among all G-conjugates T" of R in C(R) choose T so that T=P if possible
and, subject to this restriction, so that the rank / of p is minimal, and if A4 is
orthogonal, choose p to be primary if possible.

Suppose p is not primary. Then by remarks in the first paragraph, 7.2.2
and 7.2.3 do not hold. Next by 11.3 and 11.6 in [4] there is a conjugate P*
of P such that | JJ*N J4|=¢—1 and J/*=a,a, where the groups a; are a or
3 groups of involutions of smaller rank, or if 4 is orthogonal and p is of type ¢,,
the a; are primary.

Assume T'=]. Then |TT*NG4|=¢—1>3, so by 3.6, |TT*NTC¢|=q.
Hence an involution of samller rank, or a primary involution of 4, is contained
in a conjugate of T, contradicting the choice of 7. Thus by choice of
T, R"NA=1 for all x&G. Hence by 3.6, TT* contains | T'|(| T'| —1) involu-
tions in the set > of elements fused into 7% under G.

Now the elements in P are of the form a(b)=a,(bu,)a,(bu,), for fixed
u;= F*=GF(q)!, with b ranging over some additive subgroup B of F. Further
we may pick a so that a(b)*=a,(bu,)a,(bcu,), for some fixed ceF, with a(d)
and a(dc) distinct elements of P* for some d=@. That is a acts on «, and
centralizes ;. 'Thus PP® contains the |T|—1 elements a,(b(c+1)u,), b= 6*,
and the element ,(d(c+1)u,). Soas |TT*NXY|=|T|(|T|—1), some element
of 37 projects on one of these elements, again contradicting the choice of T

Therefore p is primary. Hence if T=], then 11.7 in [4] implies that
T<C,(T)*< A%, a contraciction. This completes the proof of 7.4.

From now on choose T so that p is a primary involution. By 11.8 and
11.9 in [4] we may choose W < C (T) with W=L,(q() and a Sylow 2-group of
W conjugate under 4 to J.

Now A/Z(A)=X,(q), X=L, U, Sp, or Q. If X=L, U or Sp then by 11.8
in [4], L=E(C 4(W)) is isomorphic, modulo its center, to X,_,(g). If AxL,(q)
or U(q)set Y=W. If A=L(q) or U,(q) let Y,=O(C4(W)). Then Y, is cyclic
of order ¢g—1 or g+1, respectively. In this case set Y=Y,W. Then L=
E(C,(Y)) and by 11.8, YL is not centralized by an involutory automorphism
of 4.
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Next suppose A=Qy(q), n>8. Then E(C,(W))=W,x W,, where W,=
L,(g) and W,=Q;_,(¢), by 11.9 in [4]. In this case set Y=WW, and L=W,,
unless n=8. If n=8 let Y=WW, and L=W,. By 11.9 in [4], 4 admits no
involutory automorphism centralizing YL.

In any case it is possible to choose Y so that J<L. In particular T cen-
tralizes Y.

(7.5) L is standard but not normal in Cg(Y).

Proof. As A admits no involutory automorphism centralizing YL, R€
SyL(C(YL)N N(R)). Next X=C,(T)~, so X <C4(R)*. By symmetry, X=
C4¢(R)~. Hence the isomorphism class of C4¢(p)~ is determined and by 11.10
and 11.11 in [4] this implies there is an automorphism ¢ of A# such that
X&=X.

Let w be an involution in W. Notice W<X. Then w is a primary
involution of 4 in X, so by 11.14 and 11.15, #*" is a primary involution of
A8, and a(w®*”)=a(w)®’. Now by 11.8 and 11.9 in [4], Ce(W)=C,(W). In
particular R is not normalized by A*N C(W). Hence if Y=W then 3.8 com-
pletes the proof.

So assume Y =W. If A=L,(q) or U(q) then Y, centralizes W and «a(p),
so Y, induces a group of automorphisms on 4% centralizing 44N C(W). Thus
again R is not normalized by 45N C(Y). So assume A=Q3(g). If n>3 then
we have symmetry between W and W,, so the embedding of W, in AN C(W) is
determined up to an automorphism and again we find R is not normalized by
the centralizer of Y=WW, in A%. Finally if =8 one can again check that the
embedding of Cy(W) in AN C(W) is determined up to an automorphism so
that R is not normal in AN C(Y). The proof is complete,

(7.6) Let B=<RY", Then g=4, A= L,(4), U(4), Sp4), or Q4(4), and
B=HJ.

Proof. By 7.5, L is standard in B and L=+B. Therefore by 3.10, 3.11,
6.1, and induction on the order of G, L=L,(4) and B=H] or Aut(M,,), or L=
L,(4) and B/Z(B)==Sx. '

Suppose L=L,(4). Then A=L,(4), U,4), Sp.4), or Qy(4), so we may
assume Bz Aut(M,,). Now by 3.10 there is a conjugate b of ¢ under B inducing
an outer automorphism on L with [R, b]+1. As[R,b]=+1, binduces an outer
automor automorphism on 4. Then [Y, b]=1 and L{b>==S,. But A4 does not
admit such an automorphism.

So assume L==L,4). Then A=L(4). So C,4(Y)=GL,4). This is im-
possible since Sz does not admit an automorphism of order 3 inducing an outer
automorphism on L.

If A=L,(4) or U,4), let D=Y,. If A=Q5(4), let D=W,. Then BLC(Y)
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<C(D). Moreover by symmetry between DL and DW=Y, H] ={R°PL>=
WePLh < C(D). Therefore

(7.7) B is contained in but not normal in C(D).
(7.8) A=Sp,(4).

Proof. Assume A4 is not Sp,(4). Let S€Syl(W)and X=C(D). Claim
B<Cx(U)=C, for all 13U <S. Set C=Cx(U)/U. Assume first that U=S.
As B=H], R=0,(K) so O,(K)S=RS=R"S=0,(K")S for R*<RS. Therefore
R is tightly embedded in C, so L is standard in C. As B<C, 3.10 implies B=
(L%, sothat B={LC><IC. Next assume U has order 2. Suppose ceC, r& R}
and 7€ RU—R. As Ng(R)<C(U) is transitive on R* we may take r°rU, so
that e C(r)N C(r°)<N(R)N N(R°). Therefore ¢ acts on RR°=RS and then
S=[R,c]. So ceN(rU)NN(S)<N(rU)NN(B) and hence as rU N B={r} we
have a contradiction. It follows that R is tightly embedded in C, and as above,
B«C.

Now E(C¢(B))=E(C(RL))=1, so B=E(C). As this holds for each 15U
<8, B is standard in C. Now 7.7 and 17.1 (which will be proved indepen-
dently) yield the result.

(7.9) A=x5p(9)-

Proof. Assume A=Sp,(q). By symmetry between L and W, (RP> =
E=H]. Let X be a subgroup of order 5 in L. Then Cx(X)=X X H where
R<H=L,4) (eg. p. 429 in [20]). Also Cx(X)NE<Cyx(X)NC(L)=Cgx(L)=4,,
so Cx(X)N E is not normal in Cgx(X) and hence E is not normal in Cg(X). But
C(XW)NN(R)=KX. so by 3.7 W is standard in C(X). Therefore as W<E<
C(X), 3.10 implies E={W*>> (C(X), a contradiction.

This completes the proof of Theorem 7.1.

8. Exceptional groups of characteristic 2

In this section we assume that 4 is a quasisimple group with 4/Z(A4) an
exceptional Chevalley group of characteristic 2, or the Tits group *F,(2)’. We
exclude G,(2), as its commutator group U,(3) was handled in section 4. We
prove

Theorem 8.1. Assume A is standard in G with O(G)=1 and m(C(4))> 1.
Then either
(1) A4A4G,or
(2) <AC> is of Conway type.

By [4], A satisfies hypothesis II, so we may choose notation as in section
3. Let teT*. We begin a series of reductions.



GRoOUPS WITH A STANDARD COoMPONENT oF KNowN TYPE 457

Recall the definition of XA given in section 1.
(82) (CAWYOHCAB)A<A*<C(T).

Proof. Out(A) has odd order so we may appeal to 3.9.
(8.3) Z(A) has odd order.

Proof. Assume not. By [9], A=G,(4), F,(2), or *E,(2).

Assume A=G,(4). Then 4 is the covering group of G,(4) and {z>=Z(A)
is of order 2. By section 18 of [4], A has 2 classes of involutions represented
by root involutions @ and & of long and short roots, respectively. By [16], a is
an involution while 4 is of order 4. Hence by 3.5, 4, so we may tkae F=a.
By 18.4 in [4], C4(@)=LU=C4x(a)~ where U=0,(C#(a)) and L=<L,(4) contains
a conjugate of b. As b has order 4, L=SL,(5), so z=L. By 8.2, C,(a)=
Cu(a)><A%. Then zeA4f and C,(a)=A*NC(z). But one checks that @ has
240 square roots in U, while there are more than 240 conjugates of b in U squa-
ring to 2, a contradiction.

So A=F,(2) or 2E,(2). We take  to be one of the involutions in 13.1 or
14.1 of [4]. Now Z(A) is the kernel of the homomorphism of 4 on to A, so
O0*(C4(F))=0%C4(2))Z(A)/Z(A). Thus by 8.2 O*(Cx(¥))" centralizes T. How-
ever if £3=U,(1)Ug(1) or U,(1)U,(1) in [4], then <Z>=Cz(0*(Cx(%))*). Further
if #=U,(1)U,(1) then Cz(O*Cx(%))*)=<%, %> where # is a root involution. We
conclude F=U,(1)Upg(1) and T* is fused under A.

Then O*(C4(%))=0,,(Cz(?)) and Z(Cx(%))=Z(0*(Ca(%))=<Z,@>. Hence
TN Z(C4(F))=<F>, so by 3.9, TN A1, and we may choose te TN A. By 2.8,
Tisa TI-set in AT, so TNA is a TI-set in A. Let s&€ T—<¢> and set X=
O, (C4(s)). We have shown Z7e&Z(X), so as tX*STNA, TNA has order at
least4. If T'N A has order 4 then as C 4(2) acts on TN 4, O*(C4(t))<CA(T N A4),
so that TN A< Z(C#(¥))=<%>. Consequently |T NA|>4.

By [16], | Z(A4)| <4, so it suffices to show T'N A< Z(A*), that is T N A< 45.
Since ¢ is chosen arbitrarily from (7°N A4)}, it suffices to show t= 4%. From the
presentation of the covering group of A in [16] we see that Z(4)< O,(C4(2)).
Thus as O,(Cx())<O*(Cz(?)), t=O*(C4(t)). However |N(4): AK| <6, K
has an abelian Sylow 2-group T,'and C,()<N(T), so if t& A%, then tA%e
O*(C 4(t))A%| A4, a contradiction. Hence the proof of 8.3 is complete.

Throughout the remainder of this section let p be the projection of ¢ on
A and P the projection of T on 4. We take p to be in the set A of canonical
involutions of A defined in the section of [4] corresponding to 4. There A
is linearly ordered. Define the rank r(p) of p to be its place in that order. In
particular the root involutions have smallest rank. p is said to be degenerate
if A=~F,(q) or ’E,(q) and r(p)=3 or A=F,(¢q) and r(p)=4. Let Z be a Sylow
2-group of Z(C4(t)). Inspecting the centralizers given in [4] we find:
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(8.4) (1) If p is nondegenerate then Aut,(Z)=Z,, and is regular on Z*.

(2) If p is degenerate then Z=Z, x Z, where Z; is the root group of a root
involution, Z —(Z, U Z,)Sp#, and Aut,(Z)=Z, X Z,_,.

(8.5) Assume A==G,(q) and r(p)=2 or A=<E,(g)and r(p)=4or 5. Then T<Z.

Proof. C,(p)=ZC(p)~. By 8.2, Cy(p)*<C(T)and as Z is in the center
of Cu(p), Z<C(T).

8.6) (1) T<Z.

(2) Either TN A=1 or A=~E,(q) and r(p)=4 or 5. or A=G,(q) and r(p)=2.
Proof. If T'N A=1 then (1) holds by 2.9, so we may take p=t. Moreover

by 8.5 we may assume ¢ is not one of the involutions described in 8.6.2. But

now inspecting the centralizers in [4] we find ¢& (Cy4(t))4, so by 8.2, te A%,
against 8.3.

(8.7) ¢>2.

Proof. Assume ¢g=2. Then by 8.6.1 and 8.4, p is degenerate for each
te Tt By 8.4, Z is a 4-group, so by 8.6, T=Z. But then by 8.4, p is a root
involution, and hence nondegenerate, for some t< T*%.

Let V be the weak closure of R in C(REN C(RT)). Let >)={r*: r=R¥
8.8) (1) V=RZ.

(2) If p is nondegenerate then either
(1) T=Zand 2INV=R{UT*or
(i) TNA=1 and V—Z is the disjoint union of ¢ conjugates of R. >'NZ
is empty.
(3) If p is degenerate then there exist G-conjugates T; of R in V such that either
() T;<Z, ANT=1,and XV —Z, or
(i) Ti=Z;.

Proof. (1) follows from 8.4. Moreover V satisfies the hypothesis of 3.6
or 5.1 with CO*(N 4(V'), O*(N 4¢(V)) in the role of X, given 8.4. Hence 3.6 and
5.2 imply (2) and (3).

(8.9) Assume A=G,(q). Then

(1) If (p)=2 then Z=T.
(2) We may choose T so that r(p)=1.

Proof. Let7(p)=2. Assume first T'NA=1. Let B=0,(C4(p)). Then
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B contains ¢* A-conjugates of Z, so by 8.8, the set T" of conjugates of R in RB
is of order ¢*(¢—1)+1. Moreover N 4(T)"=E_:GL,(q) is transitive on I'— {R}
with O,(N 4(T")F) semiregular on I'—{R}. Moreover the same holds in 4%, so
N(T")F is 2-transitive. But now a result of Shult [29] yields a contradiction.

So by 8.8, T=Z. By section 18 in [4], there is a conjugate T of T such
that TT* contains ¢ A-conjugates of 7T and one 2-central root group U. By
8.8 applied to TT“, U=A*NTT* and UN3Yis empty. Therefore U is a 2-
central root group of 4%, so by symmetry between 4 and 4%, (2) holds.

(8.10) Assume A2:G,(¢). Then

(1) TNnA=1and
(2) We may choose T so that p is in a root subgroup.

Proof. Pick p so that Z=T" if possible and, subject to this condition, so
that 7(1) is minimal.

Assume p is not a root involution. Then by 8.8.3, p is never degenerate.
Next by sections 13 through 18 of [4] there is a conjugate Z* of Z such that
ZZ*® contains (¢g—1)° conjugates of p and 2(¢—1) involutions of smaller rank.
Hence if T=Z then |TT*NX}|>(¢—1)’, so by 8.8.2, |[TT*NY}|=q(q—1).
Thus there is a conjugate s of ¢ under G in TT* with 7(s)<r(¢), contradicting
the choice of p. Therefore by choice of T, RN A=1 for all R*"<N(A4). So by
8.8, ITT*NX|=|T|(IT|—-1).

Elements of P have the form p(b)= U, (bu,)---Uy (buy), where Uy, is a root
group, the ; are fixed elements of F=GF(q), and b varies over some additive
subgroup 6 of F. We may choose notation so that ZZ*=UX where U=U,,
and X consists of the elements X(d)=Uy,(,, d)--U,,_,(4s_,d), dEF. Moreover
we may take p(b)*=X(b)U(cb) where p(d) and p(dc) are distinct elements of P*.
Thus PP* contains the |T'|—1 elements U((c+1)b), b=6*, and the element
X((c+1)d). Soas | TT*°NX|=|T|(|T|—1), some element of >} projects on
one of these elements, again contradicting the choice of p.

So p is a root involution. But now by 8.6, TNA=1. The proof is
complete.

(8.11) Assume A=<?F,(q). Then we may pick 7 so that r(p)=2.

Proof. Assume not. Then 7(p)=1. By section 18 in [4] there is a con-
jugate Z* of Z such that [pANZZ*%|=2(¢—1). By 8.10and 8.8, |TT*N|=
[T|(|T|—1). Therefore there exists a conjugate s of ¢ in T7T* with p(s)e
ZZ*—p“. Hence r(p(s))=2.

If A=G,(q) pick T so that 7(p)=1 and if A==F,(q) pick T so that r(p)=2.

In the remaining cases choose T so that p is a root involution. Let r& RE.

(8.12) C4(T)>=C 4s(R)~ and r(#")=r(p) for some v < Aut (A*).
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Proof. By 8.2, Cx(T)"<C¢(R)*. By symmetry between R and T we have
equality. Now inspecting the centralizers in [4] we find C,(T)~ determining p
up to conjugacy in Aut(A).

We now define a subgroup Q or Cu(T)~. If A=G,(q) or *F(g), or if
A=*D(q) and r(p)=2, let O be a Hall subgroup of order g—1 in Cy(T)~. If
A=<*D(q) and r(p)=1, let O be a Hall subgroup of order ¢®4-g+1 in C4(T)".
In all other cases let Z, and Z, be A-conjugates of Z centralizing T such that
D={Z,, Z,>=L,(q), and let Q be a Hall subgroup of order g—1 in D. Set
L=E(C4(Q)). By [4], L is described in Table 8.13:

Table 8.13
A | Gig) a*4 | Gu®)|3Du@)|*Du(@) | Fula)| Fua)| *Ee(@) | *Es@)| Eoe)| Ex@)| Exo)
L L(q) | SLy(4) | Ls(q) La(@® | Lo(q) | Spe(@)| Us(a)' 25 (@)| Le(q) | 2i5(q)| Ex(p)
wp) | 1 }1 1 2 2 [tor2l 1 2 1 1 1

(8.14) L is standard but not normal in C(W¥)

Proof. By 3.8, 8.9, and 8.10 it suffices to show R is Sylow in N(R)N
C(LQ), and R is not normalized by C 4¢(Q).

Suppose x is a 2-element in (N(R)N C(LO))—R. We may assume x’€ R
so & induces an involutory automorphism on A. By [4], L=0%C%(@)), so %
induces an outer automorphism on A. Out(*F(q)) is of odd order. If A=G,(q)
or *D,(q) then by 19.2 % is a field automorphism and Cy(x)==X(g,) where
L=X(g). Finally if A has rank greater than 2 then x acts on E(C4(L))=D
and as [x, Q]=1, x centralizes D. But inspecting the possibilities for x given
in section 19 of [4], E(C o(D<x>))<L.

It remains to show R is not normalized by 4N C(Q). By 8.12, 0<Y=
C45(R)~ and r(7)=7(p) for some y<= Aut(A?). Then Q is contained in a Levi
factor X of Y. #»(#)=r(p), so X centralizes a subgroup D,={Z, Z,> = L(q).
Thus D,< A*N C(Q) and D, does not normalize R<TZ. The proof is complete.

(8.15) A==G,(4) and {L">=B is isomorphic to Sz, modulo its core.

Proof. Let B={Lc">, By 8.14, 8.12, 6.1, and induction on the order of
G, L=SL,4) and B/Z(B)=Sz. Hence A=G,(4) or °D,(4). In the latter case
let Y be a Sylow 3-group of C,(T) centralizing W. Then Y/Y N W induces a
diagonal automorphism on L. However B/Z(B)=<Sz does not admit an auto-
morphism of order 3 centralizing R and inducing a diagonal automorhpism on L.

(8.16) G is of Conway type.

Proof. 8.15 and 8.9.
This completes the proof of Theorem 8.1.
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9. The Mathieu groups M,

In this section G is the Mathieu group M,, acting 5-transtitively on a set
0={1,2, .-+, 24}. 'The following facts can be found in section 4 of [32]:

(9.1) G has one class 2¢ of involutions fixing 8 points and one class ¢¢ of fixed
point free involutions. z is 2-central.

(9.2) Elements of order 3 centralized by ¢ are fixed point free.

G,,, is isomorphic to L,(4) and acts on Q,=Q— {1, 2, 3} as on the points of
the projective plane PG(2, 4) over GF(4). Choose z&€ G,,; and let A=1(2) N Q,.
Then A is the axis of z in PG(2,4). Let E be the subgroup of G,,; generated
by all elations with axis A. Then E=FE,, is the pointwise stabilizer in G,,;, and
hence also in G, of I(z). So E<IC4(2). Next G,,, has one class of involutions
and hence is transitine on 2°NG,,,. So C(2)!® is 3-transitive on its 8 points
and hence isomorphic to the holomorph of E;. The stabilizer of a cycle of z is
a compliment for E in C(z). Moreover E=C(e);,, for each ec E*, so N(E) is
transitive on E* and by an order argument N(E)/E=GL,(2). Summarizing:

(9.3) Grp=E=E,;and N(E)|[E=GL,(2). Cg(2) is the split extension of E by
the holomorph of E,.

The following facts can be found in lemmas 2.17, 5.4, and 5.5 of [22]:

(94) C(t)=RX where E,=R<C(t), X=S,, and R=[R, X]. There is a
4-group UIC(2). <tp=2Z(C(2)).

Now the set I" of orbits of U on € is of order 6. If xis an element of
order 5 then I(x)is of order 4, so I(x) is one of these orbits and X is transitive
onT. Thus

(9.5) UX is transitive on the 12 cycles of ¢.

(9.6) G,==M,, has one class 2¢: of involutions. G, C(2) is the split extension
of E=E by Ly2).

As G has one class 2¢ of point fixing involutions and Cg(2)"*® is transitive
the first remark follows. As C(2),”® is a complement for O,(C(2)"®) in C(z)"*®
the second remark follows.

Next let G,,=L=M,, and set A=G({1, 2}). By [9],

9.7) A=Aut(M,,).

As G*® is 5-transitive we may choose t 4 and u2°N(A—L). As E is
regular on Q—F(2), Cs(2) is transitive on the cycles of 2. By 9.5, Cq(2) is
transitive on the cycles of . Therefore:
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(9.8) t4 and u# are the classes of involutions in A—L under L. =zF is the
unique class of involutions in L.

The stabilizer of 1 and 2 in Cg(2)!® is the stabilizer in L,(2) of 2 and is
isomophic to S,. Hence

(9.9) C.(2) is the spit extension of E=E by S, and hence is isomorphic to Z,
wreath S,.

As the stabilizer of a cycle of z is a complement for E in Cg(2) we get:
(9.10) Cy(u) is the holomorph of E,.

Recall C4(2) acts as PGL,(5) on the 6 orbits I(x)¢® of U, where x is an
element of order 5. Then R is in the kernel of this action and the pointwise
stabilizer of a cycle ¢ of ¢ in I(x) is [x, R]X where X is of index 2 in C(<{x, tD).
Thus

(9.11) Cy(2) is the split externsion of V'=~E by the holomorph of a cyclic
subgroup <{x) of order 5 with V=[V, «].
As a final remark notice that by 9.3

(9.12) N(E)/E=S,.

Witt shows in Satz 9 of [33] that there is a subgroup K of G isomorphic
to M,, acting on Q with two nonequivalent orbits I' and I interchanged by an
involution b of G acting on K. By [9] | Aut(M,,): M,,| =2. Therefore

(9.13)  Aut(M,,)=K{b>=B.

Choose 1T and 2=1%. Then as Witt remarks, K, acts 3-transitively on
T with K,,=L,(11). Then <b>K,,==Aut(L,(11)=PGL,(11). As K, is transi-
tive on I" and there is one class of involutions in PGL,(11)— L,(11) it follows that

(9.14) There is one class % of involutions in B— K.
By Wong [34].

(9.15) K has one class X of involutions fixing 4 points and one class X of
fixed point free involutions. Cg(2) is the split extention of Q. 0O, by S..
Cx(t)=Z,x S,.

As K, <b>=PGL,(11) b centralizes an element x of order 5. By 9.15 we
may take [x, f]=1, and «¢ is self centralizing in K. Hence <{t)> is Sylow in Cg(x)
and and we may take [b, #]=1. Then as [, x]=1, b centralizes E(Ck(2))=],
and by L-balance, ] <L(C(b)). But b interchanges I" and I so b is fixed point
free on Q. Therefore by 9.4, J=E(Ck(0))=E(X) and U=<¢,b>. As {tp=
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Z(C@)), [X, Ul#1, so

(9.16) We may choose b so that Cr(b)=<t> X E(Ck(t)).
(9.17) Let H be quasisimple with H=H|Z(H) a Mathieu group. Then

(1) If H=M,, then H satisfies hypothesis II.

(2) If HIZ(H)=M,, T is a 2-group acting faithfully on H with m(T)>1 and
T = Syl,(Q), where Q is tightly embedded in HT, then H=M,, and T=<¢t, b
=Cyur(E(Cu(T))=E,, for some non 2-central involution ¢ of H.

Proof. Assume the hypothesis of (2). By Theorem 4 in [1] we may
assume Q is 2-constrained. So if b or ¥ is in T, then as <b, F>=0, ,(C(s)) for
each §in <b, £)*, @=<b, £>. Suppose Z(H)=+1. Then Z(H)=<{z) is of order
2, =nr and [b, t]==. LetseT with §=f. Then t=C(s)<N(T), so z=[t, b]
e T, impossible as T acts faithfully on H. Hence Z(H)=1. Now there exists
he C(t)< N(T) with [k, Bl=t, so teT.

So we may assume T¥CzH. But H={0*Cx(s), O*(Cx(s¥))> for any con-
jugate 2* of z with 2= 0,(C(2))—<2>. Hence H <T, ;(H)<N(Q), and then
[H, O, ,(Q)]=1, a contradiction.

So we may assume H2:M,,, and it remains to show H satisfies hypothesis
II. By [9], M,,, M,;, and M,, have trivial outer automorphism groups, so we
may take H =M,,. Assume T is a noncyclic elementary abelian 2-group acting
faithfully on H and Sylow in a 2-nilpotent tightly embedded subgroup Q of HT,
with T<CHC(H). As |Aut(H): H|=2, T=T<b> where T,=TNHC(H). By
a Frattini argument Cy(s) = O(Cy(s)(Cr(s) N N(T)), each s=T* As O(Culs))
=1, Cy(s)<N(T).

By 9.8, 9.10, and 9.11, T=<b>0,(Cx(b))=E,, or E,,, for b fused to u or ¢,
respectively. Without loss we take 2= T,. E is the unique abelian subgroup
of rank 4 in O,(Cx(2)) and by 9.12, E is self centralizing in Aut(M,,). So we
may take b=a@. Now Cx(#) is transitive on #(TN H)?, so Ng(T) is 2-transitive
on@TNH). So |H|,>|TNH|-|Cx(n)|,=2°>2"=|H]|,, a contradiction.

(9.18) Let H be quasisimple with H/Z(H)==M,,, M,,, M,,, or M,,, and assume
H is T-admissible. Then H=M,,, T is a 4-group, and 7' < C(T)~.

Proof. Set H=HT|/Cys(H). T centralizes O*Cg(¥)) for each te T*. It
follows that H=M,,, M,,, or H=M,, and T is the group U defined in 9.4
Assume the latter. M, has a trivial multiplier (eg [9]) so Z(H)=1 and Cx()=
Cy(t). Now U=T==Z(Cx(¥)), so by 2.9, HN T =1. Hence as T* is fused,
T<H. Then T=U<Cy(T)" by 94.

So take H=M,, or M,,. By 2.8, T<O,(Cy(t)). Further O*(Cx(¥))< Cxlt).
But if H=M,, then O,(Cg(?¥))= 0,(0*(Cx(?)) is of 2-rank 1, a contradiction.
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So H=M,,. Let X=<F¥NO0*Cx?¥)y. Then F>=Cg(X),so as X is T-admis-
sible, T is a 4-group. However O’(Cg(#)) normalizes no 4-group.

10. The Hall-Janko group HJ
Let G=H]J and A=Au(G).

(10.1) (1) G has one class 2© of 2-central involutions and one class 7¢ of non-
2-central involutions.

(2) C4(2) is the split extension of Q=0,(C4(2))=Q+D, by A;. 0=<z6NC(2))
(3) Cg(r)=RXx L where R~E,, L=A,, and 7°N L is empty.

(4) Let S=Syl(G) and P the weak closure of Rin S. Then P is isomorphic
to a Sylow 2-group of Ly(4) and S=P<b> where b is a conjugate of =z inducing
the graph-field automorphism on Q.

(5) |A4: G|=2 and there is one class a¢ of involutions in A—G. Cg(a)==

PGL,(7).

Proof. (1) and (2) are well known. See [3] for (3) and (4), where it is also
shown that |4: G|=2 and there is an involution a& C4(r)— B with {a>L=S,
and [R, a]#1. We may assume a acts on S. Then a induces the field auto-
morphism on P and we may take [a,b]=1. All involutions in aS are fused
under S to a or ab. Further Z(P)Xb)=Cs(ab)=D, and Cg(a)=<b,r>=D,, so
C(a) is Sylow in Cg(a), and C(a) is transitive on 2N C(a). Hence by the clas-
sification of groups with dihedral Sylow 2-groups, Cg(a)=<PGL,(g), some odd g.
As C(a)N C(r)=D,,, we conclude g=7. Moreover letting {z>=2(Cs(a)), ab is
fused to az in Cg(a), so as all involutions in aS are fused under S to ab or az,
there is one class of involutions in 4—G.

(10.2) Assume H is quasisimple with H=H|Z(H)==H]. Then H satisfies
hypothesis II and if H is T-admissible then T projects on a conjugate of the
group R in 10.1.3.

Proof. By 2.3, and 10.1, H satisfies hypothesis II. Further (2>=Cg(Cq(2))
=C¢x(Cg(2)~), so each involution in T projects into a conjugate of R. Now by
2.3, T projects onto a conjugate of R.

11. The Janko group J,

In this section G=<J,. By [25]:
(11.1) G has one class 2¢ of involutions. Cg(2) is the extension of Q=0,(C())
=Qg+D, by 4,. C(2)=C(2)>.
(11.2) Let GXB<LAut(G) with |B: G|=p prime. Then either
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(1) p=2 and Cpy(z)/Q==S,, or
(2) Cp(x)=2Z(Cx(2))Cos().

Proof. By 11.1 and a Frattini argument B=GCg(2). As Aut(Q) is the
extension of E,; by S;, either (1) holds or Cyx(2)=CyzQ)Cs(2). In the latter
case as |Cx(0): <2>|=p and C(2)=C(2)>, (2) holds.

(11.3) A Sylow 17-group X of G is of order 17. Ng(X)/X ==Z, and X=C4(X).
Proof. Lemma 5.6 in [25].
(11.4) Let A=Aut(G). Then |A: G|=2 and C4(z)/Q==S..

Proof. By [23], |4:G|>2. We show |4: G| <2 and <{2)>=Z(C4(?)),
and then apply 11.2. First if |4: G| >2 then by 11.2 we may choose B<A4
with |B: G|=p prime and Cg(2)=2Z(Cgx(2))Cs(2). Hence it suffices to assume
B exists and then exhibit a contradiction.

Let X=S8yl,(G) and Y a complement for X in Ng(X). We may take
z€Y. Aut(X)=Z,, so by a Frattini argument Y is contained in an abelian
complement W to X in Ng(X). As Y=Cq(Y), W=Cyz(Y)=YCyx(2) and hence
Cy(2)=<2)>x<b> where <bp=Z(NgX)). But now G=<Cq(z), X><C(), a

contradiction.

(11.5) There is one class of involutions in 4—G with representative a.
Ce(a)=L,(17).

Proof. Let X & Syl,(G), Y & Syly(Ng(X)), and Y <Y, Syl,(N4X)).
We may assume 2 Y. Suppose Y, is cyclic. The image of Y, in C4(2)/Q==
03(2) is cyclic of order 4 and hence acts without fixed points on the nonsingular
vectors of Q/<z>. On the other hand Y, centralizes ®(Y)<Q, and ®(Y) is of
order 4, so that ®(Y)/<z) is a nonsingular point of Q/{z>. Hence Y,=Y x<a>,
where a is an involution centralizing X.

Now by 11.4, a induces a transvection in O3(2) on Q[{z>=0,(C¢(2))/{z>,
and all involutions in C,(2)—G are fused under C(2) into aQ. There is an
element x of order 3 in C(2) with [x, a]<Q. Let {c>/<z>=[a, Q/<2z>] and
P[{z>=Cq/<,>(a). P=<c)>+[P, x] with [P, x] quaternion. We show Cy(a)=2
D,, so [P, x,a]#1 and hence [x, a]==1. This implies C(a) N C(2) is a 2-group.

Let S8yl (Cy(z)) with Cs(a)=Syl,(Cx(a)). Then S is isomorphic to a
Sylow 2-group of L,(4) extended by a graph-field automorphism and a induces
an outer automorphism on S, so S<a> is isomorphic to a Sylow 2-group of
Aut(Ly(4)) (eg. 3.3 in [25]). Hence as Y < Cg(a), Cs(a)=D,, and then
Co(a)==D,.

Therefore Cs(a)=C(a)N C(z)=D,,. Moreover <Q, x> is transitive on the
involutions in aQ, so C(z) is transitive on the involutions in C4(2)—G, and
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hence there is one class of involutions in A—G. Further C(a) is transitive
on 2°N C(a), so appealing to the classification of groups with dihedral Sylow
2-groups, Cg(a)==L,(17).

(11.6) Let X be quasisimple with X/Z(X)=<J,. Then

(1) X satisfies hypothesis II.
(2) X is not admissible.

Proof. (1) follows from 2.3, 11.1, and 11.5 {z)=C¢(Cs(2))=Cs(Ce(2)~),
so X is not admissible.

12. The Higman-Sims group HS

Let G=HS and A=Aut(G). A is the automorphism group of a strongly
regular graph & on a set Q of 100 vertices. Let oo be a distinguished vertex
of O, A=A(c0) the set of 22 vertices joind to oo in &, and T'=T'(o0) the set of
77 remaining vertices. A4.. is the automorphism group of M,, and G. is M,,.
A acts 3-transitively on A and the vertices in T' can be regarded as the fixed
point sets of involutions in G, on A. The members of A are called points and
the members of T" blocks. For a €A, A(a) is the set of blocks containing a.
(Recall a block is a set of fixed points of an involution). Two blocks are
adjacent in 4 if they are disjoint.

By 9.8, 4. has one class 2= of involutions. Let B=I(2)€T and aEB.
Let H=A4... By [26]

(12.1) Cq(2) is the extension of T=0,(C(2))=QF0¥Z; by S, with C()/T ac-
ting as the stabilizer of a nonsingular point on the orthogonal space T/<{z}.

Again by 9.8, H—G.. has two classes u# and t¥ of involutions with % fixing
8 points of A and ¢ acting without fixed points on A. C=G.NC(t) is the
split extension of E,; by the holomorph of Z,. Choose S &Syl,(C(?)) with z&
Z(S). Then as [t, 2]=1, t acts on I(z)=DB. Let K be the stabilizer in H of B.
By 9.12, KB3=S,. K —G has 3 classes of involutions t¥, s¥ and X where ¢ and
7 act fixed point freely on B and s fixes 4 points of B. r centralizes an element
of order 3 in K, while as remarked above, Cy() has order prime to 3. Hence

(12.2) *=tENK, sE Urk=uf N K.

Let N be the number of fixed blocks of . Counting the set of pairs (D, #¥),
where D is a block fixed by #*, we have N|t#|=77|t¥|. We conclude N=S5.

Now C=G.NC()=XY where Y=0,C) and X=N(X,) where X is a
Sylow 5-group of C. As t¥=t¥ N K, C is transitive on T'N I(¢) and then Xj is
regular on these blocks. Thus Y=C,(t);. I(u) has order at least 9 so
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u®=1% and hence t° N H=1°. So Cg(t) is transitive on I(z) and hence Cg(2)'®
~PGL,(5).

Summarizing:

(12.3) Cg(t) is the extension of Y=0,(C¢(t))=E,; by PGL,(5) and t¢ N H=tH.
C4(t) acts irreducibly on Y.

By [15].

(12.4) G has two classes 2¢ and v© of involutions. There are two classes ¢
and € of involutions in A—G. |Cgu)|=8!.

As uCNH=u¥, u fixes |C4(u): Cy(u)|=8!/2°.3.7=30 vertices. Hence u
fixes 21 blocks. By 12.2 Cy(u) has 2 orbits T, and T, on these fixed blocks,
where T, consists of those blocks in which # fixes 4 points and T', the blocks
upon which # acts without fixed points. As 3 points determine a block and u
fixeds 8 points of A, T', has order 8.7-.6/4.3.2=14. Hence T, has order 7.
Each cycle of # on A is contained in 2 blocks of T'; and 3 blocks of T",. Hence
easy counting arguments show the graph « induced by 4 on I(u) is bipartite so
that Cg(u) is 2-transtitve on one of the sets I, in the partition. Hence ¢ is the
incidence graph of the projective geometry PG(3, 2), and Cg(u) is the automor-
phism group of that geometry together with a polarity. Hence

(12.5) Co(u)=S,.

Let we Cg(u) correspond to a transvection. Then Cg(w)N C(u)=Z,X S,,
and W=E(Cq(u) N C(u))<L(C(w)). It follows from 12.1 and 12.4 that we may
take v=w. By [26],

(12.6) Cg(v)=Z,x Aut(As).
Thus W=L(C(v)) and

(12.7)  Ca0)=Z/(E,XS)).
(12.8) Let X be quasisimple with X/Z(X)=~HS. Then

(1) X satisfies hypothesis II.
(2) X is not admissible.

Proof. Let T be an elementary 2-group acting faithfully on X and Sylow in
a 2-nilpotent tightly embedded subgroup of X7T. Assume first ac T — XC(X).
By 2.3, a does not induce # on X, so a induces £. As Out(X) has order 2, some
beT* induces an inner automorphism on X. By 2.3, b induces an automor-
phism in 2. As O*(Cq(t)) acts irreducibly on O,(C4(2)), T N XC(X)=T, pro-
jects on O,(Cg4(2)). Now Cg(b) acts on T, and since we may choose b to project
on 2, O¥Cg(2)) normalizes the projection of T,. But 7,=0,(Cq(t))=E,; while
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m(0,(0*(C4(2)))=3, a contradiction.
So T<XC(X) and (1) is established. Also as {x>=Cg(C¢(x)>) for each
involution x G, X is not admissible, establishing (2).

13. The Fischer groups

Let G=M{(24), the largest of Fischer’s three groups generated by 3-tran-
spositions. The following facts are in [11]:

(13.1) (1) G is generated by a class d°=D of 3-transpositions.

(2) |G: E(G)|=2, E(G) is simple, and G=Aut(E(G)).
) Cg(d)=H =M(23) is simple and H=Aut(H).
(4) Let deS&Syl(G) and L={SN D).
Then L is abelian of order 2¥ and Ng(L) is the non-split extension of M,,
acting 5-transtitively on SN D.
(5) Leta,b,c, and d be distinct members of S ND. The all involutions in L
are ufsed under N(L) to d, t=da, dab, or dabc.
(6) Let K=Cy(t). Then K is quasisimple and K/<{t>==M(22) is simple.
Aut(K)=Aut(K) and | Aut(M(22)): M(22)|=2.
(7) Ck(bt) is isomorphic to the covering group of Uy(2).
(8) M(2n) contains a unique class of 3-transpositions for each n=2, 3, 4.

We record four elementary facts about groups generated by 3-transposi-
tions:

(13.2) Let a, b, and ¢ be distinct commuting members of a set E of 3-transpo-
sitions. Then

(1) Cglab)=Cg(a)N Ck(d).

(2) Cg(abe)=Cpg(a) N Cx(®) N Cr(c).

(3) If <E> is transitive on E then Cgz(a)=Cg(b) exactly when a &b <E>>,

(4) If x is an involutory automorphism of <{E) and [a, a*]+1, then x cen-
tralizes a member of E.

Proof. (1), (2), and (4) are easy. See [11], 2.1.3, for (3).

(13.3) Let E be the set of 3-transpositions in M ==M(22). Then every in-
volutory automorphism of M centralizes a member of E.

Proof. Let x be an involutory automorphism of M and assume Cg(x)
is empty. By 13.2.4, [u, u*]=1 for each u€E, so x centralizes the involution
s=uu®. By 13.1.7, Cy,(u) is a covering of U(2) over u. Moreover #” is a trans-
vection in Cy(u)/<u>, so J=<Cg(u)N Cx(u™)>=AB where A=<{ANE>=U,2)
and B=0,(J). Further by [11], 16.1.10, A/ is the unique class of E-subgroups
complementing B in J.
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x centralizes s, so by 13.2.1, x acts on J. If x acts nontrivially on J/B
then by 12.2 and the proof of 19.8 in [4], [, v*]& B for some ve J N E, against
13.2.4. So x centralizes J/B. Now by uniqueness of 4/ and a Frattini agru-
ment, x=yb for some & B and yeN(4). Then y centralizes A. Moreover 4
acts irreducibly on B/Z(]), so y centralizes B/Z[]) and then B. So [y, J]=1.
Now A4 acts in its natural representation on B/Z(J), so every member of B/Z(])
is centralized by some v ANE. Further by 13.2.1, Z(J)oN E= {2}, so every
member of B is centralized by some member of ANE. In particular x=yb
centralizes a member of AN E.

(13.4) (1) Every involution in G centralizes a member of D.
(2) Every involution in H fixes a 3-transposition of H.

Proof. t=da is a 3-transposition of H in the center of a Sylow 2-group
of H, so (2) is immediate. Let x be an involution in G and suppose Cp(x)
is empty. By 13.2.4 we may assume d*=a, so that x centralizes . By 13.2.1,
K<{d»=Cp(t) is x-invariant, so x acts on K=E(K<{d)>). By 13.3 we may assume
x acts on <bd, t>. Now x acts on <b, d, t>) N D={a, b,d} by 13.14. So x cen-
tralizes b.

(13.5) (1) d, ¢, dab, and dabc are representatives for the conjugacy classes
of involutions in G.

(2) Let u, v, and w be distinct commuting 3-transpositions in M =M(23) or
M(22). Then u, uv, and uow are representatives for the conjugacy classes
of involutions in M.

Proof. L is weakly closed in S and L is abelian, so N(L) controls fusion
in L. By 13.1.5, any involution in L is fused to d, da, dab, or dabc, while by
13.1.4 none of these involutions is fused in N(L). So to prove (1) it suffices
to show each involution in G is the product of commuting 3-transpositions.
By 13.4, each involution in G is conjugate to an involution in Cg(d)=<d>H.
So as £ is the set of 3-transpositions in H, (1) is reduced to (2).

Next if M =M(23) or M(22), E is the set of 3-transpositions of M, and
T eSyl(M), then N(T NE)T"E is M,, or M,, and all involutions in <T'NE>>
are fused to exactly one of u, uv, or uvw in N(T), where u,v, and w are
distinct members of TTNE. Hence we may repeat the argument above, and
reduce (2) to showing that any involution in Cj,(v) is the product of commuting
3-transpositions, where M ==M(22) and v is a 3-transposition of M. However
by 13.1.7, Cy(v)[{v>==¢Uy(2), so as every involution in Ug2) is the product of
1, 2, or 3 transvections, the proof is complete.

(13.6) (1) Co(d)y=<d>x H=Z,x M(23).
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(2) Let eeD—C(a,d>) and S=<{d,a,e>. Then S=S§, and C4(t)=
{$>(Kd>x K) where s&¢#5 induces an outer automorphism on K and K/{t>=
M(22).

(3) Cg(dab)=<dab>x J where E(J) is the covering group of U2) and J/Z(])
= Aut(U(2)).

(4) Let z=dabc and X=<{Cp(2)>. Then O,X)=0° X/O,(X) is the perfect
central extension of Z; by O5(3), Cg(2)/X ==.S,, and Cg(X)=<=).

() Co(8)=<Cp(8))>==Aut(93(2)).

Proof. (1) follows from 13.1.3. Pick eand S asin (2). As (ad)’=(ae)’
=(de)*=1, S=8,, so there is a conjugate s of ¢ under S with [d, s]=¢. Now
(2) follows from 13.1.6 and 13.2.1. (5) follows from 18.3.12 and 18.3.14 in [11].

By 13.1.7. and 13.2.2, B=<Cp(dab)>=<dab)x E(B) where E(B) is the co-
vering group of Uy2). By 13.1.4, Cs(dab) induces S, on {d, a, b} and hence
(3) follows.

Finally let z=dabc, X =<{Cp(z)> and Y=<{Cp(2)NC(d)>. Then Y=
{d>x O (Y)where ®(0,Y))=<z), Z(O*(Y))=<da,db,dc.>, and O,(Y)=E, x Q*,
with Y/O,(Y)=U,(2). Also {d,a,b,c}=Z(Y)ND. Moreover by 13.5.2, d, a,
da, ab, dab, abc, and dabc are representatives for the C(d) classes of involutions
in C(d). So by 13.5.1, 2N C(d)=2°%. Hence X is transitive on X ND.
Now by 13.2.3, {d, a, b, c}=d%®. So {da, db, dc)< O,X). As O,(0(Y))is
generated by conjugates of <{da, db, dc>, O,(O*(Y))<O,X). O,(Y)=0,(C(d)N
C(z)) and |OL(X): O(X)NC(d)|=|d%*’|=4. As O,(0(Y))=E,XQ" we
conclude O,(X)=0°".

Now YO,(X)/Oy(X)=Z,x U(2). Also <Cp(e) N Cp(d)>=W=305(3). So
if v is a conjugate of & in W, {C(z)N DN W is solvable. Hence by the main
theorem of [11], X/O,(X) is isomorphic to Og(3) modulo its center. By [35],
O5(3)£01,(2), so Z(X/0O,(X))=Z,. By a Frattini argument C(2)=X(C(z)N
C(d)), so as C(z) N C(d) induces S, on {a, b, ¢}, the proof of (4) is complete.

(13.7) Let E be the class of 3-transpositions in H = M(23) and u, v, and w
distinct commuting members of E. Then

(1) Cylu) is quasisimple with Cy(u)/<u>=M(22).

(2) Cu(uv)=<_s>J where J is the covering group of Uy (2) and s is a conjugate
of uv inducing an outer automorphism on J.

(3) Cyluvw) is 2-constrained with Cp(uvw)/(Cp(u) N Cy(v) N Cr(w))=S,.

Proof. This follows from 13.1 and 13.2.

(13.8) Let M=M(22), A=Aut(M), E the class of 3-transpositions in M, and
u, v, and w distinct commuting members of E. Then
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(1) Cp(u) is quasisimple with C,,(u)/<u)> = U2). C4(u)=<s>Cy(x) where s
is an involution inducing an outer automorphism on Cy, ().

(2) Ca(uv) and C,y(uvw) is 2-constrained with C,(uv)/(Ca(u)NCy(v)) =2,
and | C (uvw)| =2%.3%

(3) There are 3 classes of involutions in 4— M with representatives s, su, and
suv.

4) Crp(s)=Aut(Qz(2)).

(5)  Carls1)=Cae(5) N Coalt)=Z, X Sp(2).

(6) Cp(suv) is the extension of E,, by Og(2) acting in its natural representation
with uv corresponding to a nonsingular point.

Proof. By 13.1.6 Ny(K)/C(K) is isomorphic to 4 and |A: M |=2. Let
e€D—Cy(<a, d)) and s, a conjugate of ad under {a, d, &> with [d, s,]=ad. Let
s be the image of s, in 4. By 13.6.2, A=M{s).

By 13.6.5 and 13.2.1 we have {Cp(<a, d, s,>)>=<Cp({a, d, e>)=Cs(a, d, >),
= Aut(Qz(2)). This yields (4), and shows we may choose b and ¢ to be con-
tained in and fused under Cg(<4, d,s,>). Now E is the image of Cp(ad) in M,
so we may take # and v to be the image of b and ¢, respectively. Then (1)
follows from 13.6.3 and (2) follows from (1), 13.2, and an easy calculation.

Next as s induces an outer automorphism of C,(x), 19.8 in [4] implies
s, su, sv, and svu are representatives for the C4(u) classes of involutions in
C,(u)—M. Notice that s, and sbc are involutions while s,db and sdc are
elements of order 4, so s and suv are not fused in A4 to su or sv. In addition
Cu(w)NC(s)=Z,x Spy(2) and Cp(u)NC(sv)=Cpn(u)NC(s)NC(v). By 13.3
every involution in A — M is fused to one of s, su, sv, or suv.

Recall that 5,6 is fused to s,c in C(<a, d, s,>), so su is fused to sv in 4. By
(4), Cp(s) is transitive on Cg(s), so Cp(?) is transitive on s¥ N C(v). Thus s is
not fused to suv in 4. Hence (3) is established.

su is the image of efb where s,=ef, ¢, f€D. By 13.6.3, Cs(efb) acts on
{e, f, b}, so Cg(efb) N C(ad) acts on {e, f, b} N C(ad)={b}. Therefore C,,(su)=
Cu(s) N Cpp(u)==Z, < Sps(2), proving (5).

Next C(u) is transitive on (suv)® N C(x) and hence C(suv) is transitive on
Cr(suv). Let Y=<CEN C(suv) N C(u)> and X={Cx(suv)>. Y=<{u>x Y, where
Y, is the centralizer of a transvection in Spy(2). Also {u, v} =Z(Y )N E so by
1324, v O(X)=E,,. YO,X)/O(X)=Z,x Sp,(2), so by the main theorem
of [11], X/O,(X)=05(2) acts in its natural representation on O,(X) with
{uv>=Cyx(Y) a nonsingular point. By a Frattini argument, C,,(suv)=X(C(u)N
C(suv))=X.

X is the image of {C(ad) N C(efbc) N D) so ad induces an automorphism of
W={Cp(efbc)> such that {C(ad)N DO,(W)/O,(W)> has an Og2) composition
factor. But by 13.6.4, W/O,(W)=05(3), so O%(2) is of characteristic 3. Hence
X[0,(X)=05(2)=05(3). This completes (6).
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(13.9) Let X be quasisimple with X/Z(X) isomorphic to M(22), M(23), or
M(24)y. Then

(1) X satisfies hypothesis II.
(2) X is not admissible.

Proof. By 13.1.3, M(23) has a trivial outer automorphism group. By
13.1.2, G=Aut(M(24)’), and then 13.5.1, 13.6, and 2.3 imply M(24) satisfy
hypothesis II. Suppose X/Z(X)==M(22) and T is an elementary abelian 2-
group acting on X and Sylow in a tightly embedded 2-nilpotent subgroup of TX
with T<{XC(X). By 13.8 and 2.3, some t=T* induces suv on X/Z(X).
By 2.8, Cx(#) acts on T so as Cy,z x,(t) =0%(Cx/zx)(t)) acts irreducibly on
O,(Cx/z:x(t)), some r& T* projects on uv. But now #r induces s on X/Z(X),
against 2.3. 'The proof of (1) is complete.

By 13.6, C gy (Cs(x)*)=<x> for each involution x in E(G), so M(24)’ is not
admissible.

Suppose X=X/Z(X)= M(23). We adopt the notation of 13.7, setting
X=H. By23and 13.7, TNE is empty. Next Cp(J)=<u, v>,s0 as TNE is
empty, 2.3 implies TN (uv)¥ is empty. Hence by 13.5, T*C (uow)¥. Finally
by 13.7, Cy(C y(uvw)t)=<u, v, wp, so as (uvw)? N<u, v, w)= {uvw}, we have a
contradiction.

Finally assume X=(22). Let @, , and @ be commuting 3-transpositions
in X. By 13.5 each involution in X is fused to #, @, or #wow, By 13.8 and 2.3,
acT. {a,v>= Cx(Cx(@w)A), so as ucc T, av & T. Thus each involution in T
is fused to #ow, and we may take F—=uavw, tT*. Let J=Cx(#). Then J/<i)
=U,(2) and by 13.6.3, J is quasisimple. By 21.7 and 10.6 in [4], C,(¢/ N C(?))
={uvw, Z(J)>. By symmetry among u, v, and w, Cx(¢* N C(2)) < {uvw, Z(X)>,
so by 24, T=E,. By 2.6, Cx(t)<N(T), while by 21.7 and 10.6 in [4],
uy u, Z(NX(J)/Z(J) is the only 4-group in J/Z(J) normalized by C;(2)/Z(]).
Hence T<<a,7,w>. But iXN<a, s, wy>={f}, a contradiction.

14. Conway’s second group Co,
Let G=Co,. We record some facts about G found in [30]:

(14.1) (1) G has 3 classes of involutions with representatives gz, a, and zz.

(2) Cq(2)1s the split extension of E=0,(C(2))=0"* by S=Sp,(2) with E=[E, S].
(3) Set I=Cg4(a). Then O,(I)=W,xD, where W ,~E,, and D,=D® are
I-invariant, and 1/O,(I)= A, acts as L,(2) on W, and as Q¢(2) on D,/<a>.

(4) Set M=Cg(zr), X=Cp(2), and J=0,M). Then |M: X|=2, [=DxD*
where D=~E, and ueM—X, X/]=S,, M|]=Aut(4,), and X/J acts in its
natural representation on the permutation modules D and D*.
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(5) Let v and 8 be G-conjugates of z such that ¢ is a transvection in S and
a=9R is of order 3. Then Ny({a>)=<a, ¥>X C where C =Aut(U(2)).

(6) G,={E, Ng(Ka)>=<{v>G, where G,=U2) and « induces a graph auto-
morphism on G,.

(7) G acts as a rank 3 group on the set Q of cosets of G,in G. G isa normal
subgroup of index 1 or 3 in the automorphism group of the rank 3 graph 4 of
this representation.

Proof. Specific references in [30] are as follows: (1), 2.8; (2), 1.1, 2.1,
and 2.11; (3), 2.12; (4), 2.13 and the discussion on pages 101 and 102; (5),
4.1; (6), 4.3; (7), section 5.

(14.2)  Aut(G)=Aut(S)=G.

Proof. Let A=Aut(G). By 14.1.7 it suffices to show A=GN 4(G,), and
N4(G,)=G,. By a Frattini argument 4=GC4(z). A second Frattini argument
implies C4(2)=Cg(2)C({z,a>). By 14.1.5, N ,({a>)=B X Ng({ex>) where B=
Ca(Ng(Kep). In particular B< C(2)<N(E), so by 14.1.6, B acts on G,. Then
by 14.1.7, A= Aut() and B has order 1 or 3.

Assume B has order 3. We show B centralizes Cg(z). Then B centralizes
G,=<E, Ng({e>)>. By 14.1.7, G, is maximal in G, so B centralizes G=
{G,, C4(2)>, a contradiction. B acts on Cy(2)=ES centralizing {a, v> X Cs(at)==
S,=8p,2), so [B, SJ<E. Assume B does not centralize Cg(2). As S acts
irreducibly on E/{(z), Cp(B)=<{z)>. BC4(2)=BC42)/E acts on E[{z>=V,
preserving a quadratic form of sign 4, so BC(2)=Z,x Sp,(2)<03:(2). Let
g€S have order 7. [V, g] is of dimension 3 or 6 and as B acts without fixed
points on [V, g], it must be the latter. Then Cy(g) is nondegenerate of dimen-
sion 2, and as B acts without fixed points on Cy(g), Cy(g) is of sign—.
Hence [V, g] is of sign—. But the order of O5(2) is not divisible by 7. The
proof is complete.

(14.3) Let A be quasisimple with 4/Z(A4)=Co,. Then

(1) A4 satisfies hypothesis II.
(2) A is not admissible.

Proof. (1)follows from 14.2. By 14.1, <x>=C¢(Cs(x)4) if x=x or a, and
(&, m)=Cg(C¢x(nz)A). This yields (2).
15. Subgroups of Fischer’s Monster

We adopt the notation of R. Griess in discussion subgroups of Fischer’s
Monster. That is F, denotes the simple composition factor of the centra-
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lizer of a certain element of order 7 in the Monster. The orders are as follows:
F, 2".3%.5%.7.11.19

F, 21%.31°.5%.72.13.19.31

F, 24.3%.55.7%.11.13.17.19.23.31.47

F 2%.3%0.59,7°.11%.13%.17.19.23.29.31.41.47.59.71

(15.1) Let G=F,and A= Aut(G). Then

(1) |4:G|=2.

(2) G has 2 classes of involutions with representatives x and 2.

(3) E(Cg(t) is quasisimple with E(Cg(2))/<t>=HS and Cq(t)/<t>==Aut(HS).
(4) Cg(2) is the extension of O by A4, wreath Z,.

(5) There is one class of involutions in 4 — G with representative a.

(6) Cgla)=S,,.

Proof. [21].
(15.2) Let G=F,. Then

(1) G=Aut(G).
(2) G has one class of involutions with representative 2.
(3) Cq() is the extension of an extraspecial group of order 2° by A4,.

Proof. [31].
(15.3) Let G=F,. 'Then

(1) G is generated by a class D=d€ of 3,4-transpositions.

(2) Cg(d)=<e>H where H=E(C(d)), H/<{d>==*E(2), and e induces a graph
automorphism of H.

(3) D=d Ub® UeH Ua* Uv¥ where ad and vd have order 3 and 4, respectively,
and <b, d>/<{d is a root involution of H/<{d.

(4) G has 4 classes of involutions with representatives d, z=db, f=de, and
0=dbb’, where b’'bH.

(5) Cq() is the extension of D' by Co,.

(6) Co(f)=<s)(CS, d>X E(Cye))) where F=E(Cy(e))=F,(2), [s,d]=f, and s
induces an outer automorphism on F.

(7) Cg(0) is the extension of O,(Cg(6)) by OF(2) and <0>=Cq(O*(Cgx(9))).
Proof. [12].
(15.4) Let G=F,. Then G=<{H, E(C4(b))>.

Proof. There exist conjugates b, and b, of b under H such that bb, and bb,
have order 3 and 4 respectively. Moreover as D is a set of 3,4-transpositions,
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e does not centralize H=<{b"), and e is not conjugate to b in H, there exists
b,&b such that eb, is of order 4. It follows with 15.3.3, that D S <{H, E(C4(d))>,
completing the proof.

(15.5) F, is its own automorphism group.

Proof. Let G=F, and A=Aut(G). By a Frattini argument, A=GC 4(d).
Moreover C(d)/<{d is its own automorphism group, so C4(d)=XC 4(d), where
X=C4(H). Let Y=0%Cg(d)N Cs(b)). Then C,(Y)=X<b>=C 4(E(Cs(b))d>,
50 | X: Cx(E(Cs(0)))|=2. Finally by 15.4, Cx(E(Cg(b)))=1, so X=<{d>. The
proof is complete.

(15.6) Let G=F,. Then

(1) G has two classes of involutions with representatives ¢ and z.

(2) Cg(t)=H is quasisimple with H/<{t>=F,.

(3) Cg(2) is the extension of O by Co,.

(4) If X is a group with involutions ¢ and 2 with centralizer as in (2) and (3),
then | X|=|G]|.

Proof. [18].

(15.7) Let G=F, and t>/<t> a 3,4-transposition in H/<{t>. Set K=
Ey(N(<s, ). Then K is the covering group of *E¢(2) and (s, £)* is fused in
N(K).

Proof. K/Z(K)=?E,(2) and, replacing s by s¢ if necessary, Z(K)=<{s>
or {s,t>. As ’E/(2) has E, as a multiplier, s is an involution. By L-balance
K <L(C(s)), so by 15.6 s is fused to z. Now by symmetry between s and ¢,
Z(K)=<s,t>. Next by 15.3 there exists A& H inducing an outer automorphism
on K, so [s, h]=t. By symmetry between s and ¢, N(K) induces S, on {z, s)*.

(15.8) Let G=F, and r a conjugate of s under H contained in Cg(<t, s))—<t, ).
Set T=<%,r,s>. Then T contains a unique conjugate of 2, which we take to
be 2, and Ng(T) is transitive on T —{2).

Proof. <rs, t>/<t> is the center of Sylow 2-group of H, so as {z> is the
center of a Sylow 2-group of G, s or rst is fused to 2. By 15.7, st is fused to ¢,
so we may take 2=rs. Now NgK)=K(N(K)NN(T)) by a Frattini argument,
and by 15.7, N(K)N N(T) has orbits of length 1, 3, and 3 on T*. The orbits of
length 3 are fused in Ny(T), completing the proof.

(15.9) Let G=F,. Then Cy(2)=<Cq(<z, 15), Ce(<z, ).

Proof. Let Q=0,(C(2)) and X=C({z,t>). By 15.3, X/{(t> is the exten-
sion of an extraspecial group of order 2* by Co,. So by 15.6, t=Q and XQ/Q
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is maximal in Cg4(2)/Q. By 15.8, s€#¢® —{¢, 20, so Q={Cq(2), Cy(s)> and as
XO0/0 is maximal in C(z)/Q, the result follows.

(15.10) Let G=F,. Then G={Cq(z), C¢(t)>.
Proof. 15.6.4.

(15.11) F, is its own automorphism group.

Proof. Let G=F, and A=Aut(G). By a Frattini argmuent A=GC 4(?).
By 15.5 C,(t)=Cg(t)X, where X =C,(C4(t)). X centralizes C(¢)N C(s), so
| X: Cx(Cs(s))| =2. By 15.9, Y= Cx(Cq(s)) centralizes Cg(2), and then by
15.10, Y=1. The proof is complete.

(15.12) Let A be quasisimple with 4/Z(4)=F,, n=1,2,3, or 5. Then

(1) A4 satisfies hypothesis II.
(2) A is not admissible.

Proof. If n==5 then the outer automorphism group of A4 is trivial by 15.2,
15.5, and 15.11. If #»=>5, 15.1 and 2.3 imply (1). The results in this section
show m(C(C 4(u)A)) <m(C(C 4(v)-*)) for each pair of involutions « and v in A/Z(A)
with u€ C(C o(v)A)—<v>. Thus (2) holds.

16. The remaining sporadic groups

(16.1) Let G be the small Janko group J,. Then
(1) G=Aut(G).

(2) G has one class of involutions with representative 2.

() Co(x)=2Z,x 4,

(16.2) Let G be Conway’s small group Co,, let M be McLaughlin’s group Mc,
and let A=Aut(Mc). Then

(1) G=Aut(G).

(2) |A:M|=2.

(3) G has two classes of involutions with representatives z and 2.
(4) Cg(2) is the covering group of Sp,(2).

(5) Ce)y=Z,xXM,,.

(6) M has one class of involutions with representative z.

(7) Cu(=) is quasisimple with Cp,(2)/<{z>=A,.

(8) There is one class of involutions in 4 — M with representative 2.
9) Cut)=M,,.

Proof. See [9] for (1) and (2) By [10], A<G and G acts 2-transitively on
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the set Q of cosets of 4 in G. Moreover (3) holds where we may choose s M
and t€ 4 — M, with the fixed point sets I(z) and I(#) of z and ¢ on Q of order
36 and 12, respectively.

Let oo be the point of Q) fixed by 4 and 0 a second point. Set H=G.,.

By [10], p. 64, H is transitive on conjugates of 2 and # in H, so C(u)!™ is
2-transitive, =z or ¢. 'This yields (6) and (8).

(4) and (5) follow from [9]. In particular C(2)"®=Sp,(2) and C(¢)!"=
M,,. Hence as A4 is the stabilizer of oo, C4(2) acts as O§(2)=S, on I(z)— {0}
and C4(¢) acts as M, on I(t)—{co}. The proof is complete.

(16.3) Let G be Lyon’s group Ly. Then

(1) G=Aut(G).
(2) G has one class of involutions with representative z.
(3) Cq(=) is the covering group of A,,.

(16.4) Let G be Held’s group He and A=Au#(G). Then

(1) G has two classes of involutions with representatives z and .

(2) Cq(2) is the centralizer of a 2-central involution in the holomorph of E,,.
(3) There is a standard subgroup L of G withre R=Z(L)=~FE, and L|R=L,(4).
Ng(L)y=L<{d, f> where d and f induce diagonal and field automorphisms on
LR, respectively.

4) |4:G|=2.

(5) There is one class of involutions in 4 — G with representative a.

(6) Z(B(Co(@)))=Z, and Co(a)| Z(B(Cola))) =S,

Proof. (1)-(3) are well known and are contained in, or can easily be de-
rived from [22].

Let T=R? be a distinct conjugate of R contained in L, and set S=C(RT).
Then S is a Sylow 2-group of L and of L*. Now |Aut(L): Auts(L)| <2 with
S/R self centralizing in Aut(L). So C,(S)=TC4(L). Let X=CyL). Then
X acts on Lf and centralizes S, so X=RCx(L?). By [5], He is the unique group
generated by a nonnormal standard subgroup isomorphic to L, so G=<L, L*}.
Hence X=R. As |Aut(L): Aut;(L)| <2, a Frattini argument shows | 4: G| <2.
The existence of an outer automorphism is known and establishes (4). Moreover
we have shown RT=C,(S), and there exists s 4 — L inducing a graph auto-
morphism on L.

Let P be a Sylow 3-group of N(S)NN,4(L). Then N,(P)NN(L)=PD,
where D=E,. So we may take D={f, o>. In particular ¢ and a=of are
involutions.

We may assume 2&C(a). Then a induces an outer automorphism on
C5(2)[/0,(Cs(2))=C==L,(7), so all involutions in aC are fused to a0,(C(z)). a
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inverts an element ¢ of order 7 in C and ¢ acts without fixed points on
0,(C(2))/<z> so by 2.1 in [4], each involution in C,(2)—G is conjugate to a or
az in C(z). Finally we may choose 2 Rt, where {¢t)=[T, a]. This proves (5).

NL)N C(o)=<r>*x Y where {r)=[R, ¢] and Y=<(T¢""L>=S_. By (5),
of=a, some g=G, s0 YE< X=(RC*>,

Let O=<f,s> be a-invariant. Cy(a)=<R,?,f>=Z,xD,, where {t)=
[T,a]. In particular R is weakly closed in Cg(a). As Cx(r®)=S, and R is
weakly closed in a Sylow 2-group Cg(a) of Cg(a)N N(R), Theorem 3 in [2] im-
plies <r%, X>/Z(X)=S,. As C(R{a>)=0%(C(R<a))), Co(a)<<r¥, X, and a
Sylow 3-group of C(R<{a)) is of order 27, (6) follows.

(16.5) Let G be the sporadic Suzuki group Sz and let A=A4ut(G). Then

(1) G has two classes of involutions with representatives 2 and 7.

(2) Cg4(2) is the extension of Q° by Qg(2).

(3) There is a standard subgroup L of G with re R= 0,(Cg(L))=E, and
L=L,4). Ng(L)=RLy, ey where (R, y>=Cq(L)=A4,, [R, e]=*1, and e induces
a graph-field automorphism on L.

4) [A:G|=2.

(5) There are two classes of involutions in 4 — G with representatives o and o7.
(6) Colo)~Aut(H)).

(7) Cglor)=Aut(M,,).

Proof. (1)-(3) are well known (eg. [28]).

Let T=R? be a distinct conjugate of R contained in Cg(R)=RL and set
S=C¢RT). Then S=Syl(RL) and by symmetry S<Syl,(TLf). Moreover
Z(S NL) is the centralizer in Aut(L) of SNL. So C,(S)=TX, where X=
C4(LR). Then X acts on Lf and centralizes S, so X=RCx(TL#). By [5], Sz
is the unique group generated by a nonnormal standard subgroup L==L,(4) with
m(C(L))>1, so G={RL, TL*). Hence X=R

Without loss choose 2 Z(S) and set H=Cg(z). Then C,4(H)<C,(S)=
TR, so C,(H)=<z>. Hence as Aut(H)=05(2)/E,,, by a Frattini argument,
|4: G| <2, with C4(2)=05(2)/0Q, in case of equality. An outer automorphism
of G is realized in Co,, so (4) holds.

Next A=RCN RT is of order 4 with N;(A)==S,. In particular if x induces
an involutory automorphism on RT centralizing R then as x centralizes a mem-
ber of RT N L, x centralizes a hyperplane of RT and then fixes each member of
A. Thus [x, RT]=1. Similarly [x, RT|=1 if [x, T]=1, so if [x, L]=1 then
xECy(S)=RT. Thus Cg(L)=Cy4(L), so there exists c=A4 inducing a graph
automorphism on L. ¢ centralizes T, so [o, RT]=1. Thus N(L)NC(o)==
N(L#)N C(o)=<A,x A,. Now N(c) is standard and nonnormal in C¢(s), so by
3.10, K={R¢”»=H]. e induces an outer automorphism on K, so Cg(o)==
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Aut(H]J). Similarly N(L)N C(or)=Z,(E, X 4;), so by 3.10, Cg(ar)=Aut(M,,).

Let J=C,(2) and O=0,(H). J/O=Q5(2). Define the rank of an involu-
tion in J/Q to be the dimension of its commutator space on Q/{z>. There are
two classes of involutions in J/Q—H/Q with rank 1 and 3 respectively. As
C(o) N C(2)==S,/Qg*Dy, has o rank 1. Moreover ¢ is fused to oz in C(a7), so all
involutions in ¢Cg(c) are fused. Hence all involutions in J of rank 1 are fused
to . Hence or has rank 3. Thus all involutions in ¢7Q/<{2) are fused to
{or, 25[<2>, and hence all involutions of rank 3 are fused to or. This completes
the proof of (5), and then of lemma 16.5.

(16.6) Let G be the Rudvalis group Ru. Then

(1) G=Aut(G).

(2) G has two classes of involutions with representatives z and .

(3) Cg4(2) is the extension of a group of order 2" and class 3 by S,. <{>=
Co(Ce(2)7)-

4) Cg(r)=E,xS,(8).

Proof. See [6], page 547 for (1). (2)-(4) are well known; see for example
[8], page 53.

(16.7) Let G be a group of O’Nan Type, and set A=Aut(G). Then
(1) 14:G|L2.

(2) G has one class of involutions with representative 2.

(3) Z(E(C=))=Z0 B(Ce()ZECe()=L{#), and Cols)=E(Cox)<t>,
where ¢ is an involution inducing an outer automorphism on E(C(z)).

(4) If A+G thereis a unique class of involutions a°CA—G. Further Cg(a)

~J.
Proof. [27].

(16.8) Let G be Conway’s large group Co,. Then

(1) G=Aut(G).

(2) G has 3 classes of involutions with representatives 2, ¢, and 7.

(3) Cq(2) is the extension of Q* by Q3(2).

(4) Cg(2) is the extension of E,;; by Aut(M,,).

(5) Cu(r)=<s>(RX L) where RX L=E,X G,(4), and s is a conjugate of r with
[R, s]=1 and inducing an outer automorphism on L.

Proof. [28].

(16.9) Let A be quasisimple with A/Z(A) isomorphic to J,, Mc, Co,, Ly, He,
Sz, Ru, Co,, or of O’'Nan Type. Then
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(1) A satisfies hypothesis II.
(2) Assume A4 is T admissible. Then 4AC,;(4)/C,7(A)=A=He, Sz, Ru, or
Co,, and T=0,(C4(L)) where L is standard in A.

Proof. We have shown Ou#(4)=1 unless A=A4[Z(A) is Mc, He, Sz, or
ON, in which case <@) is Sylow in C ,,,,(E(C(a@))). So 2.3 implies (1).

Assume 4 is T-admissible. Then T centralizes O*(C 4(¥))A for each t& T,
Inspecting the possible centralizers we get (2).

17. Proof of the Main Theorem

Theroem 17.1. Assume A is standard in G with A[Z(A) a sporadic group in
K, and m(Cx(A))>1. Then A<XG.

The proof involves several reductions.
(17.2) A|Z(A)xM,,.

Proof. Assume A/Z(A)=M,,. By Theorem 3 in [2] there is a conjugate
K&K =C;(A) such that a Sylow 2-group T of K¥N(4) is of 2-rank at
least 2. By 9.17.2, Z(A)=1 and T=<¢, b> where t= 4 and b induces an outer-
automorphism on 4. K <C(#), so TSyl (K#) and T centralizes a Sylow
2-group R of, K, by Theorem 2 in [1]. As the outer automorphism group is of
order 2 we conclude R<Z(O*(N(R))). But T'eR€ and there exists an involution
ac A with [a, T]=1.

(17.3) A satisfies hypothesis II.

Proof. 9.17,10.2, 11.6, 12.8, 13.9, 14.3, 15.12, and 16.9.

With 17.3 we may adopt the notation of section 3. In particular K=
Cq(4), ReSyl(K), and T eSyl,(K?) with R T-invariant. By 3.9, 4 is T-ad-
missible. Hence by 9.18, 11.6, 12.8, 13.9, 14.3, 15.12, and 16.9:

(17.4) A|Z(A)=M,,, H], He, Sz, Ru, or Co,, and T is a 4-group with its pro-
jection on A/Z(A) uniquely determined up to conjugacy.

(17.5) Z(A4) is of odd order.

Proof. The multiplier of M,, and He is trivial; the 2 part of the multi-
plier of Ru HJ, Sz, and Co, is of order 2. (eg. [9], [17]). In the latter 4 cases
the involutions in 4/Z(A), upon which the elements in T project, lift to elements
of order 4 in a cover of 4/Z(A) over Z,. This contradicts 3.5. For Co, this
fact appears in [28], p. 15. The coverings of Sz and HJ are contained in the
covering O of Co, with the appropriate 4-groups identified, so the remark
follows for Sz and HJ. For Ru we rely on a personal communication from D.
Wales.
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(17.6) If A|Z(A)=M,,, He, Sz, or Co,, then T <A.

Proof. If A/Z(A)=M,, He, Sz, or Co,, then for t&T*#, C,(t)<£C4(T), so
by 2.9, ANT=+1. Now by 3.6, T<A.

(17.7) AJZ(A)2xM,, or He

Proof. Assume A/Z(A)=M,, or He. By 17.6, T<A. By 9.18 and 16.4,
T<C,T)>. But Ng(T)/A? is solvable, so T< C(A4%) N A* < Z(A#), against 17.5.

(17.8) TnA=1.

Proof. By 17.4 and 17.7, A/Z(A)=H], Sz, Ru, or Co,. By 3.6, either
T<Aor TNA=1. Assume T<A. Thereexists ac 4 such that |T4N TT¢|
=4. Hence by 3.6, T°N A°=1. But then T%'N A=1., impossible by 3.6,
since T°¢”" projects on an A-conjugate of T.

We now derive a contradiction, completing the proof of Theorem 17.1.
By 17.4, 17.6, and 17.8, 4/Z(A)=H] or Ruand TN A=1. The group V gene-
rated by a maximal set A of commuting conjugate of R containing R and T is
of order 64 or 128 respectively. As TN A=1, A is of order 13 or 25, respec-
tively and OQ*=0,(N 4(V))* is elementary of order 4 or 8, respectively, and acts
semiregularly on A. Moreover X*={(N 4(V), N 4(V))>* is 2-transitive on A, so
by a result of Shult [29], [A| —1 is a power of 2, a contradiction.

We have established the Main Theorem except in the case where 4/Z(A4)
is an alternating group. Here we appeal to the main theorem of [3]. Thus
the proof of the Main Theorem is complete.
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